NetBSD/sys/dev/ic/arn9003.c

3449 lines
95 KiB
C

/* $NetBSD: arn9003.c,v 1.6 2014/02/23 15:29:12 christos Exp $ */
/* $OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $ */
/*-
* Copyright (c) 2010 Damien Bergamini <damien.bergamini@free.fr>
* Copyright (c) 2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Driver for Atheros 802.11a/g/n chipsets.
* Routines for AR9003 family.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.6 2014/02/23 15:29:12 christos Exp $");
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/conf.h>
#include <sys/device.h>
#include <sys/bus.h>
#include <sys/endian.h>
#include <sys/intr.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <dev/ic/athnreg.h>
#include <dev/ic/athnvar.h>
#include <dev/ic/arn9003reg.h>
#include <dev/ic/arn9003.h>
#define Static static
Static void ar9003_calib_iq(struct athn_softc *);
Static int ar9003_calib_tx_iq(struct athn_softc *);
Static int ar9003_compute_predistortion(struct athn_softc *,
const uint32_t *, const uint32_t *);
Static void ar9003_disable_ofdm_weak_signal(struct athn_softc *);
Static void ar9003_disable_phy(struct athn_softc *);
Static int ar9003_dma_alloc(struct athn_softc *);
Static void ar9003_dma_free(struct athn_softc *);
Static void ar9003_do_calib(struct athn_softc *);
Static void ar9003_do_noisefloor_calib(struct athn_softc *);
Static void ar9003_enable_antenna_diversity(struct athn_softc *);
Static void ar9003_enable_ofdm_weak_signal(struct athn_softc *);
Static void ar9003_enable_predistorter(struct athn_softc *, int);
Static int ar9003_find_rom(struct athn_softc *);
Static void ar9003_force_txgain(struct athn_softc *, uint32_t);
Static int ar9003_get_desired_txgain(struct athn_softc *, int, int);
Static int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
Static void ar9003_gpio_config_input(struct athn_softc *, int);
Static void ar9003_gpio_config_output(struct athn_softc *, int, int);
Static int ar9003_gpio_read(struct athn_softc *, int);
Static void ar9003_gpio_write(struct athn_softc *, int, int);
Static void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
Static void ar9003_init_baseband(struct athn_softc *);
Static void ar9003_init_chains(struct athn_softc *);
Static int ar9003_intr(struct athn_softc *);
Static void ar9003_next_calib(struct athn_softc *);
Static void ar9003_paprd_enable(struct athn_softc *);
Static int ar9003_paprd_tx_tone(struct athn_softc *);
Static void ar9003_paprd_tx_tone_done(struct athn_softc *);
Static int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
int);
Static int ar9003_read_eep_word(struct athn_softc *, uint32_t,
uint16_t *);
Static int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
int);
Static int ar9003_read_otp_word(struct athn_softc *, uint32_t,
uint32_t *);
Static int ar9003_read_rom(struct athn_softc *);
Static void ar9003_reset_rx_gain(struct athn_softc *,
struct ieee80211_channel *);
Static void ar9003_reset_tx_gain(struct athn_softc *,
struct ieee80211_channel *);
Static int ar9003_restore_rom_block(struct athn_softc *, uint8_t,
uint8_t, const uint8_t *, size_t);
Static void ar9003_rf_bus_release(struct athn_softc *);
Static int ar9003_rf_bus_request(struct athn_softc *);
Static void ar9003_rfsilent_init(struct athn_softc *);
Static int ar9003_rx_alloc(struct athn_softc *, int, int);
Static void ar9003_rx_enable(struct athn_softc *);
Static void ar9003_rx_free(struct athn_softc *, int);
Static void ar9003_rx_intr(struct athn_softc *, int);
Static int ar9003_rx_process(struct athn_softc *, int);
Static void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
struct ar_rx_status *);
Static void ar9003_set_cck_weak_signal(struct athn_softc *, int);
Static void ar9003_set_delta_slope(struct athn_softc *,
struct ieee80211_channel *, struct ieee80211_channel *);
Static void ar9003_set_firstep_level(struct athn_softc *, int);
Static void ar9003_set_noise_immunity_level(struct athn_softc *, int);
Static void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
struct ieee80211_channel *);
Static void ar9003_set_rf_mode(struct athn_softc *,
struct ieee80211_channel *);
Static void ar9003_set_rxchains(struct athn_softc *);
Static void ar9003_set_spur_immunity_level(struct athn_softc *, int);
Static void ar9003_set_training_gain(struct athn_softc *, int);
Static int ar9003_swba_intr(struct athn_softc *);
Static int ar9003_tx(struct athn_softc *, struct mbuf *,
struct ieee80211_node *, int);
Static int ar9003_tx_alloc(struct athn_softc *);
Static void ar9003_tx_free(struct athn_softc *);
Static void ar9003_tx_intr(struct athn_softc *);
Static int ar9003_tx_process(struct athn_softc *);
#ifdef notused
Static void ar9003_bb_load_noisefloor(struct athn_softc *);
Static void ar9003_get_noisefloor(struct athn_softc *,
struct ieee80211_channel *);
Static void ar9003_paprd_calib(struct athn_softc *,
struct ieee80211_channel *);
Static void ar9003_read_noisefloor(struct athn_softc *, int16_t *,
int16_t *);
Static void ar9003_write_noisefloor(struct athn_softc *, int16_t *,
int16_t *);
Static void ar9300_noisefloor_calib(struct athn_softc *);
#endif /* notused */
/*
* XXX: See if_iwn.c:MCLGETIalt() for a better solution.
* XXX: Put this in a header or in athn.c so it can be shared between
* ar5008.c and ar9003.c?
*/
static struct mbuf *
MCLGETI(struct athn_softc *sc __unused, int how,
struct ifnet *ifp __unused, u_int size)
{
struct mbuf *m;
MGETHDR(m, how, MT_DATA);
if (m == NULL)
return NULL;
MEXTMALLOC(m, size, how);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return NULL;
}
return m;
}
PUBLIC int
ar9003_attach(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->sc_ops;
int error;
/* Set callbacks for AR9003 family. */
ops->gpio_read = ar9003_gpio_read;
ops->gpio_write = ar9003_gpio_write;
ops->gpio_config_input = ar9003_gpio_config_input;
ops->gpio_config_output = ar9003_gpio_config_output;
ops->rfsilent_init = ar9003_rfsilent_init;
ops->dma_alloc = ar9003_dma_alloc;
ops->dma_free = ar9003_dma_free;
ops->rx_enable = ar9003_rx_enable;
ops->intr = ar9003_intr;
ops->tx = ar9003_tx;
ops->set_rf_mode = ar9003_set_rf_mode;
ops->rf_bus_request = ar9003_rf_bus_request;
ops->rf_bus_release = ar9003_rf_bus_release;
ops->set_phy = ar9003_set_phy;
ops->set_delta_slope = ar9003_set_delta_slope;
ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
ops->init_baseband = ar9003_init_baseband;
ops->disable_phy = ar9003_disable_phy;
ops->set_rxchains = ar9003_set_rxchains;
ops->noisefloor_calib = ar9003_do_noisefloor_calib;
ops->do_calib = ar9003_do_calib;
ops->next_calib = ar9003_next_calib;
ops->hw_init = ar9003_hw_init;
ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
ops->set_firstep_level = ar9003_set_firstep_level;
ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
/* Set MAC registers offsets. */
sc->sc_obs_off = AR_OBS;
sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
if (!(sc->sc_flags & ATHN_FLAG_PCIE))
athn_config_nonpcie(sc);
else
athn_config_pcie(sc);
/* Determine ROM type and location. */
if ((error = ar9003_find_rom(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not find ROM\n");
return error;
}
/* Read entire ROM content in memory. */
if ((error = ar9003_read_rom(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not read ROM\n");
return error;
}
/* Determine if it is a non-enterprise AR9003 card. */
if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
ops->setup(sc);
return 0;
}
/*
* Read 16-bit word from EEPROM.
*/
Static int
ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
{
uint32_t reg;
int ntries;
reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
for (ntries = 0; ntries < 1000; ntries++) {
reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
return 0;
}
DELAY(10);
}
*val = 0xffff;
return ETIMEDOUT;
}
/*
* Read an arbitrary number of bytes at a specified address in EEPROM.
* NB: The address may not be 16-bit aligned.
*/
Static int
ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
{
uint8_t *dst = buf;
uint16_t val;
int error;
if (len > 0 && (addr & 1)) {
/* Deal with non-aligned reads. */
addr >>= 1;
error = ar9003_read_eep_word(sc, addr, &val);
if (error != 0)
return error;
*dst++ = val & 0xff;
addr--;
len--;
}
else
addr >>= 1;
for (; len >= 2; addr--, len -= 2) {
error = ar9003_read_eep_word(sc, addr, &val);
if (error != 0)
return error;
*dst++ = val >> 8;
*dst++ = val & 0xff;
}
if (len > 0) {
error = ar9003_read_eep_word(sc, addr, &val);
if (error != 0)
return error;
*dst++ = val >> 8;
}
return 0;
}
/*
* Read 32-bit word from OTPROM.
*/
Static int
ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
{
uint32_t reg;
int ntries;
reg = AR_READ(sc, AR_OTP_BASE(addr));
for (ntries = 0; ntries < 1000; ntries++) {
reg = AR_READ(sc, AR_OTP_STATUS);
if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
*val = AR_READ(sc, AR_OTP_READ_DATA);
return 0;
}
DELAY(10);
}
return ETIMEDOUT;
}
/*
* Read an arbitrary number of bytes at a specified address in OTPROM.
