NetBSD/sys/dev/ic/malo.c
2020-01-29 15:00:39 +00:00

2277 lines
58 KiB
C

/* $NetBSD: malo.c,v 1.18 2020/01/29 15:00:39 thorpej Exp $ */
/* $OpenBSD: malo.c,v 1.92 2010/08/27 17:08:00 jsg Exp $ */
/*
* Copyright (c) 2006 Claudio Jeker <claudio@openbsd.org>
* Copyright (c) 2006 Marcus Glocker <mglocker@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: malo.c,v 1.18 2020/01/29 15:00:39 thorpej Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/proc.h>
#include <sys/socket.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#include <net/if.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <net/bpf.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/firmload.h>
#include <dev/ic/malovar.h>
#include <dev/ic/maloreg.h>
#ifdef MALO_DEBUG
int malo_d = 2;
#define DPRINTF(l, x...) do { if ((l) <= malo_d) printf(x); } while (0)
#else
#define DPRINTF(l, x...)
#endif
/* internal structures and defines */
struct malo_node {
struct ieee80211_node ni;
};
struct malo_rx_data {
bus_dmamap_t map;
struct mbuf *m;
};
struct malo_tx_data {
bus_dmamap_t map;
struct mbuf *m;
uint32_t softstat;
struct ieee80211_node *ni;
};
/* RX descriptor used by HW */
struct malo_rx_desc {
uint8_t rxctrl;
uint8_t rssi;
uint8_t status;
uint8_t channel;
uint16_t len;
uint8_t reserved1; /* actually unused */
uint8_t datarate;
uint32_t physdata; /* DMA address of data */
uint32_t physnext; /* DMA address of next control block */
uint16_t qosctrl;
uint16_t reserved2;
} __packed;
/* TX descriptor used by HW */
struct malo_tx_desc {
uint32_t status;
#define MALO_TXD_STATUS_IDLE 0x00000000
#define MALO_TXD_STATUS_USED 0x00000001
#define MALO_TXD_STATUS_OK 0x00000001
#define MALO_TXD_STATUS_OK_RETRY 0x00000002
#define MALO_TXD_STATUS_OK_MORE_RETRY 0x00000004
#define MALO_TXD_STATUS_MULTICAST_TX 0x00000008
#define MALO_TXD_STATUS_BROADCAST_TX 0x00000010
#define MALO_TXD_STATUS_FAILED_LINK_ERROR 0x00000020
#define MALO_TXD_STATUS_FAILED_EXCEED_LIMIT 0x00000040
#define MALO_TXD_STATUS_FAILED_XRETRY MALO_TXD_STATUS_FAILED_EXCEED_LIMIT
#define MALO_TXD_STATUS_FAILED_AGING 0x00000080
#define MALO_TXD_STATUS_FW_OWNED 0x80000000
uint8_t datarate;
uint8_t txpriority;
uint16_t qosctrl;
uint32_t physdata; /* DMA address of data */
uint16_t len;
uint8_t destaddr[6];
uint32_t physnext; /* DMA address of next control block */
uint32_t reserved1; /* SAP packet info ??? */
uint32_t reserved2;
} __packed;
#define MALO_RX_RING_COUNT 256
#define MALO_TX_RING_COUNT 256
#define MALO_MAX_SCATTER 8 /* XXX unknown, wild guess */
#define MALO_CMD_TIMEOUT 50 /* MALO_CMD_TIMEOUT * 100us */
/*
* Firmware commands
*/
#define MALO_CMD_GET_HW_SPEC 0x0003
#define MALO_CMD_SET_RADIO 0x001c
#define MALO_CMD_SET_AID 0x010d
#define MALO_CMD_SET_TXPOWER 0x001e
#define MALO_CMD_SET_ANTENNA 0x0020
#define MALO_CMD_SET_PRESCAN 0x0107
#define MALO_CMD_SET_POSTSCAN 0x0108
#define MALO_CMD_SET_RATE 0x0110
#define MALO_CMD_SET_CHANNEL 0x010a
#define MALO_CMD_SET_RTS 0x0113
#define MALO_CMD_SET_SLOT 0x0114
#define MALO_CMD_RESPONSE 0x8000
#define MALO_CMD_RESULT_OK 0x0000 /* everything is fine */
#define MALO_CMD_RESULT_ERROR 0x0001 /* general error */
#define MALO_CMD_RESULT_NOSUPPORT 0x0002 /* command not valid */
#define MALO_CMD_RESULT_PENDING 0x0003 /* will be processed */
#define MALO_CMD_RESULT_BUSY 0x0004 /* command ignored */
#define MALO_CMD_RESULT_PARTIALDATA 0x0005 /* buffer too small */
struct malo_cmdheader {
uint16_t cmd;
uint16_t size; /* size of the command, incl. header */
uint16_t seqnum; /* seems not to matter that much */
uint16_t result; /* set to 0 on request */
/* following the data payload, up to 256 bytes */
};
struct malo_hw_spec {
uint16_t HwVersion;
uint16_t NumOfWCB;
uint16_t NumOfMCastAdr;
uint8_t PermanentAddress[6];
uint16_t RegionCode;
uint16_t NumberOfAntenna;
uint32_t FWReleaseNumber;
uint32_t WcbBase0;
uint32_t RxPdWrPtr;
uint32_t RxPdRdPtr;
uint32_t CookiePtr;
uint32_t WcbBase1;
uint32_t WcbBase2;
uint32_t WcbBase3;
} __packed;
struct malo_cmd_radio {
uint16_t action;
uint16_t preamble_mode;
uint16_t enable;
} __packed;
struct malo_cmd_aid {
uint16_t associd;
uint8_t macaddr[6];
uint32_t gprotection;
uint8_t aprates[14];
} __packed;
struct malo_cmd_txpower {
uint16_t action;
uint16_t supportpowerlvl;
uint16_t currentpowerlvl;
uint16_t reserved;
uint16_t powerlvllist[8];
} __packed;
struct malo_cmd_antenna {
uint16_t action;
uint16_t mode;
} __packed;
struct malo_cmd_postscan {
uint32_t isibss;
uint8_t bssid[6];
} __packed;
struct malo_cmd_channel {
uint16_t action;
uint8_t channel;
} __packed;
struct malo_cmd_rate {
uint8_t dataratetype;
uint8_t rateindex;
uint8_t aprates[14];
} __packed;
struct malo_cmd_rts {
uint16_t action;
uint32_t threshold;
} __packed;
struct malo_cmd_slot {
uint16_t action;
uint8_t slot;
} __packed;
#define malo_mem_write4(sc, off, x) \
bus_space_write_4((sc)->sc_mem1_bt, (sc)->sc_mem1_bh, (off), (x))
#define malo_mem_write2(sc, off, x) \
bus_space_write_2((sc)->sc_mem1_bt, (sc)->sc_mem1_bh, (off), (x))
#define malo_mem_write1(sc, off, x) \
bus_space_write_1((sc)->sc_mem1_bt, (sc)->sc_mem1_bh, (off), (x))
#define malo_mem_read4(sc, off) \
bus_space_read_4((sc)->sc_mem1_bt, (sc)->sc_mem1_bh, (off))
#define malo_mem_read1(sc, off) \
bus_space_read_1((sc)->sc_mem1_bt, (sc)->sc_mem1_bh, (off))
#define malo_ctl_write4(sc, off, x) \
bus_space_write_4((sc)->sc_mem2_bt, (sc)->sc_mem2_bh, (off), (x))
#define malo_ctl_read4(sc, off) \
bus_space_read_4((sc)->sc_mem2_bt, (sc)->sc_mem2_bh, (off))
#define malo_ctl_read1(sc, off) \
bus_space_read_1((sc)->sc_mem2_bt, (sc)->sc_mem2_bh, (off))
#define malo_ctl_barrier(sc, t) \
bus_space_barrier((sc)->sc_mem2_bt, (sc)->sc_mem2_bh, 0x0c00, 0xff, (t))
static int malo_alloc_cmd(struct malo_softc *sc);
static void malo_free_cmd(struct malo_softc *sc);
static void malo_send_cmd(struct malo_softc *sc, bus_addr_t addr);
static int malo_send_cmd_dma(struct malo_softc *sc, bus_addr_t addr);
static int malo_alloc_rx_ring(struct malo_softc *sc, struct malo_rx_ring *ring,
int count);
static void malo_reset_rx_ring(struct malo_softc *sc, struct malo_rx_ring *ring);
static void malo_free_rx_ring(struct malo_softc *sc, struct malo_rx_ring *ring);
static int malo_alloc_tx_ring(struct malo_softc *sc, struct malo_tx_ring *ring,
int count);
static void malo_reset_tx_ring(struct malo_softc *sc, struct malo_tx_ring *ring);
static void malo_free_tx_ring(struct malo_softc *sc, struct malo_tx_ring *ring);
