1025 lines
26 KiB
C
1025 lines
26 KiB
C
/* $NetBSD: sysv_sem.c,v 1.36 2000/05/27 04:52:37 thorpej Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Implementation of SVID semaphores
|
|
*
|
|
* Author: Daniel Boulet
|
|
*
|
|
* This software is provided ``AS IS'' without any warranties of any kind.
|
|
*/
|
|
|
|
#define SYSVSEM
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/sem.h>
|
|
#include <sys/malloc.h>
|
|
|
|
#include <sys/mount.h>
|
|
#include <sys/syscallargs.h>
|
|
|
|
int semtot = 0;
|
|
struct proc *semlock_holder = NULL;
|
|
|
|
#ifdef SEM_DEBUG
|
|
#define SEM_PRINTF(a) printf a
|
|
#else
|
|
#define SEM_PRINTF(a)
|
|
#endif
|
|
|
|
void semlock __P((struct proc *));
|
|
struct sem_undo *semu_alloc __P((struct proc *));
|
|
int semundo_adjust __P((struct proc *, struct sem_undo **, int, int, int));
|
|
void semundo_clear __P((int, int));
|
|
|
|
void
|
|
seminit()
|
|
{
|
|
int i;
|
|
|
|
if (sema == NULL)
|
|
panic("sema is NULL");
|
|
if (semu == NULL)
|
|
panic("semu is NULL");
|
|
|
|
for (i = 0; i < seminfo.semmni; i++) {
|
|
sema[i]._sem_base = 0;
|
|
sema[i].sem_perm.mode = 0;
|
|
}
|
|
for (i = 0; i < seminfo.semmnu; i++) {
|
|
struct sem_undo *suptr = SEMU(i);
|
|
suptr->un_proc = NULL;
|
|
}
|
|
semu_list = NULL;
|
|
}
|
|
|
|
void
|
|
semlock(p)
|
|
struct proc *p;
|
|
{
|
|
|
|
while (semlock_holder != NULL && semlock_holder != p)
|
|
(void) tsleep(&semlock_holder, (PZERO - 4),
|
|
"semlock", 0);
|
|
}
|
|
|
|
/*
|
|
* Lock or unlock the entire semaphore facility.
|
|
*
|
|
* This will probably eventually evolve into a general purpose semaphore
|
|
* facility status enquiry mechanism (I don't like the "read /dev/kmem"
|
|
* approach currently taken by ipcs and the amount of info that we want
|
|
* to be able to extract for ipcs is probably beyond the capability of
|
|
* the getkerninfo facility.
|
|
*
|
|
* At the time that the current version of semconfig was written, ipcs is
|
|
* the only user of the semconfig facility. It uses it to ensure that the
|
|
* semaphore facility data structures remain static while it fishes around
|
|
* in /dev/kmem.
|
|
*/
|
|
|
|
int
|
|
sys_semconfig(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_semconfig_args /* {
|
|
syscallarg(int) flag;
|
|
} */ *uap = v;
|
|
int eval = 0;
|
|
|
|
semlock(p);
|
|
|
|
switch (SCARG(uap, flag)) {
|
|
case SEM_CONFIG_FREEZE:
|
|
semlock_holder = p;
|
|
break;
|
|
|
|
case SEM_CONFIG_THAW:
|
|
semlock_holder = NULL;
|
|
wakeup((caddr_t)&semlock_holder);
|
|
break;
|
|
|
|
default:
|
|
printf(
|
|
"semconfig: unknown flag parameter value (%d) - ignored\n",
|
|
SCARG(uap, flag));
|
|
eval = EINVAL;
|
|
break;
|
|
}
|
|
|
|
*retval = 0;
|
|
return(eval);
|
|
}
|
|
|
|
/*
|
|
* Allocate a new sem_undo structure for a process
|
|
* (returns ptr to structure or NULL if no more room)
|
|
*/
|
|
|
|
struct sem_undo *
|
|
semu_alloc(p)
|
|
struct proc *p;
|
|
{
|
|
int i;
|
|
struct sem_undo *suptr;
|
|
struct sem_undo **supptr;
|
|
int attempt;
|
|
|
|
/*
|
|
* Try twice to allocate something.
|
|
* (we'll purge any empty structures after the first pass so
|
|
* two passes are always enough)
|
|
*/
|
|
|
|
for (attempt = 0; attempt < 2; attempt++) {
|
|
/*
|
|
* Look for a free structure.