* NB: The address may not be 32-bit aligned.
*/
Static int
ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
{
uint8_t *dst = buf;
uint32_t val;
int error;
/* NB: not optimal for non-aligned reads, but correct. */
for (; len > 0; addr--, len--) {
error = ar9003_read_otp_word(sc, addr >> 2, &val);
if (error != 0)
return error;
*dst++ = (val >> ((addr & 3) * 8)) & 0xff;
}
return 0;
}
/*
* Determine if the chip has an external EEPROM or an OTPROM and its size.
*/
Static int
ar9003_find_rom(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->sc_ops;
uint32_t hdr;
int error;
/* Try EEPROM. */
ops->read_rom_data = ar9003_read_eep_data;
sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
sc->sc_eep_base = sc->sc_eep_size - 1;
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
return 0;
sc->sc_eep_size = 512;
sc->sc_eep_base = sc->sc_eep_size - 1;
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
return 0;
/* Try OTPROM. */
ops->read_rom_data = ar9003_read_otp_data;
sc->sc_eep_size = 1024;
sc->sc_eep_base = sc->sc_eep_size - 1;
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
return 0;
sc->sc_eep_size = 512;
sc->sc_eep_base = sc->sc_eep_size - 1;
error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
if (error == 0 && hdr != 0 && hdr != 0xffffffff)
return 0;
return EIO; /* Not found. */
}
Static int
ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
const uint8_t *buf, size_t len)
{
const uint8_t *def, *ptr, *end;
uint8_t *eep = sc->sc_eep;
size_t off, clen;
if (alg == AR_EEP_COMPRESS_BLOCK) {
/* Block contains chunks that shadow ROM template. */
def = sc->sc_ops.get_rom_template(sc, ref);
if (def == NULL) {
DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
ref);
return EINVAL;
}
/* Start with template. */
memcpy(eep, def, sc->sc_eep_size);
/* Shadow template with chunks. */
off = 0; /* Offset in ROM image. */
ptr = buf; /* Offset in block. */
end = buf + len;
/* Process chunks. */
while (ptr + 2 <= end) {
off += *ptr++; /* Gap with previous chunk. */
clen = *ptr++; /* Chunk length. */
/* Make sure block is large enough. */
if (ptr + clen > end)
return EINVAL;
/* Make sure chunk fits in ROM image. */
if (off + clen > sc->sc_eep_size)
return EINVAL;
/* Restore chunk. */
DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
off, clen);
memcpy(&eep[off], ptr, clen);
ptr += clen;
off += clen;
}
}
else if (alg == AR_EEP_COMPRESS_NONE) {
/* Block contains full ROM image. */
if (len != sc->sc_eep_size) {
DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
len);
return EINVAL;
}
memcpy(eep, buf, len);
}
return 0;
}
Static int
ar9003_read_rom(struct athn_softc *sc)
{
struct athn_ops *ops = &sc->sc_ops;
uint8_t *buf, *ptr, alg, ref;
uint16_t sum, rsum;
uint32_t hdr;
int error, addr;
size_t len, i, j;
/* Allocate space to store ROM in host memory. */
sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
if (sc->sc_eep == NULL)
return ENOMEM;
/* Allocate temporary buffer to store ROM blocks. */
buf = malloc(2048, M_DEVBUF, M_NOWAIT);
if (buf == NULL)
return ENOMEM;
/* Restore vendor-specified ROM blocks. */
addr = sc->sc_eep_base;
for (i = 0; i < 100; i++) {
/* Read block header. */
error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
if (error != 0)
break;
if (hdr == 0 || hdr == 0xffffffff)
break;
addr -= sizeof(hdr);
/* Extract bits from header. */
ptr = (uint8_t *)&hdr;
alg = (ptr[0] & 0xe0) >> 5;
ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
DPRINTFN(DBG_INIT, sc,
"ROM block %zd: alg=%d ref=%d len=%zd\n",
i, alg, ref, len);
/* Read block data (len <= 0x7ff). */
error = ops->read_rom_data(sc, addr, buf, len);
if (error != 0)
break;
addr -= len;
/* Read block checksum. */
error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
if (error != 0)
break;
addr -= sizeof(sum);
/* Compute block checksum. */
rsum = 0;
for (j = 0; j < len; j++)
rsum += buf[j];
/* Compare to that in ROM. */
if (le16toh(sum) != rsum) {
DPRINTFN(DBG_INIT, sc,
"bad block checksum 0x%x/0x%x\n",
le16toh(sum), rsum);
continue; /* Skip bad block. */
}
/* Checksum is correct, restore block. */
ar9003_restore_rom_block(sc, alg, ref, buf, len);
}
#if BYTE_ORDER == BIG_ENDIAN
/* NB: ROM is always little endian. */
if (error == 0)
ops->swap_rom(sc);
#endif
free(buf, M_DEVBUF);
return error;
}
/*
* Access to General Purpose Input/Output ports.
*/
Static int
ar9003_gpio_read(struct athn_softc *sc, int pin)
{
KASSERT(pin < sc->sc_ngpiopins);
return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
(1 << pin)) != 0;
}
Static void
ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
{
uint32_t reg;
KASSERT(pin < sc->sc_ngpiopins);
reg = AR_READ(sc, AR_GPIO_IN_OUT);
if (set)
reg |= 1 << pin;
else
reg &= ~(1 << pin);
AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_gpio_config_input(struct athn_softc *sc, int pin)
{
uint32_t reg;
reg = AR_READ(sc, AR_GPIO_OE_OUT);
reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
{
uint32_t reg;
int mux, off;
mux = pin / 6;
off = pin % 6;
reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
reg &= ~(0x1f << (off * 5));
reg |= (type & 0x1f) << (off * 5);
AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
reg = AR_READ(sc, AR_GPIO_OE_OUT);
reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_rfsilent_init(struct athn_softc *sc)
{
uint32_t reg;
/* Configure hardware radio switch. */
AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
AR_SETBITS(sc, AR_GPIO_INTR_POL,
AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
}
AR_WRITE_BARRIER(sc);
}
Static int
ar9003_dma_alloc(struct athn_softc *sc)
{
int error;
error = ar9003_tx_alloc(sc);
if (error != 0)
return error;
error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
if (error != 0)
return error;
error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
if (error != 0)
return error;
return 0;
}
Static void
ar9003_dma_free(struct athn_softc *sc)
{
ar9003_tx_free(sc);
ar9003_rx_free(sc, ATHN_QID_LP);
ar9003_rx_free(sc, ATHN_QID_HP);
}
Static int
ar9003_tx_alloc(struct athn_softc *sc)
{
struct athn_tx_buf *bf;
bus_size_t size;
int error, nsegs, i;
/*
* Allocate Tx status ring.
*/
size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->sc_txsmap);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
// XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
&nsegs, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
(void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0)
goto fail;
error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_txsmap, &sc->sc_txsseg,
1, size, BUS_DMA_NOWAIT | BUS_DMA_READ);
if (error != 0)
goto fail;
/*
* Allocate a pool of Tx descriptors shared between all Tx queues.
*/
size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
BUS_DMA_NOWAIT, &sc->sc_map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
// XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
&nsegs, BUS_DMA_NOWAIT);
if (error != 0)
goto fail;
error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
(void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
if (error != 0)
goto fail;
error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0)
goto fail;
SIMPLEQ_INIT(&sc->sc_txbufs);
for (i = 0; i < ATHN_NTXBUFS; i++) {
bf = &sc->sc_txpool[i];
error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
&bf->bf_map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create Tx buf DMA map\n");
goto fail;
}
bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
i * sizeof(struct ar_tx_desc);
SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
}
return 0;
fail:
ar9003_tx_free(sc);
return error;
}
Static void
ar9003_tx_free(struct athn_softc *sc)
{
struct athn_tx_buf *bf;
int i;
for (i = 0; i < ATHN_NTXBUFS; i++) {
bf = &sc->sc_txpool[i];
if (bf->bf_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
}
/* Free Tx descriptors. */
if (sc->sc_map != NULL) {
if (sc->sc_descs != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
}
/* Free Tx status ring. */
if (sc->sc_txsmap != NULL) {
if (sc->sc_txsring != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
}
bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
}
}
Static int
ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
{
struct athn_rxq *rxq = &sc->sc_rxq[qid];
struct athn_rx_buf *bf;
struct ar_rx_status *ds;
int error, i;
rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO);
if (rxq->bf == NULL)
return ENOMEM;
rxq->count = count;
for (i = 0; i < rxq->count; i++) {
bf = &rxq->bf[i];
error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
&bf->bf_map);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not create Rx buf DMA map\n");
goto fail;
}
/*
* Assumes MCLGETI returns cache-line-size aligned buffers.
