NetBSD/sys/dev/ic/dwc_mmc.c
2020-03-20 17:20:30 +00:00

944 lines
25 KiB
C

/* $NetBSD: dwc_mmc.c,v 1.26 2020/03/20 17:20:30 skrll Exp $ */
/*-
* Copyright (c) 2014-2017 Jared McNeill <jmcneill@invisible.ca>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: dwc_mmc.c,v 1.26 2020/03/20 17:20:30 skrll Exp $");
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/intr.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <dev/sdmmc/sdmmcvar.h>
#include <dev/sdmmc/sdmmcchip.h>
#include <dev/sdmmc/sdmmc_ioreg.h>
#include <dev/ic/dwc_mmc_reg.h>
#include <dev/ic/dwc_mmc_var.h>
#define DWC_MMC_NDESC 64
static int dwc_mmc_host_reset(sdmmc_chipset_handle_t);
static uint32_t dwc_mmc_host_ocr(sdmmc_chipset_handle_t);
static int dwc_mmc_host_maxblklen(sdmmc_chipset_handle_t);
static int dwc_mmc_card_detect(sdmmc_chipset_handle_t);
static int dwc_mmc_write_protect(sdmmc_chipset_handle_t);
static int dwc_mmc_bus_power(sdmmc_chipset_handle_t, uint32_t);
static int dwc_mmc_bus_clock(sdmmc_chipset_handle_t, int);
static int dwc_mmc_bus_width(sdmmc_chipset_handle_t, int);
static int dwc_mmc_bus_rod(sdmmc_chipset_handle_t, int);
static int dwc_mmc_signal_voltage(sdmmc_chipset_handle_t, int);
static void dwc_mmc_exec_command(sdmmc_chipset_handle_t,
struct sdmmc_command *);
static void dwc_mmc_card_enable_intr(sdmmc_chipset_handle_t, int);
static void dwc_mmc_card_intr_ack(sdmmc_chipset_handle_t);
static struct sdmmc_chip_functions dwc_mmc_chip_functions = {
.host_reset = dwc_mmc_host_reset,
.host_ocr = dwc_mmc_host_ocr,
.host_maxblklen = dwc_mmc_host_maxblklen,
.card_detect = dwc_mmc_card_detect,
.write_protect = dwc_mmc_write_protect,
.bus_power = dwc_mmc_bus_power,
.bus_clock = dwc_mmc_bus_clock,
.bus_width = dwc_mmc_bus_width,
.bus_rod = dwc_mmc_bus_rod,
.signal_voltage = dwc_mmc_signal_voltage,
.exec_command = dwc_mmc_exec_command,
.card_enable_intr = dwc_mmc_card_enable_intr,
.card_intr_ack = dwc_mmc_card_intr_ack,
};
#define MMC_WRITE(sc, reg, val) \
bus_space_write_4((sc)->sc_bst, (sc)->sc_bsh, (reg), (val))
#define MMC_READ(sc, reg) \
bus_space_read_4((sc)->sc_bst, (sc)->sc_bsh, (reg))
static int
dwc_mmc_dmabounce_setup(struct dwc_mmc_softc *sc)
{
bus_dma_segment_t ds[1];
int error, rseg;
sc->sc_dmabounce_buflen = dwc_mmc_host_maxblklen(sc);
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_dmabounce_buflen, 0,
sc->sc_dmabounce_buflen, ds, 1, &rseg, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmat, ds, 1, sc->sc_dmabounce_buflen,
&sc->sc_dmabounce_buf, BUS_DMA_WAITOK);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmat, sc->sc_dmabounce_buflen, 1,