|
|
* Fill it in and return it if we find one.
|
|
*/
|
|
|
|
for (i = 0; i < seminfo.semmnu; i++) {
|
|
suptr = SEMU(i);
|
|
if (suptr->un_proc == NULL) {
|
|
suptr->un_next = semu_list;
|
|
semu_list = suptr;
|
|
suptr->un_cnt = 0;
|
|
suptr->un_proc = p;
|
|
return(suptr);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* We didn't find a free one, if this is the first attempt
|
|
* then try to free some structures.
|
|
*/
|
|
|
|
if (attempt == 0) {
|
|
/* All the structures are in use - try to free some */
|
|
int did_something = 0;
|
|
|
|
supptr = &semu_list;
|
|
while ((suptr = *supptr) != NULL) {
|
|
if (suptr->un_cnt == 0) {
|
|
suptr->un_proc = NULL;
|
|
*supptr = suptr->un_next;
|
|
did_something = 1;
|
|
} else
|
|
supptr = &(suptr->un_next);
|
|
}
|
|
|
|
/* If we didn't free anything then just give-up */
|
|
if (!did_something)
|
|
return(NULL);
|
|
} else {
|
|
/*
|
|
* The second pass failed even though we freed
|
|
* something after the first pass!
|
|
* This is IMPOSSIBLE!
|
|
*/
|
|
panic("semu_alloc - second attempt failed");
|
|
}
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Adjust a particular entry for a particular proc
|
|
*/
|
|
|
|
int
|
|
semundo_adjust(p, supptr, semid, semnum, adjval)
|
|
struct proc *p;
|
|
struct sem_undo **supptr;
|
|
int semid, semnum;
|
|
int adjval;
|
|
{
|
|
struct sem_undo *suptr;
|
|
struct undo *sunptr;
|
|
int i;
|
|
|
|
/* Look for and remember the sem_undo if the caller doesn't provide
|
|
it */
|
|
|
|
suptr = *supptr;
|
|
if (suptr == NULL) {
|
|
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
|
|
if (suptr->un_proc == p) {
|
|
*supptr = suptr;
|
|
break;
|
|
}
|
|
}
|
|
if (suptr == NULL) {
|
|
if (adjval == 0)
|
|
return(0);
|
|
suptr = semu_alloc(p);
|
|
if (suptr == NULL)
|
|
return(ENOSPC);
|
|
*supptr = suptr;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Look for the requested entry and adjust it (delete if adjval becomes
|
|
* 0).
|
|
*/
|
|
sunptr = &suptr->un_ent[0];
|
|
for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
|
|
if (sunptr->un_id != semid || sunptr->un_num != semnum)
|
|
continue;
|
|
if (adjval == 0)
|
|
sunptr->un_adjval = 0;
|
|
else
|
|
sunptr->un_adjval += adjval;
|
|
if (sunptr->un_adjval == 0) {
|
|
suptr->un_cnt--;
|
|
if (i < suptr->un_cnt)
|
|
suptr->un_ent[i] =
|
|
suptr->un_ent[suptr->un_cnt];
|
|
}
|
|
return(0);
|
|
}
|
|
|
|
/* Didn't find the right entry - create it */
|
|
if (adjval == 0)
|
|
return(0);
|
|
if (suptr->un_cnt == SEMUME)
|
|
return(EINVAL);
|
|
|
|
sunptr = &suptr->un_ent[suptr->un_cnt];
|
|
suptr->un_cnt++;
|
|
sunptr->un_adjval = adjval;
|
|
sunptr->un_id = semid;
|
|
sunptr->un_num = semnum;
|
|
return(0);
|
|
}
|
|
|
|
void
|
|
semundo_clear(semid, semnum)
|
|
int semid, semnum;
|
|
{
|
|
struct sem_undo *suptr;
|
|
|
|
for (suptr = semu_list; suptr != NULL; suptr = suptr->un_next) {
|
|
struct undo *sunptr;
|
|
int i;
|
|
|
|
sunptr = &suptr->un_ent[0];
|
|
for (i = 0; i < suptr->un_cnt; i++, sunptr++) {
|
|
if (sunptr->un_id == semid) {
|
|
if (semnum == -1 || sunptr->un_num == semnum) {
|
|
suptr->un_cnt--;
|
|
if (i < suptr->un_cnt) {