*/
bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
if (bf->bf_m == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate Rx mbuf\n");
error = ENOBUFS;
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not DMA map Rx buffer\n");
goto fail;
}
ds = mtod(bf->bf_m, struct ar_rx_status *);
memset(ds, 0, sizeof(*ds));
bf->bf_desc = ds;
bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
BUS_DMASYNC_PREREAD);
}
return 0;
fail:
ar9003_rx_free(sc, qid);
return error;
}
Static void
ar9003_rx_free(struct athn_softc *sc, int qid)
{
struct athn_rxq *rxq = &sc->sc_rxq[qid];
struct athn_rx_buf *bf;
int i;
if (rxq->bf == NULL)
return;
for (i = 0; i < rxq->count; i++) {
bf = &rxq->bf[i];
if (bf->bf_map != NULL)
bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
if (bf->bf_m != NULL)
m_freem(bf->bf_m);
}
free(rxq->bf, M_DEVBUF);
}
PUBLIC void
ar9003_reset_txsring(struct athn_softc *sc)
{
sc->sc_txscur = 0;
memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
AR_WRITE(sc, AR_Q_STATUS_RING_START,
sc->sc_txsmap->dm_segs[0].ds_addr);
AR_WRITE(sc, AR_Q_STATUS_RING_END,
sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_rx_enable(struct athn_softc *sc)
{
struct athn_rxq *rxq;
struct athn_rx_buf *bf;
struct ar_rx_status *ds;
uint32_t reg;
int qid, i;
reg = AR_READ(sc, AR_RXBP_THRESH);
reg = RW(reg, AR_RXBP_THRESH_HP, 1);
reg = RW(reg, AR_RXBP_THRESH_LP, 1);
AR_WRITE(sc, AR_RXBP_THRESH, reg);
/* Set Rx buffer size. */
AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
for (qid = 0; qid < 2; qid++) {
rxq = &sc->sc_rxq[qid];
/* Setup Rx status descriptors. */
SIMPLEQ_INIT(&rxq->head);
for (i = 0; i < rxq->count; i++) {
bf = &rxq->bf[i];
ds = bf->bf_desc;
memset(ds, 0, sizeof(*ds));
if (qid == ATHN_QID_LP)
AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
else
AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
AR_WRITE_BARRIER(sc);
SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
}
}
/* Enable Rx. */
AR_WRITE(sc, AR_CR, 0);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
struct ar_rx_status *ds)
{
struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
struct ieee80211com *ic = &sc->sc_ic;
uint64_t tsf;
uint32_t tstamp;
uint8_t rate;
/* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
tstamp = ds->ds_status3;
tsf = AR_READ(sc, AR_TSF_U32);
tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
if ((tsf & 0x7fff) < tstamp)
tsf -= 0x8000;
tsf = (tsf & ~0x7fff) | tstamp;
tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
tap->wr_tsft = htole64(tsf);
tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
/* XXX noise. */
tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
tap->wr_rate = 0; /* In case it can't be found below. */
rate = MS(ds->ds_status1, AR_RXS1_RATE);
if (rate & 0x80) { /* HT. */
/* Bit 7 set means HT MCS instead of rate. */
tap->wr_rate = rate;
if (!(ds->ds_status4 & AR_RXS4_GI))
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
}
else if (rate & 0x10) { /* CCK. */
if (rate & 0x04)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
switch (rate & ~0x14) {
case 0xb: tap->wr_rate = 2; break;
case 0xa: tap->wr_rate = 4; break;
case 0x9: tap->wr_rate = 11; break;
case 0x8: tap->wr_rate = 22; break;
}
}
else { /* OFDM. */
switch (rate) {
case 0xb: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0xa: tap->wr_rate = 24; break;
case 0xe: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xd: tap->wr_rate = 72; break;
case 0x8: tap->wr_rate = 96; break;
case 0xc: tap->wr_rate = 108; break;
}
}
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
Static int
ar9003_rx_process(struct athn_softc *sc, int qid)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct athn_rxq *rxq = &sc->sc_rxq[qid];
struct athn_rx_buf *bf;
struct ar_rx_status *ds;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *m1;
size_t len;
u_int32_t rstamp;
int error, rssi;
bf = SIMPLEQ_FIRST(&rxq->head);
if (__predict_false(bf == NULL)) { /* Should not happen. */
aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
return ENOENT;
}
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
BUS_DMASYNC_POSTREAD);
ds = mtod(bf->bf_m, struct ar_rx_status *);
if (!(ds->ds_status1 & AR_RXS1_DONE))
return EBUSY;
/* Check that it is a valid Rx status descriptor. */
if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
goto skip;
if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
if (ds->ds_status11 & AR_RXS11_CRC_ERR)
DPRINTFN(DBG_RX, sc, "CRC error\n");
else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
/* Report Michael MIC failures to net80211. */
len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
m = bf->bf_m;
m->m_pkthdr.rcvif = ifp;
m->m_data = (void *)&ds[1];
m->m_pkthdr.len = m->m_len = len;
wh = mtod(m, struct ieee80211_frame *);
ieee80211_notify_michael_failure(ic, wh,
0 /* XXX: keyix */);
}
ifp->if_ierrors++;
goto skip;
}
len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
if (__predict_false(len < IEEE80211_MIN_LEN ||
len > ATHN_RXBUFSZ - sizeof(*ds))) {
DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
len);
ifp->if_ierrors++;
goto skip;
}
/* Allocate a new Rx buffer. */
m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
if (__predict_false(m1 == NULL)) {
ic->ic_stats.is_rx_nobuf++;
ifp->if_ierrors++;
goto skip;
}
/* Unmap the old Rx buffer. */
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
/* Map the new Rx buffer. */
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
if (__predict_false(error != 0)) {
m_freem(m1);
/* Remap the old Rx buffer or panic. */
error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
BUS_DMA_NOWAIT | BUS_DMA_READ);
KASSERT(error != 0);
bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
ifp->if_ierrors++;
goto skip;
}
bf->bf_desc = mtod(m1, struct ar_rx_status *);
bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
m = bf->bf_m;
bf->bf_m = m1;
/* Finalize mbuf. */
m->m_pkthdr.rcvif = ifp;
/* Strip Rx status descriptor from head. */
m->m_data = (void *)&ds[1];
m->m_pkthdr.len = m->m_len = len;
/* Grab a reference to the source node. */
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* Remove any HW padding after the 802.11 header. */
if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
u_int hdrlen = ieee80211_anyhdrsize(wh);
if (hdrlen & 3) {
ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
m_adj(m, 2);
}
}
if (__predict_false(sc->sc_drvbpf != NULL))
ar9003_rx_radiotap(sc, m, ds);
/* Trim 802.11 FCS after radiotap. */
m_adj(m, -IEEE80211_CRC_LEN);
/* Send the frame to the 802.11 layer. */
rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
rstamp = ds->ds_status3;
ieee80211_input(ic, m, ni, rssi, rstamp);
/* Node is no longer needed. */
ieee80211_free_node(ni);
skip:
/* Unlink this descriptor from head. */
SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
memset(bf->bf_desc, 0, sizeof(*ds));
/* Re-use this descriptor and link it to tail. */
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
BUS_DMASYNC_PREREAD);
if (qid == ATHN_QID_LP)
AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
else
AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
AR_WRITE_BARRIER(sc);
SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
/* Re-enable Rx. */
AR_WRITE(sc, AR_CR, 0);
AR_WRITE_BARRIER(sc);
return 0;
}
Static void
ar9003_rx_intr(struct athn_softc *sc, int qid)
{
while (ar9003_rx_process(sc, qid) == 0)
continue;
}
Static int
ar9003_tx_process(struct athn_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
struct athn_txq *txq;
struct athn_node *an;
struct athn_tx_buf *bf;
struct ar_tx_status *ds;
uint8_t qid, failcnt;
ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
if (!(ds->ds_status8 & AR_TXS8_DONE))
return EBUSY;
sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
/* Check that it is a valid Tx status descriptor. */
if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
(SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
memset(ds, 0, sizeof(*ds));
return 0;
}
/* Retrieve the queue that was used to send this PDU. */
qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
txq = &sc->sc_txq[qid];
bf = SIMPLEQ_FIRST(&txq->head);
if (bf == NULL || bf == txq->wait) {
memset(ds, 0, sizeof(*ds));
return 0;
}
SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
ifp->if_opackets++;
sc->sc_tx_timer = 0;
if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
ifp->if_oerrors++;
if (ds->ds_status3 & AR_TXS3_UNDERRUN)
athn_inc_tx_trigger_level(sc);
/* Wakeup PA predistortion state machine. */
if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
ar9003_paprd_tx_tone_done(sc);
an = (struct athn_node *)bf->bf_ni;
/*
* NB: the data fail count contains the number of un-acked tries
* for the final series used. We must add the number of tries for
* each series that was fully processed.
*/
failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
/* NB: Assume two tries per series. */
failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
/* Update rate control statistics. */
an->amn.amn_txcnt++;
if (failcnt > 0)
an->amn.amn_retrycnt++;
DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
qid, ds->ds_status3, failcnt);
/* Reset Tx status descriptor. */
memset(ds, 0, sizeof(*ds));
/* Unmap Tx buffer. */
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
m_freem(bf->bf_m);
bf->bf_m = NULL;
ieee80211_free_node(bf->bf_ni);
bf->bf_ni = NULL;
/* Link Tx buffer back to global free list. */
SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
/* Queue buffers that are waiting if there is new room. */
if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
AR_WRITE_BARRIER(sc);
txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
}
return 0;
}
Static void
ar9003_tx_intr(struct athn_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
while (ar9003_tx_process(sc) == 0);
if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_start(ifp);
}
}
#ifndef IEEE80211_STA_ONLY
/*
* Process Software Beacon Alert interrupts.
