2687 lines
62 KiB
C
2687 lines
62 KiB
C
/* $NetBSD: subr_autoconf.c,v 1.163 2008/09/07 22:36:36 cube Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1996, 2000 Christopher G. Demetriou
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the
|
|
* NetBSD Project. See http://www.NetBSD.org/ for
|
|
* information about NetBSD.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* --(license Id: LICENSE.proto,v 1.1 2000/06/13 21:40:26 cgd Exp )--
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1992, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* This software was developed by the Computer Systems Engineering group
|
|
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
|
|
* contributed to Berkeley.
|
|
*
|
|
* All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the University of
|
|
* California, Lawrence Berkeley Laboratories.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* from: Header: subr_autoconf.c,v 1.12 93/02/01 19:31:48 torek Exp (LBL)
|
|
*
|
|
* @(#)subr_autoconf.c 8.3 (Berkeley) 5/17/94
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: subr_autoconf.c,v 1.163 2008/09/07 22:36:36 cube Exp $");
|
|
|
|
#include "opt_ddb.h"
|
|
#include "drvctl.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/device.h>
|
|
#include <sys/disklabel.h>
|
|
#include <sys/conf.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/dirent.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/unistd.h>
|
|
#include <sys/fcntl.h>
|
|
#include <sys/lockf.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/devmon.h>
|
|
#include <sys/cpu.h>
|
|
|
|
#include <sys/disk.h>
|
|
|
|
#include <machine/limits.h>
|
|
|
|
#include "opt_userconf.h"
|
|
#ifdef USERCONF
|
|
#include <sys/userconf.h>
|
|
#endif
|
|
|
|
#ifdef __i386__
|
|
#include "opt_splash.h"
|
|
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
|
|
#include <dev/splash/splash.h>
|
|
extern struct splash_progress *splash_progress_state;
|
|
#endif
|
|
#endif
|
|
|
|
/*
|
|
* Autoconfiguration subroutines.
|
|
*/
|
|
|
|
typedef struct pmf_private {
|
|
int pp_nwait;
|
|
int pp_nlock;
|
|
lwp_t *pp_holder;
|
|
kmutex_t pp_mtx;
|
|
kcondvar_t pp_cv;
|
|
} pmf_private_t;
|
|
|
|
/*
|
|
* ioconf.c exports exactly two names: cfdata and cfroots. All system
|
|
* devices and drivers are found via these tables.
|
|
*/
|
|
extern struct cfdata cfdata[];
|
|
extern const short cfroots[];
|
|
|
|
/*
|
|
* List of all cfdriver structures. We use this to detect duplicates
|
|
* when other cfdrivers are loaded.
|
|
*/
|
|
struct cfdriverlist allcfdrivers = LIST_HEAD_INITIALIZER(&allcfdrivers);
|
|
extern struct cfdriver * const cfdriver_list_initial[];
|
|
|
|
/*
|
|
* Initial list of cfattach's.
|
|
*/
|
|
extern const struct cfattachinit cfattachinit[];
|
|
|
|
/*
|
|
* List of cfdata tables. We always have one such list -- the one
|
|
* built statically when the kernel was configured.