sc->sc_dmabounce_buflen, 0, BUS_DMA_WAITOK, &sc->sc_dmabounce_map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmabounce_map,
sc->sc_dmabounce_buf, sc->sc_dmabounce_buflen, NULL,
BUS_DMA_WAITOK);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmabounce_map);
unmap:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_dmabounce_buf,
sc->sc_dmabounce_buflen);
free:
bus_dmamem_free(sc->sc_dmat, ds, rseg);
return error;
}
static int
dwc_mmc_idma_setup(struct dwc_mmc_softc *sc)
{
int error;
sc->sc_idma_xferlen = 0x1000;
sc->sc_idma_ndesc = DWC_MMC_NDESC;
sc->sc_idma_size = sizeof(struct dwc_mmc_idma_desc) *
sc->sc_idma_ndesc;
error = bus_dmamem_alloc(sc->sc_dmat, sc->sc_idma_size, 8,
sc->sc_idma_size, sc->sc_idma_segs, 1,
&sc->sc_idma_nsegs, BUS_DMA_WAITOK);
if (error)
return error;
error = bus_dmamem_map(sc->sc_dmat, sc->sc_idma_segs,
sc->sc_idma_nsegs, sc->sc_idma_size,
&sc->sc_idma_desc, BUS_DMA_WAITOK);
if (error)
goto free;
error = bus_dmamap_create(sc->sc_dmat, sc->sc_idma_size, 1,
sc->sc_idma_size, 0, BUS_DMA_WAITOK, &sc->sc_idma_map);
if (error)
goto unmap;
error = bus_dmamap_load(sc->sc_dmat, sc->sc_idma_map,
sc->sc_idma_desc, sc->sc_idma_size, NULL, BUS_DMA_WAITOK);
if (error)
goto destroy;
return 0;
destroy:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_idma_map);
unmap:
bus_dmamem_unmap(sc->sc_dmat, sc->sc_idma_desc, sc->sc_idma_size);
free:
bus_dmamem_free(sc->sc_dmat, sc->sc_idma_segs, sc->sc_idma_nsegs);
return error;
}
static void
dwc_mmc_attach_i(device_t self)
{
struct dwc_mmc_softc *sc = device_private(self);
struct sdmmcbus_attach_args saa;
if (sc->sc_pre_power_on)
sc->sc_pre_power_on(sc);
dwc_mmc_signal_voltage(sc, SDMMC_SIGNAL_VOLTAGE_330);
dwc_mmc_host_reset(sc);
dwc_mmc_bus_width(sc, 1);
if (sc->sc_post_power_on)
sc->sc_post_power_on(sc);
memset(&saa, 0, sizeof(saa));
saa.saa_busname = "sdmmc";
saa.saa_sct = &dwc_mmc_chip_functions;
saa.saa_sch = sc;
saa.saa_clkmin = 400;
saa.saa_clkmax = sc->sc_clock_freq / 1000;
saa.saa_dmat = sc->sc_dmat;
saa.saa_caps = SMC_CAPS_SD_HIGHSPEED |
SMC_CAPS_MMC_HIGHSPEED |
SMC_CAPS_AUTO_STOP |
SMC_CAPS_DMA |
SMC_CAPS_MULTI_SEG_DMA;
if (sc->sc_bus_width == 8)
saa.saa_caps |= SMC_CAPS_8BIT_MODE;
else
saa.saa_caps |= SMC_CAPS_4BIT_MODE;
if (sc->sc_card_detect)
saa.saa_caps |= SMC_CAPS_POLL_CARD_DET;
sc->sc_sdmmc_dev = config_found(self, &saa, NULL);
}
static void
dwc_mmc_led(struct dwc_mmc_softc *sc, int on)
{
if (sc->sc_set_led)
sc->sc_set_led(sc, on);
}
static int
dwc_mmc_host_reset(sdmmc_chipset_handle_t sch)
{
struct dwc_mmc_softc *sc = sch;
uint32_t fifoth, ctrl;
int retry = 1000;
#ifdef DWC_MMC_DEBUG
aprint_normal_dev(sc->sc_dev, "host reset\n");
#endif
