NetBSD/dist/ntp/ntpd/ntp_proto.c

2537 lines
68 KiB
C

/* $NetBSD: ntp_proto.c,v 1.1.1.2 2000/04/22 14:53:19 simonb Exp $ */
/*
* ntp_proto.c - NTP version 4 protocol machinery
*/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <stdio.h>
#include <sys/types.h>
#include <sys/time.h>
#include "ntpd.h"
#include "ntp_stdlib.h"
#include "ntp_unixtime.h"
#include "ntp_control.h"
#include "ntp_string.h"
#include "ntp_crypto.h"
#if defined(VMS) && defined(VMS_LOCALUNIT) /*wjm*/
#include "ntp_refclock.h"
#endif
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
#include <sys/sysctl.h>
#endif
/*
* System variables are declared here. See Section 3.2 of the
* specification.
*/
u_char sys_leap; /* system leap indicator */
u_char sys_stratum; /* stratum of system */
s_char sys_precision; /* local clock precision */
double sys_rootdelay; /* distance to current sync source */
double sys_rootdispersion; /* dispersion of system clock */
u_int32 sys_refid; /* reference source for local clock */
static double sys_offset; /* current local clock offset */
l_fp sys_reftime; /* time we were last updated */
struct peer *sys_peer; /* our current peer */
#ifdef AUTOKEY
u_long sys_automax; /* maximum session key lifetime */
#endif /* AUTOKEY */
/*
* Nonspecified system state variables.
*/
int sys_bclient; /* we set our time to broadcasts */
double sys_bdelay; /* broadcast client default delay */
int sys_authenticate; /* requre authentication for config */
l_fp sys_authdelay; /* authentication delay */
static u_long sys_authdly[2]; /* authentication delay shift reg */
static u_char leap_consensus; /* consensus of survivor leap bits */
static double sys_maxd; /* select error (squares) */
static double sys_epsil; /* system error (squares) */
keyid_t sys_private; /* private value for session seed */
int sys_manycastserver; /* 1 => respond to manycast client pkts */
#ifdef AUTOKEY
char *sys_hostname; /* gethostname() name */
u_int sys_hostnamelen; /* name length (round to word) */
#endif /* AUTOKEY */
/*
* Statistics counters
*/
u_long sys_stattime; /* time when we started recording */
u_long sys_badstratum; /* packets with invalid stratum */
u_long sys_oldversionpkt; /* old version packets received */
u_long sys_newversionpkt; /* new version packets received */
u_long sys_unknownversion; /* don't know version packets */
u_long sys_badlength; /* packets with bad length */
u_long sys_processed; /* packets processed */
u_long sys_badauth; /* packets dropped because of auth */
u_long sys_limitrejected; /* pkts rejected due to client count per net */
static double root_distance P((struct peer *));
static double clock_combine P((struct peer **, int));
static void peer_xmit P((struct peer *));
static void fast_xmit P((struct recvbuf *, int, keyid_t));
static void clock_update P((void));
int default_get_precision P((void));
/*
* transmit - Transmit Procedure. See Section 3.4.2 of the
* specification.
*/
void
transmit(
struct peer *peer /* peer structure pointer */
)
{
int hpoll;
hpoll = peer->hpoll;
if (peer->burst == 0) {
u_char oreach;
/*
* Determine reachability and diddle things if we
* haven't heard from the host for a while. If the peer
* is not configured and not likely to stay around,
* we exhaust it.
*/
oreach = peer->reach;
if (oreach & 0x01)
peer->valid++;
if (oreach & 0x80)
peer->valid--;
peer->reach <<= 1;
if (peer->reach == 0) {
/*
* If this association has become unreachable,
* clear it and raise a trap.
*/
if (oreach != 0) {
report_event(EVNT_UNREACH, peer);
peer->timereachable = current_time;
peer_clear(peer);
}
/*
* If this association is unreachable and not
* configured, we give it a little while before
* pulling the plug. This is to allow semi-
* persistent things like cryptographic
* authentication to complete the dance. There
* is a denial-of-service hazard here.
*/
if (!(peer->flags & FLAG_CONFIG)) {
peer->tailcnt++;
if (peer->tailcnt > NTP_TAILMAX) {
unpeer(peer);
return;
}
}
/*
* We would like to respond quickly when the
* peer comes back to life. If the probes since
* becoming unreachable are less than
* NTP_UNREACH, clamp the poll interval to the
* minimum. In order to minimize the network
* traffic, the interval gradually ramps up the
* the maximum after that.
*/
peer->ppoll = peer->maxpoll;
if (peer->unreach < NTP_UNREACH) {
if (peer->hmode == MODE_CLIENT ||
peer->hmode == MODE_ACTIVE)
peer->unreach++;
hpoll = peer->minpoll;
} else {
hpoll++;
}
if (peer->flags & FLAG_BURST) {
if (peer->flags & FLAG_MCAST2)
peer->burst = NTP_SHIFT;
else
peer->burst = 2;
}
} else {
/*
* Here the peer is reachable. If there is no
* system peer or if the stratum of the system
* peer is greater than this peer, clamp the
* poll interval to the minimum. If less than
* two samples are in the reachability register,
* reduce the interval; if more than six samples
* are in the register, increase the interval.
*/
peer->unreach = 0;
if (sys_peer == 0)
hpoll = peer->minpoll;
else if (sys_peer->stratum > peer->stratum)
hpoll = peer->minpoll;
if ((peer->reach & 0x03) == 0) {
clock_filter(peer, 0., 0., MAXDISPERSE);
clock_select();
}
if (peer->valid <= 2 && hpoll > peer->minpoll)
hpoll--;
else if (peer->valid >= NTP_SHIFT - 2)
hpoll++;
if (peer->flags & FLAG_BURST)
peer->burst = NTP_SHIFT;
}
} else {
peer->burst--;
if (peer->burst == 0) {
/*
* If a broadcast client at this point, the
* burst has concluded, so we turn off the
* burst, switch to client mode and purge the
* keylist, since no further transmissions will
* be made.
*/
if (peer->flags & FLAG_MCAST2) {
peer->flags &= ~FLAG_BURST;
peer->hmode = MODE_BCLIENT;
#ifdef AUTOKEY
key_expire(peer);
#endif /* AUTOKEY */
}
clock_select();
poll_update(peer, hpoll);
return;
}
}
/*
* We need to be very careful about honking uncivilized time. If
* not operating in broadcast mode, honk in all except broadcast
* client mode. If operating in broadcast mode and synchronized
* to a real source, honk except when the peer is the local-
* clock driver and the prefer flag is not set. In other words,
* in broadcast mode we never honk unless known to be
* synchronized to real time.
*/
if (peer->hmode != MODE_BROADCAST) {
if (peer->hmode != MODE_BCLIENT)
peer_xmit(peer);
} else if (sys_peer != 0 && sys_leap != LEAP_NOTINSYNC) {
if (!(sys_peer->refclktype == REFCLK_LOCALCLOCK &&
!(sys_peer->flags & FLAG_PREFER)))
peer_xmit(peer);
}
peer->outdate = current_time;
poll_update(peer, hpoll);
}
/*
* receive - Receive Procedure. See section 3.4.3 in the specification.
*/
void
receive(
struct recvbuf *rbufp
)
{
register struct peer *peer;
register struct pkt *pkt;
int hismode;
int oflags;
int restrict_mask;
int has_mac; /* length of MAC field */
int authlen; /* offset of MAC field */
int is_authentic; /* cryptosum ok */
int is_error; /* parse error */
keyid_t pkeyid, skeyid, tkeyid; /* cryptographic keys */
struct peer *peer2;
int retcode = AM_NOMATCH;
/*
* Monitor the packet and get restrictions. Note that the packet
* length for control and private mode packets must be checked
* by the service routines. Note that no statistics counters are
* recorded for restrict violations, since these counters are in
* the restriction routine.
*/
ntp_monitor(rbufp);
restrict_mask = restrictions(&rbufp->recv_srcadr);
#ifdef DEBUG
if (debug > 2)
printf("receive: at %ld %s restrict %02x\n",
current_time, ntoa(&rbufp->recv_srcadr),
restrict_mask);
#endif
if (restrict_mask & RES_IGNORE)
return; /* no amything */
pkt = &rbufp->recv_pkt;
if (PKT_VERSION(pkt->li_vn_mode) >= NTP_VERSION)
sys_newversionpkt++;
else if (PKT_VERSION(pkt->li_vn_mode) >= NTP_OLDVERSION)
sys_oldversionpkt++;
else {
sys_unknownversion++; /* unknown version */
return;
}
if (PKT_MODE(pkt->li_vn_mode) == MODE_PRIVATE) {
if (restrict_mask & RES_NOQUERY)
return; /* no query private */
process_private(rbufp, ((restrict_mask &
RES_NOMODIFY) == 0));
return;
}
if (PKT_MODE(pkt->li_vn_mode) == MODE_CONTROL) {
if (restrict_mask & RES_NOQUERY)
return; /* no query control */
process_control(rbufp, restrict_mask);
return;
}
if (restrict_mask & RES_DONTSERVE)
return; /* no time service */
if (restrict_mask & RES_LIMITED) {
sys_limitrejected++;
return; /* too many clients */
}
if (rbufp->recv_length < LEN_PKT_NOMAC) {
sys_badlength++;
return; /* no runt packets */
}
/*
* Figure out his mode and validate the packet. This has some
* legacy raunch that probably should be removed. If from NTPv1
* mode zero, The NTPv4 mode is determined from the source port.
* If the port number is zero, it is from a symmetric active
* association; otherwise, it is from a client association. From
* NTPv2 on, all we do is toss out mode zero packets, since
* control and private mode packets have already been handled.
* In either case, toss out broadcast packets if we are not a
* broadcast client.