|
|
*/
|
|
struct cftablelist allcftables = TAILQ_HEAD_INITIALIZER(allcftables);
|
|
static struct cftable initcftable;
|
|
|
|
#define ROOT ((device_t)NULL)
|
|
|
|
struct matchinfo {
|
|
cfsubmatch_t fn;
|
|
struct device *parent;
|
|
const int *locs;
|
|
void *aux;
|
|
struct cfdata *match;
|
|
int pri;
|
|
};
|
|
|
|
static char *number(char *, int);
|
|
static void mapply(struct matchinfo *, cfdata_t);
|
|
static device_t config_devalloc(const device_t, const cfdata_t, const int *);
|
|
static void config_devdealloc(device_t);
|
|
static void config_makeroom(int, struct cfdriver *);
|
|
static void config_devlink(device_t);
|
|
static void config_devunlink(device_t);
|
|
|
|
static void pmflock_debug(device_t, const char *, int);
|
|
static void pmflock_debug_with_flags(device_t, const char *, int PMF_FN_PROTO);
|
|
|
|
static device_t deviter_next1(deviter_t *);
|
|
static void deviter_reinit(deviter_t *);
|
|
|
|
struct deferred_config {
|
|
TAILQ_ENTRY(deferred_config) dc_queue;
|
|
device_t dc_dev;
|
|
void (*dc_func)(device_t);
|
|
};
|
|
|
|
TAILQ_HEAD(deferred_config_head, deferred_config);
|
|
|
|
struct deferred_config_head deferred_config_queue =
|
|
TAILQ_HEAD_INITIALIZER(deferred_config_queue);
|
|
struct deferred_config_head interrupt_config_queue =
|
|
TAILQ_HEAD_INITIALIZER(interrupt_config_queue);
|
|
int interrupt_config_threads = 8;
|
|
|
|
static void config_process_deferred(struct deferred_config_head *, device_t);
|
|
|
|
/* Hooks to finalize configuration once all real devices have been found. */
|
|
struct finalize_hook {
|
|
TAILQ_ENTRY(finalize_hook) f_list;
|
|
int (*f_func)(device_t);
|
|
device_t f_dev;
|
|
};
|
|
static TAILQ_HEAD(, finalize_hook) config_finalize_list =
|
|
TAILQ_HEAD_INITIALIZER(config_finalize_list);
|
|
static int config_finalize_done;
|
|
|
|
/* list of all devices */
|
|
struct devicelist alldevs = TAILQ_HEAD_INITIALIZER(alldevs);
|
|
kcondvar_t alldevs_cv;
|
|
kmutex_t alldevs_mtx;
|
|
static int alldevs_nread = 0;
|
|
static int alldevs_nwrite = 0;
|
|
static lwp_t *alldevs_writer = NULL;
|
|
|
|
static int config_pending; /* semaphore for mountroot */
|
|
static kmutex_t config_misc_lock;
|
|
static kcondvar_t config_misc_cv;
|
|
|
|
#define STREQ(s1, s2) \
|
|
(*(s1) == *(s2) && strcmp((s1), (s2)) == 0)
|
|
|
|
static int config_initialized; /* config_init() has been called. */
|
|
|
|
static int config_do_twiddle;
|
|
|
|
struct vnode *
|
|
opendisk(struct device *dv)
|
|
{
|
|
int bmajor, bminor;
|
|
struct vnode *tmpvn;
|
|
int error;
|
|
dev_t dev;
|
|
|
|
/*
|
|
* Lookup major number for disk block device.
|
|
*/
|
|
bmajor = devsw_name2blk(device_xname(dv), NULL, 0);
|
|
if (bmajor == -1)
|
|
return NULL;
|
|
|
|
bminor = minor(device_unit(dv));
|
|
/*
|
|
* Fake a temporary vnode for the disk, open it, and read
|
|
* and hash the sectors.
|
|
*/
|
|
dev = device_is_a(dv, "dk") ? makedev(bmajor, bminor) :
|
|
MAKEDISKDEV(bmajor, bminor, RAW_PART);
|
|
if (bdevvp(dev, &tmpvn))
|
|
panic("%s: can't alloc vnode for %s", __func__,
|
|
device_xname(dv));
|
|
error = VOP_OPEN(tmpvn, FREAD, NOCRED);
|
|
if (error) {
|
|
#ifndef DEBUG
|
|
/*
|
|
* Ignore errors caused by missing device, partition,
|
|
* or medium.