if (ISSET(sc->sc_flags, DWC_MMC_F_PWREN_INV))
MMC_WRITE(sc, DWC_MMC_PWREN, 0);
else
MMC_WRITE(sc, DWC_MMC_PWREN, 1);
ctrl = MMC_READ(sc, DWC_MMC_GCTRL);
ctrl &= ~DWC_MMC_GCTRL_USE_INTERNAL_DMAC;
MMC_WRITE(sc, DWC_MMC_GCTRL, ctrl);
MMC_WRITE(sc, DWC_MMC_DMAC, DWC_MMC_DMAC_SOFTRESET);
MMC_WRITE(sc, DWC_MMC_GCTRL,
MMC_READ(sc, DWC_MMC_GCTRL) | DWC_MMC_GCTRL_RESET);
while (--retry > 0) {
if (!(MMC_READ(sc, DWC_MMC_GCTRL) & DWC_MMC_GCTRL_RESET))
break;
delay(100);
}
MMC_WRITE(sc, DWC_MMC_CLKSRC, 0);
MMC_WRITE(sc, DWC_MMC_TIMEOUT, 0xffffffff);
MMC_WRITE(sc, DWC_MMC_IMASK, 0);
MMC_WRITE(sc, DWC_MMC_RINT, 0xffffffff);
const uint32_t rx_wmark = (sc->sc_fifo_depth / 2) - 1;
const uint32_t tx_wmark = sc->sc_fifo_depth / 2;
fifoth = __SHIFTIN(DWC_MMC_FIFOTH_DMA_MULTIPLE_TXN_SIZE_16,
DWC_MMC_FIFOTH_DMA_MULTIPLE_TXN_SIZE);
fifoth |= __SHIFTIN(rx_wmark, DWC_MMC_FIFOTH_RX_WMARK);
fifoth |= __SHIFTIN(tx_wmark, DWC_MMC_FIFOTH_TX_WMARK);
MMC_WRITE(sc, DWC_MMC_FIFOTH, fifoth);
MMC_WRITE(sc, DWC_MMC_UHS, 0);
ctrl = MMC_READ(sc, DWC_MMC_GCTRL);
ctrl |= DWC_MMC_GCTRL_INTEN;
ctrl |= DWC_MMC_GCTRL_DMAEN;
ctrl |= DWC_MMC_GCTRL_SEND_AUTO_STOP_CCSD;
ctrl |= DWC_MMC_GCTRL_USE_INTERNAL_DMAC;
MMC_WRITE(sc, DWC_MMC_GCTRL, ctrl);
return 0;
}
static uint32_t
dwc_mmc_host_ocr(sdmmc_chipset_handle_t sch)
{
return MMC_OCR_3_2V_3_3V | MMC_OCR_3_3V_3_4V | MMC_OCR_HCS;
}
static int
dwc_mmc_host_maxblklen(sdmmc_chipset_handle_t sch)
{
return 32768;
}
static int
dwc_mmc_card_detect(sdmmc_chipset_handle_t sch)
{
struct dwc_mmc_softc *sc = sch;
if (!sc->sc_card_detect)
return 1; /* no card detect pin, assume present */
return sc->sc_card_detect(sc);
}
static int
dwc_mmc_write_protect(sdmmc_chipset_handle_t sch)
{
struct dwc_mmc_softc *sc = sch;
if (!sc->sc_write_protect)
return 0; /* no write protect pin, assume rw */
return sc->sc_write_protect(sc);
}
static int
dwc_mmc_bus_power(sdmmc_chipset_handle_t sch, uint32_t ocr)
{
struct dwc_mmc_softc *sc = sch;
if (ocr == 0)
sc->sc_card_inited = false;
return 0;
}
static int
dwc_mmc_signal_voltage(sdmmc_chipset_handle_t sch, int signal_voltage)
{
struct dwc_mmc_softc *sc = sch;
if (sc->sc_signal_voltage == NULL)
return 0;
return sc->sc_signal_voltage(sc, signal_voltage);
}
static int
dwc_mmc_update_clock(struct dwc_mmc_softc *sc)
{
uint32_t cmd;
int retry;
#ifdef DWC_MMC_DEBUG
aprint_normal_dev(sc->sc_dev, "update clock\n");
#endif
cmd = DWC_MMC_CMD_START |
DWC_MMC_CMD_UPCLK_ONLY |
DWC_MMC_CMD_WAIT_PRE_OVER;
if (ISSET(sc->sc_flags, DWC_MMC_F_USE_HOLD_REG))
cmd |= DWC_MMC_CMD_USE_HOLD_REG;
MMC_WRITE(sc, DWC_MMC_ARG, 0);
MMC_WRITE(sc, DWC_MMC_CMD, cmd);
retry = 200000;
while (--retry > 0) {