static int malo_ioctl(struct ifnet *ifp, u_long cmd, void* data);
static void malo_start(struct ifnet *ifp);
static void malo_watchdog(struct ifnet *ifp);
static int malo_newstate(struct ieee80211com *ic, enum ieee80211_state nstate,
int arg);
static void malo_newassoc(struct ieee80211_node *ni, int isnew);
static struct ieee80211_node *
malo_node_alloc(struct ieee80211_node_table *nt);
static int malo_media_change(struct ifnet *ifp);
static void malo_media_status(struct ifnet *ifp, struct ifmediareq *imr);
static int malo_chip2rate(int chip_rate);
static int malo_fix2rate(int fix_rate);
static void malo_next_scan(void *arg);
static void malo_tx_intr(struct malo_softc *sc);
static int malo_tx_data(struct malo_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni);
static void malo_tx_setup_desc(struct malo_softc *sc, struct malo_tx_desc *desc,
int len, int rate, const bus_dma_segment_t *segs, int nsegs);
static void malo_rx_intr(struct malo_softc *sc);
static int malo_load_bootimg(struct malo_softc *sc);
static int malo_load_firmware(struct malo_softc *sc);
static int malo_set_slot(struct malo_softc *sc);
static void malo_update_slot(struct ifnet* ifp);
#ifdef MALO_DEBUG
static void malo_hexdump(void *buf, int len);
#endif
static const char *malo_cmd_string(uint16_t cmd);
static const char *malo_cmd_string_result(uint16_t result);
static int malo_cmd_get_spec(struct malo_softc *sc);
static int malo_cmd_set_prescan(struct malo_softc *sc);
static int malo_cmd_set_postscan(struct malo_softc *sc, uint8_t *macaddr,
uint8_t ibsson);
static int malo_cmd_set_channel(struct malo_softc *sc, struct ieee80211_channel *chan);
static int malo_cmd_set_antenna(struct malo_softc *sc, uint16_t antenna_type);
static int malo_cmd_set_radio(struct malo_softc *sc, uint16_t mode,
uint16_t preamble);
static int malo_cmd_set_aid(struct malo_softc *sc, uint8_t *bssid,
uint16_t associd);
static int malo_cmd_set_txpower(struct malo_softc *sc, unsigned int powerlevel);
static int malo_cmd_set_rts(struct malo_softc *sc, uint32_t threshold);
static int malo_cmd_set_slot(struct malo_softc *sc, uint8_t slot);
static int malo_cmd_set_rate(struct malo_softc *sc, uint8_t rate);
static void malo_cmd_response(struct malo_softc *sc);
int
malo_intr(void *arg)
{
struct malo_softc *sc = arg;
uint32_t status;
status = malo_ctl_read4(sc, MALO_REG_A2H_INTERRUPT_CAUSE);
if (status == 0xffffffff || status == 0)
/* not for us */
return (0);
/* disable interrupts */
malo_ctl_read4(sc, MALO_REG_A2H_INTERRUPT_CAUSE);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_CAUSE, 0);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_MASK, 0);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_STATUS_MASK, 0);
softint_schedule(sc->sc_soft_ih);
return (1);
}
void
malo_softintr(void *arg)
{
struct malo_softc *sc = arg;
uint32_t status;
status = malo_ctl_read4(sc, MALO_REG_A2H_INTERRUPT_CAUSE);
if (status == 0xffffffff || status == 0)
goto out; /* not for us */
if (status & MALO_A2HRIC_BIT_TX_DONE)
malo_tx_intr(sc);
if (status & MALO_A2HRIC_BIT_RX_RDY)
malo_rx_intr(sc);
if (status & MALO_A2HRIC_BIT_OPC_DONE) {
/* XXX cmd done interrupt handling doesn't work yet */
DPRINTF(1, "%s: got cmd done interrupt\n",
device_xname(sc->sc_dev));
//malo_cmd_response(sc);
}
if (status & ~0x7) {
DPRINTF(1, "%s: unknown interrupt %x\n",
device_xname(sc->sc_dev), status);
}
/* just ack the interrupt */
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_CAUSE, 0);
out:
/* enable interrupts */
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_MASK, 0x1f);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_STATUS_MASK, 0x1f);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
}
int
malo_attach(struct malo_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
int i, rv;
/* initialize channel scanning timer */
callout_init(&sc->sc_scan_to, 0);
callout_setfunc(&sc->sc_scan_to, malo_next_scan, sc);
/* allocate DMA structures */
malo_alloc_cmd(sc);
malo_alloc_rx_ring(sc, &sc->sc_rxring, MALO_RX_RING_COUNT);
malo_alloc_tx_ring(sc, &sc->sc_txring, MALO_TX_RING_COUNT);
/* setup interface */
ifp->if_softc = sc;
ifp->if_init = malo_init;
ifp->if_stop = malo_stop;
ifp->if_ioctl = malo_ioctl;
ifp->if_start = malo_start;
ifp->if_watchdog = malo_watchdog;
ifp->if_flags = IFF_SIMPLEX | IFF_BROADCAST | IFF_MULTICAST;
memcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN);
IFQ_SET_READY(&ifp->if_snd);
/* set supported rates */
ic->ic_sup_rates[IEEE80211_MODE_11B] = ieee80211_std_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = ieee80211_std_rateset_11g;
sc->sc_last_txrate = -1;
/* set channels */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_2GHZ);
ic->ic_channels[i].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
}
/* OpenBSD supports IEEE80211_C_RSN too */
/* set the rest */
ic->ic_ifp = ifp;
ic->ic_caps =
IEEE80211_C_IBSS |
IEEE80211_C_MONITOR |
IEEE80211_C_SHPREAMBLE |
IEEE80211_C_SHSLOT |
IEEE80211_C_WEP |
IEEE80211_C_WPA;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
for (i = 0; i < 6; i++)
ic->ic_myaddr[i] = malo_ctl_read1(sc, 0xa528 + i);
/* show our mac address */
aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
/* attach interface */
rv = if_initialize(ifp);
if (rv != 0) {
aprint_error_dev(sc->sc_dev, "if_initialize failed(%d)\n", rv);
malo_free_tx_ring(sc, &sc->sc_txring);
malo_free_rx_ring(sc, &sc->sc_rxring);
malo_free_cmd(sc);
callout_destroy(&sc->sc_scan_to);
return rv; /* Error */
}
ieee80211_ifattach(ic);
/* Use common softint-based if_input */
ifp->if_percpuq = if_percpuq_create(ifp);
if_register(ifp);
/* post attach vector functions */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = malo_newstate;
ic->ic_newassoc = malo_newassoc;
ic->ic_node_alloc = malo_node_alloc;
ic->ic_updateslot = malo_update_slot;
ieee80211_media_init(ic, malo_media_change, malo_media_status);
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof(sc->sc_rxtapu);
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(MALO_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof(sc->sc_txtapu);
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(MALO_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
return (0);
}
int
malo_detach(void *arg)
{
struct malo_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
malo_stop(ifp, 1);
/* remove channel scanning timer */
callout_destroy(&sc->sc_scan_to);