|
|
suptr->un_ent[i] =
|
|
suptr->un_ent[suptr->un_cnt];
|
|
i--, sunptr--;
|
|
}
|
|
}
|
|
if (semnum != -1)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
int
|
|
sys_____semctl13(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_____semctl13_args /* {
|
|
syscallarg(int) semid;
|
|
syscallarg(int) semnum;
|
|
syscallarg(int) cmd;
|
|
syscallarg(union __semun *) arg;
|
|
} */ *uap = v;
|
|
struct semid_ds sembuf;
|
|
int cmd, error;
|
|
void *pass_arg;
|
|
union __semun karg;
|
|
|
|
cmd = SCARG(uap, cmd);
|
|
|
|
switch (cmd) {
|
|
case IPC_SET:
|
|
case IPC_STAT:
|
|
pass_arg = &sembuf;
|
|
break;
|
|
|
|
case GETALL:
|
|
case SETVAL:
|
|
case SETALL:
|
|
pass_arg = &karg;
|
|
break;
|
|
default:
|
|
pass_arg = NULL;
|
|
break;
|
|
}
|
|
|
|
if (pass_arg) {
|
|
error = copyin(SCARG(uap, arg), &karg, sizeof(karg));
|
|
if (error)
|
|
return error;
|
|
if (cmd == IPC_SET) {
|
|
error = copyin(karg.buf, &sembuf, sizeof(sembuf));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
}
|
|
|
|
error = semctl1(p, SCARG(uap, semid), SCARG(uap, semnum), cmd,
|
|
pass_arg, retval);
|
|
|
|
if (error == 0 && cmd == IPC_STAT)
|
|
error = copyout(&sembuf, karg.buf, sizeof(sembuf));
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
semctl1(p, semid, semnum, cmd, v, retval)
|
|
struct proc *p;
|
|
int semid, semnum, cmd;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct ucred *cred = p->p_ucred;
|
|
union __semun *arg = v;
|
|
struct semid_ds *sembuf = v, *semaptr;
|
|
int i, error, ix;
|
|
|
|
SEM_PRINTF(("call to semctl(%d, %d, %d, %p)\n",
|
|
semid, semnum, cmd, v));
|
|
|
|
semlock(p);
|
|
|
|
ix = IPCID_TO_IX(semid);
|
|
if (ix < 0 || ix >= seminfo.semmsl)
|
|
return (EINVAL);
|
|
|
|
semaptr = &sema[ix];
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
|
|
semaptr->sem_perm._seq != IPCID_TO_SEQ(semid))
|
|
return (EINVAL);
|
|
|
|
switch (cmd) {
|
|
case IPC_RMID:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)) != 0)
|
|
return (error);
|
|
semaptr->sem_perm.cuid = cred->cr_uid;
|
|
semaptr->sem_perm.uid = cred->cr_uid;
|
|
semtot -= semaptr->sem_nsems;
|
|
for (i = semaptr->_sem_base - sem; i < semtot; i++)
|
|
sem[i] = sem[i + semaptr->sem_nsems];
|
|
for (i = 0; i < seminfo.semmni; i++) {
|
|
if ((sema[i].sem_perm.mode & SEM_ALLOC) &&
|
|
sema[i]._sem_base > semaptr->_sem_base)
|
|
sema[i]._sem_base -= semaptr->sem_nsems;
|
|
}
|
|
semaptr->sem_perm.mode = 0;
|
|
semundo_clear(ix, -1);
|
|
wakeup(semaptr);
|
|
break;
|
|
|
|
case IPC_SET:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_M)))
|
|
return (error);
|
|
semaptr->sem_perm.uid = sembuf->sem_perm.uid;
|
|
semaptr->sem_perm.gid = sembuf->sem_perm.gid;
|
|
semaptr->sem_perm.mode = (semaptr->sem_perm.mode & ~0777) |
|
|
(sembuf->sem_perm.mode & 0777);
|
|
semaptr->sem_ctime = time.tv_sec;
|
|
break;
|
|
|
|
case IPC_STAT:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
return (error);
|
|
memcpy(sembuf, semaptr, sizeof(struct semid_ds));
|
|
break;
|
|
|
|
case GETNCNT:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
return (error);
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems)