*/
Static int
ar9003_swba_intr(struct athn_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_node *ni = ic->ic_bss;
struct athn_tx_buf *bf = sc->sc_bcnbuf;
struct ieee80211_frame *wh;
struct ieee80211_beacon_offsets bo;
struct ar_tx_desc *ds;
struct mbuf *m;
uint32_t sum;
uint8_t ridx, hwrate;
int error, totlen;
#if notyet
if (ic->ic_tim_mcast_pending &&
IF_IS_EMPTY(&ni->ni_savedq) &&
SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
ic->ic_tim_mcast_pending = 0;
#endif
if (ic->ic_dtim_count == 0)
ic->ic_dtim_count = ic->ic_dtim_period - 1;
else
ic->ic_dtim_count--;
/* Make sure previous beacon has been sent. */
if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
return EBUSY;
}
/* Get new beacon. */
m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
if (__predict_false(m == NULL))
return ENOBUFS;
/* Assign sequence number. */
/* XXX: use non-QoS tid? */
wh = mtod(m, struct ieee80211_frame *);
*(uint16_t *)&wh->i_seq[0] =
htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
ic->ic_bss->ni_txseqs[0]++;
/* Unmap and free old beacon if any. */
if (__predict_true(bf->bf_m != NULL)) {
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
m_freem(bf->bf_m);
bf->bf_m = NULL;
}
/* DMA map new beacon. */
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (__predict_false(error != 0)) {
m_freem(m);
return error;
}
bf->bf_m = m;
/* Setup Tx descriptor (simplified ar9003_tx()). */
ds = bf->bf_descs;
memset(ds, 0, sizeof(*ds));
ds->ds_info =
SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
SM(AR_TXI_DESC_NDWORDS, 23) |
SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
ds->ds_ctl12 |= AR_TXC12_NO_ACK;
ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
/* Write number of tries. */
ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
/* Write Tx rate. */
ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
hwrate = athn_rates[ridx].hwrate;
ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
/* Write Tx chains. */
ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
/* Segment length must be a multiple of 4. */
ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
(bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
/* Compute Tx descriptor checksum. */
sum = ds->ds_info;
sum += ds->ds_segs[0].ds_data;
sum += ds->ds_segs[0].ds_ctl;
sum = (sum >> 16) + (sum & 0xffff);
ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/* Stop Tx DMA before putting the new beacon on the queue. */
athn_stop_tx_dma(sc, ATHN_QID_BEACON);
AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
for(;;) {
if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
break;
IF_DEQUEUE(&ni->ni_savedq, m);
if (m == NULL)
break;
if (!IF_IS_EMPTY(&ni->ni_savedq)) {
/* more queued frames, set the more data bit */
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
}
if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
/* Kick Tx. */
AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
AR_WRITE_BARRIER(sc);
return 0;
}
#endif
Static int
ar9003_intr(struct athn_softc *sc)
{
uint32_t intr, sync;
/* Get pending interrupts. */
intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
return 0; /* Not for us. */
}
if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
(AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
intr = AR_READ(sc, AR_ISR);
else
intr = 0;
sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
if (intr == 0 && sync == 0)
return 0; /* Not for us. */
if (intr != 0) {
if (intr & AR_ISR_BCNMISC) {
uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
#ifdef notyet
if (intr2 & AR_ISR_S2_TIM)
/* TBD */;
if (intr2 & AR_ISR_S2_TSFOOR)
/* TBD */;
if (intr2 & AR_ISR_S2_BB_WATCHDOG)
/* TBD */;
#else
__USE(intr2);
#endif
}
intr = AR_READ(sc, AR_ISR_RAC);
if (intr == AR_INTR_SPURIOUS)
return 1;
#ifndef IEEE80211_STA_ONLY
if (intr & AR_ISR_SWBA)
ar9003_swba_intr(sc);
#endif
if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
ar9003_rx_intr(sc, ATHN_QID_LP);
if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
ar9003_rx_intr(sc, ATHN_QID_LP);
if (intr & AR_ISR_HP_RXOK)
ar9003_rx_intr(sc, ATHN_QID_HP);
if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
ar9003_tx_intr(sc);
if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
ar9003_tx_intr(sc);
if (intr & AR_ISR_GENTMR) {
uint32_t intr5 = AR_READ(sc, AR_ISR_S5_S);
#ifdef ATHN_DEBUG
DPRINTFN(DBG_INTR, sc,
"GENTMR trigger=%d thresh=%d\n",
MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
#else
__USE(intr5);
#endif
}
}
if (sync != 0) {
if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
AR_WRITE(sc, AR_RC, 0);
}
if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
(sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
return 1;
}
AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
}
return 1;
}
Static int
ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
int txflags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_key *k = NULL;
struct ieee80211_frame *wh;
struct athn_series series[4];
struct ar_tx_desc *ds;
struct athn_txq *txq;
struct athn_tx_buf *bf;
struct athn_node *an = (void *)ni;
struct mbuf *m1;
uint32_t sum;
uint16_t qos;
uint8_t txpower, type, encrtype, ridx[4];
int i, error, totlen, hasqos, qid;
/* Grab a Tx buffer from our global free list. */
bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
KASSERT(bf != NULL);
/* Map 802.11 frame type to hardware frame type. */
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* NB: Beacons do not use ar9003_tx(). */
if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_PROBE_RESP)
type = AR_FRAME_TYPE_PROBE_RESP;
else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_ATIM)
type = AR_FRAME_TYPE_ATIM;
else
type = AR_FRAME_TYPE_NORMAL;
}
else if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
type = AR_FRAME_TYPE_PSPOLL;
}
else
type = AR_FRAME_TYPE_NORMAL;
if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
k = ieee80211_crypto_encap(ic, ni, m);
if (k == NULL)
return ENOBUFS;
/* packet header may have moved, reset our local pointer */
wh = mtod(m, struct ieee80211_frame *);
}
/* XXX 2-byte padding for QoS and 4-addr headers. */
/* Select the HW Tx queue to use for this frame. */
if ((hasqos = ieee80211_has_qos(wh))) {
#ifdef notyet_edca
uint8_t tid;
qos = ieee80211_get_qos(wh);
tid = qos & IEEE80211_QOS_TID;
qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
#else
qos = ieee80211_get_qos(wh);
qid = ATHN_QID_AC_BE;
#endif /* notyet_edca */
}
else if (type == AR_FRAME_TYPE_PSPOLL) {
qos = 0;
qid = ATHN_QID_PSPOLL;
}
else if (txflags & ATHN_TXFLAG_CAB) {
qos = 0;
qid = ATHN_QID_CAB;
}
else {
qos = 0;
qid = ATHN_QID_AC_BE;
}
txq = &sc->sc_txq[qid];
/* Select the transmit rates to use for this frame. */
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
IEEE80211_FC0_TYPE_DATA) {
/* Use lowest rate for all tries. */
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
(ic->ic_curmode == IEEE80211_MODE_11A) ?
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
}
else if (ic->ic_fixed_rate != -1) {
/* Use same fixed rate for all tries. */
ridx[0] = ridx[1] = ridx[2] = ridx[3] =
sc->sc_fixed_ridx;
}
else {
int txrate = ni->ni_txrate;
/* Use fallback table of the node. */
for (i = 0; i < 4; i++) {
ridx[i] = an->ridx[txrate];
txrate = an->fallback[txrate];
}
}
if (__predict_false(sc->sc_drvbpf != NULL)) {
struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
/* Use initial transmit rate. */
tap->wt_rate = athn_rates[ridx[0]].rate;
tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
// XXX tap->wt_hwqueue = qid;
if (ridx[0] != ATHN_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
/* DMA map mbuf. */
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (__predict_false(error != 0)) {
if (error != EFBIG) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", error);
m_freem(m);
return error;
}
/*
* DMA mapping requires too many DMA segments; linearize
* mbuf in kernel virtual address space and retry.
*/
MGETHDR(m1, M_DONTWAIT, MT_DATA);
if (m1 == NULL) {
m_freem(m);
return ENOBUFS;
}
if (m->m_pkthdr.len > (int)MHLEN) {
MCLGET(m1, M_DONTWAIT);
if (!(m1->m_flags & M_EXT)) {
m_freem(m);
m_freem(m1);
return ENOBUFS;
}
}
m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
m_freem(m);
m = m1;
error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
BUS_DMA_NOWAIT | BUS_DMA_WRITE);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"can't map mbuf (error %d)\n", error);
m_freem(m);
return error;
}
}
bf->bf_m = m;
bf->bf_ni = ni;
bf->bf_txflags = txflags;
wh = mtod(m, struct ieee80211_frame *);
totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
/* Setup Tx descriptor. */
ds = bf->bf_descs;
memset(ds, 0, sizeof(*ds));
ds->ds_info =
SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
SM(AR_TXI_DESC_NDWORDS, 23) |
SM(AR_TXI_QCU_NUM, qid) |
AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
(hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
IEEE80211_QOS_ACKPOLICY_NOACK))
ds->ds_ctl12 |= AR_TXC12_NO_ACK;
#if notyet
if (0 && k != NULL) {
uintptr_t entry;
/*
* Map 802.11 cipher to hardware encryption type and
* compute MIC+ICV overhead.