*/
hismode = (int)PKT_MODE(pkt->li_vn_mode);
if (PKT_VERSION(pkt->li_vn_mode) == NTP_OLDVERSION && hismode ==
0) {
if (SRCPORT(&rbufp->recv_srcadr) == NTP_PORT)
hismode = MODE_ACTIVE;
else
hismode = MODE_CLIENT;
} else {
if (hismode == MODE_UNSPEC) {
sys_badlength++;
return; /* invalid mode */
}
}
if ((PKT_MODE(pkt->li_vn_mode) == MODE_BROADCAST &&
!sys_bclient))
return;
/*
* Parse the extension field if present. We figure out whether
* an extension field is present by measuring the MAC size. If
* the number of words following the packet header is 0 or 1, no
* MAC is present and the packet is not authenticated. If 1, the
* packet is a reply to a previous request that failed to
* authenticate. If 3, the packet is authenticated with DES; if
* 5, the packet is authenticated with MD5. If greater than 5,
* an extension field is present. If 2 or 4, the packet is a
* runt and thus discarded.
*/
pkeyid = skeyid = tkeyid = 0;
authlen = LEN_PKT_NOMAC;
while ((has_mac = rbufp->recv_length - authlen) > 0) {
int temp;
if (has_mac % 4 != 0 || has_mac < 0) {
sys_badlength++;
return;
}
if (has_mac == 1 * 4 || has_mac == 3 * 4 || has_mac ==
MAX_MAC_LEN) {
skeyid = ntohl(((u_int32 *)pkt)[authlen / 4]);
break;
} else if (has_mac > MAX_MAC_LEN) {
temp = ntohl(((u_int32 *)pkt)[authlen / 4]) &
0xffff;
if (temp < 4 || temp % 4 != 0) {
sys_badlength++;
return;
}
authlen += temp;
} else {
sys_badlength++;
return;
}
}
/*
* We have tossed out as many buggy packets as possible early in
* the game to reduce the exposure to a clogging attack. Now we
* have to burn some cycles to find the association and
* authenticate the packet if required. Note that we burn only
* MD5 or DES cycles, again to reduce exposure. There may be no
* matching association and that's okay.
*/
peer = findpeer(&rbufp->recv_srcadr, rbufp->dstadr, rbufp->fd,
hismode, &retcode);
is_authentic = 0;
if (has_mac == 0) {
#ifdef DEBUG
if (debug)
printf("receive: at %ld %s mode %d code %d\n",
current_time, ntoa(&rbufp->recv_srcadr),
hismode, retcode);
#endif
} else {
#ifdef AUTOKEY
/*
* For autokey modes, generate the session key
* and install in the key cache. Use the socket
* multicast or unicast address as appropriate.
* Remember, we don't know these addresses until
* the first packet has been received. Bummer.
*/
if (skeyid > NTP_MAXKEY) {
/*
* More on the autokey dance (AKD). A cookie is
* constructed from public and private values.
* For broadcast packets, the cookie is public
* (zero). For packets that match no
* association, the cookie is hashed from the
* addresses and private value. For server
* packets, the cookie was previously obtained
* from the server. For symmetric modes, the
* cookie was previously constructed using an
* agreement protocol; however, should PKI be
* unavailable, we construct a fake agreement as
* the EXOR of the peer and host cookies.
*/
if (hismode == MODE_BROADCAST) {
pkeyid = 0;
} else if (peer == 0) {
pkeyid = session_key(
&rbufp->recv_srcadr,
&rbufp->dstadr->sin, 0, sys_private,
0);
} else if (hismode == MODE_CLIENT) {
pkeyid = peer->hcookie;
} else {
#ifdef PUBKEY
if (crypto_enable)
pkeyid = peer->pcookie.key;
else
pkeyid = peer->pcookie.key;
#else
if (hismode == MODE_SERVER)
pkeyid = peer->pcookie.key;
else
pkeyid = peer->hcookie ^
peer->pcookie.key;
#endif /* PUBKEY */
}
/*
* The session key includes both the public
* values and cookie. We have to be careful to
* use the right socket addresses for broadcast
* and unicast packets. In case of an extension
* field, the cookie used for authentication
* purposes is zero. Note the hash is saved for
* use later in the autokey mambo.
*/
if (hismode == MODE_BROADCAST) {
tkeyid = session_key(
&rbufp->recv_srcadr,
&rbufp->dstadr->bcast, skeyid,
pkeyid, 2);
} else if (authlen > LEN_PKT_NOMAC) {
session_key(&rbufp->recv_srcadr,
&rbufp->dstadr->sin, skeyid, 0, 2);
tkeyid = session_key(
&rbufp->recv_srcadr,
&rbufp->dstadr->sin, skeyid, pkeyid,
0);
} else {
tkeyid = session_key(
&rbufp->recv_srcadr,
&rbufp->dstadr->sin, skeyid, pkeyid,
2);
}
}
#endif /* AUTOKEY */
/*
* Compute the cryptosum. Note a clogging attack may
* succeed in bloating the key cache. If an autokey,
* purge it immediately, since we won't be needing it
* again.
*/
if (authdecrypt(skeyid, (u_int32 *)pkt, authlen,
has_mac))
is_authentic = 1;
else
sys_badauth++;
#ifdef AUTOKEY
if (skeyid > NTP_MAXKEY)
authtrust(skeyid, 0);
#endif /* AUTOKEY */
#ifdef DEBUG
if (debug)
printf(
"receive: at %ld %s mode %d code %d keyid %08x len %d mac %d auth %d\n",
current_time, ntoa(&rbufp->recv_srcadr),
hismode, retcode, skeyid, authlen, has_mac,
is_authentic);
#endif
}
/*
* The new association matching rules are driven by a table
* specified in ntp.h. We have replaced the *default* behaviour
* of replying to bogus packets in server mode in this version.
* A packet must now match an association in order to be
* processed. In the event that no association exists, then an
* association is mobilized if need be. Two different
* associations can be mobilized a) passive associations b)
* client associations due to broadcasts or manycasts.
*/
is_error = 0;
switch (retcode) {
case AM_FXMIT:
/*
* If the client is configured purely as a broadcast
* client and not as an manycast server, it has no
* business being a server. Simply go home. Otherwise,
* send a MODE_SERVER response and go home. Note that we
* don't do a authentication check here, since we can't
* set the system clock; but, we do set the key ID to
* zero to tell the caller about this.
*/
if (!sys_bclient || sys_manycastserver) {
if (is_authentic)
fast_xmit(rbufp, MODE_SERVER, skeyid);
else
fast_xmit(rbufp, MODE_SERVER, 0);
}
return;
case AM_MANYCAST:
/*
* This could be in response to a multicast packet sent
* by the "manycast" mode association. Find peer based
* on the originate timestamp in the packet. Note that
* we don't mobilize a new association, unless the
* packet is properly authenticated. The response must
* be properly authenticated and it's darn funny of the
* manycaster isn't around now.
*/
if ((sys_authenticate && !is_authentic)) {
is_error = 1;
break;
}
peer2 = (struct peer *)findmanycastpeer(&pkt->org);
if (peer2 == 0) {
is_error = 1;
break;
}
/*
* Create a new association and copy the peer variables
* to it. If something goes wrong, carefully pry the new
* association away and return its marbles to the candy
* store.
*/
peer = newpeer(&rbufp->recv_srcadr, rbufp->dstadr,
MODE_CLIENT, PKT_VERSION(pkt->li_vn_mode),
NTP_MINDPOLL, NTP_MAXDPOLL, 0, skeyid);
if (peer == 0) {
is_error = 1;
break;
}
peer_config_manycast(peer2, peer);
#ifdef PUBKEY
if (crypto_enable)
ntp_res_name(peer->srcadr.sin_addr.s_addr,
peer->associd);
#endif /* PUBKEY */
break;
case AM_ERR:
/*
* Something bad happened. Dirty floor will be mopped by
* the code at the end of this adventure.
*/
is_error = 1;
break;
case AM_NEWPASS:
/*
* Okay, we're going to keep him around. Allocate him
* some memory. But, don't do that unless the packet is
* properly authenticated.
*/
if ((sys_authenticate && !is_authentic)) {
fast_xmit(rbufp, MODE_PASSIVE, 0);
return;
}
peer = newpeer(&rbufp->recv_srcadr, rbufp->dstadr,
MODE_PASSIVE, PKT_VERSION(pkt->li_vn_mode),
NTP_MINDPOLL, NTP_MAXDPOLL, 0, skeyid);
#ifdef PUBKEY
if (crypto_enable)
ntp_res_name(peer->srcadr.sin_addr.s_addr,
peer->associd);
#endif /* PUBKEY */
break;
case AM_NEWBCL:
/*
* Broadcast client being set up now. Do this only if
* the packet is properly authenticated.
*/
if ((restrict_mask & RES_NOPEER) || !sys_bclient ||
(sys_authenticate && !is_authentic)) {
is_error = 1;
break;
}
peer = newpeer(&rbufp->recv_srcadr, rbufp->dstadr,
MODE_MCLIENT, PKT_VERSION(pkt->li_vn_mode),
NTP_MINDPOLL, NTP_MAXDPOLL, 0, skeyid);
if (peer == 0)
break;
peer->flags |= FLAG_MCAST1 | FLAG_MCAST2 | FLAG_BURST;
peer->hmode = MODE_CLIENT;
#ifdef PUBKEY
if (crypto_enable)
ntp_res_name(peer->srcadr.sin_addr.s_addr,
peer->associd);
#endif /* PUBKEY */
break;
case AM_POSSBCL:
case AM_PROCPKT:
/*
* It seems like it is okay to process the packet now
*/
break;
default:
/*
* shouldn't be getting here, but simply return anyway!