|
|
return (EINVAL);
|
|
*retval = semaptr->_sem_base[semnum].semncnt;
|
|
break;
|
|
|
|
case GETPID:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
return (error);
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems)
|
|
return (EINVAL);
|
|
*retval = semaptr->_sem_base[semnum].sempid;
|
|
break;
|
|
|
|
case GETVAL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
return (error);
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems)
|
|
return (EINVAL);
|
|
*retval = semaptr->_sem_base[semnum].semval;
|
|
break;
|
|
|
|
case GETALL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
return (error);
|
|
for (i = 0; i < semaptr->sem_nsems; i++) {
|
|
error = copyout(&semaptr->_sem_base[i].semval,
|
|
&arg->array[i], sizeof(arg->array[i]));
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case GETZCNT:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_R)))
|
|
return (error);
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems)
|
|
return (EINVAL);
|
|
*retval = semaptr->_sem_base[semnum].semzcnt;
|
|
break;
|
|
|
|
case SETVAL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
|
|
return (error);
|
|
if (semnum < 0 || semnum >= semaptr->sem_nsems)
|
|
return (EINVAL);
|
|
semaptr->_sem_base[semnum].semval = arg->val;
|
|
semundo_clear(ix, semnum);
|
|
wakeup(semaptr);
|
|
break;
|
|
|
|
case SETALL:
|
|
if ((error = ipcperm(cred, &semaptr->sem_perm, IPC_W)))
|
|
return (error);
|
|
for (i = 0; i < semaptr->sem_nsems; i++) {
|
|
error = copyin(&arg->array[i],
|
|
&semaptr->_sem_base[i].semval,
|
|
sizeof(arg->array[i]));
|
|
if (error != 0)
|
|
break;
|
|
}
|
|
semundo_clear(ix, -1);
|
|
wakeup(semaptr);
|
|
break;
|
|
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sys_semget(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_semget_args /* {
|
|
syscallarg(key_t) key;
|
|
syscallarg(int) nsems;
|
|
syscallarg(int) semflg;
|
|
} */ *uap = v;
|
|
int semid, eval;
|
|
int key = SCARG(uap, key);
|
|
int nsems = SCARG(uap, nsems);
|
|
int semflg = SCARG(uap, semflg);
|
|
struct ucred *cred = p->p_ucred;
|
|
|
|
SEM_PRINTF(("semget(0x%x, %d, 0%o)\n", key, nsems, semflg));
|
|
|
|
semlock(p);
|
|
|
|
if (key != IPC_PRIVATE) {
|
|
for (semid = 0; semid < seminfo.semmni; semid++) {
|
|
if ((sema[semid].sem_perm.mode & SEM_ALLOC) &&
|
|
sema[semid].sem_perm._key == key)
|
|
break;
|
|
}
|
|
if (semid < seminfo.semmni) {
|
|
SEM_PRINTF(("found public key\n"));
|
|
if ((eval = ipcperm(cred, &sema[semid].sem_perm,
|
|
semflg & 0700)))
|
|
return(eval);
|
|
if (nsems > 0 && sema[semid].sem_nsems < nsems) {
|
|
SEM_PRINTF(("too small\n"));
|
|
return(EINVAL);
|
|
}
|
|
if ((semflg & IPC_CREAT) && (semflg & IPC_EXCL)) {
|
|
SEM_PRINTF(("not exclusive\n"));
|
|
return(EEXIST);
|
|
}
|
|
goto found;
|
|
}
|
|
}
|
|
|
|
SEM_PRINTF(("need to allocate the semid_ds\n"));
|
|
if (key == IPC_PRIVATE || (semflg & IPC_CREAT)) {
|
|
if (nsems <= 0 || nsems > seminfo.semmsl) {
|
|
SEM_PRINTF(("nsems out of range (0<%d<=%d)\n", nsems,
|
|
seminfo.semmsl));
|
|
return(EINVAL);
|
|
}
|
|
if (nsems > seminfo.semmns - semtot) {
|
|
SEM_PRINTF(("not enough semaphores left (need %d, got %d)\n",