ieee80211_ifdetach(ic);
if_detach(ifp);
malo_free_cmd(sc);
malo_free_rx_ring(sc, &sc->sc_rxring);
malo_free_tx_ring(sc, &sc->sc_txring);
return (0);
}
static int
malo_alloc_cmd(struct malo_softc *sc)
{
int error, nsegs;
error = bus_dmamap_create(sc->sc_dmat, PAGE_SIZE, 1,
PAGE_SIZE, 0, BUS_DMA_ALLOCNOW, &sc->sc_cmd_dmam);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "can not create DMA tag\n");
return (-1);
}
error = bus_dmamem_alloc(sc->sc_dmat, PAGE_SIZE, PAGE_SIZE,
0, &sc->sc_cmd_dmas, 1, &nsegs, BUS_DMA_WAITOK);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "error alloc dma memory\n");
return (-1);
}
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_cmd_dmas, nsegs,
PAGE_SIZE, (void **)&sc->sc_cmd_mem, BUS_DMA_WAITOK);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "error map dma memory\n");
return (-1);
}
error = bus_dmamap_load(sc->sc_dmat, sc->sc_cmd_dmam,
sc->sc_cmd_mem, PAGE_SIZE, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "error load dma memory\n");
bus_dmamem_free(sc->sc_dmat, &sc->sc_cmd_dmas, nsegs);
return (-1);
}
sc->sc_cookie = sc->sc_cmd_mem;
*sc->sc_cookie = htole32(0xaa55aa55);
sc->sc_cmd_mem = ((char*)sc->sc_cmd_mem) + sizeof(uint32_t);
sc->sc_cookie_dmaaddr = sc->sc_cmd_dmam->dm_segs[0].ds_addr;
sc->sc_cmd_dmaaddr = sc->sc_cmd_dmam->dm_segs[0].ds_addr +
sizeof(uint32_t);
return (0);
}
static void
malo_free_cmd(struct malo_softc *sc)
{
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, sc->sc_cmd_dmam);
bus_dmamem_unmap(sc->sc_dmat, sc->sc_cookie, PAGE_SIZE);
bus_dmamem_free(sc->sc_dmat, &sc->sc_cmd_dmas, 1);
}
static void
malo_send_cmd(struct malo_softc *sc, bus_addr_t addr)
{
malo_ctl_write4(sc, MALO_REG_GEN_PTR, (uint32_t)addr);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
malo_ctl_write4(sc, MALO_REG_H2A_INTERRUPT_EVENTS, 2); /* CPU_TRANSFER_CMD */
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
}
static int
malo_send_cmd_dma(struct malo_softc *sc, bus_addr_t addr)
{
int i;
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
malo_send_cmd(sc, addr);
for (i = 0; i < MALO_CMD_TIMEOUT; i++) {
delay(100);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
if (hdr->cmd & htole16(0x8000))
break;
}
if (i == MALO_CMD_TIMEOUT) {
aprint_error_dev(sc->sc_dev, "timeout while waiting for cmd response!\n");
return (ETIMEDOUT);
}
malo_cmd_response(sc);
return (0);
}
static int
malo_alloc_rx_ring(struct malo_softc *sc, struct malo_rx_ring *ring, int count)
{
struct malo_rx_desc *desc;
struct malo_rx_data *data;
int i, nsegs, error;
ring->count = count;
ring->cur = ring->next = 0;
error = bus_dmamap_create(sc->sc_dmat,
count * sizeof(struct malo_rx_desc), 1,
count * sizeof(struct malo_rx_desc), 0,
BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
count * sizeof(struct malo_rx_desc),
PAGE_SIZE, 0, &ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
count * sizeof(struct malo_rx_desc), (void **)&ring->desc,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "can't map desc DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
count * sizeof(struct malo_rx_desc), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->physaddr = ring->map->dm_segs->ds_addr;
ring->data = malloc(count * sizeof (struct malo_rx_data), M_DEVBUF,
M_WAITOK);
/*
* Pre-allocate Rx buffers and populate Rx ring.
*/
memset(ring->data, 0, count * sizeof (struct malo_rx_data));
for (i = 0; i < count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
0, BUS_DMA_NOWAIT, &data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf cluster\n");
error = ENOMEM;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load rx buf DMA map");
goto fail;
}
desc->status = 1;
desc->physdata = htole32(data->map->dm_segs->ds_addr);
desc->physnext = htole32(ring->physaddr +
(i + 1) % count * sizeof(struct malo_rx_desc));
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
return (0);
fail: malo_free_rx_ring(sc, ring);
return (error);
}
static void
malo_reset_rx_ring(struct malo_softc *sc, struct malo_rx_ring *ring)
{
int i;
for (i = 0; i < ring->count; i++)
ring->desc[i].status = 0;
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->cur = ring->next = 0;
}
static void
malo_free_rx_ring(struct malo_softc *sc, struct malo_rx_ring *ring)
{
struct malo_rx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, ring->desc,
ring->count * sizeof(struct malo_rx_desc));
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize,
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
}
static int
malo_alloc_tx_ring(struct malo_softc *sc, struct malo_tx_ring *ring,
int count)
{
int i, nsegs, error;
ring->count = count;
ring->queued = 0;
ring->cur = ring->next = ring->stat = 0;
error = bus_dmamap_create(sc->sc_dmat,
count * sizeof(struct malo_tx_desc), 1,
count * sizeof(struct malo_tx_desc), 0, BUS_DMA_NOWAIT, &ring->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not create desc DMA map\n");
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat,
count * sizeof(struct malo_tx_desc), PAGE_SIZE, 0,
&ring->seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate DMA memory\n");
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &ring->seg, nsegs,
count * sizeof(struct malo_tx_desc), (void **)&ring->desc,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "can't map desc DMA memory\n");
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, ring->map, ring->desc,
count * sizeof(struct malo_tx_desc), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not load desc DMA map\n");
goto fail;
}
ring->physaddr = ring->map->dm_segs->ds_addr;
ring->data = malloc(count * sizeof(struct malo_tx_data), M_DEVBUF,
M_WAITOK | M_ZERO);
for (i = 0; i < count; i++) {
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
MALO_MAX_SCATTER, MCLBYTES, 0, BUS_DMA_NOWAIT,
&ring->data[i].map);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not create DMA map\n");
goto fail;
}
ring->desc[i].physnext = htole32(ring->physaddr +
(i + 1) % count * sizeof(struct malo_tx_desc));
}
return (0);
fail: malo_free_tx_ring(sc, ring);
return (error);
}
static void
malo_reset_tx_ring(struct malo_softc *sc, struct malo_tx_ring *ring)
{
struct malo_tx_desc *desc;
struct malo_tx_data *data;
int i;
for (i = 0; i < ring->count; i++) {
desc = &ring->desc[i];
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
/*
* The node has already been freed at that point so don't call
* ieee80211_release_node() here.
