NetBSD/sys/dev/pci/twe.c
2003-09-21 19:27:27 +00:00

1508 lines
38 KiB
C

/* $NetBSD: twe.c,v 1.43 2003/09/21 19:27:27 thorpej Exp $ */
/*-
* Copyright (c) 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Andrew Doran; and by Jason R. Thorpe of Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 2000 Michael Smith
* Copyright (c) 2000 BSDi
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from FreeBSD: twe.c,v 1.1 2000/05/24 23:35:23 msmith Exp
*/
/*
* Driver for the 3ware Escalade family of RAID controllers.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: twe.c,v 1.43 2003/09/21 19:27:27 thorpej Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <sys/queue.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/endian.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <sys/disk.h>
#include <uvm/uvm_extern.h>
#include <machine/bswap.h>
#include <machine/bus.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <dev/pci/twereg.h>
#include <dev/pci/twevar.h>
#include <dev/pci/tweio.h>
#define PCI_CBIO 0x10
static void twe_aen_handler(struct twe_ccb *, int);
static void twe_attach(struct device *, struct device *, void *);
static int twe_init_connection(struct twe_softc *);
static int twe_intr(void *);
static int twe_match(struct device *, struct cfdata *, void *);
static int twe_param_set(struct twe_softc *, int, int, size_t, void *);
static void twe_poll(struct twe_softc *);
static int twe_print(void *, const char *);
static int twe_reset(struct twe_softc *);
static int twe_submatch(struct device *, struct cfdata *, void *);
static int twe_status_check(struct twe_softc *, u_int);
static int twe_status_wait(struct twe_softc *, u_int, int);
static void twe_describe_controller(struct twe_softc *);
static inline u_int32_t twe_inl(struct twe_softc *, int);
static inline void twe_outl(struct twe_softc *, int, u_int32_t);
dev_type_open(tweopen);
dev_type_close(tweclose);
dev_type_ioctl(tweioctl);
const struct cdevsw twe_cdevsw = {
tweopen, tweclose, noread, nowrite, tweioctl,
nostop, notty, nopoll, nommap,
};
extern struct cfdriver twe_cd;
CFATTACH_DECL(twe, sizeof(struct twe_softc),
twe_match, twe_attach, NULL, NULL);
/*
* Tables to convert numeric codes to strings.
*/
const struct twe_code_table twe_table_status[] = {
{ 0x00, "successful completion" },
/* info */
{ 0x42, "command in progress" },
{ 0x6c, "retrying interface CRC error from UDMA command" },
/* warning */
{ 0x81, "redundant/inconsequential request ignored" },
{ 0x8e, "failed to write zeroes to LBA 0" },
{ 0x8f, "failed to profile TwinStor zones" },
/* fatal */
{ 0xc1, "aborted due to system command or reconfiguration" },
{ 0xc4, "aborted" },
{ 0xc5, "access error" },
{ 0xc6, "access violation" },
{ 0xc7, "device failure" }, /* high byte may be port # */
{ 0xc8, "controller error" },
{ 0xc9, "timed out" },
{ 0xcb, "invalid unit number" },
{ 0xcf, "unit not available" },
{ 0xd2, "undefined opcode" },
{ 0xdb, "request incompatible with unit" },
{ 0xdc, "invalid request" },
{ 0xff, "firmware error, reset requested" },
{ 0, NULL }
};
const struct twe_code_table twe_table_unitstate[] = {
{ TWE_PARAM_UNITSTATUS_Normal, "Normal" },
{ TWE_PARAM_UNITSTATUS_Initialising, "Initializing" },
{ TWE_PARAM_UNITSTATUS_Degraded, "Degraded" },
{ TWE_PARAM_UNITSTATUS_Rebuilding, "Rebuilding" },
{ TWE_PARAM_UNITSTATUS_Verifying, "Verifying" },
{ TWE_PARAM_UNITSTATUS_Corrupt, "Corrupt" },
{ TWE_PARAM_UNITSTATUS_Missing, "Missing" },
{ 0, NULL }
};
const struct twe_code_table twe_table_unittype[] = {
/* array descriptor configuration */
{ TWE_AD_CONFIG_RAID0, "RAID0" },
{ TWE_AD_CONFIG_RAID1, "RAID1" },
{ TWE_AD_CONFIG_TwinStor, "TwinStor" },
{ TWE_AD_CONFIG_RAID5, "RAID5" },
{ TWE_AD_CONFIG_RAID10, "RAID10" },
{ 0, NULL }
};
const struct twe_code_table twe_table_stripedepth[] = {
{ TWE_AD_STRIPE_4k, "4K" },
{ TWE_AD_STRIPE_8k, "8K" },
{ TWE_AD_STRIPE_16k, "16K" },
{ TWE_AD_STRIPE_32k, "32K" },
{ TWE_AD_STRIPE_64k, "64K" },
{ 0, NULL }
};
const char *
twe_describe_code(const struct twe_code_table *table, uint32_t code)
{
for (; table->string != NULL; table++) {
if (table->code == code)
return (table->string);
}
return (NULL);
}
struct {
const u_int aen; /* High byte indicates type of message */
const char *desc;
} static const twe_aen_names[] = {
{ 0x0000, "queue empty" },
{ 0x0001, "soft reset" },
{ 0x0102, "degraded mirror" },
{ 0x0003, "controller error" },
{ 0x0104, "rebuild fail" },
{ 0x0105, "rebuild done" },
{ 0x0106, "incompatible unit" },
{ 0x0107, "initialisation done" },
{ 0x0108, "unclean shutdown detected" },
{ 0x0109, "drive timeout" },
{ 0x010a, "drive error" },
{ 0x010b, "rebuild started" },
{ 0x010c, "init started" },
{ 0x010d, "logical unit deleted" },
{ 0x020f, "SMART threshold exceeded" },
{ 0x0015, "table undefined" }, /* XXX: Not in FreeBSD's table */
{ 0x0221, "ATA UDMA downgrade" },
{ 0x0222, "ATA UDMA upgrade" },
{ 0x0222, "ATA UDMA upgrade" },
{ 0x0223, "Sector repair occurred" },
{ 0x0024, "SBUF integrity check failure" },
{ 0x0225, "lost cached write" },
{ 0x0226, "drive ECC error detected" },
{ 0x0227, "DCB checksum error" },
{ 0x0228, "DCB unsupported version" },
{ 0x0129, "verify started" },
{ 0x012a, "verify failed" },
{ 0x012b, "verify complete" },
{ 0x022c, "overwrote bad sector during rebuild" },
{ 0x022d, "encountered bad sector during rebuild" },
{ 0x00ff, "aen queue full" },
};
/*
* The high byte of the message above determines the format,
* currently we know about format 0 (no unit/port specific)
* format 1 (unit specific message), and format 2 (port specific message).