if (!(MMC_READ(sc, DWC_MMC_CMD) & DWC_MMC_CMD_START))
break;
delay(10);
}
if (retry == 0) {
aprint_error_dev(sc->sc_dev, "timeout updating clock\n");
#ifdef DWC_MMC_DEBUG
device_printf(sc->sc_dev, "GCTRL: 0x%08x\n",
MMC_READ(sc, DWC_MMC_GCTRL));
device_printf(sc->sc_dev, "CLKENA: 0x%08x\n",
MMC_READ(sc, DWC_MMC_CLKENA));
device_printf(sc->sc_dev, "CLKDIV: 0x%08x\n",
MMC_READ(sc, DWC_MMC_CLKDIV));
device_printf(sc->sc_dev, "TIMEOUT: 0x%08x\n",
MMC_READ(sc, DWC_MMC_TIMEOUT));
device_printf(sc->sc_dev, "WIDTH: 0x%08x\n",
MMC_READ(sc, DWC_MMC_WIDTH));
device_printf(sc->sc_dev, "CMD: 0x%08x\n",
MMC_READ(sc, DWC_MMC_CMD));
device_printf(sc->sc_dev, "MINT: 0x%08x\n",
MMC_READ(sc, DWC_MMC_MINT));
device_printf(sc->sc_dev, "RINT: 0x%08x\n",
MMC_READ(sc, DWC_MMC_RINT));
device_printf(sc->sc_dev, "STATUS: 0x%08x\n",
MMC_READ(sc, DWC_MMC_STATUS));
#endif
return ETIMEDOUT;
}
return 0;
}
static int
dwc_mmc_set_clock(struct dwc_mmc_softc *sc, u_int freq)
{
const u_int pll_freq = sc->sc_clock_freq / 1000;
u_int clk_div, ciu_div;
ciu_div = sc->sc_ciu_div > 0 ? sc->sc_ciu_div : 1;
if (freq != pll_freq)
clk_div = howmany(pll_freq, freq * ciu_div);
else
clk_div = 0;
MMC_WRITE(sc, DWC_MMC_CLKDIV, clk_div);
return dwc_mmc_update_clock(sc);
}
static int
dwc_mmc_bus_clock(sdmmc_chipset_handle_t sch, int freq)
{
struct dwc_mmc_softc *sc = sch;
uint32_t clkena;
MMC_WRITE(sc, DWC_MMC_CLKSRC, 0);
MMC_WRITE(sc, DWC_MMC_CLKENA, 0);
if (dwc_mmc_update_clock(sc) != 0)
return 1;
if (freq) {
if (sc->sc_bus_clock && sc->sc_bus_clock(sc, freq) != 0)
return 1;
if (dwc_mmc_set_clock(sc, freq) != 0)
return 1;
clkena = DWC_MMC_CLKENA_CARDCLKON;
MMC_WRITE(sc, DWC_MMC_CLKENA, clkena);
if (dwc_mmc_update_clock(sc) != 0)
return 1;
}
delay(1000);
return 0;
}
static int
dwc_mmc_bus_width(sdmmc_chipset_handle_t sch, int width)
{
struct dwc_mmc_softc *sc = sch;
#ifdef DWC_MMC_DEBUG
aprint_normal_dev(sc->sc_dev, "width = %d\n", width);
#endif
switch (width) {
case 1:
MMC_WRITE(sc, DWC_MMC_WIDTH, DWC_MMC_WIDTH_1);
break;
case 4:
MMC_WRITE(sc, DWC_MMC_WIDTH, DWC_MMC_WIDTH_4);
break;
case 8:
MMC_WRITE(sc, DWC_MMC_WIDTH, DWC_MMC_WIDTH_8);
break;
default:
return 1;
}
sc->sc_mmc_width = width;
return 0;
}
static int
dwc_mmc_bus_rod(sdmmc_chipset_handle_t sch, int on)
{
return -1;
}
static int
dwc_mmc_dma_prepare(struct dwc_mmc_softc *sc, struct sdmmc_command *cmd)
{
struct dwc_mmc_idma_desc *dma = sc->sc_idma_desc;
bus_addr_t desc_paddr = sc->sc_idma_map->dm_segs[0].ds_addr;
bus_dmamap_t map;
bus_size_t off;
int desc, resid, seg;
uint32_t val;
/*
* If the command includs a dma map use it, otherwise we need to
* bounce. This can happen for SDIO IO_RW_EXTENDED (CMD53) commands.