*/
switch (k->k_cipher) {
case IEEE80211_CIPHER_WEP40:
case IEEE80211_CIPHER_WEP104:
encrtype = AR_ENCR_TYPE_WEP;
totlen += 4;
break;
case IEEE80211_CIPHER_TKIP:
encrtype = AR_ENCR_TYPE_TKIP;
totlen += 12;
break;
case IEEE80211_CIPHER_CCMP:
encrtype = AR_ENCR_TYPE_AES;
totlen += 8;
break;
default:
panic("unsupported cipher");
}
/*
* NB: The key cache entry index is stored in the key
* private field when the key is installed.
*/
entry = (uintptr_t)k->k_priv;
ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
}
else
#endif
encrtype = AR_ENCR_TYPE_CLEAR;
ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
/* NB: Group frames are sent using CCK in 802.11b/g. */
if (totlen > ic->ic_rtsthreshold) {
ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
}
else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
}
}
if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
/* Disable multi-rate retries when protection is used. */
ridx[1] = ridx[2] = ridx[3] = ridx[0];
}
/* Setup multi-rate retries. */
for (i = 0; i < 4; i++) {
series[i].hwrate = athn_rates[ridx[i]].hwrate;
if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
ridx[i] != ATHN_RIDX_CCK1 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
series[i].hwrate |= 0x04;
series[i].dur = 0;
}
if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
/* Compute duration for each series. */
for (i = 0; i < 4; i++) {
series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
athn_rates[ridx[i]].rspridx, ic->ic_flags);
}
}
/* If this is a PA training frame, select the Tx chain to use. */
if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
1 << sc->sc_paprd_curchain);
}
/* Write number of tries for each series. */
ds->ds_ctl13 =
SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
/* Tell HW to update duration field in 802.11 header. */
if (type != AR_FRAME_TYPE_PSPOLL)
ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
/* Write Tx rate for each series. */
ds->ds_ctl14 =
SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
/* Write duration for each series. */
ds->ds_ctl15 =
SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
SM(AR_TXC15_PACKET_DUR1, series[1].dur);
ds->ds_ctl16 =
SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
SM(AR_TXC16_PACKET_DUR3, series[3].dur);
if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
ic->ic_curmode == IEEE80211_MODE_11A) {
/*
* In order to not exceed PCIe power requirements, we only
* use two Tx chains for MCS0~15 on 5GHz band on these chips.
*/
ds->ds_ctl18 =
SM(AR_TXC18_CHAIN_SEL0,
(ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
SM(AR_TXC18_CHAIN_SEL1,
(ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
SM(AR_TXC18_CHAIN_SEL2,
(ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
SM(AR_TXC18_CHAIN_SEL3,
(ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
}
else {
/* Use the same Tx chains for all tries. */
ds->ds_ctl18 =
SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
}
#ifdef notyet
#ifndef IEEE80211_NO_HT
/* Use the same short GI setting for all tries. */
if (ic->ic_flags & IEEE80211_F_SHGI)
ds->ds_ctl18 |= AR_TXC18_GI0123;
/* Use the same channel width for all tries. */
if (ic->ic_flags & IEEE80211_F_CBW40)
ds->ds_ctl18 |= AR_TXC18_2040_0123;
#endif
#endif
if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
uint8_t protridx, hwrate;
uint16_t dur = 0;
/* Use the same protection mode for all tries. */
if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
}
/* Select protection rate (suboptimal but ok). */
protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
/* Account for CTS duration. */
dur += athn_txtime(sc, IEEE80211_ACK_LEN,
athn_rates[protridx].rspridx, ic->ic_flags);
}
dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
/* Account for ACK duration. */
dur += athn_txtime(sc, IEEE80211_ACK_LEN,
athn_rates[ridx[0]].rspridx, ic->ic_flags);
}
/* Write protection frame duration and rate. */
ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
hwrate = athn_rates[protridx].hwrate;
if (protridx == ATHN_RIDX_CCK2 &&
(ic->ic_flags & IEEE80211_F_SHPREAMBLE))
hwrate |= 0x04;
ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
}
ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
bf->bf_map->dm_segs[i].ds_len);
}
/* Compute Tx descriptor checksum. */
sum = ds->ds_info + ds->ds_link;
for (i = 0; i < 4; i++) {
sum += ds->ds_segs[i].ds_data;
sum += ds->ds_segs[i].ds_ctl;
}
sum = (sum >> 16) + (sum & 0xffff);
ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
BUS_DMASYNC_PREWRITE);
DPRINTFN(DBG_TX, sc,
"Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
ds->ds_ctl14);
SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
/* Queue buffer unless hardware FIFO is already full. */
if (++txq->queued <= AR9003_TX_QDEPTH) {
AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
AR_WRITE_BARRIER(sc);
}
else if (txq->wait == NULL)
txq->wait = bf;
return 0;
}
Static void
ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
{
uint32_t reg;
reg = IEEE80211_IS_CHAN_2GHZ(c) ?
AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (IEEE80211_IS_CHAN_5GHZ(c) &&
(sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
}
AR_WRITE(sc, AR_PHY_MODE, reg);
AR_WRITE_BARRIER(sc);
}
static __inline uint32_t
ar9003_synth_delay(struct athn_softc *sc)
{
uint32_t synth_delay;
synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
synth_delay = (synth_delay * 4) / 22;
else
synth_delay = synth_delay / 10; /* in 100ns steps */
return synth_delay;
}
Static int
ar9003_rf_bus_request(struct athn_softc *sc)
{
int ntries;
/* Request RF Bus grant. */
AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
for (ntries = 0; ntries < 10000; ntries++) {
if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
return 0;
DELAY(10);
}
DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
return ETIMEDOUT;
}
Static void
ar9003_rf_bus_release(struct athn_softc *sc)
{
/* Wait for the synthesizer to settle. */
DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
/* Release the RF Bus grant. */
AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t phy;
phy = AR_READ(sc, AR_PHY_GEN_CTRL);
phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
#ifndef IEEE80211_NO_HT
if (extc != NULL) {
phy |= AR_PHY_GC_DYN2040_EN;
if (extc > c) /* XXX */
phy |= AR_PHY_GC_DYN2040_PRI_CH;
}
#endif
/* Turn off Green Field detection for now. */
phy &= ~AR_PHY_GC_GF_DETECT_EN;
AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
AR_WRITE(sc, AR_2040_MODE,
(extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
/* Set global transmit timeout. */
AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
/* Set carrier sense timeout. */
AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
uint32_t coeff, exp, man, reg;
/* Set Delta Slope (exponent and mantissa). */
coeff = (100 << 24) / c->ic_freq;
athn_get_delta_slope(coeff, &exp, &man);
DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
reg = AR_READ(sc, AR_PHY_TIMING3);
reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
AR_WRITE(sc, AR_PHY_TIMING3, reg);
/* For Short GI, coeff is 9/10 that of normal coeff. */
coeff = (9 * coeff) / 10;
athn_get_delta_slope(coeff, &exp, &man);
DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
reg = AR_READ(sc, AR_PHY_SGI_DELTA);
reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_enable_antenna_diversity(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_init_baseband(struct athn_softc *sc)
{
uint32_t synth_delay;
synth_delay = ar9003_synth_delay(sc);
/* Activate the PHY (includes baseband activate and synthesizer on). */
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
AR_WRITE_BARRIER(sc);
DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
}
Static void
ar9003_disable_phy(struct athn_softc *sc)
{
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_init_chains(struct athn_softc *sc)
{
if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
/* Setup chain masks. */
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
/*
* All self-generated frames are sent using two Tx chains
* on these chips to not exceed PCIe power requirements.