*/
static const char * const aenfmt[] = {
"", /* No message */
"unit %d: ", /* Unit message */
"port %d: " /* Port message */
};
static inline u_int32_t
twe_inl(struct twe_softc *sc, int off)
{
bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE | BUS_SPACE_BARRIER_READ);
return (bus_space_read_4(sc->sc_iot, sc->sc_ioh, off));
}
static inline void
twe_outl(struct twe_softc *sc, int off, u_int32_t val)
{
bus_space_write_4(sc->sc_iot, sc->sc_ioh, off, val);
bus_space_barrier(sc->sc_iot, sc->sc_ioh, off, 4,
BUS_SPACE_BARRIER_WRITE);
}
/*
* Match a supported board.
*/
static int
twe_match(struct device *parent, struct cfdata *cfdata, void *aux)
{
struct pci_attach_args *pa;
pa = aux;
return (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_3WARE &&
(PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_3WARE_ESCALADE_ASIC));
}
/*
* Attach a supported board.
*
* XXX This doesn't fail gracefully.
*/
static void
twe_attach(struct device *parent, struct device *self, void *aux)
{
struct pci_attach_args *pa;
struct twe_softc *sc;
pci_chipset_tag_t pc;
pci_intr_handle_t ih;
pcireg_t csr;
const char *intrstr;
int size, i, rv, rseg;
size_t max_segs, max_xfer;
struct twe_param *dtp, *atp;
struct twe_array_descriptor *ad;
struct twe_drive *td;
bus_dma_segment_t seg;
struct twe_cmd *tc;
struct twe_attach_args twea;
struct twe_ccb *ccb;
uint16_t dsize;
sc = (struct twe_softc *)self;
pa = aux;
pc = pa->pa_pc;
sc->sc_dmat = pa->pa_dmat;
SIMPLEQ_INIT(&sc->sc_ccb_queue);
SLIST_INIT(&sc->sc_ccb_freelist);
aprint_naive(": RAID controller\n");
aprint_normal(": 3ware Escalade\n");
ccb = malloc(sizeof(*ccb) * TWE_MAX_QUEUECNT, M_DEVBUF, M_NOWAIT);
if (ccb == NULL) {
aprint_error("%s: unable to allocate memory for ccbs\n",
sc->sc_dv.dv_xname);
return;
}
if (pci_mapreg_map(pa, PCI_CBIO, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_iot, &sc->sc_ioh, NULL, NULL)) {
aprint_error("%s: can't map i/o space\n", sc->sc_dv.dv_xname);
return;
}
/* Enable the device. */
csr = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
pci_conf_write(pa->pa_pc, pa->pa_tag, PCI_COMMAND_STATUS_REG,
csr | PCI_COMMAND_MASTER_ENABLE);
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error("%s: can't map interrupt\n", sc->sc_dv.dv_xname);
return;
}
intrstr = pci_intr_string(pc, ih);
sc->sc_ih = pci_intr_establish(pc, ih, IPL_BIO, twe_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: can't establish interrupt%s%s\n",
sc->sc_dv.dv_xname,
(intrstr) ? " at " : "",
(intrstr) ? intrstr : "");
return;
}
if (intrstr != NULL)
aprint_normal("%s: interrupting at %s\n",
sc->sc_dv.dv_xname, intrstr);
/*
* Allocate and initialise the command blocks and CCBs.