*/
if (cmd->c_dmamap) {
map = cmd->c_dmamap;
} else {
if (cmd->c_datalen > sc->sc_dmabounce_buflen)
return E2BIG;
map = sc->sc_dmabounce_map;
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
memset(sc->sc_dmabounce_buf, 0, cmd->c_datalen);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_PREREAD);
} else {
memcpy(sc->sc_dmabounce_buf, cmd->c_data,
cmd->c_datalen);
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_PREWRITE);
}
}
desc = 0;
for (seg = 0; seg < map->dm_nsegs; seg++) {
bus_addr_t paddr = map->dm_segs[seg].ds_addr;
bus_size_t len = map->dm_segs[seg].ds_len;
resid = uimin(len, cmd->c_resid);
off = 0;
while (resid > 0) {
if (desc == sc->sc_idma_ndesc)
break;
len = uimin(sc->sc_idma_xferlen, resid);
dma[desc].dma_buf_size = htole32(len);
dma[desc].dma_buf_addr = htole32(paddr + off);
dma[desc].dma_config = htole32(
DWC_MMC_IDMA_CONFIG_CH |
DWC_MMC_IDMA_CONFIG_OWN);
cmd->c_resid -= len;
resid -= len;
off += len;
if (desc == 0) {
dma[desc].dma_config |= htole32(
DWC_MMC_IDMA_CONFIG_FD);
}
if (cmd->c_resid == 0) {
dma[desc].dma_config |= htole32(
DWC_MMC_IDMA_CONFIG_LD);
dma[desc].dma_config |= htole32(
DWC_MMC_IDMA_CONFIG_ER);
dma[desc].dma_next = 0;
} else {
dma[desc].dma_config |=
htole32(DWC_MMC_IDMA_CONFIG_DIC);
dma[desc].dma_next = htole32(
desc_paddr + ((desc+1) *
sizeof(struct dwc_mmc_idma_desc)));
}
++desc;
}
}
if (desc == sc->sc_idma_ndesc) {
aprint_error_dev(sc->sc_dev,
"not enough descriptors for %d byte transfer!\n",
cmd->c_datalen);
return EIO;
}
bus_dmamap_sync(sc->sc_dmat, sc->sc_idma_map, 0,
sc->sc_idma_size, BUS_DMASYNC_PREWRITE);
MMC_WRITE(sc, DWC_MMC_DLBA, desc_paddr);
val = MMC_READ(sc, DWC_MMC_GCTRL);
val |= DWC_MMC_GCTRL_DMAEN;
MMC_WRITE(sc, DWC_MMC_GCTRL, val);
val |= DWC_MMC_GCTRL_DMARESET;
MMC_WRITE(sc, DWC_MMC_GCTRL, val);
if (cmd->c_flags & SCF_CMD_READ)
val = DWC_MMC_IDST_RECEIVE_INT;
else
val = 0;
MMC_WRITE(sc, DWC_MMC_IDIE, val);
MMC_WRITE(sc, DWC_MMC_DMAC,
DWC_MMC_DMAC_IDMA_ON|DWC_MMC_DMAC_FIX_BURST);
return 0;
}
static void
dwc_mmc_dma_complete(struct dwc_mmc_softc *sc, struct sdmmc_command *cmd)
{
MMC_WRITE(sc, DWC_MMC_DMAC, 0);
MMC_WRITE(sc, DWC_MMC_IDIE, 0);
bus_dmamap_sync(sc->sc_dmat, sc->sc_idma_map, 0,
sc->sc_idma_size, BUS_DMASYNC_POSTWRITE);
if (cmd->c_dmamap == NULL) {
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_POSTREAD);
memcpy(cmd->c_data, sc->sc_dmabounce_buf,
cmd->c_datalen);
} else {
bus_dmamap_sync(sc->sc_dmat, sc->sc_dmabounce_map,
0, cmd->c_datalen, BUS_DMASYNC_POSTWRITE);
}
}
}
static void
dwc_mmc_exec_command(sdmmc_chipset_handle_t sch, struct sdmmc_command *cmd)
{
struct dwc_mmc_softc *sc = sch;
uint32_t cmdval = DWC_MMC_CMD_START;
int retry, error;
uint32_t imask;
u_int reg;
#ifdef DWC_MMC_DEBUG
aprint_normal_dev(sc->sc_dev,
"opcode %d flags 0x%x data %p datalen %d blklen %d\n",
cmd->c_opcode, cmd->c_flags, cmd->c_data, cmd->c_datalen,
cmd->c_blklen);
#endif
mutex_enter(&sc->sc_lock);