|
|
*/
|
|
if (error != ENXIO && error != ENODEV)
|
|
#endif
|
|
printf("%s: can't open dev %s (%d)\n",
|
|
__func__, device_xname(dv), error);
|
|
vput(tmpvn);
|
|
return NULL;
|
|
}
|
|
|
|
return tmpvn;
|
|
}
|
|
|
|
int
|
|
config_handle_wedges(struct device *dv, int par)
|
|
{
|
|
struct dkwedge_list wl;
|
|
struct dkwedge_info *wi;
|
|
struct vnode *vn;
|
|
char diskname[16];
|
|
int i, error;
|
|
|
|
if ((vn = opendisk(dv)) == NULL)
|
|
return -1;
|
|
|
|
wl.dkwl_bufsize = sizeof(*wi) * 16;
|
|
wl.dkwl_buf = wi = malloc(wl.dkwl_bufsize, M_TEMP, M_WAITOK);
|
|
|
|
error = VOP_IOCTL(vn, DIOCLWEDGES, &wl, FREAD, NOCRED);
|
|
VOP_CLOSE(vn, FREAD, NOCRED);
|
|
vput(vn);
|
|
if (error) {
|
|
#ifdef DEBUG_WEDGE
|
|
printf("%s: List wedges returned %d\n",
|
|
device_xname(dv), error);
|
|
#endif
|
|
free(wi, M_TEMP);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef DEBUG_WEDGE
|
|
printf("%s: Returned %u(%u) wedges\n", device_xname(dv),
|
|
wl.dkwl_nwedges, wl.dkwl_ncopied);
|
|
#endif
|
|
snprintf(diskname, sizeof(diskname), "%s%c", device_xname(dv),
|
|
par + 'a');
|
|
|
|
for (i = 0; i < wl.dkwl_ncopied; i++) {
|
|
#ifdef DEBUG_WEDGE
|
|
printf("%s: Looking for %s in %s\n",
|
|
device_xname(dv), diskname, wi[i].dkw_wname);
|
|
#endif
|
|
if (strcmp(wi[i].dkw_wname, diskname) == 0)
|
|
break;
|
|
}
|
|
|
|
if (i == wl.dkwl_ncopied) {
|
|
#ifdef DEBUG_WEDGE
|
|
printf("%s: Cannot find wedge with parent %s\n",
|
|
device_xname(dv), diskname);
|
|
#endif
|
|
free(wi, M_TEMP);
|
|
return -1;
|
|
}
|
|
|
|
#ifdef DEBUG_WEDGE
|
|
printf("%s: Setting boot wedge %s (%s) at %llu %llu\n",
|
|
device_xname(dv), wi[i].dkw_devname, wi[i].dkw_wname,
|
|
(unsigned long long)wi[i].dkw_offset,
|
|
(unsigned long long)wi[i].dkw_size);
|
|
#endif
|
|
dkwedge_set_bootwedge(dv, wi[i].dkw_offset, wi[i].dkw_size);
|
|
free(wi, M_TEMP);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Initialize the autoconfiguration data structures. Normally this
|
|
* is done by configure(), but some platforms need to do this very
|
|
* early (to e.g. initialize the console).
|
|
*/
|
|
void
|
|
config_init(void)
|
|
{
|
|
const struct cfattachinit *cfai;
|
|
int i, j;
|
|
|
|
if (config_initialized)
|
|
return;
|
|
|
|
mutex_init(&alldevs_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&alldevs_cv, "alldevs");
|
|
|
|
mutex_init(&config_misc_lock, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&config_misc_cv, "cfgmisc");
|
|
|
|
/* allcfdrivers is statically initialized. */
|
|
for (i = 0; cfdriver_list_initial[i] != NULL; i++) {
|
|
if (config_cfdriver_attach(cfdriver_list_initial[i]) != 0)
|
|
panic("configure: duplicate `%s' drivers",
|
|
cfdriver_list_initial[i]->cd_name);
|
|
}
|
|
|
|
for (cfai = &cfattachinit[0]; cfai->cfai_name != NULL; cfai++) {
|
|
for (j = 0; cfai->cfai_list[j] != NULL; j++) {
|
|
if (config_cfattach_attach(cfai->cfai_name,
|
|
cfai->cfai_list[j]) != 0)
|
|
panic("configure: duplicate `%s' attachment "
|
|
"of `%s' driver",
|
|
cfai->cfai_list[j]->ca_name,
|
|
cfai->cfai_name);
|
|
}
|
|
}
|
|
|
|
initcftable.ct_cfdata = cfdata;
|
|
TAILQ_INSERT_TAIL(&allcftables, &initcftable, ct_list);
|
|
|
|
config_initialized = 1;
|
|
}
|
|
|
|
void
|
|
config_deferred(device_t dev)
|
|
{
|
|
config_process_deferred(&deferred_config_queue, dev);
|
|
config_process_deferred(&interrupt_config_queue, dev);
|
|
}
|
|
|
|
static void
|
|
config_interrupts_thread(void *cookie)
|
|
{
|
|
struct deferred_config *dc;
|
|
|
|
while ((dc = TAILQ_FIRST(&interrupt_config_queue)) != NULL) {
|
|
TAILQ_REMOVE(&interrupt_config_queue, dc, dc_queue);
|
|
(*dc->dc_func)(dc->dc_dev);
|
|
kmem_free(dc, sizeof(*dc));
|
|
config_pending_decr();
|
|
}
|
|
kthread_exit(0);
|
|
}
|
|
|
|
/*
|
|
* Configure the system's hardware.