*/
size = sizeof(struct twe_cmd) * TWE_MAX_QUEUECNT;
if ((rv = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
&rseg, BUS_DMA_NOWAIT)) != 0) {
aprint_error("%s: unable to allocate commands, rv = %d\n",
sc->sc_dv.dv_xname, rv);
return;
}
if ((rv = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
(caddr_t *)&sc->sc_cmds,
BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
aprint_error("%s: unable to map commands, rv = %d\n",
sc->sc_dv.dv_xname, rv);
return;
}
if ((rv = bus_dmamap_create(sc->sc_dmat, size, size, 1, 0,
BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
aprint_error("%s: unable to create command DMA map, rv = %d\n",
sc->sc_dv.dv_xname, rv);
return;
}
if ((rv = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_cmds,
size, NULL, BUS_DMA_NOWAIT)) != 0) {
aprint_error("%s: unable to load command DMA map, rv = %d\n",
sc->sc_dv.dv_xname, rv);
return;
}
sc->sc_cmds_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
memset(sc->sc_cmds, 0, size);
sc->sc_ccbs = ccb;
tc = (struct twe_cmd *)sc->sc_cmds;
max_segs = twe_get_maxsegs();
max_xfer = twe_get_maxxfer(max_segs);
for (i = 0; i < TWE_MAX_QUEUECNT; i++, tc++, ccb++) {
ccb->ccb_cmd = tc;
ccb->ccb_cmdid = i;
ccb->ccb_flags = 0;
rv = bus_dmamap_create(sc->sc_dmat, max_xfer,
max_segs, PAGE_SIZE, 0,
BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&ccb->ccb_dmamap_xfer);
if (rv != 0) {
aprint_error("%s: can't create dmamap, rv = %d\n",
sc->sc_dv.dv_xname, rv);
return;
}
/* Save one CCB for parameter retrieval. */
if (i != 0)
SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb,
ccb_chain.slist);
}
/* Wait for the controller to become ready. */
if (twe_status_wait(sc, TWE_STS_MICROCONTROLLER_READY, 6)) {
aprint_error("%s: microcontroller not ready\n",
sc->sc_dv.dv_xname);
return;
}
twe_outl(sc, TWE_REG_CTL, TWE_CTL_DISABLE_INTRS);
/* Reset the controller. */
if (twe_reset(sc)) {
aprint_error("%s: reset failed\n", sc->sc_dv.dv_xname);
return;
}
/* Find attached units. */
rv = twe_param_get(sc, TWE_PARAM_UNITSUMMARY,
TWE_PARAM_UNITSUMMARY_Status, TWE_MAX_UNITS, NULL, &dtp);
if (rv != 0) {
aprint_error("%s: can't detect attached units (%d)\n",
sc->sc_dv.dv_xname, rv);
return;
}
/* For each detected unit, collect size and store in an array. */
for (i = 0, sc->sc_nunits = 0; i < TWE_MAX_UNITS; i++) {
td = &sc->sc_units[i];
/* Unit present? */
if ((dtp->tp_data[i] & TWE_PARAM_UNITSTATUS_Online) == 0) {
td->td_size = 0;
td->td_type = 0;
td->td_stripe = 0;
continue;
}
rv = twe_param_get_2(sc, TWE_PARAM_UNITINFO + i,
TWE_PARAM_UNITINFO_DescriptorSize, &dsize);
if (rv != 0) {
aprint_error("%s: error %d fetching descriptor size "
"for unit %d\n", sc->sc_dv.dv_xname, rv, i);
td->td_size = 0;
td->td_type = 0;
td->td_stripe = 0;
continue;
}
rv = twe_param_get(sc, TWE_PARAM_UNITINFO + i,
TWE_PARAM_UNITINFO_Descriptor, dsize - 3, NULL, &atp);
if (rv != 0) {
aprint_error("%s: error %d fetching array descriptor "
"for unit %d\n", sc->sc_dv.dv_xname, rv, i);
td->td_size = 0;
td->td_type = 0;
td->td_stripe = 0;
continue;
}
ad = (struct twe_array_descriptor *)atp->tp_data;
td->td_type = ad->configuration;
td->td_stripe = ad->stripe_size;
free(atp, M_DEVBUF);
rv = twe_param_get_4(sc, TWE_PARAM_UNITINFO + i,
TWE_PARAM_UNITINFO_Capacity, &td->td_size);
if (rv != 0) {
aprint_error(
"%s: error %d fetching capacity for unit %d\n",
sc->sc_dv.dv_xname, rv, i);
td->td_size = 0;
td->td_type = 0;
td->td_stripe = 0;
continue;
}
sc->sc_nunits++;
}
free(dtp, M_DEVBUF);
/* Initialise connection with controller and enable interrupts. */
twe_init_connection(sc);
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR |
TWE_CTL_UNMASK_RESP_INTR |
TWE_CTL_ENABLE_INTRS);
twe_describe_controller(sc);
/* Attach sub-devices. */
for (i = 0; i < TWE_MAX_UNITS; i++) {
td = &sc->sc_units[i];
if (td->td_size == 0)
continue;
twea.twea_unit = i;
td->td_dev = config_found_sm(&sc->sc_dv, &twea, twe_print,
twe_submatch);
}
}
/*
* Reset the controller. Currently only useful at attach time; must be
* called with interrupts blocked.
*/
static int
twe_reset(struct twe_softc *sc)
{
uint16_t aen;
u_int status;
volatile u_int32_t junk;
int got, rv;
/* Issue a soft reset. */
twe_outl(sc, TWE_REG_CTL, TWE_CTL_ISSUE_SOFT_RESET |
TWE_CTL_CLEAR_HOST_INTR |
TWE_CTL_CLEAR_ATTN_INTR |
TWE_CTL_MASK_CMD_INTR |
TWE_CTL_MASK_RESP_INTR |
TWE_CTL_CLEAR_ERROR_STS |
TWE_CTL_DISABLE_INTRS);
if (twe_status_wait(sc, TWE_STS_ATTN_INTR, 15)) {
printf("%s: no attention interrupt\n",
sc->sc_dv.dv_xname);
return (-1);
}
/* Pull AENs out of the controller; look for a soft reset AEN. */
for (got = 0;;) {
rv = twe_param_get_2(sc, TWE_PARAM_AEN, TWE_PARAM_AEN_UnitCode,
&aen);
if (rv != 0)
printf("%s: error %d while draining response queue\n",
sc->sc_dv.dv_xname, rv);
if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY)
break;
if (TWE_AEN_CODE(aen) == TWE_AEN_SOFT_RESET)
got = 1;
}
if (!got) {
printf("%s: reset not reported\n", sc->sc_dv.dv_xname);
return (-1);
}
/* Check controller status. */
status = twe_inl(sc, TWE_REG_STS);
if (twe_status_check(sc, status)) {
printf("%s: controller errors detected\n",
sc->sc_dv.dv_xname);
return (-1);
}
/* Drain the response queue. */
for (;;) {
status = twe_inl(sc, TWE_REG_STS);
if (twe_status_check(sc, status) != 0) {
printf("%s: can't drain response queue\n",
sc->sc_dv.dv_xname);
return (-1);
}
if ((status & TWE_STS_RESP_QUEUE_EMPTY) != 0)
break;
junk = twe_inl(sc, TWE_REG_RESP_QUEUE);
}
return (0);
}
/*
* Print autoconfiguration message for a sub-device.