*/
is_error = 1;
}
if (is_error) {
/*
* Error stub. If we get here, something broke. We
* scuttle the autokey if necessary and sink the ship.
* This can occur only upon mobilization, so we can
* throw the structure away without fear of breaking
* anything.
*/
if (peer != 0)
if (!(peer->flags & FLAG_CONFIG))
unpeer(peer);
#ifdef DEBUG
if (debug)
printf("receive: bad protocol %d\n", retcode);
#endif
return;
}
/*
* If the peer isn't configured, set his authenable and autokey
* status based on the packet. Once the status is set, it can't
* be unset. It seems like a silly idea to do this here, rather
* in the configuration routine, but in some goofy cases the
* first packet sent cannot be authenticated and we need a way
* for the dude to change his mind.
*/
oflags = peer->flags;
peer->timereceived = current_time;
peer->received++;
if (!(peer->flags & FLAG_CONFIG) && has_mac) {
peer->flags |= FLAG_AUTHENABLE;
#ifdef AUTOKEY
if (skeyid > NTP_MAXKEY)
peer->flags |= FLAG_SKEY;
#endif /* AUTOKEY */
}
/*
* A valid packet must be from an authentic and allowed source.
* All packets must pass the authentication allowed tests.
* Autokey authenticated packets must pass additional tests and
* public-key authenticated packets must have the credentials
* verified. If all tests are passed, the packet is forwarded
* for processing. If not, the packet is discarded and the
* association demobilized if appropriate.
*/
peer->flash = 0;
if (is_authentic) {
peer->flags |= FLAG_AUTHENTIC;
peer->tailcnt = 0;
} else {
peer->flags &= ~FLAG_AUTHENTIC;
}
if (peer->hmode == MODE_BROADCAST &&
(restrict_mask & RES_DONTTRUST)) /* test 9 */
peer->flash |= TEST9; /* access denied */
if (peer->flags & FLAG_AUTHENABLE) {
/*
* Here we have a little bit of nastyness. Should
* authentication fail in client mode, it could either
* be a hacker attempting to jam the protocol, or it
* could be the server has just refreshed its keys. On
* the premiss the later is more likely than the former
* and that even the former can't do real evil, we
* simply ask for the cookie again.
*/
if (!(peer->flags & FLAG_AUTHENTIC)) { /* test 5 */
peer->flash |= TEST5; /* auth failed */
#ifdef AUTOKEY
if (hismode == MODE_SERVER)
peer->pcookie.tstamp = 0;
#endif /* AUTOKEY */
} else if (!(oflags & FLAG_AUTHENABLE)) {
report_event(EVNT_PEERAUTH, peer);
}
}
if (peer->flash) {
#ifdef DEBUG
if (debug)
printf("receive: bad packet %03x\n",
peer->flash);
#endif
return;
}
#ifdef AUTOKEY
/*
* More autokey dance. The rules of the cha-cha are as follows:
*
* 1. If there is no key or the key is not auto, do nothing.
*
* 2. If an extension field contains a verified signature, it is
* self-authenticated and we sit the dance.
*
* 3. If this is a server reply, check only to see that the
* transmitted key ID matches the received key ID.
*
* 4. Check to see that one or more hashes of the current key ID
* matches the previous key ID or ultimate original key ID
* obtained from the broadcaster or symmetric peer. If no
* match, arm for an autokey values update.
*/
if (peer->flags & FLAG_SKEY) {
peer->flash |= TEST10;
crypto_recv(peer, rbufp);
if (!peer->flash & TEST10) {
peer->pkeyid = skeyid;
} else if (hismode == MODE_SERVER) {
if (skeyid == peer->keyid)
peer->flash &= ~TEST10;
} else {
int i = 0;
for (i = 0;; i++) {
if (tkeyid == peer->pkeyid ||
tkeyid == peer->recauto.key) {
peer->flash &= ~TEST10;
peer->pkeyid = skeyid;
break;
}
if (i > peer->recauto.seq) {
peer->recauto.tstamp = 0;
break;
}
if (hismode == MODE_BROADCAST)
tkeyid = session_key(
&rbufp->recv_srcadr,
&rbufp->dstadr->bcast,
tkeyid, pkeyid, 0);
else
tkeyid = session_key(
&rbufp->recv_srcadr,
&rbufp->dstadr->sin,
tkeyid, pkeyid, 0);
}
}
#ifdef PUBKEY
/*
* If the autokey boogie fails, the server may be bogus
* or worse. Raise an alarm and rekey this thing.
*/
if (peer->flash & TEST10)
peer->flags &= ~FLAG_AUTOKEY;
if (!(peer->flags & FLAG_AUTOKEY))
peer->flash |= TEST11;
#endif /* PUBKEY */
}
#endif /* AUTOKEY */
/*
* We have survived the gaunt. Forward to the packet routine. If
* a symmetric passive association has been mobilized and the
* association doesn't deserve to live, it will die in the
* transmit routine if not reachable after timeout.
*/
process_packet(peer, pkt, &rbufp->recv_time);
}
/*
* process_packet - Packet Procedure, a la Section 3.4.4 of the
* specification. Or almost, at least. If we're in here we have a
* reasonable expectation that we will be having a long term
* relationship with this host.
*/
void
process_packet(
register struct peer *peer,
register struct pkt *pkt,
l_fp *recv_ts
)
{
l_fp t10, t23;
double p_offset, p_del, p_disp;
double dtemp;
l_fp p_rec, p_xmt, p_org, p_reftime;
l_fp ci;
int pmode;
/*
* Swap header fields and keep the books. The books amount to
* the receive timestamp and poll interval in the header. We
* need these even if there are other problems in order to crank
* up the state machine.
*/
sys_processed++;
peer->processed++;
p_del = FPTOD(NTOHS_FP(pkt->rootdelay));
p_disp = FPTOD(NTOHS_FP(pkt->rootdispersion));
NTOHL_FP(&pkt->reftime, &p_reftime);
NTOHL_FP(&pkt->rec, &p_rec);
NTOHL_FP(&pkt->xmt, &p_xmt);
if (PKT_MODE(pkt->li_vn_mode) != MODE_BROADCAST)
NTOHL_FP(&pkt->org, &p_org);
else
p_org = peer->rec;
peer->rec = *recv_ts;
peer->ppoll = pkt->ppoll;
pmode = PKT_MODE(pkt->li_vn_mode);
/*
* Test for old or duplicate packets (tests 1 through 3).
*/
if (L_ISHIS(&peer->org, &p_xmt)) /* count old packets */
peer->oldpkt++;
if (L_ISEQU(&peer->org, &p_xmt)) /* test 1 */
peer->flash |= TEST1; /* duplicate packet */
if (PKT_MODE(pkt->li_vn_mode) != MODE_BROADCAST) {
if (!L_ISEQU(&peer->xmt, &p_org)) /* test 2 */
peer->flash |= TEST2; /* bogus packet */
if (L_ISZERO(&p_rec) || L_ISZERO(&p_org)) /* test 3 */
peer->flash |= TEST3; /* unsynchronized */
}
if (L_ISZERO(&p_xmt)) /* test 3 */
peer->flash |= TEST3; /* unsynchronized */
peer->org = p_xmt;
/*
* Test for valid packet header (tests 6 through 8)
*/
ci = p_xmt;
L_SUB(&ci, &p_reftime);
LFPTOD(&ci, dtemp);
if (PKT_LEAP(pkt->li_vn_mode) == LEAP_NOTINSYNC || /* test 6 */
PKT_TO_STRATUM(pkt->stratum) >= NTP_MAXSTRATUM ||
dtemp < 0)
peer->flash |= TEST6; /* peer clock unsynchronized */
if (!(peer->flags & FLAG_CONFIG) && sys_peer != 0) { /* test 7 */
if (PKT_TO_STRATUM(pkt->stratum) > sys_stratum) {
peer->flash |= TEST7; /* peer stratum too high */
sys_badstratum++;
}
}
if (fabs(p_del) >= MAXDISPERSE /* test 8 */
|| p_disp >= MAXDISPERSE)
peer->flash |= TEST8; /* delay/dispersion too high */
/*
* If the packet header is invalid, abandon ship. Otherwise
* capture the header data.
*/
if (peer->flash & ~(u_int)(TEST1 | TEST2 | TEST3 | TEST4)) {
#ifdef DEBUG
if (debug)
printf("packet: bad header %03x\n",
peer->flash);
#endif
return;
}
/*
* The header is valid. Capture the remaining header values and
* mark as reachable.
*/
record_raw_stats(&peer->srcadr, &peer->dstadr->sin,
&p_org, &p_rec, &p_xmt, &peer->rec);
peer->leap = PKT_LEAP(pkt->li_vn_mode);
peer->pmode = pmode; /* unspec */
peer->stratum = PKT_TO_STRATUM(pkt->stratum);
peer->precision = pkt->precision;
peer->rootdelay = p_del;
peer->rootdispersion = p_disp;
peer->refid = pkt->refid;
peer->reftime = p_reftime;
if (peer->reach == 0) {
report_event(EVNT_REACH, peer);
peer->timereachable = current_time;
}
peer->reach |= 1;
poll_update(peer, peer->hpoll);
/*
* If running in a client/server association, calculate the
* clock offset c, roundtrip delay d and dispersion e. We use
* the equations (reordered from those in the spec). Note that,
* in a broadcast association, org has been set to the time of
* last reception. Note the computation of dispersion includes
* the system precision plus that due to the frequency error
* since the originate time.