if (sc->sc_curcmd != NULL) {
device_printf(sc->sc_dev,
"WARNING: driver submitted a command while the controller was busy\n");
cmd->c_error = EBUSY;
SET(cmd->c_flags, SCF_ITSDONE);
mutex_exit(&sc->sc_lock);
return;
}
sc->sc_curcmd = cmd;
MMC_WRITE(sc, DWC_MMC_IDST, 0xffffffff);
if (!sc->sc_card_inited) {
cmdval |= DWC_MMC_CMD_SEND_INIT_SEQ;
sc->sc_card_inited = true;
}
if (ISSET(sc->sc_flags, DWC_MMC_F_USE_HOLD_REG))
cmdval |= DWC_MMC_CMD_USE_HOLD_REG;
switch (cmd->c_opcode) {
case SD_IO_RW_DIRECT:
reg = (cmd->c_arg >> SD_ARG_CMD52_REG_SHIFT) &
SD_ARG_CMD52_REG_MASK;
if (reg != 0x6) /* func abort / card reset */
break;
/* FALLTHROUGH */
case MMC_GO_IDLE_STATE:
case MMC_STOP_TRANSMISSION:
case MMC_INACTIVE_STATE:
cmdval |= DWC_MMC_CMD_STOP_ABORT_CMD;
break;
}
if (cmd->c_flags & SCF_RSP_PRESENT)
cmdval |= DWC_MMC_CMD_RSP_EXP;
if (cmd->c_flags & SCF_RSP_136)
cmdval |= DWC_MMC_CMD_LONG_RSP;
if (cmd->c_flags & SCF_RSP_CRC)
cmdval |= DWC_MMC_CMD_CHECK_RSP_CRC;
imask = DWC_MMC_INT_ERROR | DWC_MMC_INT_CMD_DONE;
if (cmd->c_datalen > 0) {
unsigned int nblks;
MMC_WRITE(sc, DWC_MMC_GCTRL,
MMC_READ(sc, DWC_MMC_GCTRL) | DWC_MMC_GCTRL_FIFORESET);
for (retry = 0; retry < 100000; retry++) {
if (!(MMC_READ(sc, DWC_MMC_DMAC) & DWC_MMC_DMAC_SOFTRESET))
break;
delay(1);
}
cmdval |= DWC_MMC_CMD_DATA_EXP | DWC_MMC_CMD_WAIT_PRE_OVER;
if (!ISSET(cmd->c_flags, SCF_CMD_READ)) {
cmdval |= DWC_MMC_CMD_WRITE;
}
nblks = cmd->c_datalen / cmd->c_blklen;
if (nblks == 0 || (cmd->c_datalen % cmd->c_blklen) != 0)
++nblks;
if (nblks > 1 && cmd->c_opcode != SD_IO_RW_EXTENDED) {
cmdval |= DWC_MMC_CMD_SEND_AUTO_STOP;
imask |= DWC_MMC_INT_AUTO_CMD_DONE;
} else {
imask |= DWC_MMC_INT_DATA_OVER;
}
MMC_WRITE(sc, DWC_MMC_TIMEOUT, 0xffffffff);
MMC_WRITE(sc, DWC_MMC_BLKSZ, cmd->c_blklen);
MMC_WRITE(sc, DWC_MMC_BYTECNT,
nblks > 1 ? nblks * cmd->c_blklen : cmd->c_datalen);
#if 0
/*
* The following doesn't work on the 250a verid IP in Odroid-XU4.
*
* thrctl should only be used for UHS/HS200 and faster timings on
* >=240a
*/
if (ISSET(cmd->c_flags, SCF_CMD_READ)) {
MMC_WRITE(sc, DWC_MMC_CARDTHRCTL,
__SHIFTIN(cmd->c_blklen, DWC_MMC_CARDTHRCTL_RDTHR) |
DWC_MMC_CARDTHRCTL_RDTHREN);
}
#endif
}
MMC_WRITE(sc, DWC_MMC_IMASK, imask | sc->sc_intr_card);
MMC_WRITE(sc, DWC_MMC_RINT, 0x7fff);
MMC_WRITE(sc, DWC_MMC_ARG, cmd->c_arg);
#ifdef DWC_MMC_DEBUG
aprint_normal_dev(sc->sc_dev, "cmdval = %08x\n", cmdval);
#endif
cmd->c_resid = cmd->c_datalen;
if (cmd->c_datalen > 0) {
dwc_mmc_led(sc, 0);
cmd->c_error = dwc_mmc_dma_prepare(sc, cmd);
if (cmd->c_error != 0) {
SET(cmd->c_flags, SCF_ITSDONE);
goto done;
}
sc->sc_wait_dma = ISSET(cmd->c_flags, SCF_CMD_READ);
sc->sc_wait_data = true;
} else {
sc->sc_wait_dma = false;
sc->sc_wait_data = false;
}
sc->sc_wait_cmd = true;
if ((cmdval & DWC_MMC_CMD_WAIT_PRE_OVER) != 0) {
for (retry = 0; retry < 10000; retry++) {
if (!(MMC_READ(sc, DWC_MMC_STATUS) & DWC_MMC_STATUS_CARD_DATA_BUSY))