*/
static int
twe_print(void *aux, const char *pnp)
{
struct twe_attach_args *twea;
twea = aux;
if (pnp != NULL)
aprint_normal("block device at %s", pnp);
aprint_normal(" unit %d", twea->twea_unit);
return (UNCONF);
}
/*
* Match a sub-device.
*/
static int
twe_submatch(struct device *parent, struct cfdata *cf, void *aux)
{
struct twe_attach_args *twea;
twea = aux;
if (cf->tweacf_unit != TWECF_UNIT_DEFAULT &&
cf->tweacf_unit != twea->twea_unit)
return (0);
return (config_match(parent, cf, aux));
}
/*
* Interrupt service routine.
*/
static int
twe_intr(void *arg)
{
struct twe_softc *sc;
u_int status;
int caught, rv;
sc = arg;
caught = 0;
status = twe_inl(sc, TWE_REG_STS);
twe_status_check(sc, status);
/* Host interrupts - purpose unknown. */
if ((status & TWE_STS_HOST_INTR) != 0) {
#ifdef DEBUG
printf("%s: host interrupt\n", sc->sc_dv.dv_xname);
#endif
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_HOST_INTR);
caught = 1;
}
/*
* Attention interrupts, signalled when a controller or child device
* state change has occurred.
*/
if ((status & TWE_STS_ATTN_INTR) != 0) {
if ((sc->sc_flags & TWEF_AEN) == 0) {
rv = twe_param_get(sc, TWE_PARAM_AEN,
TWE_PARAM_AEN_UnitCode, 2, twe_aen_handler,
NULL);
if (rv != 0) {
printf("%s: unable to retrieve AEN (%d)\n",
sc->sc_dv.dv_xname, rv);
twe_outl(sc, TWE_REG_CTL,
TWE_CTL_CLEAR_ATTN_INTR);
} else
sc->sc_flags |= TWEF_AEN;
}
caught = 1;
}
/*
* Command interrupts, signalled when the controller can accept more
* commands. We don't use this; instead, we try to submit commands
* when we receive them, and when other commands have completed.
* Mask it so we don't get another one.
*/
if ((status & TWE_STS_CMD_INTR) != 0) {
#ifdef DEBUG
printf("%s: command interrupt\n", sc->sc_dv.dv_xname);
#endif
twe_outl(sc, TWE_REG_CTL, TWE_CTL_MASK_CMD_INTR);
caught = 1;
}
if ((status & TWE_STS_RESP_INTR) != 0) {
twe_poll(sc);
caught = 1;
}
return (caught);
}
/*
* Handle an AEN returned by the controller.
*/
static void
twe_aen_handler(struct twe_ccb *ccb, int error)
{
struct twe_softc *sc;
struct twe_param *tp;
const char *str;
u_int aen;
int i, hu, rv;
sc = (struct twe_softc *)ccb->ccb_tx.tx_dv;
tp = ccb->ccb_tx.tx_context;
twe_ccb_unmap(sc, ccb);
if (error) {
printf("%s: error retrieving AEN\n", sc->sc_dv.dv_xname);
aen = TWE_AEN_QUEUE_EMPTY;
} else
aen = le16toh(*(u_int16_t *)tp->tp_data);
free(tp, M_DEVBUF);
twe_ccb_free(sc, ccb);
if (TWE_AEN_CODE(aen) == TWE_AEN_QUEUE_EMPTY) {
twe_outl(sc, TWE_REG_CTL, TWE_CTL_CLEAR_ATTN_INTR);
sc->sc_flags &= ~TWEF_AEN;
return;
}
str = "<unknown>";
i = 0;
hu = 0;
while (i < sizeof(twe_aen_names) / sizeof(twe_aen_names[0])) {
if (TWE_AEN_CODE(twe_aen_names[i].aen) == TWE_AEN_CODE(aen)) {
str = twe_aen_names[i].desc;
hu = TWE_AEN_UNIT(twe_aen_names[i].aen);
break;
}
i++;
}
printf("%s: ", sc->sc_dv.dv_xname);
printf(aenfmt[hu], TWE_AEN_UNIT(aen));
printf("AEN 0x%04x (%s) received\n", TWE_AEN_CODE(aen), str);
/*
* Chain another retrieval in case interrupts have been
* coalesced.
*/
rv = twe_param_get(sc, TWE_PARAM_AEN, TWE_PARAM_AEN_UnitCode, 2,
twe_aen_handler, NULL);
if (rv != 0)
printf("%s: unable to retrieve AEN (%d)\n",
sc->sc_dv.dv_xname, rv);
}
/*
* These are short-hand functions that execute TWE_OP_GET_PARAM to
* fetch 1, 2, and 4 byte parameter values, respectively.