*
* c = ((t2 - t3) + (t1 - t0)) / 2
* d = (t2 - t3) - (t1 - t0)
* e = (org - rec) (seconds only)
*/
t10 = p_xmt; /* compute t1 - t0 */
L_SUB(&t10, &peer->rec);
t23 = p_rec; /* compute t2 - t3 */
L_SUB(&t23, &p_org);
ci = t10;
p_disp = CLOCK_PHI * (peer->rec.l_ui - p_org.l_ui);
/*
* If running in a broadcast association, the clock offset is
* (t1 - t0) corrected by the one-way delay, but we can't
* measure that directly; therefore, we start up in
* client/server mode, calculate the clock offset, using the
* engineered refinement algorithms, while also receiving
* broadcasts. When a broadcast is received in client/server
* mode, we calculate a correction factor to use after switching
* back to broadcast mode. We know NTP_SKEWFACTOR == 16, which
* accounts for the simplified ei calculation.
*
* If FLAG_MCAST2 is set, we are a broadcast/multicast client.
* If FLAG_MCAST1 is set, we haven't calculated the propagation
* delay. If hmode is MODE_CLIENT, we haven't set the local
* clock in client/server mode. Initially, we come up
* MODE_CLIENT. When the clock is first updated and FLAG_MCAST2
* is set, we switch from MODE_CLIENT to MODE_BCLIENT.
*/
if (pmode == MODE_BROADCAST) {
if (peer->flags & FLAG_MCAST1) {
LFPTOD(&ci, p_offset);
peer->estbdelay = peer->offset - p_offset;
if (peer->hmode != MODE_BCLIENT) {
#ifdef DEBUG
if (debug)
printf("packet: bclient %03x\n",
peer->flash);
#endif
return;
}
peer->flags &= ~FLAG_MCAST1;
}
DTOLFP(peer->estbdelay, &t10);
L_ADD(&ci, &t10);
p_del = peer->delay;
} else {
L_ADD(&ci, &t23);
L_RSHIFT(&ci);
L_SUB(&t23, &t10);
LFPTOD(&t23, p_del);
}
LFPTOD(&ci, p_offset);
if (fabs(p_del) >= MAXDISPERSE || p_disp >= MAXDISPERSE) /* test 4 */
peer->flash |= TEST4; /* delay/dispersion too big */
/*
* If the packet data are invalid (tests 1 through 4), abandon
* ship. Otherwise, forward to the clock filter.
*/
if (peer->flash) {
#ifdef DEBUG
if (debug)
printf("packet: bad data %03x\n",
peer->flash);
#endif
return;
}
clock_filter(peer, p_offset, p_del, fabs(p_disp));
clock_select();
record_peer_stats(&peer->srcadr, ctlpeerstatus(peer),
peer->offset, peer->delay, peer->disp,
SQRT(peer->variance));
}
/*
* clock_update - Called at system process update intervals.
*/
static void
clock_update(void)
{
u_char oleap;
u_char ostratum;
/*
* Reset/adjust the system clock. Do this only if there is a
* system peer and we haven't seen that peer lately. Watch for
* timewarps here.
*/
if (sys_peer == 0)
return;
if (sys_peer->pollsw == FALSE || sys_peer->burst > 0)
return;
sys_peer->pollsw = FALSE;
#ifdef DEBUG
if (debug)
printf("clock_update: at %ld assoc %d \n", current_time,
peer_associations);
#endif
oleap = sys_leap;
ostratum = sys_stratum;
switch (local_clock(sys_peer, sys_offset, sys_epsil)) {
/*
* Clock is too screwed up. Just exit for now.
*/
case -1:
report_event(EVNT_SYSFAULT, (struct peer *)0);
exit(1);
/*NOTREACHED*/
/*
* Clock was stepped. Flush all time values of all peers.
*/
case 1:
clear_all();
NLOG(NLOG_SYNCSTATUS)
msyslog(LOG_INFO, "synchronisation lost");
sys_peer = 0;
sys_stratum = STRATUM_UNSPEC;
report_event(EVNT_CLOCKRESET, (struct peer *)0);
break;
/*
* Update the system stratum, leap bits, root delay, root
* dispersion, reference ID and reference time. We also update
* select dispersion and max frequency error. If the leap
* changes, we gotta reroll the keys.
*/
default:
sys_stratum = sys_peer->stratum + 1;
if (sys_stratum == 1)
sys_refid = sys_peer->refid;
else
sys_refid = sys_peer->srcadr.sin_addr.s_addr;
sys_reftime = sys_peer->rec;
sys_rootdelay = sys_peer->rootdelay +
fabs(sys_peer->delay);
sys_leap = leap_consensus;
}
if (oleap != sys_leap) {
report_event(EVNT_SYNCCHG, (struct peer *)0);
expire_all();
}
if (ostratum != sys_stratum)
report_event(EVNT_PEERSTCHG, (struct peer *)0);
}
/*
* poll_update - update peer poll interval. See Section 3.4.9 of the
* spec.
*/
void
poll_update(
struct peer *peer,
int hpoll
)
{
long update, oldpoll;
/*
* The wiggle-the-poll-interval dance. Broadcasters dance only
* the minpoll beat. Reference clock partners sit this one out.
* Dancers surviving the clustering algorithm beat to the system
* clock. Broadcast clients are usually lead by their broadcast
* partner, but faster in the initial mating dance.
*/
oldpoll = peer->hpoll;
if (peer->hmode == MODE_BROADCAST) {
peer->hpoll = peer->minpoll;
} else if (peer->flags & FLAG_SYSPEER) {
peer->hpoll = sys_poll;
} else {
if (hpoll > peer->maxpoll)
peer->hpoll = peer->maxpoll;
else if (hpoll < peer->minpoll)
peer->hpoll = peer->minpoll;
else
peer->hpoll = hpoll;
}
if (peer->burst > 0) {
if (peer->nextdate != current_time)
return;
if (peer->flags & FLAG_REFCLOCK)
peer->nextdate++;
else if (peer->reach & 0x1)
peer->nextdate += RANDPOLL(BURST_INTERVAL2);
else
peer->nextdate += RANDPOLL(BURST_INTERVAL1);
} else {
update = max(min(peer->ppoll, peer->hpoll),
peer->minpoll);
peer->nextdate = peer->outdate + RANDPOLL(update);
}
/*
* Bit of crass arrogance at this point. If the poll interval
* has changed and we have a keylist, the lifetimes in the
* keylist are probably bogus. In this case purge the keylist
* and regenerate it later.
*/
#ifdef AUTOKEY
if (peer->hpoll != oldpoll)
key_expire(peer);
#endif /* AUTOKEY */
#ifdef DEBUG
if (debug > 1)
printf("poll_update: at %lu %s flags %04x poll %d burst %d last %lu next %lu\n",
current_time, ntoa(&peer->srcadr), peer->flags,
hpoll, peer->burst, peer->outdate, peer->nextdate);
#endif
}
/*
* clear - clear peer filter registers. See Section 3.4.8 of the spec.
*/
void
peer_clear(
register struct peer *peer
)
{
register int i;
/*
* If cryptographic credentials have been acquired, toss them to
* Valhalla. Note that autokeys are ephemeral, in that they are
* tossed immediately upon use. Therefore, the keylist can be
* purged anytime without needing to preserve random keys. Note
* that, if the peer is purged, the cryptographic variables are
* purged, too. This makes it much harder to sneak in some
* unauthenticated data in the clock filter.
*/
#ifdef DEBUG
if (debug)
printf("peer_clear: at %ld\n", current_time);
#endif
#ifdef AUTOKEY
key_expire(peer);
#endif /* AUTOKEY */
/*
* If he dies as a multicast client, he comes back to life as
* a multicast client in client mode in order to recover the
* initial autokey values.
*/
peer->flags &= ~FLAG_AUTOKEY;
if (peer->flags & FLAG_MCAST2) {
peer->flags |= FLAG_MCAST1 | FLAG_BURST;
peer->hmode = MODE_CLIENT;
}
memset(CLEAR_TO_ZERO(peer), 0, LEN_CLEAR_TO_ZERO);
peer->estbdelay = sys_bdelay;
peer->hpoll = peer->minpoll;
peer->pollsw = FALSE;
peer->variance = MAXDISPERSE;
peer->epoch = current_time;
for (i = 0; i < NTP_SHIFT; i++) {
peer->filter_order[i] = i;
peer->filter_disp[i] = MAXDISPERSE;
peer->filter_epoch[i] = current_time;
}
poll_update(peer, peer->minpoll);
}
/*
* clock_filter - add incoming clock sample to filter register and run
* the filter procedure to find the best sample.
*/
void
clock_filter(
register struct peer *peer,
double sample_offset,
double sample_delay,
double sample_disp
)
{
register int i, j, k, n;
register u_char *ord;
double distance[NTP_SHIFT];
double off, dly, var, dsp, dtemp, etemp;
/*
* Update error bounds and calculate distances. The distance for
* each sample is equal to the sample dispersion plus one-half
* the sample delay. Also initialize the sort index vector.
*/
dtemp = CLOCK_PHI * (current_time - peer->update);
peer->update = current_time;
ord = peer->filter_order;
j = peer->filter_nextpt;
for (i = 0; i < NTP_SHIFT; i++) {
peer->filter_disp[j] += dtemp;
if (peer->filter_disp[j] > MAXDISPERSE)
peer->filter_disp[j] = MAXDISPERSE;
distance[i] = fabs(peer->filter_delay[j]) / 2 +
peer->filter_disp[j];
ord[i] = j;
if (--j < 0)
j += NTP_SHIFT;
}
/*
* Shift the new sample into the register and discard the oldest
* one. The new offset and delay come directly from the caller.
* The dispersion from the caller is increased by the sum of the
* precision in the the packet header and the precision of this
* machine.