|
|
*/
|
|
void
|
|
configure(void)
|
|
{
|
|
extern void ssp_init(void);
|
|
CPU_INFO_ITERATOR cii;
|
|
struct cpu_info *ci;
|
|
int i, s;
|
|
|
|
/* Initialize data structures. */
|
|
config_init();
|
|
pmf_init();
|
|
#if NDRVCTL > 0
|
|
drvctl_init();
|
|
#endif
|
|
|
|
#ifdef USERCONF
|
|
if (boothowto & RB_USERCONF)
|
|
user_config();
|
|
#endif
|
|
|
|
if ((boothowto & (AB_SILENT|AB_VERBOSE)) == AB_SILENT) {
|
|
config_do_twiddle = 1;
|
|
printf_nolog("Detecting hardware...");
|
|
}
|
|
|
|
/*
|
|
* Do the machine-dependent portion of autoconfiguration. This
|
|
* sets the configuration machinery here in motion by "finding"
|
|
* the root bus. When this function returns, we expect interrupts
|
|
* to be enabled.
|
|
*/
|
|
cpu_configure();
|
|
|
|
/* Initialize SSP. */
|
|
ssp_init();
|
|
|
|
/*
|
|
* Now that we've found all the hardware, start the real time
|
|
* and statistics clocks.
|
|
*/
|
|
initclocks();
|
|
|
|
cold = 0; /* clocks are running, we're warm now! */
|
|
s = splsched();
|
|
curcpu()->ci_schedstate.spc_flags |= SPCF_RUNNING;
|
|
splx(s);
|
|
|
|
/* Boot the secondary processors. */
|
|
for (CPU_INFO_FOREACH(cii, ci)) {
|
|
uvm_cpu_attach(ci);
|
|
}
|
|
mp_online = true;
|
|
#if defined(MULTIPROCESSOR)
|
|
cpu_boot_secondary_processors();
|
|
#endif
|
|
|
|
/* Setup the runqueues and scheduler. */
|
|
runq_init();
|
|
sched_init();
|
|
|
|
/*
|
|
* Create threads to call back and finish configuration for
|
|
* devices that want interrupts enabled.
|
|
*/
|
|
for (i = 0; i < interrupt_config_threads; i++) {
|
|
(void)kthread_create(PRI_NONE, 0, NULL,
|
|
config_interrupts_thread, NULL, NULL, "config");
|
|
}
|
|
|
|
/* Get the threads going and into any sleeps before continuing. */
|
|
yield();
|
|
|
|
/* Lock the kernel on behalf of lwp0. */
|
|
KERNEL_LOCK(1, NULL);
|
|
}
|
|
|
|
/*
|
|
* Announce device attach/detach to userland listeners.
|
|
*/
|
|
static void
|
|
devmon_report_device(device_t dev, bool isattach)
|
|
{
|
|
#if NDRVCTL > 0
|
|
prop_dictionary_t ev;
|
|
const char *parent;
|
|
const char *what;
|
|
device_t pdev = device_parent(dev);
|
|
|
|
ev = prop_dictionary_create();
|
|
if (ev == NULL)
|
|
return;
|
|
|
|
what = (isattach ? "device-attach" : "device-detach");
|
|
parent = (pdev == NULL ? "root" : device_xname(pdev));
|
|
if (!prop_dictionary_set_cstring(ev, "device", device_xname(dev)) ||
|
|
!prop_dictionary_set_cstring(ev, "parent", parent)) {
|
|
prop_object_release(ev);
|
|
return;
|
|
}
|
|
|
|
devmon_insert(what, ev);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* Add a cfdriver to the system.