*/
data->ni = NULL;
desc->status = 0;
}
bus_dmamap_sync(sc->sc_dmat, ring->map, 0, ring->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
ring->queued = 0;
ring->cur = ring->next = ring->stat = 0;
}
static void
malo_free_tx_ring(struct malo_softc *sc, struct malo_tx_ring *ring)
{
struct malo_tx_data *data;
int i;
if (ring->desc != NULL) {
bus_dmamap_sync(sc->sc_dmat, ring->map, 0,
ring->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, ring->map);
bus_dmamem_unmap(sc->sc_dmat, ring->desc,
ring->count * sizeof(struct malo_tx_desc));
bus_dmamem_free(sc->sc_dmat, &ring->seg, 1);
}
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
/*
* The node has already been freed at that point so
* don't call ieee80211_release_node() here.
*/
data->ni = NULL;
if (data->map != NULL)
bus_dmamap_destroy(sc->sc_dmat, data->map);
}
free(ring->data, M_DEVBUF);
}
}
int
malo_init(struct ifnet *ifp)
{
struct malo_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int error;
DPRINTF(1, "%s: %s\n", ifp->if_xname, __func__);
/* if interface already runs stop it first */
if (ifp->if_flags & IFF_RUNNING)
malo_stop(ifp, 1);
/* power on cardbus socket */
if (sc->sc_enable)
sc->sc_enable(sc);
/* disable interrupts */
malo_ctl_read4(sc, MALO_REG_A2H_INTERRUPT_CAUSE);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_CAUSE, 0);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_MASK, 0);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_STATUS_MASK, 0);
/* load firmware */
if ((error = malo_load_bootimg(sc)))
goto fail;
if ((error = malo_load_firmware(sc)))
goto fail;
/* enable interrupts */
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_MASK, 0x1f);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
malo_ctl_write4(sc, MALO_REG_A2H_INTERRUPT_STATUS_MASK, 0x1f);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
if ((error = malo_cmd_get_spec(sc)))
goto fail;
/* select default channel */
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
/* initialize hardware */
if ((error = malo_cmd_set_channel(sc, ic->ic_bss->ni_chan))) {
aprint_error_dev(sc->sc_dev, "setting channel failed!\n");
goto fail;
}
if ((error = malo_cmd_set_antenna(sc, 1))) {
aprint_error_dev(sc->sc_dev, "setting RX antenna failed!\n");
goto fail;
}
if ((error = malo_cmd_set_antenna(sc, 2))) {
aprint_error_dev(sc->sc_dev, "setting TX antenna failed!\n");
goto fail;
}
if ((error = malo_cmd_set_radio(sc, 1, 5))) {
aprint_error_dev(sc->sc_dev, "turn radio on failed!\n");
goto fail;
}
if ((error = malo_cmd_set_txpower(sc, 100))) {
aprint_error_dev(sc->sc_dev, "setting TX power failed!\n");
goto fail;
}
if ((error = malo_cmd_set_rts(sc, IEEE80211_RTS_MAX))) {
aprint_error_dev(sc->sc_dev, "setting RTS failed!\n");
goto fail;
}
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR)
/* start background scanning */
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
else
/* in monitor mode change directly into run state */
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return (0);
fail:
/* reset adapter */
DPRINTF(1, "%s: malo_init failed, resetting card\n",
device_xname(sc->sc_dev));
malo_stop(ifp, 1);
return (error);
}
static int
malo_ioctl(struct ifnet *ifp, u_long cmd, void* data)
{
struct malo_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if ((ifp->if_flags & IFF_RUNNING) == 0)
malo_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
malo_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
case SIOCS80211CHANNEL:
/* allow fast channel switching in monitor mode */
error = ieee80211_ioctl(ic, cmd, data);
if (error == ENETRESET &&
ic->ic_opmode == IEEE80211_M_MONITOR) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING)) {
ic->ic_bss->ni_chan = ic->ic_ibss_chan;
malo_cmd_set_channel(sc, ic->ic_bss->ni_chan);
}
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
break;
}
if (error == ENETRESET) {
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
malo_init(ifp);
error = 0;
}
splx(s);
return (error);
}
static void
malo_start(struct ifnet *ifp)
{
struct malo_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m0;
struct ether_header *eh;
struct ieee80211_node *ni = NULL;
DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IF_POLL(&ic->ic_mgtq, m0);
if (m0 != NULL) {
if (sc->sc_txring.queued >= MALO_TX_RING_COUNT) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
IF_DEQUEUE(&ic->ic_mgtq, m0);
ni = M_GETCTX(m0, struct ieee80211_node *);
M_CLEARCTX(m0);
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (malo_tx_data(sc, m0, ni) != 0)
break;
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (sc->sc_txring.queued >= MALO_TX_RING_COUNT - 1) {
ifp->if_flags |= IFF_OACTIVE;
break;
}
if (m0->m_len < sizeof (*eh) &&
(m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
if_statinc(ifp, if_oerrors);
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
if_statinc(ifp, if_oerrors);
continue;
}
// XXX must I call ieee_classify at this point ?