*/
AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
}
else
AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_rxchains(struct athn_softc *sc)
{
if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
AR_WRITE_BARRIER(sc);
}
}
#ifdef notused
Static void
ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
{
/* Sign-extends 9-bit value (assumes upper bits are zeroes). */
#define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
uint32_t reg;
int i;
for (i = 0; i < sc->sc_nrxchains; i++) {
reg = AR_READ(sc, AR_PHY_CCA(i));
nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
nf[i] = SIGN_EXT(nf[i]);
reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
nf_ext[i] = SIGN_EXT(nf_ext[i]);
}
#undef SIGN_EXT
}
#endif /* notused */
#ifdef notused
Static void
ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
{
uint32_t reg;
int i;
for (i = 0; i < sc->sc_nrxchains; i++) {
reg = AR_READ(sc, AR_PHY_CCA(i));
reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
AR_WRITE(sc, AR_PHY_CCA(i), reg);
reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
}
AR_WRITE_BARRIER(sc);
}
#endif /* notused */
#ifdef notused
Static void
ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
{
int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
int16_t cca_min, cca_max;
int i;
if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
/* Noisefloor calibration not finished. */
return;
}
/* Noisefloor calibration is finished. */
ar9003_read_noisefloor(sc, nf, nf_ext);
if (IEEE80211_IS_CHAN_2GHZ(c)) {
cca_min = sc->sc_cca_min_2g;
cca_max = sc->sc_cca_max_2g;
}
else {
cca_min = sc->sc_cca_min_5g;
cca_max = sc->sc_cca_max_5g;
}
/* Update noisefloor history. */
for (i = 0; i < sc->sc_nrxchains; i++) {
if (nf[i] < cca_min)
nf[i] = cca_min;
else if (nf[i] > cca_max)
nf[i] = cca_max;
if (nf_ext[i] < cca_min)
nf_ext[i] = cca_min;
else if (nf_ext[i] > cca_max)
nf_ext[i] = cca_max;
sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
}
if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
sc->sc_nf_hist_cur = 0;
}
#endif /* notused */
#ifdef notused
Static void
ar9003_bb_load_noisefloor(struct athn_softc *sc)
{
int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
int i, ntries;
/* Write filtered noisefloor values. */
for (i = 0; i < sc->sc_nrxchains; i++) {
nf[i] = sc->sc_nf_priv[i] * 2;
nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
}
ar9003_write_noisefloor(sc, nf, nf_ext);
/* Load filtered noisefloor values into baseband. */
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
/* Wait for load to complete. */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
break;
DELAY(10);
}
if (ntries == 1000) {
DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
return;
}
/* Restore noisefloor values to initial (max) values. */
for (i = 0; i < AR_MAX_CHAINS; i++)
nf[i] = nf_ext[i] = -50 * 2;
ar9003_write_noisefloor(sc, nf, nf_ext);
}
#endif /* notused */
#ifdef notused
Static void
ar9300_noisefloor_calib(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
}
#endif /* notused */
Static void
ar9003_do_noisefloor_calib(struct athn_softc *sc)
{
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
}
PUBLIC int
ar9003_init_calib(struct athn_softc *sc)
{
uint8_t txchainmask, rxchainmask;
uint32_t reg;
int ntries;
/* Save chains masks. */
txchainmask = sc->sc_txchainmask;
rxchainmask = sc->sc_rxchainmask;
/* Configure hardware before calibration. */
if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
txchainmask = rxchainmask = 0x3;
else
txchainmask = rxchainmask = 0x7;
ar9003_init_chains(sc);
/* Perform Tx IQ calibration. */
ar9003_calib_tx_iq(sc);
/* Disable and re-enable the PHY chips. */
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
AR_WRITE_BARRIER(sc);
DELAY(5);
AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/* Calibrate the AGC. */
AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
/* Poll for offset calibration completion. */
for (ntries = 0; ntries < 10000; ntries++) {
reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
if (!(reg & AR_PHY_AGC_CONTROL_CAL))
break;
DELAY(10);
}
if (ntries == 10000)
return ETIMEDOUT;
/* Restore chains masks. */
sc->sc_txchainmask = txchainmask;
sc->sc_rxchainmask = rxchainmask;
ar9003_init_chains(sc);
return 0;
}
Static void
ar9003_do_calib(struct athn_softc *sc)
{
uint32_t reg;
if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
reg = AR_READ(sc, AR_PHY_TIMING4);
reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
AR_WRITE(sc, AR_PHY_TIMING4, reg);
AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
AR_WRITE_BARRIER(sc);
}
else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
AR_PHY_65NM_CH0_THERM_LOCAL);
AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
AR_PHY_65NM_CH0_THERM_START);
AR_WRITE_BARRIER(sc);
}
}
Static void
ar9003_next_calib(struct athn_softc *sc)
{
/* Check if we have any calibration in progress. */
if (sc->sc_cur_calib_mask != 0) {
if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
/* Calibration completed for current sample. */
ar9003_calib_iq(sc);
}
}
}
Static void
ar9003_calib_iq(struct athn_softc *sc)
{
struct athn_iq_cal *cal;
uint32_t reg, i_coff_denom, q_coff_denom;
int32_t i_coff, q_coff;
int i, iq_corr_neg;
for (i = 0; i < AR_MAX_CHAINS; i++) {
cal = &sc->sc_calib.iq[i];
/* Read IQ calibration measures (clear on read). */
cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
cal->iq_corr_meas =
(int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
}
for (i = 0; i < sc->sc_nrxchains; i++) {
cal = &sc->sc_calib.iq[i];
if (cal->pwr_meas_q == 0)
continue;
if ((iq_corr_neg = cal->iq_corr_meas < 0))
cal->iq_corr_meas = -cal->iq_corr_meas;
i_coff_denom =
(cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
q_coff_denom = cal->pwr_meas_q / 64;
if (i_coff_denom == 0 || q_coff_denom == 0)
continue; /* Prevents division by zero. */
i_coff = cal->iq_corr_meas / i_coff_denom;
q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
if (i_coff > 63)
i_coff = 63;
else if (i_coff < -63)
i_coff = -63;
/* Negate i_coff if iq_corr_meas is positive. */
if (!iq_corr_neg)
i_coff = -i_coff;
if (q_coff > 63)
q_coff = 63;
else if (q_coff < -63)
q_coff = -63;
DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
}
/* Apply new settings. */
AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
AR_WRITE_BARRIER(sc);
/* IQ calibration done. */
sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
}
#define DELPT 32
Static int
ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
{
/* Sign-extends 12-bit value (assumes upper bits are zeroes). */
#define SIGN_EXT(v) (((v) ^ 0x800) - 0x800)
#define SCALE (1 << 15)
#define SHIFT (1 << 8)
struct {
int32_t m, p, c;
} val[2][2];
int32_t mag[2][2], phs[2][2], cos[2], sin[2];
int32_t div, f1, f2, f3, m, p, c;
int32_t txmag, txphs, rxmag, rxphs;
int32_t q_coff, i_coff;
int i, j;
/* Extract our twelve signed 12-bit values from res[] array. */
val[0][0].m = res[0] & 0xfff;
val[0][0].p = (res[0] >> 12) & 0xfff;
val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
val[0][1].m = (res[1] >> 4) & 0xfff;
val[0][1].p = res[2] & 0xfff;
val[0][1].c = (res[2] >> 12) & 0xfff;
val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
val[1][0].p = (res[3] >> 4) & 0xfff;
val[1][0].c = res[4] & 0xfff;
val[1][1].m = (res[4] >> 12) & 0xfff;
val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
val[1][1].c = (res[5] >> 4) & 0xfff;
for (i = 0; i < 2; i++) {
int32_t ymin, ymax;
for (j = 0; j < 2; j++) {
m = SIGN_EXT(val[i][j].m);
p = SIGN_EXT(val[i][j].p);
c = SIGN_EXT(val[i][j].c);
if (p == 0)
return 1; /* Prevent division by 0. */
mag[i][j] = (m * SCALE) / p;
phs[i][j] = (c * SCALE) / p;
}
sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
/* Find magnitude by approximation. */
ymin = MIN(abs(sin[i]), abs(cos[i]));
ymax = MAX(abs(sin[i]), abs(cos[i]));
div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
if (div == 0)
return 1; /* Prevent division by 0. */
/* Normalize sin and cos by magnitude. */
sin[i] = (sin[i] * SCALE) / div;
cos[i] = (cos[i] * SCALE) / div;
}
/* Compute IQ mismatch (solve 4x4 linear equation). */
f1 = cos[0] - cos[1];
f3 = sin[0] - sin[1];
f2 = (f1 * f1 + f3 * f3) / SCALE;
if (f2 == 0)
return 1; /* Prevent division by 0. */
/* Compute Tx magnitude mismatch. */
txmag = (f1 * ( mag[0][0] - mag[1][0]) +
f3 * ( phs[0][0] - phs[1][0])) / f2;
/* Compute Tx phase mismatch. */
txphs = (f3 * (-mag[0][0] + mag[1][0]) +
f1 * ( phs[0][0] - phs[1][0])) / f2;
if (txmag == SCALE)
return 1; /* Prevent division by 0. */
/* Compute Rx magnitude mismatch. */
rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
/* Compute Rx phase mismatch. */
rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
if (-rxmag == SCALE)
return 1; /* Prevent division by 0. */
txmag = (txmag * SCALE) / (SCALE - txmag);
txphs = -txphs;
q_coff = (txmag * 128) / SCALE;
if (q_coff < -63)
q_coff = -63;
else if (q_coff > 63)
q_coff = 63;
i_coff = (txphs * 256) / SCALE;
if (i_coff < -63)
i_coff = -63;
else if (i_coff > 63)
i_coff = 63;
coeff[0] = q_coff * 128 + i_coff;
rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
rxphs = -rxphs;
q_coff = (rxmag * 128) / SCALE;
if (q_coff < -63)
q_coff = -63;
else if (q_coff > 63)
q_coff = 63;
i_coff = (rxphs * 256) / SCALE;
if (i_coff < -63)
i_coff = -63;
else if (i_coff > 63)
i_coff = 63;
coeff[1] = q_coff * 128 + i_coff;
return 0;
#undef SHIFT
#undef SCALE
#undef SIGN_EXT
}
Static int
ar9003_calib_tx_iq(struct athn_softc *sc)
{
uint32_t reg;
int32_t res[6], coeff[2];
int i, j, ntries;
reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
/* Start Tx IQ calibration. */
AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
/* Wait for completion. */
for (ntries = 0; ntries < 10000; ntries++) {
reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
break;
DELAY(10);
}
if (ntries == 10000)
return ETIMEDOUT;
for (i = 0; i < sc->sc_ntxchains; i++) {
/* Read Tx IQ calibration status for this chain. */
reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
return EIO;
/*
* Read Tx IQ calibration results for this chain.
* This consists in twelve signed 12-bit values.