|
|
nsems, seminfo.semmns - semtot));
|
|
return(ENOSPC);
|
|
}
|
|
for (semid = 0; semid < seminfo.semmni; semid++) {
|
|
if ((sema[semid].sem_perm.mode & SEM_ALLOC) == 0)
|
|
break;
|
|
}
|
|
if (semid == seminfo.semmni) {
|
|
SEM_PRINTF(("no more semid_ds's available\n"));
|
|
return(ENOSPC);
|
|
}
|
|
SEM_PRINTF(("semid %d is available\n", semid));
|
|
sema[semid].sem_perm._key = key;
|
|
sema[semid].sem_perm.cuid = cred->cr_uid;
|
|
sema[semid].sem_perm.uid = cred->cr_uid;
|
|
sema[semid].sem_perm.cgid = cred->cr_gid;
|
|
sema[semid].sem_perm.gid = cred->cr_gid;
|
|
sema[semid].sem_perm.mode = (semflg & 0777) | SEM_ALLOC;
|
|
sema[semid].sem_perm._seq =
|
|
(sema[semid].sem_perm._seq + 1) & 0x7fff;
|
|
sema[semid].sem_nsems = nsems;
|
|
sema[semid].sem_otime = 0;
|
|
sema[semid].sem_ctime = time.tv_sec;
|
|
sema[semid]._sem_base = &sem[semtot];
|
|
semtot += nsems;
|
|
memset(sema[semid]._sem_base, 0,
|
|
sizeof(sema[semid]._sem_base[0])*nsems);
|
|
SEM_PRINTF(("sembase = %p, next = %p\n", sema[semid]._sem_base,
|
|
&sem[semtot]));
|
|
} else {
|
|
SEM_PRINTF(("didn't find it and wasn't asked to create it\n"));
|
|
return(ENOENT);
|
|
}
|
|
|
|
found:
|
|
*retval = IXSEQ_TO_IPCID(semid, sema[semid].sem_perm);
|
|
return(0);
|
|
}
|
|
|
|
int
|
|
sys_semop(p, v, retval)
|
|
struct proc *p;
|
|
void *v;
|
|
register_t *retval;
|
|
{
|
|
struct sys_semop_args /* {
|
|
syscallarg(int) semid;
|
|
syscallarg(struct sembuf *) sops;
|
|
syscallarg(size_t) nsops;
|
|
} */ *uap = v;
|
|
int semid = SCARG(uap, semid);
|
|
int nsops = SCARG(uap, nsops);
|
|
struct sembuf sops[MAX_SOPS];
|
|
struct semid_ds *semaptr;
|
|
struct sembuf *sopptr = NULL;
|
|
struct __sem *semptr = NULL;
|
|
struct sem_undo *suptr = NULL;
|
|
struct ucred *cred = p->p_ucred;
|
|
int i, j, eval;
|
|
int do_wakeup, do_undos;
|
|
|
|
SEM_PRINTF(("call to semop(%d, %p, %d)\n", semid, sops, nsops));
|
|
|
|
semlock(p);
|
|
|
|
semid = IPCID_TO_IX(semid); /* Convert back to zero origin */
|
|
|
|
if (semid < 0 || semid >= seminfo.semmsl)
|
|
return(EINVAL);
|
|
|
|
semaptr = &sema[semid];
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
|
|
semaptr->sem_perm._seq != IPCID_TO_SEQ(SCARG(uap, semid)))
|
|
return(EINVAL);
|
|
|
|
if ((eval = ipcperm(cred, &semaptr->sem_perm, IPC_W))) {
|
|
SEM_PRINTF(("eval = %d from ipaccess\n", eval));
|
|
return(eval);
|
|
}
|
|
|
|
if (nsops > MAX_SOPS) {
|
|
SEM_PRINTF(("too many sops (max=%d, nsops=%d)\n", MAX_SOPS, nsops));
|
|
return(E2BIG);
|
|
}
|
|
|
|
if ((eval = copyin(SCARG(uap, sops), sops, nsops * sizeof(sops[0])))
|
|
!= 0) {
|
|
SEM_PRINTF(("eval = %d from copyin(%p, %p, %d)\n", eval,
|
|
SCARG(uap, sops), &sops, nsops * sizeof(sops[0])));
|
|
return(eval);
|
|
}
|
|
|
|
/*
|
|
* Loop trying to satisfy the vector of requests.
|
|
* If we reach a point where we must wait, any requests already
|
|
* performed are rolled back and we go to sleep until some other
|
|
* process wakes us up. At this point, we start all over again.
|
|
*
|
|
* This ensures that from the perspective of other tasks, a set
|
|
* of requests is atomic (never partially satisfied).