break;
delay(1);
}
}
mutex_enter(&sc->sc_intr_lock);
MMC_WRITE(sc, DWC_MMC_CMD, cmdval | cmd->c_opcode);
if (sc->sc_wait_dma)
MMC_WRITE(sc, DWC_MMC_PLDMND, 1);
struct bintime timeout = { .sec = 15, .frac = 0 };
const struct bintime epsilon = { .sec = 1, .frac = 0 };
while (!ISSET(cmd->c_flags, SCF_ITSDONE)) {
error = cv_timedwaitbt(&sc->sc_intr_cv,
&sc->sc_intr_lock, &timeout, &epsilon);
if (error != 0) {
cmd->c_error = error;
SET(cmd->c_flags, SCF_ITSDONE);
mutex_exit(&sc->sc_intr_lock);
goto done;
}
}
mutex_exit(&sc->sc_intr_lock);
if (cmd->c_error == 0 && cmd->c_datalen > 0)
dwc_mmc_dma_complete(sc, cmd);
if (cmd->c_datalen > 0)
dwc_mmc_led(sc, 1);
if (cmd->c_flags & SCF_RSP_PRESENT) {
if (cmd->c_flags & SCF_RSP_136) {
cmd->c_resp[0] = MMC_READ(sc, DWC_MMC_RESP0);
cmd->c_resp[1] = MMC_READ(sc, DWC_MMC_RESP1);
cmd->c_resp[2] = MMC_READ(sc, DWC_MMC_RESP2);
cmd->c_resp[3] = MMC_READ(sc, DWC_MMC_RESP3);
if (cmd->c_flags & SCF_RSP_CRC) {
cmd->c_resp[0] = (cmd->c_resp[0] >> 8) |
(cmd->c_resp[1] << 24);
cmd->c_resp[1] = (cmd->c_resp[1] >> 8) |
(cmd->c_resp[2] << 24);
cmd->c_resp[2] = (cmd->c_resp[2] >> 8) |
(cmd->c_resp[3] << 24);
cmd->c_resp[3] = (cmd->c_resp[3] >> 8);
}
} else {
cmd->c_resp[0] = MMC_READ(sc, DWC_MMC_RESP0);
}
}
done:
KASSERT(ISSET(cmd->c_flags, SCF_ITSDONE));
MMC_WRITE(sc, DWC_MMC_IMASK, sc->sc_intr_card);
MMC_WRITE(sc, DWC_MMC_IDIE, 0);
MMC_WRITE(sc, DWC_MMC_RINT, 0x7fff);
MMC_WRITE(sc, DWC_MMC_IDST, 0xffffffff);
if (cmd->c_error) {
#ifdef DWC_MMC_DEBUG
aprint_error_dev(sc->sc_dev, "i/o error %d\n", cmd->c_error);
#endif
MMC_WRITE(sc, DWC_MMC_DMAC, DWC_MMC_DMAC_SOFTRESET);
for (retry = 0; retry < 100; retry++) {
if (!(MMC_READ(sc, DWC_MMC_DMAC) & DWC_MMC_DMAC_SOFTRESET))
break;
kpause("dwcmmcrst", false, uimax(mstohz(1), 1), &sc->sc_lock);
}
}
sc->sc_curcmd = NULL;
mutex_exit(&sc->sc_lock);
}
static void
dwc_mmc_card_enable_intr(sdmmc_chipset_handle_t sch, int enable)
{
struct dwc_mmc_softc *sc = sch;
uint32_t imask;
mutex_enter(&sc->sc_intr_lock);
imask = MMC_READ(sc, DWC_MMC_IMASK);
if (enable)
imask |= sc->sc_intr_cardmask;
else
imask &= ~sc->sc_intr_cardmask;
sc->sc_intr_card = imask & sc->sc_intr_cardmask;
MMC_WRITE(sc, DWC_MMC_IMASK, imask);
mutex_exit(&sc->sc_intr_lock);
}
static void
dwc_mmc_card_intr_ack(sdmmc_chipset_handle_t sch)
{
struct dwc_mmc_softc *sc = sch;
uint32_t imask;
mutex_enter(&sc->sc_intr_lock);
imask = MMC_READ(sc, DWC_MMC_IMASK);
MMC_WRITE(sc, DWC_MMC_IMASK, imask | sc->sc_intr_card);
mutex_exit(&sc->sc_intr_lock);
}
int
dwc_mmc_init(struct dwc_mmc_softc *sc)
{
uint32_t val;
val = MMC_READ(sc, DWC_MMC_VERID);
sc->sc_verid = __SHIFTOUT(val, DWC_MMC_VERID_ID);
if (sc->sc_fifo_reg == 0) {
if (sc->sc_verid < DWC_MMC_VERID_240A)
sc->sc_fifo_reg = 0x100;
else
sc->sc_fifo_reg = 0x200;
}
if (sc->sc_fifo_depth == 0) {
val = MMC_READ(sc, DWC_MMC_FIFOTH);
sc->sc_fifo_depth = __SHIFTOUT(val, DWC_MMC_FIFOTH_RX_WMARK) + 1;