*/
peer->filter_offset[peer->filter_nextpt] = sample_offset;
peer->filter_delay[peer->filter_nextpt] = sample_delay;
dsp = LOGTOD(peer->precision) + LOGTOD(sys_precision) +
sample_disp;
peer->filter_disp[peer->filter_nextpt] = min(dsp, MAXDISPERSE);
peer->filter_epoch[peer->filter_nextpt] = current_time;
distance[0] = min(dsp + fabs(sample_delay) / 2, MAXDISTANCE);
peer->filter_nextpt++;
if (peer->filter_nextpt >= NTP_SHIFT)
peer->filter_nextpt = 0;
/*
* Sort the samples in the register by distance. The winning
* sample will be in ord[0]. Sort the samples only if they
* are younger than the Allen intercept; however, keep a minimum
* of two samples so that we can compute jitter.
*/
dtemp = min(allan_xpt, NTP_SHIFT * ULOGTOD(sys_poll));
for (n = 0; n < NTP_SHIFT; n++) {
if (n > 1 && current_time - peer->filter_epoch[ord[n]] >
dtemp)
break;
for (j = 0; j < n; j++) {
if (distance[j] > distance[n]) {
etemp = distance[j];
k = ord[j];
distance[j] = distance[n];
ord[j] = ord[n];
distance[n] = etemp;
ord[n] = k;
}
}
}
/*
* Compute the offset, delay, variance (squares) and error
* bound. The offset, delay and variance are weighted by the
* reciprocal of distance and normalized. The error bound is
* weighted exponentially. When no acceptable samples remain in
* the shift register, quietly tiptoe home.
*/
off = dly = var = dsp = dtemp = 0;
for (i = NTP_SHIFT - 1; i >= 0; i--) {
dsp = NTP_FWEIGHT * (dsp + peer->filter_disp[ord[i]]);
if (i < n && distance[i] < MAXDISTANCE) {
dtemp += 1. / distance[i];
off += peer->filter_offset[ord[i]] /
distance[i];
dly += peer->filter_delay[ord[i]] /
distance[i];
var += DIFF(peer->filter_offset[ord[i]],
peer->filter_offset[ord[0]]) /
SQUARE(distance[i]);
}
}
if (dtemp == 0)
return;
peer->delay = dly / dtemp;
peer->variance = min(var / SQUARE(dtemp), MAXDISPERSE);
peer->disp = min(dsp, MAXDISPERSE);
peer->epoch = current_time;
etemp = peer->offset;
peer->offset = off / dtemp;
/*
* A new sample is useful only if it is younger than the last
* one used.
*/
if (peer->filter_epoch[ord[0]] > peer->epoch) {
#ifdef DEBUG
if (debug)
printf("clock_filter: discard %lu\n",
peer->filter_epoch[ord[0]] - peer->epoch);
#endif
return;
}
/*
* If the offset exceeds the dispersion by CLOCK_SGATE and the
* interval since the last update is less than twice the system
* poll interval, consider the update a popcorn spike and ignore
* it.
*/
if (fabs(etemp - peer->offset) > CLOCK_SGATE &&
peer->filter_epoch[ord[0]] - peer->epoch < (1 <<
(sys_poll + 1))) {
#ifdef DEBUG
if (debug)
printf("clock_filter: popcorn spike %.6f\n",
off);
#endif
return;
}
/*
* The mitigated sample statistics are saved for later
* processing, but can be processed only once.
*/
peer->epoch = peer->filter_epoch[ord[0]];
peer->pollsw = TRUE;
#ifdef DEBUG
if (debug)
printf(
"clock_filter: offset %.6f delay %.6f disp %.6f std %.6f, age %lu\n",
peer->offset, peer->delay, peer->disp,
SQRT(peer->variance), current_time - peer->epoch);
#endif
}
/*
* clock_select - find the pick-of-the-litter clock
*/
void
clock_select(void)
{
register struct peer *peer;
int i;
int nlist, nl3;
double d, e, f;
int j;
int n;
int allow, found, k;
double high, low;
double synch[NTP_MAXCLOCK], error[NTP_MAXCLOCK];
struct peer *osys_peer;
struct peer *typeacts = 0;
struct peer *typelocal = 0;
struct peer *typepps = 0;
struct peer *typeprefer = 0;
struct peer *typesystem = 0;
static int list_alloc = 0;
static struct endpoint *endpoint = NULL;
static int *indx = NULL;
static struct peer **peer_list = NULL;
static u_int endpoint_size = 0;
static u_int indx_size = 0;
static u_int peer_list_size = 0;
/*
* Initialize. If a prefer peer does not survive this thing,
* the pps_update switch will remain zero.
*/
pps_update = 0;
nlist = 0;
low = 1e9;
high = -1e9;
for (n = 0; n < HASH_SIZE; n++)
nlist += peer_hash_count[n];
if (nlist > list_alloc) {
if (list_alloc > 0) {
free(endpoint);
free(indx);
free(peer_list);
}
while (list_alloc < nlist) {
list_alloc += 5;
endpoint_size += 5 * 3 * sizeof *endpoint;
indx_size += 5 * 3 * sizeof *indx;
peer_list_size += 5 * sizeof *peer_list;
}
endpoint = (struct endpoint *)emalloc(endpoint_size);
indx = (int *)emalloc(indx_size);
peer_list = (struct peer **)emalloc(peer_list_size);
}
/*
* This first chunk of code is supposed to go through all
* peers we know about to find the peers which are most likely
* to succeed. We run through the list doing the sanity checks
* and trying to insert anyone who looks okay.
*/
nlist = nl3 = 0; /* none yet */
for (n = 0; n < HASH_SIZE; n++) {
for (peer = peer_hash[n]; peer != 0; peer = peer->next) {
peer->flags &= ~FLAG_SYSPEER;
peer->status = CTL_PST_SEL_REJECT;
if (peer->flags & FLAG_NOSELECT)
continue; /* noselect (survey) */
if (peer->reach == 0)
continue; /* unreachable */
if (peer->stratum > 1 && peer->refid ==
peer->dstadr->sin.sin_addr.s_addr)
continue; /* sync loop */
if (root_distance(peer) >= MAXDISTANCE + 2 *
CLOCK_PHI * ULOGTOD(sys_poll)) {
peer->seldisptoolarge++;
continue; /* noisy or broken */
}
/*
* Don't allow the local-clock or acts drivers
* in the kitchen at this point, unless the
* prefer peer. Do that later, but only if
* nobody else is around.
*/
if (peer->refclktype == REFCLK_LOCALCLOCK
#if defined(VMS) && defined(VMS_LOCALUNIT)
/* wjm: local unit VMS_LOCALUNIT taken seriously */
&& REFCLOCKUNIT(&peer->srcadr) != VMS_LOCALUNIT
#endif /* VMS && VMS_LOCALUNIT */
) {
typelocal = peer;
if (!(peer->flags & FLAG_PREFER))
continue; /* no local clock */
}
if (peer->sstclktype == CTL_SST_TS_TELEPHONE) {
typeacts = peer;
if (!(peer->flags & FLAG_PREFER))
continue; /* no acts */
}
/*
* If we get this far, we assume the peer is
* acceptable.
*/
peer->status = CTL_PST_SEL_SANE;
peer_list[nlist++] = peer;
/*
* Insert each interval endpoint on the sorted
* list.
*/
e = peer->offset; /* Upper end */
f = root_distance(peer);
e = e + f;
for (i = nl3 - 1; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 3] = indx[i];
}
indx[i + 3] = nl3;
endpoint[nl3].type = 1;
endpoint[nl3++].val = e;
e = e - f; /* Center point */
for ( ; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 2] = indx[i];
}
indx[i + 2] = nl3;
endpoint[nl3].type = 0;
endpoint[nl3++].val = e;
e = e - f; /* Lower end */
for ( ; i >= 0; i--) {
if (e >= endpoint[indx[i]].val)
break;
indx[i + 1] = indx[i];
}
indx[i + 1] = nl3;
endpoint[nl3].type = -1;
endpoint[nl3++].val = e;
}
}
#ifdef DEBUG
if (debug > 2)
for (i = 0; i < nl3; i++)
printf("select: endpoint %2d %.6f\n",
endpoint[indx[i]].type,
endpoint[indx[i]].val);
#endif
i = 0;
j = nl3 - 1;
allow = nlist; /* falsetickers assumed */
found = 0;
while (allow > 0) {
allow--;
for (n = 0; i <= j; i++) {
n += endpoint[indx[i]].type;
if (n < 0)
break;
if (endpoint[indx[i]].type == 0)
found++;
}
for (n = 0; i <= j; j--) {
n += endpoint[indx[j]].type;
if (n > 0)
break;
if (endpoint[indx[j]].type == 0)
found++;
}
if (found > allow)
break;
low = endpoint[indx[i++]].val;
high = endpoint[indx[j--]].val;
}
/*
* If no survivors remain at this point, check if the acts or
* local clock drivers have been found. If so, nominate one of
* them as the only survivor. Otherwise, give up and declare us
* unsynchronized.
*/
if ((allow << 1) >= nlist) {
if (typeacts != 0) {
typeacts->status = CTL_PST_SEL_SANE;
peer_list[0] = typeacts;
nlist = 1;
} else if (typelocal != 0) {
typelocal->status = CTL_PST_SEL_SANE;
peer_list[0] = typelocal;
nlist = 1;
} else {
if (sys_peer != 0) {
report_event(EVNT_PEERSTCHG,
(struct peer *)0);
NLOG(NLOG_SYNCSTATUS)
msyslog(LOG_INFO,
"synchronisation lost");
}
sys_peer = 0;
return;
}
}
#ifdef DEBUG
if (debug > 2)
printf("select: low %.6f high %.6f\n", low, high);
#endif
/*
* Clustering algorithm. Process intersection list to discard
* outlyers. Construct candidate list in cluster order
* determined by the sum of peer synchronization distance plus
* scaled stratum. We must find at least one peer.