|
|
*/
|
|
do_undos = 0;
|
|
|
|
for (;;) {
|
|
do_wakeup = 0;
|
|
|
|
for (i = 0; i < nsops; i++) {
|
|
sopptr = &sops[i];
|
|
|
|
if (sopptr->sem_num >= semaptr->sem_nsems)
|
|
return(EFBIG);
|
|
|
|
semptr = &semaptr->_sem_base[sopptr->sem_num];
|
|
|
|
SEM_PRINTF(("semop: semaptr=%x, sem_base=%x, semptr=%x, sem[%d]=%d : op=%d, flag=%s\n",
|
|
semaptr, semaptr->_sem_base, semptr,
|
|
sopptr->sem_num, semptr->semval, sopptr->sem_op,
|
|
(sopptr->sem_flg & IPC_NOWAIT) ? "nowait" : "wait"));
|
|
|
|
if (sopptr->sem_op < 0) {
|
|
if ((int)(semptr->semval +
|
|
sopptr->sem_op) < 0) {
|
|
SEM_PRINTF(("semop: can't do it now\n"));
|
|
break;
|
|
} else {
|
|
semptr->semval += sopptr->sem_op;
|
|
if (semptr->semval == 0 &&
|
|
semptr->semzcnt > 0)
|
|
do_wakeup = 1;
|
|
}
|
|
if (sopptr->sem_flg & SEM_UNDO)
|
|
do_undos = 1;
|
|
} else if (sopptr->sem_op == 0) {
|
|
if (semptr->semval > 0) {
|
|
SEM_PRINTF(("semop: not zero now\n"));
|
|
break;
|
|
}
|
|
} else {
|
|
if (semptr->semncnt > 0)
|
|
do_wakeup = 1;
|
|
semptr->semval += sopptr->sem_op;
|
|
if (sopptr->sem_flg & SEM_UNDO)
|
|
do_undos = 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Did we get through the entire vector?
|
|
*/
|
|
if (i >= nsops)
|
|
goto done;
|
|
|
|
/*
|
|
* No ... rollback anything that we've already done
|
|
*/
|
|
SEM_PRINTF(("semop: rollback 0 through %d\n", i-1));
|
|
for (j = 0; j < i; j++)
|
|
semaptr->_sem_base[sops[j].sem_num].semval -=
|
|
sops[j].sem_op;
|
|
|
|
/*
|
|
* If the request that we couldn't satisfy has the
|
|
* NOWAIT flag set then return with EAGAIN.
|
|
*/
|
|
if (sopptr->sem_flg & IPC_NOWAIT)
|
|
return(EAGAIN);
|
|
|
|
if (sopptr->sem_op == 0)
|
|
semptr->semzcnt++;
|
|
else
|
|
semptr->semncnt++;
|
|
|
|
SEM_PRINTF(("semop: good night!\n"));
|
|
eval = tsleep((caddr_t)semaptr, (PZERO - 4) | PCATCH,
|
|
"semwait", 0);
|
|
SEM_PRINTF(("semop: good morning (eval=%d)!\n", eval));
|
|
|
|
suptr = NULL; /* sem_undo may have been reallocated */
|
|
|
|
if (eval != 0)
|
|
return(EINTR);
|
|
SEM_PRINTF(("semop: good morning!\n"));
|
|
|
|
/*
|
|
* Make sure that the semaphore still exists
|
|
*/
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0 ||
|
|
semaptr->sem_perm._seq != IPCID_TO_SEQ(SCARG(uap, semid))) {
|
|
/* The man page says to return EIDRM. */
|
|
/* Unfortunately, BSD doesn't define that code! */
|
|
#ifdef EIDRM
|
|
return(EIDRM);
|
|
#else
|
|
return(EINVAL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* The semaphore is still alive. Readjust the count of
|
|
* waiting processes.
|
|
*/
|
|
if (sopptr->sem_op == 0)
|
|
semptr->semzcnt--;
|
|
else
|
|
semptr->semncnt--;
|
|
}
|
|
|
|
done:
|
|
/*
|
|
* Process any SEM_UNDO requests.
|
|
*/
|
|
if (do_undos) {
|
|
for (i = 0; i < nsops; i++) {
|
|
/*
|
|
* We only need to deal with SEM_UNDO's for non-zero
|
|
* op's.
|
|
*/
|
|
int adjval;
|
|
|
|
if ((sops[i].sem_flg & SEM_UNDO) == 0)
|
|
continue;
|
|
adjval = sops[i].sem_op;
|
|
if (adjval == 0)
|
|
continue;
|
|
eval = semundo_adjust(p, &suptr, semid,
|
|
sops[i].sem_num, -adjval);
|
|
if (eval == 0)
|
|
continue;
|
|
|
|
/*
|
|
* Oh-Oh! We ran out of either sem_undo's or undo's.