}
if (sc->sc_intr_cardmask == 0)
sc->sc_intr_cardmask = DWC_MMC_INT_SDIO_INT(0);
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_BIO);
cv_init(&sc->sc_intr_cv, "dwcmmcirq");
if (dwc_mmc_dmabounce_setup(sc) != 0 ||
dwc_mmc_idma_setup(sc) != 0) {
aprint_error_dev(sc->sc_dev, "failed to setup DMA\n");
return ENOMEM;
}
config_interrupts(sc->sc_dev, dwc_mmc_attach_i);
return 0;
}
int
dwc_mmc_intr(void *priv)
{
struct dwc_mmc_softc *sc = priv;
struct sdmmc_command *cmd;
uint32_t idst, mint, imask;
mutex_enter(&sc->sc_intr_lock);
idst = MMC_READ(sc, DWC_MMC_IDST);
mint = MMC_READ(sc, DWC_MMC_MINT);
if (!idst && !mint) {
mutex_exit(&sc->sc_intr_lock);
return 0;
}
MMC_WRITE(sc, DWC_MMC_IDST, idst);
MMC_WRITE(sc, DWC_MMC_RINT, mint);
cmd = sc->sc_curcmd;
#ifdef DWC_MMC_DEBUG
device_printf(sc->sc_dev, "mmc intr idst=%08X mint=%08X\n",
idst, mint);
#endif
/* Handle SDIO card interrupt */
if ((mint & sc->sc_intr_cardmask) != 0) {
imask = MMC_READ(sc, DWC_MMC_IMASK);
MMC_WRITE(sc, DWC_MMC_IMASK, imask & ~sc->sc_intr_cardmask);
sdmmc_card_intr(sc->sc_sdmmc_dev);
}
/* Error interrupts take priority over command and transfer interrupts */
if (cmd != NULL && (mint & DWC_MMC_INT_ERROR) != 0) {
imask = MMC_READ(sc, DWC_MMC_IMASK);
MMC_WRITE(sc, DWC_MMC_IMASK, imask & ~DWC_MMC_INT_ERROR);
if ((mint & DWC_MMC_INT_RESP_TIMEOUT) != 0) {
cmd->c_error = ETIMEDOUT;
/* Wait for command to complete */
sc->sc_wait_data = sc->sc_wait_dma = false;
if (cmd->c_opcode != SD_IO_SEND_OP_COND &&
cmd->c_opcode != SD_IO_RW_DIRECT &&
!ISSET(cmd->c_flags, SCF_TOUT_OK))
device_printf(sc->sc_dev, "host controller timeout, mint=0x%08x\n", mint);
} else {
device_printf(sc->sc_dev, "host controller error, mint=0x%08x\n", mint);
cmd->c_error = EIO;
SET(cmd->c_flags, SCF_ITSDONE);
goto done;
}
}
if (cmd != NULL && (idst & DWC_MMC_IDST_RECEIVE_INT) != 0) {
MMC_WRITE(sc, DWC_MMC_IDIE, 0);
if (sc->sc_wait_dma == false)
device_printf(sc->sc_dev, "unexpected DMA receive interrupt\n");
sc->sc_wait_dma = false;
}
if (cmd != NULL && (mint & DWC_MMC_INT_CMD_DONE) != 0) {
imask = MMC_READ(sc, DWC_MMC_IMASK);
MMC_WRITE(sc, DWC_MMC_IMASK, imask & ~DWC_MMC_INT_CMD_DONE);
if (sc->sc_wait_cmd == false)
device_printf(sc->sc_dev, "unexpected command complete interrupt\n");
sc->sc_wait_cmd = false;
}
const uint32_t dmadone_mask = DWC_MMC_INT_AUTO_CMD_DONE|DWC_MMC_INT_DATA_OVER;
if (cmd != NULL && (mint & dmadone_mask) != 0) {
imask = MMC_READ(sc, DWC_MMC_IMASK);
MMC_WRITE(sc, DWC_MMC_IMASK, imask & ~dmadone_mask);
if (sc->sc_wait_data == false)
device_printf(sc->sc_dev, "unexpected data complete interrupt\n");
sc->sc_wait_data = false;
}
if (cmd != NULL &&
sc->sc_wait_dma == false &&
sc->sc_wait_cmd == false &&
sc->sc_wait_data == false) {
SET(cmd->c_flags, SCF_ITSDONE);
}
done:
if (cmd != NULL && ISSET(cmd->c_flags, SCF_ITSDONE)) {
cv_broadcast(&sc->sc_intr_cv);
}
mutex_exit(&sc->sc_intr_lock);
return 1;
}