*/
j = 0;
for (i = 0; i < nlist; i++) {
peer = peer_list[i];
if (nlist > 1 && (low >= peer->offset ||
peer->offset >= high))
continue;
peer->status = CTL_PST_SEL_CORRECT;
d = root_distance(peer) + peer->stratum * MAXDISPERSE;
if (j >= NTP_MAXCLOCK) {
if (d >= synch[j - 1])
continue;
else
j--;
}
for (k = j; k > 0; k--) {
if (d >= synch[k - 1])
break;
synch[k] = synch[k - 1];
peer_list[k] = peer_list[k - 1];
}
peer_list[k] = peer;
synch[k] = d;
j++;
}
nlist = j;
#ifdef DEBUG
if (debug > 2)
for (i = 0; i < nlist; i++)
printf("select: %s distance %.6f\n",
ntoa(&peer_list[i]->srcadr), synch[i]);
#endif
/*
* Now, prune outlyers by root dispersion. Continue as long as
* there are more than NTP_MINCLOCK survivors and the minimum
* select dispersion is greater than the maximum peer
* dispersion. Stop if we are about to discard a prefer peer.
*/
for (i = 0; i < nlist; i++) {
peer = peer_list[i];
error[i] = peer->variance;
if (i < NTP_CANCLOCK)
peer->status = CTL_PST_SEL_SELCAND;
else
peer->status = CTL_PST_SEL_DISTSYSPEER;
}
while (1) {
sys_maxd = 0;
d = error[0];
for (k = i = nlist - 1; i >= 0; i--) {
double sdisp = 0;
for (j = nlist - 1; j > 0; j--) {
sdisp = NTP_SWEIGHT * (sdisp +
DIFF(peer_list[i]->offset,
peer_list[j]->offset));
}
if (sdisp > sys_maxd) {
sys_maxd = sdisp;
k = i;
}
if (error[i] < d)
d = error[i];
}
#ifdef DEBUG
if (debug > 2)
printf(
"select: survivors %d select %.6f peer %.6f\n",
nlist, SQRT(sys_maxd), SQRT(d));
#endif
if (nlist <= NTP_MINCLOCK || sys_maxd <= d ||
peer_list[k]->flags & FLAG_PREFER)
break;
for (j = k + 1; j < nlist; j++) {
peer_list[j - 1] = peer_list[j];
error[j - 1] = error[j];
}
nlist--;
}
#ifdef DEBUG
if (debug > 2) {
for (i = 0; i < nlist; i++)
printf(
"select: %s offset %.6f, distance %.6f poll %d\n",
ntoa(&peer_list[i]->srcadr), peer_list[i]->offset,
synch[i], peer_list[i]->pollsw);
}
#endif
/*
* What remains is a list of not greater than NTP_MINCLOCK
* peers. We want only a peer at the lowest stratum to become
* the system peer, although all survivors are eligible for the
* combining algorithm. First record their order, diddle the
* flags and clamp the poll intervals. Then, consider the peers
* at the lowest stratum. Of these, OR the leap bits on the
* assumption that, if some of them honk nonzero bits, they must
* know what they are doing. Also, check for prefer and pps
* peers. If a prefer peer is found within clock_max, update the
* pps switch. Of the other peers not at the lowest stratum,
* check if the system peer is among them and, if found, zap
* him. We note that the head of the list is at the lowest
* stratum and that unsynchronized peers cannot survive this
* far.
*/
leap_consensus = 0;
for (i = nlist - 1; i >= 0; i--) {
peer_list[i]->status = CTL_PST_SEL_SYNCCAND;
peer_list[i]->flags |= FLAG_SYSPEER;
poll_update(peer_list[i], peer_list[i]->hpoll);
if (peer_list[i]->stratum == peer_list[0]->stratum) {
leap_consensus |= peer_list[i]->leap;
if (peer_list[i]->refclktype == REFCLK_ATOM_PPS)
typepps = peer_list[i];
if (peer_list[i] == sys_peer)
typesystem = peer_list[i];
if (peer_list[i]->flags & FLAG_PREFER) {
typeprefer = peer_list[i];
if (fabs(typeprefer->offset) <
clock_max)
pps_update = 1;
}
} else {
if (peer_list[i] == sys_peer)
sys_peer = 0;
}
}
/*
* Mitigation rules of the game. There are several types of
* peers that make a difference here: (1) prefer local peers
* (type REFCLK_LOCALCLOCK with FLAG_PREFER) or prefer modem
* peers (type REFCLK_NIST_ATOM etc with FLAG_PREFER), (2) pps
* peers (type REFCLK_ATOM_PPS), (3) remaining prefer peers
* (flag FLAG_PREFER), (4) the existing system peer, if any, (5)
* the head of the survivor list. Note that only one peer can be
* declared prefer. The order of preference is in the order
* stated. Note that all of these must be at the lowest stratum,
* i.e., the stratum of the head of the survivor list.
*/
osys_peer = sys_peer;
if (typeprefer && (typeprefer->refclktype == REFCLK_LOCALCLOCK
|| typeprefer->sstclktype == CTL_SST_TS_TELEPHONE ||
!typepps)) {
sys_peer = typeprefer;
sys_peer->status = CTL_PST_SEL_SYSPEER;
sys_offset = sys_peer->offset;
sys_epsil = sys_peer->variance;
#ifdef DEBUG
if (debug > 2)
printf("select: prefer offset %.6f\n",
sys_offset);
#endif
} else if (typepps && pps_update) {
sys_peer = typepps;
sys_peer->status = CTL_PST_SEL_PPS;
sys_offset = sys_peer->offset;
sys_epsil = sys_peer->variance;
if (!pps_control)
NLOG(NLOG_SYSEVENT) /* conditional syslog */
msyslog(LOG_INFO, "pps sync enabled");
pps_control = current_time;
#ifdef DEBUG
if (debug > 2)
printf("select: pps offset %.6f\n", sys_offset);
#endif
} else {
if (!typesystem)
sys_peer = peer_list[0];
sys_peer->status = CTL_PST_SEL_SYSPEER;
sys_offset = clock_combine(peer_list, nlist);
sys_epsil = sys_peer->variance + sys_maxd;
#ifdef DEBUG
if (debug > 2)
printf("select: combine offset %.6f\n",
sys_offset);
#endif
}
if (osys_peer != sys_peer)
report_event(EVNT_PEERSTCHG, (struct peer *)0);
clock_update();
}
/*
* clock_combine - combine offsets from selected peers
*/
static double
clock_combine(
struct peer **peers,
int npeers
)
{
int i;
double x, y, z;
y = z = 0;
for (i = 0; i < npeers; i++) {
x = root_distance(peers[i]);
y += 1. / x;
z += peers[i]->offset / x;
}
return (z / y);
}
/*
* root_distance - compute synchronization distance from peer to root
*/
static double
root_distance(
struct peer *peer
)
{
return ((fabs(peer->delay) + peer->rootdelay) / 2 +
peer->rootdispersion + peer->disp +
SQRT(peer->variance) + CLOCK_PHI * (current_time -
peer->update));
}
/*
* peer_xmit - send packet for persistent association.
*/
static void
peer_xmit(
struct peer *peer /* peer structure pointer */
)
{
struct pkt xpkt; /* transmit packet */
int find_rtt = (peer->cast_flags & MDF_MCAST) &&
peer->hmode != MODE_BROADCAST;
int sendlen, pktlen;
keyid_t xkeyid; /* transmit key ID */
l_fp xmt_tx;
/*
* Initialize transmit packet header fields.
*/
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap, peer->version,
peer->hmode);
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
xpkt.ppoll = peer->hpoll;
xpkt.precision = sys_precision;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion = HTONS_FP(DTOUFP(sys_rootdispersion +
LOGTOD(sys_precision)));
xpkt.refid = sys_refid;
HTONL_FP(&sys_reftime, &xpkt.reftime);
HTONL_FP(&peer->org, &xpkt.org);
HTONL_FP(&peer->rec, &xpkt.rec);
/*
* If the received packet contains a MAC, the transmitted packet
* is authenticated and contains a MAC. If not, the transmitted
* packet is not authenticated.
*
* In the current I/O semantics we can't find the local
* interface address to generate a session key until after
* receiving a packet. So, the first packet goes out
* unauthenticated. That's why the really icky test next is
* here.
*/
sendlen = LEN_PKT_NOMAC;
if (!(peer->flags & FLAG_AUTHENABLE) ||
(peer->dstadr->sin.sin_addr.s_addr == 0 &&
peer->dstadr->bcast.sin_addr.s_addr == 0)) {
get_systime(&peer->xmt);
HTONL_FP(&peer->xmt, &xpkt.xmt);
sendpkt(&peer->srcadr, find_rtt ? any_interface :
peer->dstadr, ((peer->cast_flags & MDF_MCAST) &&
!find_rtt) ? ((peer->cast_flags & MDF_ACAST) ? -7 :
peer->ttl) : -8, &xpkt, sendlen);
peer->sent++;
#ifdef DEBUG
if (debug)
printf("transmit: at %ld %s mode %d\n",
current_time, ntoa(&peer->srcadr),
peer->hmode);
#endif
return;
}
/*
* The received packet contains a MAC, so the transmitted packet
* must be authenticated. If autokey is enabled, fuss with the
* various modes; otherwise, private key cryptography is used.
*/
#ifdef AUTOKEY
if ((peer->flags & FLAG_SKEY)) {
u_int cmmd;
/*
* The Public Key Dance (PKD): Cryptographic credentials
* are contained in extension fields, each including a
* 4-octet length/code word followed by a 4-octet
* association ID and optional additional data. Optional
* data includes a 4-octet data length field followed by
* the data itself. Request messages are sent from a
* configured association; response messages can be sent
* from a configured association or can take the fast
* path without ever matching an association. Response
* messages have the same code as the request, but have
* a response bit and possibly an error bit set. In this
* implementation, a message may contain no more than
* one command and no more than one response.