IFQ_DEQUEUE(&ifp->if_snd, m0);
bpf_mtap(ifp, m0, BPF_D_OUT);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL)
continue;
bpf_mtap3(ic->ic_rawbpf, m0, BPF_D_OUT);
if (malo_tx_data(sc, m0, ni) != 0) {
ieee80211_free_node(ni);
if_statinc(ifp, if_oerrors);
break;
}
}
}
}
void
malo_stop(struct ifnet* ifp, int disable)
{
struct malo_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
DPRINTF(1, "%s: %s\n", ifp->if_xname, __func__);
/* reset adapter */
if (ifp->if_flags & IFF_RUNNING)
malo_ctl_write4(sc, MALO_REG_H2A_INTERRUPT_EVENTS, (1 << 15));
/* device is not running anymore */
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/* change back to initial state */
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* reset RX / TX rings */
malo_reset_tx_ring(sc, &sc->sc_txring);
malo_reset_rx_ring(sc, &sc->sc_rxring);
/* set initial rate */
sc->sc_last_txrate = -1;
/* power off cardbus socket */
if (sc->sc_disable)
sc->sc_disable(sc);
}
static void
malo_watchdog(struct ifnet *ifp)
{
}
static int
malo_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct malo_softc *sc = ifp->if_softc;
enum ieee80211_state ostate;
int rate;
DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
ostate = ic->ic_state;
callout_stop(&sc->sc_scan_to);
switch (nstate) {
case IEEE80211_S_INIT:
DPRINTF(1, "%s: newstate INIT\n", device_xname(sc->sc_dev));
break;
case IEEE80211_S_SCAN:
DPRINTF(1, "%s: newstate SCAN\n", device_xname(sc->sc_dev));
if (ostate == IEEE80211_S_INIT) {
if (malo_cmd_set_prescan(sc) != 0) {
DPRINTF(1, "%s: can't set prescan\n",
device_xname(sc->sc_dev));
}
} else {
malo_cmd_set_channel(sc, ic->ic_curchan);
}
callout_schedule(&sc->sc_scan_to, hz/2);
break;
case IEEE80211_S_AUTH:
DPRINTF(1, "%s: newstate AUTH\n", device_xname(sc->sc_dev));
malo_cmd_set_postscan(sc, ic->ic_myaddr, 1);
malo_cmd_set_channel(sc, ic->ic_curchan);
break;
case IEEE80211_S_ASSOC:
DPRINTF(1, "%s: newstate ASSOC\n", device_xname(sc->sc_dev));
malo_cmd_set_channel(sc, ic->ic_curchan);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
malo_cmd_set_radio(sc, 1, 3); /* short preamble */
else
malo_cmd_set_radio(sc, 1, 1); /* long preamble */
malo_cmd_set_aid(sc, ic->ic_bss->ni_bssid,
ic->ic_bss->ni_associd);
if (ic->ic_fixed_rate == -1)
/* automatic rate adaption */
malo_cmd_set_rate(sc, 0);
else {
/* fixed rate */
rate = malo_fix2rate(ic->ic_fixed_rate);
malo_cmd_set_rate(sc, rate);
}
malo_set_slot(sc);
break;
case IEEE80211_S_RUN:
DPRINTF(1, "%s: newstate RUN\n", device_xname(sc->sc_dev));
break;
default:
break;
}
return (sc->sc_newstate(ic, nstate, arg));
}
static void
malo_newassoc(struct ieee80211_node *ni, int isnew)
{
}
static struct ieee80211_node *
malo_node_alloc(struct ieee80211_node_table *nt)
{
struct malo_node *wn;
wn = malloc(sizeof(*wn), M_DEVBUF, M_NOWAIT | M_ZERO);
if (wn == NULL)
return (NULL);
return ((struct ieee80211_node *)wn);
}
static int
malo_media_change(struct ifnet *ifp)
{
int error;
DPRINTF(1, "%s: %s\n", ifp->if_xname, __func__);
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return (error);
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
malo_init(ifp);
return (0);
}
static void
malo_media_status(struct ifnet *ifp, struct ifmediareq *imr)
{
struct malo_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
imr->ifm_status = IFM_AVALID;
imr->ifm_active = IFM_IEEE80211;
if (ic->ic_state == IEEE80211_S_RUN)
imr->ifm_status |= IFM_ACTIVE;
/* report last TX rate used by chip */
imr->ifm_active |= ieee80211_rate2media(ic, sc->sc_last_txrate,
ic->ic_curmode);
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
break;
case IEEE80211_M_IBSS:
imr->ifm_active |= IFM_IEEE80211_ADHOC;
break;
case IEEE80211_M_AHDEMO:
break;
case IEEE80211_M_HOSTAP:
break;
case IEEE80211_M_MONITOR:
imr->ifm_active |= IFM_IEEE80211_MONITOR;
break;
default:
break;
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11B:
imr->ifm_active |= IFM_IEEE80211_11B;
break;
case IEEE80211_MODE_11G:
imr->ifm_active |= IFM_IEEE80211_11G;
break;
}
}
static int
malo_chip2rate(int chip_rate)
{
switch (chip_rate) {
/* CCK rates */
case 0: return (2);
case 1: return (4);
case 2: return (11);
case 3: return (22);
/* OFDM rates */
case 4: return (0); /* reserved */
case 5: return (12);
case 6: return (18);
case 7: return (24);
case 8: return (36);
case 9: return (48);
case 10: return (72);
case 11: return (96);
case 12: return (108);
/* no rate select yet or unknown rate */
default: return (-1);
}
}
static int
malo_fix2rate(int fix_rate)
{
switch (fix_rate) {
/* CCK rates */
case 0: return (2);
case 1: return (4);
case 2: return (11);
case 3: return (22);
/* OFDM rates */
case 4: return (12);
case 5: return (18);
case 6: return (24);
case 7: return (36);
case 8: return (48);
case 9: return (72);
case 10: return (96);
case 11: return (108);
/* unknown rate: should not happen */
default: return (0);
}
}
static void
malo_next_scan(void *arg)
{
struct malo_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int s;
DPRINTF(1, "%s: %s\n", sc->sc_if.if_xname, __func__);
s = splnet();
if (ic->ic_state == IEEE80211_S_SCAN)
ieee80211_next_scan(ic);
splx(s);
}
static void
malo_tx_intr(struct malo_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct malo_tx_desc *desc;
struct malo_tx_data *data;
struct malo_node *rn;
int stat, s;
DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
s = splnet();
stat = sc->sc_txring.stat;
for (;;) {
desc = &sc->sc_txring.desc[sc->sc_txring.stat];
data = &sc->sc_txring.data[sc->sc_txring.stat];
rn = (struct malo_node *)data->ni;
/* check if TX descriptor is not owned by FW anymore */
if ((le32toh(desc->status) & MALO_TXD_STATUS_FW_OWNED) ||
!(le32toh(data->softstat) & MALO_TXD_STATUS_FAILED_AGING))
break;
/* if no frame has been sent, ignore */
if (rn == NULL)
goto next;
/* check TX state */
switch (le32toh(desc->status) & MALO_TXD_STATUS_USED) {
case MALO_TXD_STATUS_OK:
DPRINTF(2, "%s: data frame was sent successfully\n",
device_xname(sc->sc_dev));
if_statinc(ifp, if_opackets);
break;
default:
DPRINTF(1, "%s: data frame sending error\n",
device_xname(sc->sc_dev));
if_statinc(ifp, if_oerrors);
break;
}
/* save last used TX rate */
sc->sc_last_txrate = malo_chip2rate(desc->datarate);
/* cleanup TX data and TX descriptor */
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
ieee80211_free_node(data->ni);
data->m = NULL;
data->ni = NULL;
data->softstat &= htole32(~0x80);
desc->status = 0;
desc->len = 0;
DPRINTF(2, "%s: tx done idx=%u\n",
device_xname(sc->sc_dev), sc->sc_txring.stat);
sc->sc_txring.queued--;
next:
if (++sc->sc_txring.stat >= sc->sc_txring.count)
sc->sc_txring.stat = 0;
if (sc->sc_txring.stat == stat)
break;
}
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
malo_start(ifp);
splx(s);
}
static int
malo_tx_data(struct malo_softc *sc, struct mbuf *m0,
struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct malo_tx_desc *desc;
struct malo_tx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct mbuf *mnew;
int error;
DPRINTF(2, "%s: %s\n", device_xname(sc->sc_dev), __func__);
desc = &sc->sc_txring.desc[sc->sc_txring.cur];
data = &sc->sc_txring.data[sc->sc_txring.cur];
if (m0->m_len < sizeof(struct ieee80211_frame)) {
m0 = m_pullup(m0, sizeof(struct ieee80211_frame));
if (m0 == NULL) {
if_statinc(ifp, if_ierrors);
return (ENOBUFS);
}
}
wh = mtod(m0, struct ieee80211_frame *);
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
if (sc->sc_drvbpf != NULL) {
struct malo_tx_radiotap_hdr *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
tap->wt_rate = sc->sc_last_txrate;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0, BPF_D_OUT);
}
/*
* inject FW specific fields into the 802.11 frame
*
* 2 bytes FW len (inject)
* 24 bytes 802.11 frame header
* 6 bytes addr4 (inject)
* n bytes 802.11 frame body
*
* For now copy all into a new mcluster.