|
|
*/
|
|
int
|
|
config_cfdriver_attach(struct cfdriver *cd)
|
|
{
|
|
struct cfdriver *lcd;
|
|
|
|
/* Make sure this driver isn't already in the system. */
|
|
LIST_FOREACH(lcd, &allcfdrivers, cd_list) {
|
|
if (STREQ(lcd->cd_name, cd->cd_name))
|
|
return (EEXIST);
|
|
}
|
|
|
|
LIST_INIT(&cd->cd_attach);
|
|
LIST_INSERT_HEAD(&allcfdrivers, cd, cd_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a cfdriver from the system.
|
|
*/
|
|
int
|
|
config_cfdriver_detach(struct cfdriver *cd)
|
|
{
|
|
int i;
|
|
|
|
/* Make sure there are no active instances. */
|
|
for (i = 0; i < cd->cd_ndevs; i++) {
|
|
if (cd->cd_devs[i] != NULL)
|
|
return (EBUSY);
|
|
}
|
|
|
|
/* ...and no attachments loaded. */
|
|
if (LIST_EMPTY(&cd->cd_attach) == 0)
|
|
return (EBUSY);
|
|
|
|
LIST_REMOVE(cd, cd_list);
|
|
|
|
KASSERT(cd->cd_devs == NULL);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look up a cfdriver by name.
|
|
*/
|
|
struct cfdriver *
|
|
config_cfdriver_lookup(const char *name)
|
|
{
|
|
struct cfdriver *cd;
|
|
|
|
LIST_FOREACH(cd, &allcfdrivers, cd_list) {
|
|
if (STREQ(cd->cd_name, name))
|
|
return (cd);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Add a cfattach to the specified driver.
|
|
*/
|
|
int
|
|
config_cfattach_attach(const char *driver, struct cfattach *ca)
|
|
{
|
|
struct cfattach *lca;
|
|
struct cfdriver *cd;
|
|
|
|
cd = config_cfdriver_lookup(driver);
|
|
if (cd == NULL)
|
|
return (ESRCH);
|
|
|
|
/* Make sure this attachment isn't already on this driver. */
|
|
LIST_FOREACH(lca, &cd->cd_attach, ca_list) {
|
|
if (STREQ(lca->ca_name, ca->ca_name))
|
|
return (EEXIST);
|
|
}
|
|
|
|
LIST_INSERT_HEAD(&cd->cd_attach, ca, ca_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Remove a cfattach from the specified driver.
|
|
*/
|
|
int
|
|
config_cfattach_detach(const char *driver, struct cfattach *ca)
|
|
{
|
|
struct cfdriver *cd;
|
|
device_t dev;
|
|
int i;
|
|
|
|
cd = config_cfdriver_lookup(driver);
|
|
if (cd == NULL)
|
|
return (ESRCH);
|
|
|
|
/* Make sure there are no active instances. */
|
|
for (i = 0; i < cd->cd_ndevs; i++) {
|
|
if ((dev = cd->cd_devs[i]) == NULL)
|
|
continue;
|
|
if (dev->dv_cfattach == ca)
|
|
return (EBUSY);
|
|
}
|
|
|
|
LIST_REMOVE(ca, ca_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Look up a cfattach by name.
|
|
*/
|
|
static struct cfattach *
|
|
config_cfattach_lookup_cd(struct cfdriver *cd, const char *atname)
|
|
{
|
|
struct cfattach *ca;
|
|
|
|
LIST_FOREACH(ca, &cd->cd_attach, ca_list) {
|
|
if (STREQ(ca->ca_name, atname))
|
|
return (ca);
|
|
}
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
/*
|
|
* Look up a cfattach by driver/attachment name.
|
|
*/
|
|
struct cfattach *
|
|
config_cfattach_lookup(const char *name, const char *atname)
|
|
{
|
|
struct cfdriver *cd;
|
|
|
|
cd = config_cfdriver_lookup(name);
|
|
if (cd == NULL)
|
|
return (NULL);
|
|
|
|
return (config_cfattach_lookup_cd(cd, atname));
|
|
}
|
|
|
|
/*
|
|
* Apply the matching function and choose the best. This is used
|
|
* a few times and we want to keep the code small.