*/
int
twe_param_get_1(struct twe_softc *sc, int table_id, int param_id,
uint8_t *valp)
{
struct twe_param *tp;
int rv;
rv = twe_param_get(sc, table_id, param_id, 1, NULL, &tp);
if (rv != 0)
return (rv);
*valp = *(uint8_t *)tp->tp_data;
free(tp, M_DEVBUF);
return (0);
}
int
twe_param_get_2(struct twe_softc *sc, int table_id, int param_id,
uint16_t *valp)
{
struct twe_param *tp;
int rv;
rv = twe_param_get(sc, table_id, param_id, 2, NULL, &tp);
if (rv != 0)
return (rv);
*valp = le16toh(*(uint16_t *)tp->tp_data);
free(tp, M_DEVBUF);
return (0);
}
int
twe_param_get_4(struct twe_softc *sc, int table_id, int param_id,
uint32_t *valp)
{
struct twe_param *tp;
int rv;
rv = twe_param_get(sc, table_id, param_id, 4, NULL, &tp);
if (rv != 0)
return (rv);
*valp = le32toh(*(uint32_t *)tp->tp_data);
free(tp, M_DEVBUF);
return (0);
}
/*
* Execute a TWE_OP_GET_PARAM command. If a callback function is provided,
* it will be called with generated context when the command has completed.
* If no callback is provided, the command will be executed synchronously
* and a pointer to a buffer containing the data returned.
*
* The caller or callback is responsible for freeing the buffer.
*/
int
twe_param_get(struct twe_softc *sc, int table_id, int param_id, size_t size,
void (*func)(struct twe_ccb *, int), struct twe_param **pbuf)
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
struct twe_param *tp;
int rv, s;
tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
if (tp == NULL)
return ENOMEM;
rv = twe_ccb_alloc(sc, &ccb,
TWE_CCB_PARAM | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
if (rv != 0)
goto done;
ccb->ccb_data = tp;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
ccb->ccb_tx.tx_handler = func;
ccb->ccb_tx.tx_context = tp;
ccb->ccb_tx.tx_dv = &sc->sc_dv;
tc = ccb->ccb_cmd;
tc->tc_size = 2;
tc->tc_opcode = TWE_OP_GET_PARAM | (tc->tc_size << 5);
tc->tc_unit = 0;
tc->tc_count = htole16(1);
/* Fill in the outbound parameter data. */
tp->tp_table_id = htole16(table_id);
tp->tp_param_id = param_id;
tp->tp_param_size = size;
/* Map the transfer. */
if ((rv = twe_ccb_map(sc, ccb)) != 0) {
twe_ccb_free(sc, ccb);
goto done;
}
/* Submit the command and either wait or let the callback handle it. */
if (func == NULL) {
s = splbio();
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_unmap(sc, ccb);
twe_ccb_free(sc, ccb);
splx(s);
} else {
#ifdef DEBUG
if (pbuf != NULL)
panic("both func and pbuf defined");
#endif
twe_ccb_enqueue(sc, ccb);
return 0;
}
done:
if (pbuf == NULL || rv != 0)
free(tp, M_DEVBUF);
else if (pbuf != NULL && rv == 0)
*pbuf = tp;
return rv;
}
/*
* Execute a TWE_OP_SET_PARAM command.
*/
static int
twe_param_set(struct twe_softc *sc, int table_id, int param_id, size_t size,
void *buf)
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
struct twe_param *tp;
int rv, s;
tp = malloc(TWE_SECTOR_SIZE, M_DEVBUF, M_NOWAIT);
if (tp == NULL)
return ENOMEM;
rv = twe_ccb_alloc(sc, &ccb,
TWE_CCB_PARAM | TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
if (rv != 0)
goto done;
ccb->ccb_data = tp;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
ccb->ccb_tx.tx_handler = 0;
ccb->ccb_tx.tx_context = tp;
ccb->ccb_tx.tx_dv = &sc->sc_dv;
tc = ccb->ccb_cmd;
tc->tc_size = 2;
tc->tc_opcode = TWE_OP_SET_PARAM | (tc->tc_size << 5);
tc->tc_unit = 0;
tc->tc_count = htole16(1);
/* Fill in the outbound parameter data. */
tp->tp_table_id = htole16(table_id);
tp->tp_param_id = param_id;
tp->tp_param_size = size;
memcpy(tp->tp_data, buf, size);
/* Map the transfer. */
if ((rv = twe_ccb_map(sc, ccb)) != 0) {
twe_ccb_free(sc, ccb);
goto done;
}
/* Submit the command and wait. */
s = splbio();
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_unmap(sc, ccb);
twe_ccb_free(sc, ccb);
splx(s);
done:
free(tp, M_DEVBUF);
return (rv);
}
/*
* Execute a TWE_OP_INIT_CONNECTION command. Return non-zero on error.
* Must be called with interrupts blocked.
*/
static int
twe_init_connection(struct twe_softc *sc)
/*###762 [cc] warning: `twe_init_connection' was used with no prototype before its definition%%%*/
/*###762 [cc] warning: `twe_init_connection' was declared implicitly `extern' and later `static'%%%*/
{
struct twe_ccb *ccb;
struct twe_cmd *tc;
int rv;
if ((rv = twe_ccb_alloc(sc, &ccb, 0)) != 0)
return (rv);
/* Build the command. */
tc = ccb->ccb_cmd;
tc->tc_size = 3;
tc->tc_opcode = TWE_OP_INIT_CONNECTION;
tc->tc_unit = 0;
tc->tc_count = htole16(TWE_MAX_CMDS);
tc->tc_args.init_connection.response_queue_pointer = 0;
/* Submit the command for immediate execution. */
rv = twe_ccb_poll(sc, ccb, 5);
twe_ccb_free(sc, ccb);
return (rv);
}
/*
* Poll the controller for completed commands. Must be called with
* interrupts blocked.