*/
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL)
return (ENOBUFS);
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_free(mnew);
return (ENOBUFS);
}
*mtod(mnew, uint16_t *) = htole16(m0->m_pkthdr.len - 24); /* FW len */
memmove(mtod(mnew, char*) + 2, wh, sizeof(*wh));
memset(mtod(mnew, char*) + 26, 0, 6);
m_copydata(m0, sizeof(*wh), m0->m_pkthdr.len - sizeof(*wh),
mtod(mnew, char*) + 32);
mnew->m_pkthdr.len = mnew->m_len = m0->m_pkthdr.len + 8;
m_freem(m0);
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "can't map mbuf (error %d)\n", error);
m_freem(m0);
return (error);
}
data->m = m0;
data->ni = ni;
data->softstat |= htole32(0x80);
malo_tx_setup_desc(sc, desc, m0->m_pkthdr.len, 1,
data->map->dm_segs, data->map->dm_nsegs);
bus_dmamap_sync(sc->sc_dmat, data->map, 0, data->map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->sc_txring.map,
sc->sc_txring.cur * sizeof(struct malo_tx_desc),
sizeof(struct malo_tx_desc), BUS_DMASYNC_PREWRITE);
DPRINTF(2, "%s: sending frame, pktlen=%u, idx=%u\n",
device_xname(sc->sc_dev), m0->m_pkthdr.len, sc->sc_txring.cur);
sc->sc_txring.queued++;
sc->sc_txring.cur = (sc->sc_txring.cur + 1) % MALO_TX_RING_COUNT;
/* kick data TX */
malo_ctl_write4(sc, MALO_REG_H2A_INTERRUPT_EVENTS, 1);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE);
return (0);
}
static void
malo_tx_setup_desc(struct malo_softc *sc, struct malo_tx_desc *desc,
int len, int rate, const bus_dma_segment_t *segs, int nsegs)
{
desc->len = htole16(segs[0].ds_len);
desc->datarate = rate; /* 0 = mgmt frame, 1 = data frame */
desc->physdata = htole32(segs[0].ds_addr);
desc->status = htole32(MALO_TXD_STATUS_OK | MALO_TXD_STATUS_FW_OWNED);
}
static void
malo_rx_intr(struct malo_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct malo_rx_desc *desc;
struct malo_rx_data *data;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *mnew, *m;
uint32_t rxRdPtr, rxWrPtr;
int error, i, s;
rxRdPtr = malo_mem_read4(sc, sc->sc_RxPdRdPtr);
rxWrPtr = malo_mem_read4(sc, sc->sc_RxPdWrPtr);
for (i = 0; i < MALO_RX_RING_COUNT && rxRdPtr != rxWrPtr; i++) {
desc = &sc->sc_rxring.desc[sc->sc_rxring.cur];
data = &sc->sc_rxring.data[sc->sc_rxring.cur];
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxring.map,
sc->sc_rxring.cur * sizeof(struct malo_rx_desc),
sizeof(struct malo_rx_desc), BUS_DMASYNC_POSTREAD);
DPRINTF(3, "%s: rx intr idx=%d, rxctrl=0x%02x, rssi=%d, "
"status=0x%02x, channel=%d, len=%d, res1=%02x, rate=%d, "
"physdata=0x%04x, physnext=0x%04x, qosctrl=%02x, res2=%d\n",
device_xname(sc->sc_dev),
sc->sc_rxring.cur, desc->rxctrl, desc->rssi, desc->status,
desc->channel, le16toh(desc->len), desc->reserved1,
desc->datarate, le32toh(desc->physdata),
le32toh(desc->physnext), desc->qosctrl, desc->reserved2);
if ((desc->rxctrl & 0x80) == 0)
break;
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
if_statinc(ifp, if_ierrors);
goto skip;
}
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(mnew);
if_statinc(ifp, if_ierrors);
goto skip;
}
bus_dmamap_sync(sc->sc_dmat, data->map, 0,
data->map->dm_mapsize, BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, data->map);
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(mnew, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
m_freem(mnew);
error = bus_dmamap_load(sc->sc_dmat, data->map,
mtod(data->m, void *), MCLBYTES, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
panic("%s: could not load old rx mbuf",
device_xname(sc->sc_dev));
}
if_statinc(ifp, if_ierrors);
goto skip;
}
/*
* New mbuf mbuf successfully loaded
*/
m = data->m;
data->m = mnew;
desc->physdata = htole32(data->map->dm_segs->ds_addr);
/* finalize mbuf */
m_set_rcvif(m, ifp);
m->m_pkthdr.len = m->m_len = le16toh(desc->len);
/*
* cut out FW specific fields from the 802.11 frame
*
* 2 bytes FW len (cut out)
* 24 bytes 802.11 frame header
* 6 bytes addr4 (cut out)
* n bytes 802.11 frame data
*/
memmove(m->m_data +6, m->m_data, 26);
m_adj(m, 8);
s = splnet();
if (sc->sc_drvbpf != NULL) {
struct malo_rx_radiotap_hdr *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_chan_freq =
htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m,
BPF_D_IN);
}
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, desc->rssi, 0);
/* node is no longer needed */
ieee80211_free_node(ni);
splx(s);
skip:
desc->rxctrl = 0;
rxRdPtr = le32toh(desc->physnext);
bus_dmamap_sync(sc->sc_dmat, sc->sc_rxring.map,
sc->sc_rxring.cur * sizeof(struct malo_rx_desc),
sizeof(struct malo_rx_desc), BUS_DMASYNC_PREWRITE);
sc->sc_rxring.cur = (sc->sc_rxring.cur + 1) %
MALO_RX_RING_COUNT;
}
malo_mem_write4(sc, sc->sc_RxPdRdPtr, rxRdPtr);
}
static int
malo_get_firmware(struct malo_softc *sc, const char *name,
uint8_t** firmware_image, size_t* size)
{
firmware_handle_t fw;
int error;
/* load firmware image from disk */
if ((error = firmware_open("malo", name, &fw)) != 0) {
aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
return error;
}
*size = firmware_get_size(fw);
*firmware_image = firmware_malloc(*size);
if (*firmware_image == NULL) {
aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
error = ENOMEM;
goto fail1;
}
if ((error = firmware_read(fw, 0, *firmware_image, *size)) != 0) {
aprint_error_dev(sc->sc_dev, "can't get firmware\n");
goto fail2;
}
firmware_close(fw);
return 0;
fail2:
firmware_free(*firmware_image, *size);
fail1:
firmware_close(fw);
return error;
}
static int
malo_load_bootimg(struct malo_softc *sc)
{
const char *name = "malo8335-h";
uint8_t *ucode;
size_t size;
int error, i;
/* load boot firmware */
if ((error = malo_get_firmware(sc, name, &ucode, &size)) != 0) {
aprint_error_dev(sc->sc_dev, "error %d, could not read firmware %s\n",
error, name);
return (EIO);
}
/*
* It seems we are putting this code directly onto the stack of
* the ARM cpu. I don't know why we need to instruct the DMA
* engine to move the code. This is a big riddle without docu.