|
|
*/
|
|
static void
|
|
mapply(struct matchinfo *m, cfdata_t cf)
|
|
{
|
|
int pri;
|
|
|
|
if (m->fn != NULL) {
|
|
pri = (*m->fn)(m->parent, cf, m->locs, m->aux);
|
|
} else {
|
|
pri = config_match(m->parent, cf, m->aux);
|
|
}
|
|
if (pri > m->pri) {
|
|
m->match = cf;
|
|
m->pri = pri;
|
|
}
|
|
}
|
|
|
|
int
|
|
config_stdsubmatch(device_t parent, cfdata_t cf, const int *locs, void *aux)
|
|
{
|
|
const struct cfiattrdata *ci;
|
|
const struct cflocdesc *cl;
|
|
int nlocs, i;
|
|
|
|
ci = cfiattr_lookup(cf->cf_pspec->cfp_iattr, parent->dv_cfdriver);
|
|
KASSERT(ci);
|
|
nlocs = ci->ci_loclen;
|
|
KASSERT(!nlocs || locs);
|
|
for (i = 0; i < nlocs; i++) {
|
|
cl = &ci->ci_locdesc[i];
|
|
/* !cld_defaultstr means no default value */
|
|
if ((!(cl->cld_defaultstr)
|
|
|| (cf->cf_loc[i] != cl->cld_default))
|
|
&& cf->cf_loc[i] != locs[i])
|
|
return (0);
|
|
}
|
|
|
|
return (config_match(parent, cf, aux));
|
|
}
|
|
|
|
/*
|
|
* Helper function: check whether the driver supports the interface attribute
|
|
* and return its descriptor structure.
|
|
*/
|
|
static const struct cfiattrdata *
|
|
cfdriver_get_iattr(const struct cfdriver *cd, const char *ia)
|
|
{
|
|
const struct cfiattrdata * const *cpp;
|
|
|
|
if (cd->cd_attrs == NULL)
|
|
return (0);
|
|
|
|
for (cpp = cd->cd_attrs; *cpp; cpp++) {
|
|
if (STREQ((*cpp)->ci_name, ia)) {
|
|
/* Match. */
|
|
return (*cpp);
|
|
}
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Lookup an interface attribute description by name.
|
|
* If the driver is given, consider only its supported attributes.
|
|
*/
|
|
const struct cfiattrdata *
|
|
cfiattr_lookup(const char *name, const struct cfdriver *cd)
|
|
{
|
|
const struct cfdriver *d;
|
|
const struct cfiattrdata *ia;
|
|
|
|
if (cd)
|
|
return (cfdriver_get_iattr(cd, name));
|
|
|
|
LIST_FOREACH(d, &allcfdrivers, cd_list) {
|
|
ia = cfdriver_get_iattr(d, name);
|
|
if (ia)
|
|
return (ia);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Determine if `parent' is a potential parent for a device spec based
|
|
* on `cfp'.
|
|
*/
|
|
static int
|
|
cfparent_match(const device_t parent, const struct cfparent *cfp)
|
|
{
|
|
struct cfdriver *pcd;
|
|
|
|
/* We don't match root nodes here. */
|
|
if (cfp == NULL)
|
|
return (0);
|
|
|
|
pcd = parent->dv_cfdriver;
|
|
KASSERT(pcd != NULL);
|
|
|
|
/*
|
|
* First, ensure this parent has the correct interface
|
|
* attribute.
|
|
*/
|
|
if (!cfdriver_get_iattr(pcd, cfp->cfp_iattr))
|
|
return (0);
|
|
|
|
/*
|
|
* If no specific parent device instance was specified (i.e.
|
|
* we're attaching to the attribute only), we're done!
|
|
*/
|
|
if (cfp->cfp_parent == NULL)
|
|
return (1);
|
|
|
|
/*
|
|
* Check the parent device's name.
|
|
*/
|
|
if (STREQ(pcd->cd_name, cfp->cfp_parent) == 0)
|
|
return (0); /* not the same parent */
|
|
|
|
/*
|
|
* Make sure the unit number matches.