*/
for (j = 0; j < 3; j++) {
AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_TAB_S2_READ);
reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
res[j * 2 + 0] = reg;
AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
AR_PHY_CHAN_INFO_TAB_S2_READ);
reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
res[j * 2 + 1] = reg & 0xffff;
}
/* Compute Tx IQ correction. */
if (ar9003_get_iq_corr(sc, res, coeff) != 0)
return EIO;
/* Write Tx IQ correction coefficients. */
reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
coeff[0]);
AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
coeff[1] >> 7);
reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
coeff[1]);
AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
AR_WRITE_BARRIER(sc);
}
/* Enable Tx IQ correction. */
AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
AR_WRITE_BARRIER(sc);
return 0;
}
#undef DELPT
/*-
* The power amplifier predistortion state machine works as follows:
* 1) Disable digital predistorters for all Tx chains
* 2) Repeat steps 3~7 for all Tx chains
* 3) Force Tx gain to that of training signal
* 4) Send training signal (asynchronous)
* 5) Wait for training signal to complete (asynchronous)
* 6) Read PA measurements (input power, output power, output phase)
* 7) Compute the predistortion function that linearizes PA output
* 8) Write predistortion functions to hardware tables for all Tx chains
* 9) Enable digital predistorters for all Tx chains
*/
#ifdef notused
Static void
ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
{
static const int scaling[] = {
261376, 248079, 233759, 220464,
208194, 196949, 185706, 175487
};
struct athn_ops *ops = &sc->sc_ops;
uint32_t reg, ht20mask, ht40mask;
int i;
/* Read PA predistortion masks from ROM. */
ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
/* AM-to-AM: amplifier's amplitude characteristic. */
reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
/* AM-to-PM: amplifier's phase transfer characteristic. */
reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
for (i = 0; i < AR9003_MAX_CHAINS; i++) {
AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
}
/* Disable all digital predistorters during calibration. */
for (i = 0; i < AR9003_MAX_CHAINS; i++) {
AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
}
AR_WRITE_BARRIER(sc);
/*
* Configure training signal.
*/
reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
if (AR_SREV_9485(sc))
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
else
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
for (i = 0; i < __arraycount(scaling); i++) {
reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
}
/* Save Tx gain table. */
for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
/* Set Tx power of training signal (use setting for MCS0). */
sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
/*
* Start PA predistortion calibration state machine.
*/
/* Find first available Tx chain. */
sc->sc_paprd_curchain = 0;
while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
sc->sc_paprd_curchain++;
/* Make sure training done bit is clear. */
AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
AR_WRITE_BARRIER(sc);
/* Transmit training signal. */
ar9003_paprd_tx_tone(sc);
}
#endif /* notused */
Static int
ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
{
int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
int32_t tempcorr, voltcorr;
uint32_t reg;
int8_t delta;
scale = MS(AR_READ(sc, AR_PHY_TPC_12),
AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
reg = AR_READ(sc, AR_PHY_TPC_19);
atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
reg = AR_READ(sc, AR_PHY_TPC_18);
tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
AR_PHY_TPC_11_OLPC_GAIN_DELTA);
/* Compute temperature and voltage correction. */
tempcorr = (atemp * (temp - tempcal) + 128) / 256;
voltcorr = (avolt * (volt - voltcal) + 64) / 128;
/* Compute desired Tx gain. */
return pow - delta - tempcorr - voltcorr + scale;
}
Static void
ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
MS(txgain, AR_PHY_TXGAIN_PADRVGND));
reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
reg = AR_READ(sc, AR_PHY_TPC_1);
reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
AR_WRITE(sc, AR_PHY_TPC_1, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_training_gain(struct athn_softc *sc, int chain)
{
size_t i;
int gain;
/*
* Get desired gain for training signal power (take into account
* current temperature/voltage).
*/
gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
/* Find entry in table. */
for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
break;
ar9003_force_txgain(sc, sc->sc_txgain[i]);
}
Static int
ar9003_paprd_tx_tone(struct athn_softc *sc)
{
#define TONE_LEN 1800
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m;
int error;
/* Build a Null (no data) frame of TONE_LEN bytes. */
m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
if (m == NULL)
return ENOBUFS;
memset(mtod(m, void *), 0, TONE_LEN);
wh = mtod(m, struct ieee80211_frame *);
wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
*(uint16_t *)wh->i_dur = htole16(10); /* XXX */
IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
m->m_pkthdr.len = m->m_len = TONE_LEN;
/* Set gain of training signal. */
ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
/* Transmit training signal. */
ni = ieee80211_ref_node(ic->ic_bss);
if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
ieee80211_free_node(ni);
return error;
#undef TONE_LEN
}
static __inline int
get_scale(int val)
{
int log = 0;
/* Find the log base 2 (position of highest bit set). */
while (val >>= 1)
log++;
return (log > 10) ? log - 10 : 0;
}
/*
* Compute predistortion function to linearize power amplifier output based
* on feedback from training signal.
*/
Static int
ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
const uint32_t *hi)
{
#define NBINS 23
int chain = sc->sc_paprd_curchain;
int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
int nsamples, txsum, rxsum, rosum, maxidx;
int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
int tmp, i;
/* Set values at origin. */
x[0] = y[0] = t[0] = 0;
#define SCALE 32
maxidx = 0;
for (i = 0; i < NBINS; i++) {
nsamples = lo[i] & 0xffff;
/* Skip bins that contain 16 or less samples. */
if (nsamples <= 16) {
x[i + 1] = y[i + 1] = t[i + 1] = 0;
continue;
}
txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
rxsum = (lo[i + NBINS] & 0xffff) << 5 |
((hi[i] >> 11) & 0x1f);
rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
/* Sign-extend 27-bit value. */
rosum = (rosum ^ 0x4000000) - 0x4000000;
txsum *= SCALE;
rxsum *= SCALE;
rosum *= SCALE;
x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
SCALE * maxidx + SCALE / 2;
t[i + 1] = (rosum + nsamples) / nsamples;
maxidx++;
}
#undef SCALE
#define SCALE_LOG 8
#define SCALE (1 << SCALE_LOG)
if (x[6] == x[3])
return 1; /* Prevent division by 0. */
G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
if (G == 0)
return 1; /* Prevent division by 0. */
sc->sc_gain1[chain] = G; /* Save low signal gain. */
/* Find interception point. */
icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
for (i = 0; i <= 3; i++) {
y[i] = i * 32;
x[i] = (y[i] * SCALE + G) / G;
}
for (i = 4; i <= maxidx; i++)
y[i] -= icept;
xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
order = (xnonlin + y[maxidx]) / y[maxidx];
if (order == 0)
M = 10;
else if (order == 1)
M = 9;
else
M = 8;
I = (maxidx >= 16) ? 7 : maxidx / 2;
L = maxidx - I;
sumy2 = sumy4 = y2 = y4 = 0;
for (i = 0; i <= L; i++) {
if (y[i + I] == 0)
return 1; /* Prevent division by 0. */
xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
sumy2 += y2;
sumy4 += y2 * y2;
b1[i] = y2 * (L + 1);
b2[i] = y2;
}
for (i = 0; i <= L; i++) {
b1[i] -= sumy2;
b2[i] = sumy4 - sumy2 * b2[i];
}
maxxtildeabs = maxb1abs = maxb2abs = 0;
for (i = 0; i <= L; i++) {
tmp = abs(xtilde[i]);
if (tmp > maxxtildeabs)
maxxtildeabs = tmp;
tmp = abs(b1[i]);
if (tmp > maxb1abs)
maxb1abs = tmp;
tmp = abs(b2[i]);
if (tmp > maxb2abs)
maxb2abs = tmp;
}
Qx = get_scale(maxxtildeabs);
Qb1 = get_scale(maxb1abs);
Qb2 = get_scale(maxb2abs);
for (i = 0; i <= L; i++) {
xtilde[i] /= 1 << Qx;
b1[i] /= 1 << Qb1;
b2[i] /= 1 << Qb2;
}
alpha = beta = 0;
for (i = 0; i <= L; i++) {
alpha += b1[i] * xtilde[i];
beta += b2[i] * xtilde[i];
}
scale = ((y4 / SCALE_LOG) * (L + 1) -
(y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
Qscale = get_scale(abs(scale));
scale /= 1 << Qscale;
Qalpha = get_scale(abs(alpha));
alpha /= 1 << Qalpha;
Qbeta = get_scale(abs(beta));
beta /= 1 << Qbeta;
order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
order5x = 1 << (order / 5);
order5xrem = 1 << (order % 5);
order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
order3x = 1 << (order / 3);
order3xrem = 1 << (order % 3);
for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
tmp = i * 32;
/* Fifth order. */
y5 = ((beta * tmp) / 64) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = y5 / order5xrem;
/* Third oder. */
y3 = (alpha * tmp) / order3x;
y3 = (y3 * tmp) / order3x;
y3 = (y3 * tmp) / order3x;
y3 = y3 / order3xrem;
in = y5 + y3 + (SCALE * tmp) / G;
if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
in = sc->sc_pa_in[chain][i - 1] +
(sc->sc_pa_in[chain][i - 1] -
sc->sc_pa_in[chain][i - 2]);
}
if (in > 1400)
in = 1400;
sc->sc_pa_in[chain][i] = in;
}
/* Compute average theta of first 5 bins (linear region). */
tavg = 0;
for (i = 1; i <= 5; i++)
tavg += t[i];
tavg /= 5;
for (i = 1; i <= 5; i++)
t[i] = 0;
for (i = 6; i <= maxidx; i++)
t[i] -= tavg;
alpha = beta = 0;
for (i = 0; i <= L; i++) {
ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
alpha += b2[i] * ttilde;
beta += b1[i] * ttilde;
}
Qalpha = get_scale(abs(alpha));
alpha /= 1 << Qalpha;
Qbeta = get_scale(abs(beta));
beta /= 1 << Qbeta;
order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
order5x = 1 << (order / 5);
order5xrem = 1 << (order % 5);
order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
order3x = 1 << (order / 3);
order3xrem = 1 << (order % 3);
for (i = 0; i <= 4; i++)
sc->sc_angle[chain][i] = 0; /* Linear at that range. */
for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
tmp = i * 32;
/* Fifth order. */
if (beta > 0)
y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
else
y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = (y5 * tmp) / order5x;
y5 = y5 / order5xrem;
/* Third oder. */
if (beta > 0) /* XXX alpha? */
y3 = (alpha * tmp - order3x) / order3x;
else
y3 = (alpha * tmp + order3x) / order3x;
y3 = (y3 * tmp) / order3x;
y3 = (y3 * tmp) / order3x;
y3 = y3 / order3xrem;
angle = y5 + y3;
if (angle < -150)
angle = -150;
else if (angle > 150)
angle = 150;
sc->sc_angle[chain][i] = angle;
}
/* Angle for entry 4 is derived from angle for entry 5. */
sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
return 0;
#undef SCALE
#undef SCALE_LOG
#undef NBINS
}
Static void
ar9003_enable_predistorter(struct athn_softc *sc, int chain)
{
uint32_t reg;
int i;
/* Write digital predistorter lookup table. */
for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
}
reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
/* Indicate Tx power used for calibration (training signal). */
reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
/* Enable digital predistorter for this chain. */
AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_paprd_enable(struct athn_softc *sc)
{
int i;
/* Enable digital predistorters for all Tx chains. */
for (i = 0; i < AR9003_MAX_CHAINS; i++)
if (sc->sc_txchainmask & (1 << i))
ar9003_enable_predistorter(sc, i);
}
/*
* This function is called when our training signal has been sent.