*
* Cryptographic session keys include both a public and
* a private componet. Request and response messages
* using extension fields are always sent with the
* private component set to zero. Packets without
* extension fields indlude the private component when
* the session key is generated.
*/
while (1) {
/*
* Allocate and initialize a keylist if not
* already done. Then, use the list in inverse
* order, discarding keys once used. Keep the
* latest key around until the next one, so
* clients can use client/server packets to
* compute propagation delay.
*
* Note that once a key is used from the list,
* it is retained in the key cache until the
* next key is used. This is to allow a client
* to retrieve the encrypted session key
* identifier to verify authenticity.
*
* If for some reason a key is no longer in the
* key cache, a birthday has happened and the
* pseudo-random sequence is probably broken. In
* that case, purge the keylist and regenerate
* it.
*/
if (peer->keynumber == 0)
make_keylist(peer);
else
peer->keynumber--;
xkeyid = peer->keylist[peer->keynumber];
if (authistrusted(xkeyid))
break;
else
key_expire(peer);
}
peer->keyid = xkeyid;
switch (peer->hmode) {
/*
* In broadcast mode and a new keylist; otherwise, send
* the association ID so the client can request the
* values at other times.
*/
case MODE_BROADCAST:
if (peer->keynumber == peer->sndauto.tstamp)
cmmd = CRYPTO_AUTO | CRYPTO_RESP;
else
cmmd = CRYPTO_ASSOC | CRYPTO_RESP;
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, cmmd, peer->hcookie,
peer->associd);
break;
/*
* In symmetric modes the public key, Diffie-Hellman
* values and autokey values are required. In principle,
* these values can be provided in any order; however,
* the protocol is most efficient if the values are
* provided in the order listed. This happens with the
* following rules:
*
* 1. Don't send anything except a public-key request or
* a public-key response until the public key has
* been stored.
*
* 2. If a public-key response is pending, always send
* it first before any other command or response.
*
* 3. Once the public key has been stored, don't send
* anything except Diffie-Hellman commands or
* responses until the agreed key has been stored.
*
* 4. If a Diffie-Hellman response is pending, always
* send it last after any other command or response.
*
* 5. When the agreed key has been stored and the key
* list is regenerated, send the autokey values
* gratis.
*/
case MODE_ACTIVE:
case MODE_PASSIVE:
#ifdef PUBKEY
if (crypto_enable && peer->cmmd != 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, (peer->cmmd >> 16) |
CRYPTO_RESP, peer->hcookie,
peer->associd);
peer->cmmd = 0;
}
if (crypto_enable && crypto_flags &
CRYPTO_FLAG_PUBL && peer->pubkey == 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_NAME, peer->hcookie,
peer->assoc);
} else if (peer->pcookie.tstamp == 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_DH, peer->hcookie,
peer->assoc);
#else
if (peer->cmmd != 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, (peer->cmmd >> 16) |
CRYPTO_RESP, peer->hcookie,
peer->associd);
peer->cmmd = 0;
}
if (peer->pcookie.tstamp == 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_PRIV, peer->hcookie,
peer->assoc);
#endif /* PUBKEY */
} else if (peer->recauto.tstamp == 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_AUTO, peer->hcookie,
peer->assoc);
} else if (peer->keynumber == peer->sndauto.seq)
{
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_AUTO | CRYPTO_RESP,
peer->hcookie, peer->associd);
}
break;
/*
* In client mode, the public key, host cookie and
* autokey values are required. In broadcast client
* mode, these values must be acquired during the
* client/server exchange to avoid having to wait until
* the next key list regeneration. Otherwise, the poor
* dude may die a lingering death until becoming
* unreachable and attempting rebirth. Note that we ask
* for the cookie at each key list regeneration anyway.
*/
case MODE_CLIENT:
if (peer->cmmd != 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, (peer->cmmd >> 16) |
CRYPTO_RESP, peer->hcookie,
peer->associd);
peer->cmmd = 0;
}
#ifdef PUBKEY
if (crypto_enable && crypto_flags &
CRYPTO_FLAG_PUBL && peer->pubkey == 0) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_NAME, peer->hcookie,
peer->assoc);
} else
#endif /* PUBKEY */
if (peer->pcookie.tstamp == 0 ||
peer->keynumber == peer->sndauto.seq) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_PRIV, peer->hcookie,
peer->assoc);
} else if (peer->recauto.tstamp == 0 &&
peer->flags & FLAG_MCAST2) {
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, CRYPTO_AUTO, peer->hcookie,
peer->assoc);
}
break;
}
/*
* If extension fields are present, we must use a
* private value of zero. Most intricate.
*/
if (sendlen > LEN_PKT_NOMAC)
session_key(&peer->dstadr->sin,
(peer->hmode == MODE_BROADCAST) ?
&peer->dstadr->bcast : &peer->srcadr,
xkeyid, 0, 2);
}
#endif /* AUTOKEY */
xkeyid = peer->keyid;
get_systime(&peer->xmt);
L_ADD(&peer->xmt, &sys_authdelay);
HTONL_FP(&peer->xmt, &xpkt.xmt);
pktlen = sendlen + authencrypt(xkeyid, (u_int32 *)&xpkt,
sendlen);
#ifdef AUTOKEY
if (xkeyid > NTP_MAXKEY)
authtrust(xkeyid, 0);
#endif /* AUTOKEY */
get_systime(&xmt_tx);
sendpkt(&peer->srcadr, find_rtt ? any_interface : peer->dstadr,
((peer->cast_flags & MDF_MCAST) && !find_rtt) ?
((peer->cast_flags & MDF_ACAST) ? -7 : peer->ttl) : -7,
&xpkt, pktlen);
/*
* Calculate the encryption delay. Keep the minimum over
* the latest two samples.
*/
L_SUB(&xmt_tx, &peer->xmt);
L_ADD(&xmt_tx, &sys_authdelay);
sys_authdly[1] = sys_authdly[0];
sys_authdly[0] = xmt_tx.l_uf;
if (sys_authdly[0] < sys_authdly[1])
sys_authdelay.l_uf = sys_authdly[0];
else
sys_authdelay.l_uf = sys_authdly[1];
peer->sent++;
#ifdef AUTOKEY
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s mode %d keyid %08x len %d mac %d index %d\n",
current_time, ntoa(&peer->srcadr), peer->hmode,
xkeyid, sendlen, pktlen - sendlen, peer->keynumber);
#endif
#else
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s mode %d keyid %08x len %d mac %d\n",
current_time, ntoa(&peer->srcadr), peer->hmode,
xkeyid, sendlen, pktlen - sendlen);
#endif
#endif /* AUTOKEY */
}
/*
* fast_xmit - Send packet for nonpersistent association. Note that
* neither the source or destination can be a broadcast address.
*/
static void
fast_xmit(
struct recvbuf *rbufp, /* receive packet pointer */
int xmode, /* transmit mode */
keyid_t xkeyid /* transmit key ID */
)
{
struct pkt xpkt; /* transmit packet structure */
struct pkt *rpkt; /* receive packet structure */
l_fp xmt_ts; /* transmit timestamp */
l_fp xmt_tx; /* transmit timestamp after authent */
int sendlen, pktlen;
/*
* Initialize transmit packet header fields from the receive
* buffer provided. We leave some fields intact as received.
*/
rpkt = &rbufp->recv_pkt;
xpkt.li_vn_mode = PKT_LI_VN_MODE(sys_leap,
PKT_VERSION(rpkt->li_vn_mode), xmode);
xpkt.stratum = STRATUM_TO_PKT(sys_stratum);
xpkt.ppoll = rpkt->ppoll;
xpkt.precision = sys_precision;
xpkt.rootdelay = HTONS_FP(DTOFP(sys_rootdelay));
xpkt.rootdispersion = HTONS_FP(DTOUFP(sys_rootdispersion +
LOGTOD(sys_precision)));
xpkt.refid = sys_refid;
HTONL_FP(&sys_reftime, &xpkt.reftime);
xpkt.org = rpkt->xmt;
HTONL_FP(&rbufp->recv_time, &xpkt.rec);
/*
* If the received packet contains a MAC, the transmitted packet
* is authenticated and contains a MAC. If not, the transmitted
* packet is not authenticated.
*/
sendlen = LEN_PKT_NOMAC;
if (rbufp->recv_length == sendlen) {
get_systime(&xmt_ts);
HTONL_FP(&xmt_ts, &xpkt.xmt);
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, -10, &xpkt,
sendlen);
#ifdef DEBUG
if (debug)
printf("transmit: at %ld %s mode %d\n",
current_time, ntoa(&rbufp->recv_srcadr),
xmode);
#endif
return;
}
/*
* The received packet contains a MAC, so the transmitted packet
* must be authenticated. For private-key cryptography, use the
* predefined private keys to generate the cryptosum. For
* autokeys in client/server mode, use the server private value
* values to generate the cookie, which is unique for every
* source-destination-key ID combination. For symmetric passive
* mode, which is the only other mode to get here, flip the
* addresses and do the same. If an extension field is present,
* do what needs, but with private value of zero so the poor
* jerk can decode it. If no extension field is present, use the
* cookie to generate the session key.