*/
static void
twe_poll(struct twe_softc *sc)
{
struct twe_ccb *ccb;
int found;
u_int status, cmdid;
found = 0;
for (;;) {
status = twe_inl(sc, TWE_REG_STS);
twe_status_check(sc, status);
if ((status & TWE_STS_RESP_QUEUE_EMPTY))
break;
found = 1;
cmdid = twe_inl(sc, TWE_REG_RESP_QUEUE);
cmdid = (cmdid & TWE_RESP_MASK) >> TWE_RESP_SHIFT;
if (cmdid >= TWE_MAX_QUEUECNT) {
printf("%s: bad completion\n", sc->sc_dv.dv_xname);
continue;
}
ccb = sc->sc_ccbs + cmdid;
if ((ccb->ccb_flags & TWE_CCB_ACTIVE) == 0) {
printf("%s: bad completion (not active)\n",
sc->sc_dv.dv_xname);
continue;
}
ccb->ccb_flags ^= TWE_CCB_COMPLETE | TWE_CCB_ACTIVE;
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
(caddr_t)ccb->ccb_cmd - sc->sc_cmds,
sizeof(struct twe_cmd),
BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE);
/* Pass notification to upper layers. */
if (ccb->ccb_tx.tx_handler != NULL)
(*ccb->ccb_tx.tx_handler)(ccb,
ccb->ccb_cmd->tc_status != 0 ? EIO : 0);
}
/* If any commands have completed, run the software queue. */
if (found)
twe_ccb_enqueue(sc, NULL);
}
/*
* Wait for `status' to be set in the controller status register. Return
* zero if found, non-zero if the operation timed out.
*/
static int
twe_status_wait(struct twe_softc *sc, u_int32_t status, int timo)
{
for (timo *= 10; timo != 0; timo--) {
if ((twe_inl(sc, TWE_REG_STS) & status) == status)
break;
delay(100000);
}
return (timo == 0);
}
/*
* Complain if the status bits aren't what we expect.
*/
static int
twe_status_check(struct twe_softc *sc, u_int status)
{
int rv;
rv = 0;
if ((status & TWE_STS_EXPECTED_BITS) != TWE_STS_EXPECTED_BITS) {
printf("%s: missing status bits: 0x%08x\n", sc->sc_dv.dv_xname,
status & ~TWE_STS_EXPECTED_BITS);
rv = -1;
}
if ((status & TWE_STS_UNEXPECTED_BITS) != 0) {
printf("%s: unexpected status bits: 0x%08x\n",
sc->sc_dv.dv_xname, status & TWE_STS_UNEXPECTED_BITS);
rv = -1;
}
return (rv);
}
/*
* Allocate and initialise a CCB.
*/
int
twe_ccb_alloc(struct twe_softc *sc, struct twe_ccb **ccbp, int flags)
{
struct twe_cmd *tc;
struct twe_ccb *ccb;
int s;
s = splbio();
if ((flags & TWE_CCB_PARAM) != 0)
ccb = sc->sc_ccbs;
else {
/* Allocate a CCB and command block. */
if (SLIST_FIRST(&sc->sc_ccb_freelist) == NULL) {
splx(s);
return (EAGAIN);
}
ccb = SLIST_FIRST(&sc->sc_ccb_freelist);
SLIST_REMOVE_HEAD(&sc->sc_ccb_freelist, ccb_chain.slist);
}
#ifdef DIAGNOSTIC
if ((ccb->ccb_flags & TWE_CCB_ALLOCED) != 0)
panic("twe_ccb_alloc: CCB already allocated");
flags |= TWE_CCB_ALLOCED;
#endif
splx(s);
/* Initialise some fields and return. */
ccb->ccb_tx.tx_handler = NULL;
ccb->ccb_flags = flags;
tc = ccb->ccb_cmd;
tc->tc_status = 0;
tc->tc_flags = 0;
tc->tc_cmdid = ccb->ccb_cmdid;
*ccbp = ccb;
return (0);
}
/*
* Free a CCB.
*/
void
twe_ccb_free(struct twe_softc *sc, struct twe_ccb *ccb)
{
int s;
s = splbio();
if ((ccb->ccb_flags & TWE_CCB_PARAM) == 0)
SLIST_INSERT_HEAD(&sc->sc_ccb_freelist, ccb, ccb_chain.slist);
ccb->ccb_flags = 0;
splx(s);
}
/*
* Map the specified CCB's command block and data buffer (if any) into
* controller visible space. Perform DMA synchronisation.
*/
int
twe_ccb_map(struct twe_softc *sc, struct twe_ccb *ccb)
{
struct twe_cmd *tc;
int flags, nsegs, i, s, rv;
void *data;
/*
* The data as a whole must be 512-byte aligned.
*/
if (((u_long)ccb->ccb_data & (TWE_ALIGNMENT - 1)) != 0) {
s = splvm();
/* XXX */
ccb->ccb_abuf = uvm_km_kmemalloc(kmem_map, NULL,
ccb->ccb_datasize, UVM_KMF_NOWAIT);
splx(s);
data = (void *)ccb->ccb_abuf;
if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
memcpy(data, ccb->ccb_data, ccb->ccb_datasize);
} else {
ccb->ccb_abuf = (vaddr_t)0;
data = ccb->ccb_data;
}
/*
* Map the data buffer into bus space and build the S/G list.