*/
Static void
ar9003_paprd_tx_tone_done(struct athn_softc *sc)
{
uint32_t lo[48], hi[48];
size_t i;
/* Make sure training is complete. */
if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
return;
/* Read feedback from training signal. */
AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
for (i = 0; i < __arraycount(lo); i++)
lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
for (i = 0; i < __arraycount(hi); i++)
hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
/* Compute predistortion function based on this feedback. */
if (ar9003_compute_predistortion(sc, lo, hi) != 0)
return;
/* Get next available Tx chain. */
while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
break;
if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
/* All Tx chains measured; enable digital predistortion. */
ar9003_paprd_enable(sc);
}
else /* Measure next Tx chain. */
ar9003_paprd_tx_tone(sc);
}
PUBLIC void
ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
{
/* Make sure forced gain is disabled. */
AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
(power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
(power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
(power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
(power[ATHN_POWER_OFDM6 ] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
(power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
(power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
(power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
(power[ATHN_POWER_OFDM24 ] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
(power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
(power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
/* NB: No eXtended Range for AR9003. */
(power[ATHN_POWER_CCK1_LP ] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
(power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
(power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
(power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
(power[ATHN_POWER_CCK55_LP] & 0x3f));
/*
* NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
* because it is read by PA predistortion functions.
*/
AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
(power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
(power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
(power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 |
(power[ATHN_POWER_HT20( 0)] & 0x3f));
#ifndef IEEE80211_NO_HT
AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
(power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
(power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
(power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 |
(power[ATHN_POWER_HT20( 6)] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
(power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
(power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
(power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 |
(power[ATHN_POWER_HT40( 0)] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
(power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
(power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
(power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 |
(power[ATHN_POWER_HT40( 6)] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
(power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
(power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
(power[ATHN_POWER_HT20(15)] & 0x3f) << 8 |
(power[ATHN_POWER_HT20(14)] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
(power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
(power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
(power[ATHN_POWER_HT20(23)] & 0x3f) << 8 |
(power[ATHN_POWER_HT20(22)] & 0x3f));
AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
(power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
(power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
(power[ATHN_POWER_HT40(15)] & 0x3f) << 8 |
(power[ATHN_POWER_HT40(14)] & 0x3f));
#endif
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
{
#define X(x) ((uint32_t)(x) << 2)
const struct athn_gain *prog = sc->sc_rx_gain;
const uint32_t *pvals;
int i;
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = prog->vals_2g;
else
pvals = prog->vals_5g;
for (i = 0; i < prog->nregs; i++)
AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
AR_WRITE_BARRIER(sc);
#undef X
}
Static void
ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
{
#define X(x) ((uint32_t)(x) << 2)
const struct athn_gain *prog = sc->sc_tx_gain;
const uint32_t *pvals;
int i;
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = prog->vals_2g;
else
pvals = prog->vals_5g;
for (i = 0; i < prog->nregs; i++)
AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
AR_WRITE_BARRIER(sc);
#undef X
}
Static void
ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
struct ieee80211_channel *extc)
{
#define X(x) ((uint32_t)(x) << 2)
struct athn_ops *ops = &sc->sc_ops;
const struct athn_ini *ini = sc->sc_ini;
const uint32_t *pvals;
uint32_t reg;
int i;
/*
* The common init values include the pre and core phases for the
* SoC, MAC, BB and Radio subsystems.
*/
DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
for (i = 0; i < ini->ncmregs; i++) {
AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
DELAY(100);
if ((i & 0x1f) == 0)
DELAY(1);
}
/*
* The modal init values include the post phase for the SoC, MAC,
* BB and Radio subsystems.
*/
#ifndef IEEE80211_NO_HT
if (extc != NULL) {
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = ini->vals_2g40;
else
pvals = ini->vals_5g40;
}
else
#endif
{
if (IEEE80211_IS_CHAN_2GHZ(c))
pvals = ini->vals_2g20;
else
pvals = ini->vals_5g20;
}
DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
for (i = 0; i < ini->nregs; i++) {
AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
if (AR_IS_ANALOG_REG(X(ini->regs[i])))
DELAY(100);
if ((i & 0x1f) == 0)
DELAY(1);
}
if (sc->sc_rx_gain != NULL)
ar9003_reset_rx_gain(sc, c);
if (sc->sc_tx_gain != NULL)
ar9003_reset_tx_gain(sc, c);
if (IEEE80211_IS_CHAN_5GHZ(c) &&
(sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
/* Update modal values for fast PLL clock. */
#ifndef IEEE80211_NO_HT
if (extc != NULL)
pvals = ini->fastvals_5g40;
else
#endif
pvals = ini->fastvals_5g20;
DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
for (i = 0; i < ini->nfastregs; i++) {
AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
DELAY(100);
if ((i & 0x1f) == 0)
DELAY(1);
}
}
/*
* Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
* descriptor status.
*/
AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
reg = AR_READ(sc, AR_PCU_MISC_MODE2);
reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
AR_WRITE_BARRIER(sc);
ar9003_set_phy(sc, c, extc);
ar9003_init_chains(sc);
ops->set_txpower(sc, c, extc);
#undef X
}
PUBLIC void
ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
uint8_t ctl, const uint8_t *fbins,
const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
{
uint8_t fbin;
int i, delta, lo, hi;
lo = hi = -1;
fbin = athn_chan2fbin(c);
for (i = 0; i < nchans; i++) {
delta = fbin - fbins[i];
/* Find the largest sample that is <= our frequency. */
if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
lo = i;
/* Find the smallest sample that is >= our frequency. */
if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
hi = i;
}
if (lo == -1)
lo = hi;
else if (hi == -1)
hi = lo;
/* Interpolate values. */
for (i = 0; i < 4; i++) {
tpow[i] = athn_interpolate(fbin,
fbins[lo], tgt[lo].tPow2x[i],
fbins[hi], tgt[hi].tPow2x[i]);
}
/* XXX Apply conformance test limit. */
}
PUBLIC void
ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
uint8_t ctl, const uint8_t *fbins,
const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
{
uint8_t fbin;
int i, delta, lo, hi;
lo = hi = -1;
fbin = athn_chan2fbin(c);
for (i = 0; i < nchans; i++) {
delta = fbin - fbins[i];
/* Find the largest sample that is <= our frequency. */
if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
lo = i;
/* Find the smallest sample that is >= our frequency. */
if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
hi = i;
}
if (lo == -1)
lo = hi;
else if (hi == -1)
hi = lo;
/* Interpolate values. */
for (i = 0; i < 14; i++) {
tpow[i] = athn_interpolate(fbin,
fbins[lo], tgt[lo].tPow2x[i],
fbins[hi], tgt[hi].tPow2x[i]);
}
/* XXX Apply conformance test limit. */
}
/*
* Adaptive noise immunity.
*/
Static void
ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
{
int high = level == 4;
uint32_t reg;
reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
reg = AR_READ(sc, AR_PHY_AGC);
reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
AR_WRITE(sc, AR_PHY_AGC, reg);
reg = AR_READ(sc, AR_PHY_FIND_SIG);
reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
reg = AR_READ(sc, AR_PHY_SFCORR);
reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
AR_WRITE(sc, AR_PHY_SFCORR, reg);
reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
reg = AR_READ(sc, AR_PHY_SFCORR);
reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
AR_WRITE(sc, AR_PHY_SFCORR, reg);
reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_CCK_DETECT);
reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_firstep_level(struct athn_softc *sc, int level)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_FIND_SIG);
reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
AR_WRITE_BARRIER(sc);
}
Static void
ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
{
uint32_t reg;
reg = AR_READ(sc, AR_PHY_TIMING5);
reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
AR_WRITE(sc, AR_PHY_TIMING5, reg);
AR_WRITE_BARRIER(sc);
}