*/
DPRINTF(1, "%s: loading boot firmware\n", device_xname(sc->sc_dev));
malo_mem_write2(sc, 0xbef8, 0x001);
malo_mem_write2(sc, 0xbefa, size);
malo_mem_write4(sc, 0xbefc, 0);
bus_space_write_region_1(sc->sc_mem1_bt, sc->sc_mem1_bh, 0xbf00,
ucode, size);
firmware_free(ucode, size);
/*
* we loaded the firmware into card memory now tell the CPU
* to fetch the code and execute it. The memory mapped via the
* first bar is internaly mapped to 0xc0000000.
*/
malo_send_cmd(sc, 0xc000bef8);
/* wait for the device to go into FW loading mode */
for (i = 0; i < 10; i++) {
delay(50);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_READ);
if (malo_ctl_read4(sc, 0x0c14) == 0x5)
break;
}
if (i == 10) {
aprint_error_dev(sc->sc_dev, "timeout at boot firmware load!\n");
return (ETIMEDOUT);
}
/* tell the card we're done and... */
malo_mem_write2(sc, 0xbef8, 0x001);
malo_mem_write2(sc, 0xbefa, 0);
malo_mem_write4(sc, 0xbefc, 0);
malo_send_cmd(sc, 0xc000bef8);
DPRINTF(1, "%s: boot firmware loaded\n", device_xname(sc->sc_dev));
return (0);
}
static int
malo_load_firmware(struct malo_softc *sc)
{
struct malo_cmdheader *hdr;
const char *name = "malo8335-m";
void *data;
uint8_t *ucode;
size_t size, count, bsize;
int i, sn, error;
/* load real firmware now */
if ((error = malo_get_firmware(sc, name, &ucode, &size)) != 0) {
aprint_error_dev(sc->sc_dev, "error %d, could not read firmware %s\n",
error, name);
return (EIO);
}
DPRINTF(1, "%s: uploading firmware\n", device_xname(sc->sc_dev));
hdr = sc->sc_cmd_mem;
data = hdr + 1;
sn = 1;
for (count = 0; count < size; count += bsize) {
bsize = MIN(256, size - count);
hdr->cmd = htole16(0x0001);
hdr->size = htole16(bsize);
hdr->seqnum = htole16(sn++);
hdr->result = 0;
memcpy(data, ucode + count, bsize);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE);
malo_send_cmd(sc, sc->sc_cmd_dmaaddr);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_POSTWRITE);
delay(500);
}
firmware_free(ucode, size);
DPRINTF(1, "%s: firmware upload finished\n", device_xname(sc->sc_dev));
/*
* send a command with size 0 to tell that the firmware has been
* uploaded
*/
hdr->cmd = htole16(0x0001);
hdr->size = 0;
hdr->seqnum = htole16(sn++);
hdr->result = 0;
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE);
malo_send_cmd(sc, sc->sc_cmd_dmaaddr);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_POSTWRITE);
delay(100);
DPRINTF(1, "%s: loading firmware\n", device_xname(sc->sc_dev));
/* wait until firmware has been loaded */
for (i = 0; i < 200; i++) {
malo_ctl_write4(sc, 0x0c10, 0x5a);
delay(500);
malo_ctl_barrier(sc, BUS_SPACE_BARRIER_WRITE |
BUS_SPACE_BARRIER_READ);
if (malo_ctl_read4(sc, 0x0c14) == 0xf0f1f2f4)
break;
}
if (i == 200) {
aprint_error_dev(sc->sc_dev, "timeout at firmware load!\n");
return (ETIMEDOUT);
}
DPRINTF(1, "%s: firmware loaded\n", device_xname(sc->sc_dev));
return (0);
}
static int
malo_set_slot(struct malo_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
if (ic->ic_flags & IEEE80211_F_SHSLOT) {
/* set short slot */
if (malo_cmd_set_slot(sc, 1)) {
aprint_error_dev(sc->sc_dev, "setting short slot failed\n");
return (ENXIO);
}
} else {
/* set long slot */
if (malo_cmd_set_slot(sc, 0)) {
aprint_error_dev(sc->sc_dev, "setting long slot failed\n");
return (ENXIO);
}
}
return (0);
}
static void
malo_update_slot(struct ifnet* ifp)
{
struct malo_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
malo_set_slot(sc);
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* TODO */
}
}
#ifdef MALO_DEBUG
static void
malo_hexdump(void *buf, int len)
{
u_char b[16];
int i, j, l;
for (i = 0; i < len; i += l) {
printf("%4i:", i);
l = uimin(sizeof(b), len - i);
memcpy(b, (char*)buf + i, l);
for (j = 0; j < sizeof(b); j++) {
if (j % 2 == 0)
printf(" ");
if (j % 8 == 0)
printf(" ");
if (j < l)
printf("%02x", (int)b[j]);
else
printf(" ");
}
printf(" |");
for (j = 0; j < l; j++) {
if (b[j] >= 0x20 && b[j] <= 0x7e)
printf("%c", b[j]);
else
printf(".");
}
printf("|\n");
}
}
#endif
static const char *
malo_cmd_string(uint16_t cmd)
{
int i;
static char cmd_buf[16];
static const struct {
uint16_t cmd_code;
const char *cmd_string;
} cmds[] = {
{ MALO_CMD_GET_HW_SPEC, "GetHwSpecifications" },
{ MALO_CMD_SET_RADIO, "SetRadio" },
{ MALO_CMD_SET_AID, "SetAid" },
{ MALO_CMD_SET_TXPOWER, "SetTxPower" },
{ MALO_CMD_SET_ANTENNA, "SetAntenna" },
{ MALO_CMD_SET_PRESCAN, "SetPrescan" },
{ MALO_CMD_SET_POSTSCAN, "SetPostscan" },
{ MALO_CMD_SET_RATE, "SetRate" },
{ MALO_CMD_SET_CHANNEL, "SetChannel" },
{ MALO_CMD_SET_RTS, "SetRTS" },
{ MALO_CMD_SET_SLOT, "SetSlot" },
};
for (i = 0; i < sizeof(cmds) / sizeof(cmds[0]); i++)
if ((le16toh(cmd) & 0x7fff) == cmds[i].cmd_code)
return (cmds[i].cmd_string);
snprintf(cmd_buf, sizeof(cmd_buf), "unknown %#x", cmd);
return (cmd_buf);
}
static const char *
malo_cmd_string_result(uint16_t result)
{
int i;
static const struct {
uint16_t result_code;
const char *result_string;
} results[] = {
{ MALO_CMD_RESULT_OK, "OK" },
{ MALO_CMD_RESULT_ERROR, "general error" },
{ MALO_CMD_RESULT_NOSUPPORT, "not supported" },
{ MALO_CMD_RESULT_PENDING, "pending" },
{ MALO_CMD_RESULT_BUSY, "ignored" },
{ MALO_CMD_RESULT_PARTIALDATA, "incomplete" },
};
for (i = 0; i < sizeof(results) / sizeof(results[0]); i++)
if (le16toh(result) == results[i].result_code)
return (results[i].result_string);
return ("unknown");
}
static int
malo_cmd_get_spec(struct malo_softc *sc)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_hw_spec *spec;
hdr->cmd = htole16(MALO_CMD_GET_HW_SPEC);
hdr->size = htole16(sizeof(*hdr) + sizeof(*spec));
hdr->seqnum = htole16(42); /* the one and only */
hdr->result = 0;
spec = (struct malo_hw_spec *)(hdr + 1);
memset(spec, 0, sizeof(*spec));
memset(spec->PermanentAddress, 0xff, ETHER_ADDR_LEN);
spec->CookiePtr = htole32(sc->sc_cookie_dmaaddr);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD);
if (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr) != 0)
return (ETIMEDOUT);
/* get the data from the buffer */
DPRINTF(1, "%s: get_hw_spec: V%x R%x, #WCB %d, #Mcast %d, Regcode %d, "