*/
rv = bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer, data,
ccb->ccb_datasize, NULL, BUS_DMA_NOWAIT | BUS_DMA_STREAMING |
((ccb->ccb_flags & TWE_CCB_DATA_IN) ?
BUS_DMA_READ : BUS_DMA_WRITE));
if (rv != 0) {
if (ccb->ccb_abuf != (vaddr_t)0) {
s = splvm();
/* XXX */
uvm_km_free(kmem_map, ccb->ccb_abuf,
ccb->ccb_datasize);
splx(s);
}
return (rv);
}
nsegs = ccb->ccb_dmamap_xfer->dm_nsegs;
tc = ccb->ccb_cmd;
tc->tc_size += 2 * nsegs;
/* The location of the S/G list is dependant upon command type. */
switch (tc->tc_opcode >> 5) {
case 2:
for (i = 0; i < nsegs; i++) {
tc->tc_args.param.sgl[i].tsg_address =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
tc->tc_args.param.sgl[i].tsg_length =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
}
/* XXX Needed? */
for (; i < TWE_SG_SIZE; i++) {
tc->tc_args.param.sgl[i].tsg_address = 0;
tc->tc_args.param.sgl[i].tsg_length = 0;
}
break;
case 3:
for (i = 0; i < nsegs; i++) {
tc->tc_args.io.sgl[i].tsg_address =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
tc->tc_args.io.sgl[i].tsg_length =
htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
}
/* XXX Needed? */
for (; i < TWE_SG_SIZE; i++) {
tc->tc_args.io.sgl[i].tsg_address = 0;
tc->tc_args.io.sgl[i].tsg_length = 0;
}
break;
#ifdef DEBUG
default:
panic("twe_ccb_map: oops");
#endif
}
if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
flags = BUS_DMASYNC_PREREAD;
else
flags = 0;
if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
flags |= BUS_DMASYNC_PREWRITE;
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
ccb->ccb_datasize, flags);
return (0);
}
/*
* Unmap the specified CCB's command block and data buffer (if any) and
* perform DMA synchronisation.
*/
void
twe_ccb_unmap(struct twe_softc *sc, struct twe_ccb *ccb)
{
int flags, s;
if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
flags = BUS_DMASYNC_POSTREAD;
else
flags = 0;
if ((ccb->ccb_flags & TWE_CCB_DATA_OUT) != 0)
flags |= BUS_DMASYNC_POSTWRITE;
bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
ccb->ccb_datasize, flags);
bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
if (ccb->ccb_abuf != (vaddr_t)0) {
if ((ccb->ccb_flags & TWE_CCB_DATA_IN) != 0)
memcpy(ccb->ccb_data, (void *)ccb->ccb_abuf,
ccb->ccb_datasize);
s = splvm();
/* XXX */
uvm_km_free(kmem_map, ccb->ccb_abuf, ccb->ccb_datasize);
splx(s);
}
}
/*
* Submit a command to the controller and poll on completion. Return
* non-zero on timeout (but don't check status, as some command types don't
* return status). Must be called with interrupts blocked.
*/
int
twe_ccb_poll(struct twe_softc *sc, struct twe_ccb *ccb, int timo)
{
int rv;
if ((rv = twe_ccb_submit(sc, ccb)) != 0)
return (rv);
for (timo *= 1000; timo != 0; timo--) {
twe_poll(sc);
if ((ccb->ccb_flags & TWE_CCB_COMPLETE) != 0)
break;
DELAY(100);
}
return (timo == 0);
}
/*
* If a CCB is specified, enqueue it. Pull CCBs off the software queue in
* the order that they were enqueued and try to submit their command blocks
* to the controller for execution.
*/
void
twe_ccb_enqueue(struct twe_softc *sc, struct twe_ccb *ccb)
{
int s;
s = splbio();
if (ccb != NULL)
SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain.simpleq);
while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
if (twe_ccb_submit(sc, ccb))
break;
SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain.simpleq);
}
splx(s);
}
/*
* Submit the command block associated with the specified CCB to the
* controller for execution. Must be called with interrupts blocked.
*/
int
twe_ccb_submit(struct twe_softc *sc, struct twe_ccb *ccb)
{
bus_addr_t pa;
int rv;
u_int status;
/* Check to see if we can post a command. */
status = twe_inl(sc, TWE_REG_STS);
twe_status_check(sc, status);
if ((status & TWE_STS_CMD_QUEUE_FULL) == 0) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
(caddr_t)ccb->ccb_cmd - sc->sc_cmds, sizeof(struct twe_cmd),
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
ccb->ccb_flags |= TWE_CCB_ACTIVE;
pa = sc->sc_cmds_paddr +
ccb->ccb_cmdid * sizeof(struct twe_cmd);
twe_outl(sc, TWE_REG_CMD_QUEUE, (u_int32_t)pa);
rv = 0;
} else
rv = EBUSY;
return (rv);
}
/*
* Accept an open operation on the control device.
*/
int
tweopen(dev_t dev, int flag, int mode, struct proc *p)
{
struct twe_softc *twe;
if ((twe = device_lookup(&twe_cd, minor(dev))) == NULL)
return (ENXIO);
if ((twe->sc_flags & TWEF_OPEN) != 0)
return (EBUSY);
twe->sc_flags |= TWEF_OPEN;
return (0);
}
/*
* Accept the last close on the control device.