|
|
* Rollback the adjustments to this point and then
|
|
* rollback the semaphore ups and down so we can return
|
|
* with an error with all structures restored. We
|
|
* rollback the undo's in the exact reverse order that
|
|
* we applied them. This guarantees that we won't run
|
|
* out of space as we roll things back out.
|
|
*/
|
|
for (j = i - 1; j >= 0; j--) {
|
|
if ((sops[j].sem_flg & SEM_UNDO) == 0)
|
|
continue;
|
|
adjval = sops[j].sem_op;
|
|
if (adjval == 0)
|
|
continue;
|
|
if (semundo_adjust(p, &suptr, semid,
|
|
sops[j].sem_num, adjval) != 0)
|
|
panic("semop - can't undo undos");
|
|
}
|
|
|
|
for (j = 0; j < nsops; j++)
|
|
semaptr->_sem_base[sops[j].sem_num].semval -=
|
|
sops[j].sem_op;
|
|
|
|
SEM_PRINTF(("eval = %d from semundo_adjust\n", eval));
|
|
return(eval);
|
|
} /* loop through the sops */
|
|
} /* if (do_undos) */
|
|
|
|
/* We're definitely done - set the sempid's */
|
|
for (i = 0; i < nsops; i++) {
|
|
sopptr = &sops[i];
|
|
semptr = &semaptr->_sem_base[sopptr->sem_num];
|
|
semptr->sempid = p->p_pid;
|
|
}
|
|
|
|
/* Do a wakeup if any semaphore was up'd. */
|
|
if (do_wakeup) {
|
|
SEM_PRINTF(("semop: doing wakeup\n"));
|
|
#ifdef SEM_WAKEUP
|
|
sem_wakeup((caddr_t)semaptr);
|
|
#else
|
|
wakeup((caddr_t)semaptr);
|
|
#endif
|
|
SEM_PRINTF(("semop: back from wakeup\n"));
|
|
}
|
|
SEM_PRINTF(("semop: done\n"));
|
|
*retval = 0;
|
|
return(0);
|
|
}
|
|
|
|
/*
|
|
* Go through the undo structures for this process and apply the adjustments to
|
|
* semaphores.
|
|
*/
|
|
void
|
|
semexit(p)
|
|
struct proc *p;
|
|
{
|
|
struct sem_undo *suptr;
|
|
struct sem_undo **supptr;
|
|
|
|
/*
|
|
* Go through the chain of undo vectors looking for one associated with
|
|
* this process.
|
|
*/
|
|
|
|
for (supptr = &semu_list; (suptr = *supptr) != NULL;
|
|
supptr = &suptr->un_next) {
|
|
if (suptr->un_proc == p)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* There are a few possibilities to consider here ...
|
|
*
|
|
* 1) The semaphore facility isn't currently locked. In this case,
|
|
* this call should proceed normally.
|
|
* 2) The semaphore facility is locked by this process (i.e. the one
|
|
* that is exiting). In this case, this call should proceed as
|
|
* usual and the facility should be unlocked at the end of this
|
|
* routine (since the locker is exiting).
|
|
* 3) The semaphore facility is locked by some other process and this
|
|
* process doesn't have an undo structure allocated for it. In this
|
|
* case, this call should proceed normally (i.e. not accomplish
|
|
* anything and, most importantly, not block since that is
|
|
* unnecessary and could result in a LOT of processes blocking in
|
|
* here if the facility is locked for a long time).
|
|
* 4) The semaphore facility is locked by some other process and this
|
|
* process has an undo structure allocated for it. In this case,
|
|
* this call should block until the facility has been unlocked since
|
|
* the holder of the lock may be examining this process's proc entry
|
|
* (the ipcs utility does this when printing out the information
|
|
* from the allocated sem undo elements).
|
|
*
|
|
* This leads to the conclusion that we should not block unless we
|
|
* discover that the someone else has the semaphore facility locked and
|
|
* this process has an undo structure. Let's do that...
|
|
*
|
|
* Note that we do this in a separate pass from the one that processes
|
|
* any existing undo structure since we don't want to risk blocking at
|
|
* that time (it would make the actual unlinking of the element from
|
|
* the chain of allocated undo structures rather messy).
|
|
*/
|
|
|
|
/*
|
|
* Does someone else hold the semaphore facility's lock?