*/
#ifdef AUTOKEY
if (xkeyid > NTP_MAXKEY) {
keyid_t cookie;
u_int code;
if (xmode == MODE_SERVER)
cookie = session_key(&rbufp->recv_srcadr,
&rbufp->dstadr->sin, 0, sys_private, 0);
else
cookie = session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, 0, sys_private, 0);
if (rbufp->recv_length >= sendlen + MAX_MAC_LEN + 2 *
sizeof(u_int32)) {
session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, xkeyid, 0, 2);
code = (htonl(rpkt->exten[0]) >> 16) |
CRYPTO_RESP;
sendlen += crypto_xmit((u_int32 *)&xpkt,
sendlen, code, cookie,
(int)htonl(rpkt->exten[1]));
} else {
session_key(&rbufp->dstadr->sin,
&rbufp->recv_srcadr, xkeyid, cookie, 2);
}
}
#endif /* AUTOKEY */
get_systime(&xmt_ts);
L_ADD(&xmt_ts, &sys_authdelay);
HTONL_FP(&xmt_ts, &xpkt.xmt);
pktlen = sendlen + authencrypt(xkeyid, (u_int32 *)&xpkt,
sendlen);
#ifdef AUTOKEY
if (xkeyid > NTP_MAXKEY)
authtrust(xkeyid, 0);
#endif /* AUTOKEY */
get_systime(&xmt_tx);
sendpkt(&rbufp->recv_srcadr, rbufp->dstadr, -9, &xpkt, pktlen);
/*
* Calculate the encryption delay. Keep the minimum over the
* latest two samples.
*/
L_SUB(&xmt_tx, &xmt_ts);
L_ADD(&xmt_tx, &sys_authdelay);
sys_authdly[1] = sys_authdly[0];
sys_authdly[0] = xmt_tx.l_uf;
if (sys_authdly[0] < sys_authdly[1])
sys_authdelay.l_uf = sys_authdly[0];
else
sys_authdelay.l_uf = sys_authdly[1];
#ifdef DEBUG
if (debug)
printf(
"transmit: at %ld %s mode %d keyid %08x len %d mac %d\n",
current_time, ntoa(&rbufp->recv_srcadr),
xmode, xkeyid, sendlen, pktlen - sendlen);
#endif
}
#ifdef AUTOKEY
/*
* key_expire - purge the key list
*/
void
key_expire(
struct peer *peer /* peer structure pointer */
)
{
int i;
if (peer->keylist != NULL) {
for (i = 0; i <= peer->keynumber; i++)
authtrust(peer->keylist[i], 0);
free(peer->keylist);
peer->keylist = NULL;
}
peer->keynumber = peer->sndauto.seq = 0;
}
#endif /* AUTOKEY */
/*
* Find the precision of this particular machine
*/
#define DUSECS 1000000 /* us in a s */
#define HUSECS (1 << 20) /* approx DUSECS for shifting etc */
#define MINSTEP 5 /* minimum clock increment (us) */
#define MAXSTEP 20000 /* maximum clock increment (us) */
#define MINLOOPS 5 /* minimum number of step samples */
/*
* This routine calculates the differences between successive calls to
* gettimeofday(). If a difference is less than zero, the us field
* has rolled over to the next second, so we add a second in us. If
* the difference is greater than zero and less than MINSTEP, the
* clock has been advanced by a small amount to avoid standing still.
* If the clock has advanced by a greater amount, then a timer interrupt
* has occurred and this amount represents the precision of the clock.
* In order to guard against spurious values, which could occur if we
* happen to hit a fat interrupt, we do this for MINLOOPS times and
* keep the minimum value obtained.
*/
int
default_get_precision(void)
{
struct timeval tp;
#if !defined(SYS_WINNT) && !defined(VMS) && !defined(_SEQUENT_)
struct timezone tzp;
#elif defined(VMS) || defined(_SEQUENT_)
struct timezone {
int tz_minuteswest;
int tz_dsttime;
} tzp;
#endif /* defined(VMS) || defined(_SEQUENT_) */
long last;
int i;
long diff;
long val;
long usec;
#ifdef HAVE_GETCLOCK
struct timespec ts;
#endif
#if defined(__FreeBSD__) && __FreeBSD__ >= 3
u_long freq;
size_t j;
/* Try to see if we can find the frequency of of the counter
* which drives our timekeeping
*/
j = sizeof freq;
i = sysctlbyname("kern.timecounter.frequency", &freq, &j , 0,
0);
if (i)
i = sysctlbyname("machdep.tsc_freq", &freq, &j , 0, 0);
if (i)
i = sysctlbyname("machdep.i586_freq", &freq, &j , 0, 0);
if (i)
i = sysctlbyname("machdep.i8254_freq", &freq, &j , 0,
0);
if (!i) {
for (i = 1; freq ; i--)
freq >>= 1;
return (i);
}
#endif
usec = 0;
val = MAXSTEP;
#ifdef HAVE_GETCLOCK
(void) getclock(TIMEOFDAY, &ts);
tp.tv_sec = ts.tv_sec;
tp.tv_usec = ts.tv_nsec / 1000;
#else /* not HAVE_GETCLOCK */
GETTIMEOFDAY(&tp, &tzp);
#endif /* not HAVE_GETCLOCK */
last = tp.tv_usec;
for (i = 0; i < MINLOOPS && usec < HUSECS;) {
#ifdef HAVE_GETCLOCK
(void) getclock(TIMEOFDAY, &ts);
tp.tv_sec = ts.tv_sec;
tp.tv_usec = ts.tv_nsec / 1000;
#else /* not HAVE_GETCLOCK */
GETTIMEOFDAY(&tp, &tzp);
#endif /* not HAVE_GETCLOCK */
diff = tp.tv_usec - last;
last = tp.tv_usec;
if (diff < 0)
diff += DUSECS;
usec += diff;
if (diff > MINSTEP) {
i++;
if (diff < val)
val = diff;
}
}
NLOG(NLOG_SYSINFO)
msyslog(LOG_INFO, "precision = %ld usec", val);
if (usec >= HUSECS)
val = MINSTEP; /* val <= MINSTEP; fast machine */
diff = HUSECS;
for (i = 0; diff > val; i--)
diff >>= 1;
return (i);
}
/*
* init_proto - initialize the protocol module's data
*/
void
init_proto(void)
{
l_fp dummy;
/*
* Fill in the sys_* stuff. Default is don't listen to
* broadcasting, authenticate.
*/
sys_leap = LEAP_NOTINSYNC;
sys_stratum = STRATUM_UNSPEC;
sys_precision = (s_char)default_get_precision();
sys_rootdelay = 0;
sys_rootdispersion = 0;
sys_refid = 0;
L_CLR(&sys_reftime);
sys_peer = 0;
get_systime(&dummy);
sys_bclient = 0;
sys_bdelay = DEFBROADDELAY;
#if defined(DES) || defined(MD5)
sys_authenticate = 1;
#else
sys_authenticate = 0;
#endif
L_CLR(&sys_authdelay);
sys_authdly[0] = sys_authdly[1] = 0;
sys_stattime = 0;
sys_badstratum = 0;
sys_oldversionpkt = 0;
sys_newversionpkt = 0;
sys_badlength = 0;
sys_unknownversion = 0;
sys_processed = 0;
sys_badauth = 0;
sys_manycastserver = 0;
#ifdef AUTOKEY
sys_automax = 1 << NTP_AUTOMAX;
#endif /* AUTOKEY */
/*
* Default these to enable
*/
ntp_enable = 1;
#ifndef KERNEL_FLL_BUG
kern_enable = 1;
#endif
msyslog(LOG_DEBUG, "kern_enable is %d", kern_enable);
stats_control = 1;
/*
* Some system clocks should only be adjusted in 10ms increments.
*/
#if defined RELIANTUNIX_CLOCK
systime_10ms_ticks = 1; /* Reliant UNIX */
#elif defined SCO5_CLOCK
if (sys_precision >= (s_char)-10) /* pre-SCO OpenServer 5.0.6 */
systime_10ms_ticks = 1;
#endif
if (systime_10ms_ticks)
msyslog(LOG_INFO, "using 10ms tick adjustments");
}
/*
* proto_config - configure the protocol module
*/
void
proto_config(
int item,
u_long value,
double dvalue
)
{
/*
* Figure out what he wants to change, then do it
*/
switch (item) {
case PROTO_KERNEL:
/*
* Turn on/off kernel discipline
*/
kern_enable = (int)value;
break;
case PROTO_NTP:
/*
* Turn on/off clock discipline
*/
ntp_enable = (int)value;
break;
case PROTO_MONITOR:
/*
* Turn on/off monitoring
*/
if (value)
mon_start(MON_ON);
else
mon_stop(MON_ON);
break;
case PROTO_FILEGEN:
/*
* Turn on/off statistics
*/
stats_control = (int)value;
break;
case PROTO_BROADCLIENT:
/*
* Turn on/off facility to listen to broadcasts
*/
sys_bclient = (int)value;
if (value)
io_setbclient();
else
io_unsetbclient();
break;
case PROTO_MULTICAST_ADD:
/*
* Add muliticast group address
*/
io_multicast_add(value);
break;
case PROTO_MULTICAST_DEL:
/*
* Delete multicast group address
*/
io_multicast_del(value);
break;
case PROTO_BROADDELAY:
/*
* Set default broadcast delay
*/
sys_bdelay = dvalue;
break;
case PROTO_AUTHENTICATE:
/*
* Specify the use of authenticated data
*/
sys_authenticate = (int)value;
break;
default:
/*
* Log this error
*/
msyslog(LOG_ERR,
"proto_config: illegal item %d, value %ld",
item, value);
break;
}
}
/*
* proto_clr_stats - clear protocol stat counters
*/
void
proto_clr_stats(void)
{
sys_badstratum = 0;
sys_oldversionpkt = 0;
sys_newversionpkt = 0;
sys_unknownversion = 0;
sys_badlength = 0;
sys_processed = 0;
sys_badauth = 0;
sys_stattime = current_time;
sys_limitrejected = 0;
}