*/
int
tweclose(dev_t dev, int flag, int mode, struct proc *p)
{
struct twe_softc *twe;
twe = device_lookup(&twe_cd, minor(dev));
twe->sc_flags &= ~TWEF_OPEN;
return (0);
}
/*
* Handle control operations.
*/
int
tweioctl(dev_t dev, u_long cmd, caddr_t data, int flag, struct proc *p)
{
struct twe_softc *twe;
struct twe_ccb *ccb;
struct twe_param *param;
struct twe_usercommand *tu;
struct twe_paramcommand *tp;
union twe_statrequest *ts;
void *pdata = NULL;
int rv, s, error = 0;
u_int8_t cmdid;
if (securelevel >= 2)
return (EPERM);
twe = device_lookup(&twe_cd, minor(dev));
tu = (struct twe_usercommand *)data;
tp = (struct twe_paramcommand *)data;
ts = (union twe_statrequest *)data;
/* Hmm, compatible with FreeBSD */
switch (cmd) {
case TWEIO_COMMAND:
if (tu->tu_size > 0) {
if (tu->tu_size > TWE_SECTOR_SIZE)
return EINVAL;
pdata = malloc(tu->tu_size, M_DEVBUF, M_WAITOK);
error = copyin(tu->tu_data, pdata, tu->tu_size);
if (error != 0)
goto done;
error = twe_ccb_alloc(twe, &ccb, TWE_CCB_PARAM |
TWE_CCB_DATA_IN | TWE_CCB_DATA_OUT);
} else {
error = twe_ccb_alloc(twe, &ccb, 0);
}
if (rv != 0)
goto done;
cmdid = ccb->ccb_cmdid;
memcpy(ccb->ccb_cmd, &tu->tu_cmd, sizeof(struct twe_cmd));
ccb->ccb_cmdid = cmdid;
if (ccb->ccb_flags & TWE_CCB_PARAM) {
ccb->ccb_data = pdata;
ccb->ccb_datasize = TWE_SECTOR_SIZE;
ccb->ccb_tx.tx_handler = 0;
ccb->ccb_tx.tx_context = pdata;
ccb->ccb_tx.tx_dv = &twe->sc_dv;
}
/* Map the transfer. */
if ((error = twe_ccb_map(twe, ccb)) != 0) {
twe_ccb_free(twe, ccb);
goto done;
}
/* Submit the command and wait. */
s = splbio();
rv = twe_ccb_poll(twe, ccb, 5);
twe_ccb_unmap(twe, ccb);
twe_ccb_free(twe, ccb);
splx(s);
if (tu->tu_size > 0)
error = copyout(pdata, tu->tu_data, tu->tu_size);
goto done;
case TWEIO_STATS:
return (ENOENT);
case TWEIO_AEN_POLL:
if ((twe->sc_flags & TWEF_AEN) == 0)
return (ENOENT);
return (0);
case TWEIO_AEN_WAIT:
s = splbio();
while ((twe->sc_flags & TWEF_AEN) == 0) {
/* tsleep(); */
}
splx(s);
return (0);
case TWEIO_GET_PARAM:
error = twe_param_get(twe, tp->tp_table_id, tp->tp_param_id,
tp->tp_size, 0, &param);
if (error != 0)
return (error);
if (param->tp_param_size > tp->tp_size) {
error = EFAULT;
goto done;
}
error = copyout(param->tp_data, tp->tp_data,
param->tp_param_size);
goto done;
case TWEIO_SET_PARAM:
pdata = malloc(tp->tp_size, M_DEVBUF, M_WAITOK);
if ((error = copyin(tp->tp_data, pdata, tp->tp_size)) != 0)
goto done;
error = twe_param_set(twe, tp->tp_table_id, tp->tp_param_id,
tp->tp_size, pdata);
goto done;
case TWEIO_RESET:
twe_reset(twe);
return (0);
default:
return EINVAL;
}
done:
if (pdata)
free(pdata, M_DEVBUF);
return error;
}
/*
* Print some information about the controller
*/
static void
twe_describe_controller(struct twe_softc *sc)
{
struct twe_param *p[6];
int rv = 0;
uint8_t ports;
/* get the port count */
rv |= twe_param_get_1(sc, TWE_PARAM_CONTROLLER,
TWE_PARAM_CONTROLLER_PortCount, &ports);
/* get version strings */
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_Mon,
16, NULL, &p[0]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_FW,
16, NULL, &p[1]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_BIOS,
16, NULL, &p[2]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCB,
8, NULL, &p[3]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_ATA,
8, NULL, &p[4]);
rv |= twe_param_get(sc, TWE_PARAM_VERSION, TWE_PARAM_VERSION_PCI,
8, NULL, &p[5]);
if (rv) {
/* some error occurred */
aprint_error("%s: failed to fetch version information\n",
sc->sc_dv.dv_xname);
return;
}
aprint_normal("%s: %d ports, Firmware %.16s, BIOS %.16s\n",
sc->sc_dv.dv_xname, ports,
p[1]->tp_data, p[2]->tp_data);
aprint_verbose("%s: Monitor %.16s, PCB %.8s, Achip %.8s, Pchip %.8s\n",
sc->sc_dv.dv_xname,
p[0]->tp_data, p[3]->tp_data,
p[4]->tp_data, p[5]->tp_data);
free(p[0], M_DEVBUF);
free(p[1], M_DEVBUF);
free(p[2], M_DEVBUF);
free(p[3], M_DEVBUF);
free(p[4], M_DEVBUF);
free(p[5], M_DEVBUF);
}