|
|
*/
|
|
|
|
if (semlock_holder != NULL && semlock_holder != p) {
|
|
/*
|
|
* Yes (i.e. we are in case 3 or 4).
|
|
*
|
|
* If we didn't find an undo vector associated with this
|
|
* process than we can just return (i.e. we are in case 3).
|
|
*
|
|
* Note that we know that someone else is holding the lock so
|
|
* we don't even have to see if we're holding it...
|
|
*/
|
|
|
|
if (suptr == NULL)
|
|
return;
|
|
|
|
/*
|
|
* We are in case 4.
|
|
*
|
|
* Go to sleep as long as someone else is locking the semaphore
|
|
* facility (note that we won't get here if we are holding the
|
|
* lock so we don't need to check for that possibility).
|
|
*/
|
|
|
|
while (semlock_holder != NULL)
|
|
(void) tsleep(&semlock_holder, (PZERO - 4),
|
|
"semlock", 0);
|
|
|
|
/*
|
|
* Nobody is holding the facility (i.e. we are now in case 1).
|
|
* We can proceed safely according to the argument outlined
|
|
* above.
|
|
*
|
|
* We look up the undo vector again, in case the list changed
|
|
* while we were asleep, and the parent is now different.
|
|
*/
|
|
|
|
for (supptr = &semu_list; (suptr = *supptr) != NULL;
|
|
supptr = &suptr->un_next) {
|
|
if (suptr->un_proc == p)
|
|
break;
|
|
}
|
|
|
|
if (suptr == NULL)
|
|
panic("semexit: undo vector disappeared");
|
|
} else {
|
|
/*
|
|
* No (i.e. we are in case 1 or 2).
|
|
*
|
|
* If there is no undo vector, skip to the end and unlock the
|
|
* semaphore facility if necessary.
|
|
*/
|
|
|
|
if (suptr == NULL)
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* We are now in case 1 or 2, and we have an undo vector for this
|
|
* process.
|
|
*/
|
|
|
|
SEM_PRINTF(("proc @%p has undo structure with %d entries\n", p,
|
|
suptr->un_cnt));
|
|
|
|
/*
|
|
* If there are any active undo elements then process them.
|
|
*/
|
|
if (suptr->un_cnt > 0) {
|
|
int ix;
|
|
|
|
for (ix = 0; ix < suptr->un_cnt; ix++) {
|
|
int semid = suptr->un_ent[ix].un_id;
|
|
int semnum = suptr->un_ent[ix].un_num;
|
|
int adjval = suptr->un_ent[ix].un_adjval;
|
|
struct semid_ds *semaptr;
|
|
|
|
semaptr = &sema[semid];
|
|
if ((semaptr->sem_perm.mode & SEM_ALLOC) == 0)
|
|
panic("semexit - semid not allocated");
|
|
if (semnum >= semaptr->sem_nsems)
|
|
panic("semexit - semnum out of range");
|
|
|
|
SEM_PRINTF(("semexit: %p id=%d num=%d(adj=%d) ; sem=%d\n",
|
|
suptr->un_proc, suptr->un_ent[ix].un_id,
|
|
suptr->un_ent[ix].un_num,
|
|
suptr->un_ent[ix].un_adjval,
|
|
semaptr->_sem_base[semnum].semval));
|
|
|
|
if (adjval < 0 &&
|
|
semaptr->_sem_base[semnum].semval < -adjval)
|
|
semaptr->_sem_base[semnum].semval = 0;
|
|
else
|
|
semaptr->_sem_base[semnum].semval += adjval;
|
|
|
|
#ifdef SEM_WAKEUP
|
|
sem_wakeup((caddr_t)semaptr);
|
|
#else
|
|
wakeup((caddr_t)semaptr);
|
|
#endif
|
|
SEM_PRINTF(("semexit: back from wakeup\n"));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Deallocate the undo vector.
|
|
*/
|
|
SEM_PRINTF(("removing vector\n"));
|
|
suptr->un_proc = NULL;
|
|
*supptr = suptr->un_next;
|
|
|
|
unlock:
|
|
/*
|
|
* If the exiting process is holding the global semaphore facility
|
|
* lock (i.e. we are in case 2) then release it.
|
|
*/
|
|
if (semlock_holder == p) {
|
|
semlock_holder = NULL;
|
|
wakeup((caddr_t)&semlock_holder);
|
|
}
|
|
}
|