"#Ant %d\n", device_xname(sc->sc_dev), htole16(spec->HwVersion),
htole32(spec->FWReleaseNumber), htole16(spec->NumOfWCB),
htole16(spec->NumOfMCastAdr), htole16(spec->RegionCode),
htole16(spec->NumberOfAntenna));
/* tell the DMA engine where our rings are */
malo_mem_write4(sc, le32toh(spec->RxPdRdPtr) & 0xffff,
sc->sc_rxring.physaddr);
malo_mem_write4(sc, le32toh(spec->RxPdWrPtr) & 0xffff,
sc->sc_rxring.physaddr);
malo_mem_write4(sc, le32toh(spec->WcbBase0) & 0xffff,
sc->sc_txring.physaddr);
/* save DMA RX pointers for later use */
sc->sc_RxPdRdPtr = le32toh(spec->RxPdRdPtr) & 0xffff;
sc->sc_RxPdWrPtr = le32toh(spec->RxPdWrPtr) & 0xffff;
return (0);
}
static int
malo_cmd_set_prescan(struct malo_softc *sc)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
hdr->cmd = htole16(MALO_CMD_SET_PRESCAN);
hdr->size = htole16(sizeof(*hdr));
hdr->seqnum = 1;
hdr->result = 0;
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_postscan(struct malo_softc *sc, uint8_t *macaddr, uint8_t ibsson)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_postscan *body;
hdr->cmd = htole16(MALO_CMD_SET_POSTSCAN);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_postscan *)(hdr + 1);
memset(body, 0, sizeof(*body));
memcpy(&body->bssid, macaddr, ETHER_ADDR_LEN);
body->isibss = htole32(ibsson);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_channel(struct malo_softc *sc, struct ieee80211_channel* chan)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct ieee80211com *ic = &sc->sc_ic;
struct malo_cmd_channel *body;
uint8_t channel;
channel = ieee80211_chan2ieee(ic, chan);
hdr->cmd = htole16(MALO_CMD_SET_CHANNEL);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_channel *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->action = htole16(1);
body->channel = channel;
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_antenna(struct malo_softc *sc, uint16_t antenna)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_antenna *body;
hdr->cmd = htole16(MALO_CMD_SET_ANTENNA);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_antenna *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->action = htole16(antenna);
if (antenna == 1)
body->mode = htole16(0xffff);
else
body->mode = htole16(2);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_radio(struct malo_softc *sc, uint16_t enable,
uint16_t preamble_mode)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_radio *body;
hdr->cmd = htole16(MALO_CMD_SET_RADIO);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_radio *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->action = htole16(1);
body->preamble_mode = htole16(preamble_mode);
body->enable = htole16(enable);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_aid(struct malo_softc *sc, uint8_t *bssid, uint16_t associd)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_aid *body;
hdr->cmd = htole16(MALO_CMD_SET_AID);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_aid *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->associd = htole16(associd);
memcpy(&body->macaddr[0], bssid, IEEE80211_ADDR_LEN);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_txpower(struct malo_softc *sc, unsigned int powerlevel)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_txpower *body;
hdr->cmd = htole16(MALO_CMD_SET_TXPOWER);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_txpower *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->action = htole16(1);
if (powerlevel < 30)
body->supportpowerlvl = htole16(5); /* LOW */
else if (powerlevel < 60)
body->supportpowerlvl = htole16(10); /* MEDIUM */
else
body->supportpowerlvl = htole16(15); /* HIGH */
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_rts(struct malo_softc *sc, uint32_t threshold)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_rts *body;
hdr->cmd = htole16(MALO_CMD_SET_RTS);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_rts *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->action = htole16(1);
body->threshold = htole32(threshold);
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_slot(struct malo_softc *sc, uint8_t slot)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_slot *body;
hdr->cmd = htole16(MALO_CMD_SET_SLOT);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_slot *)(hdr + 1);
memset(body, 0, sizeof(*body));
body->action = htole16(1);
body->slot = slot;
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static int
malo_cmd_set_rate(struct malo_softc *sc, uint8_t rate)
{
struct ieee80211com *ic = &sc->sc_ic;
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
struct malo_cmd_rate *body;
int i;
hdr->cmd = htole16(MALO_CMD_SET_RATE);
hdr->size = htole16(sizeof(*hdr) + sizeof(*body));
hdr->seqnum = 1;
hdr->result = 0;
body = (struct malo_cmd_rate *)(hdr + 1);
memset(body, 0,sizeof(*body));
if (ic->ic_opmode == IEEE80211_M_HOSTAP) {
/* TODO */
} else
{
body->aprates[0] = 2;
body->aprates[1] = 4;
body->aprates[2] = 11;
body->aprates[3] = 22;
if (ic->ic_curmode == IEEE80211_MODE_11G) {
body->aprates[4] = 0;
body->aprates[5] = 12;
body->aprates[6] = 18;
body->aprates[7] = 24;
body->aprates[8] = 36;
body->aprates[9] = 48;
body->aprates[10] = 72;
body->aprates[11] = 96;
body->aprates[12] = 108;
}
}
if (rate != 0) {
/* fixed rate */
for (i = 0; i < 13; i++) {
if (body->aprates[i] == rate) {
body->rateindex = i;
body->dataratetype = 1;
break;
}
}
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_cmd_dmam, 0, PAGE_SIZE,
BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
return (malo_send_cmd_dma(sc, sc->sc_cmd_dmaaddr));
}
static void
malo_cmd_response(struct malo_softc *sc)
{
struct malo_cmdheader *hdr = sc->sc_cmd_mem;
if (le16toh(hdr->result) != MALO_CMD_RESULT_OK) {
aprint_error_dev(sc->sc_dev, "firmware cmd %s failed with %s\n",
malo_cmd_string(hdr->cmd),
malo_cmd_string_result(hdr->result));
}
#ifdef MALO_DEBUG
aprint_error_dev(sc->sc_dev, "cmd answer for %s=%s\n",
malo_cmd_string(hdr->cmd),
malo_cmd_string_result(hdr->result));
if (malo_d > 2)
malo_hexdump(hdr, le16toh(hdr->size));
#endif
}