|
|
*/
|
|
if (cfp->cfp_unit == DVUNIT_ANY || /* wildcard */
|
|
cfp->cfp_unit == parent->dv_unit)
|
|
return (1);
|
|
|
|
/* Unit numbers don't match. */
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Helper for config_cfdata_attach(): check all devices whether it could be
|
|
* parent any attachment in the config data table passed, and rescan.
|
|
*/
|
|
static void
|
|
rescan_with_cfdata(const struct cfdata *cf)
|
|
{
|
|
device_t d;
|
|
const struct cfdata *cf1;
|
|
deviter_t di;
|
|
|
|
|
|
/*
|
|
* "alldevs" is likely longer than an LKM's cfdata, so make it
|
|
* the outer loop.
|
|
*/
|
|
for (d = deviter_first(&di, 0); d != NULL; d = deviter_next(&di)) {
|
|
|
|
if (!(d->dv_cfattach->ca_rescan))
|
|
continue;
|
|
|
|
for (cf1 = cf; cf1->cf_name; cf1++) {
|
|
|
|
if (!cfparent_match(d, cf1->cf_pspec))
|
|
continue;
|
|
|
|
(*d->dv_cfattach->ca_rescan)(d,
|
|
cf1->cf_pspec->cfp_iattr, cf1->cf_loc);
|
|
}
|
|
}
|
|
deviter_release(&di);
|
|
}
|
|
|
|
/*
|
|
* Attach a supplemental config data table and rescan potential
|
|
* parent devices if required.
|
|
*/
|
|
int
|
|
config_cfdata_attach(cfdata_t cf, int scannow)
|
|
{
|
|
struct cftable *ct;
|
|
|
|
ct = kmem_alloc(sizeof(*ct), KM_SLEEP);
|
|
ct->ct_cfdata = cf;
|
|
TAILQ_INSERT_TAIL(&allcftables, ct, ct_list);
|
|
|
|
if (scannow)
|
|
rescan_with_cfdata(cf);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Helper for config_cfdata_detach: check whether a device is
|
|
* found through any attachment in the config data table.
|
|
*/
|
|
static int
|
|
dev_in_cfdata(const struct device *d, const struct cfdata *cf)
|
|
{
|
|
const struct cfdata *cf1;
|
|
|
|
for (cf1 = cf; cf1->cf_name; cf1++)
|
|
if (d->dv_cfdata == cf1)
|
|
return (1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Detach a supplemental config data table. Detach all devices found
|
|
* through that table (and thus keeping references to it) before.
|
|
*/
|
|
int
|
|
config_cfdata_detach(cfdata_t cf)
|
|
{
|
|
device_t d;
|
|
int error = 0;
|
|
struct cftable *ct;
|
|
deviter_t di;
|
|
|
|
for (d = deviter_first(&di, DEVITER_F_RW); d != NULL;
|
|
d = deviter_next(&di)) {
|
|
if (!dev_in_cfdata(d, cf))
|
|
continue;
|
|
if ((error = config_detach(d, 0)) != 0)
|
|
break;
|
|
}
|
|
deviter_release(&di);
|
|
if (error) {
|
|
aprint_error_dev(d, "unable to detach instance\n");
|
|
return error;
|
|
}
|
|
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
if (ct->ct_cfdata == cf) {
|
|
TAILQ_REMOVE(&allcftables, ct, ct_list);
|
|
kmem_free(ct, sizeof(*ct));
|
|
return (0);
|
|
}
|
|
}
|
|
|
|
/* not found -- shouldn't happen */
|
|
return (EINVAL);
|
|
}
|
|
|
|
/*
|
|
* Invoke the "match" routine for a cfdata entry on behalf of
|
|
* an external caller, usually a "submatch" routine.
|
|
*/
|
|
int
|
|
config_match(device_t parent, cfdata_t cf, void *aux)
|
|
{
|
|
struct cfattach *ca;
|
|
|
|
ca = config_cfattach_lookup(cf->cf_name, cf->cf_atname);
|
|
if (ca == NULL) {
|
|
/* No attachment for this entry, oh well. */
|
|
return (0);
|
|
}
|
|
|
|
return ((*ca->ca_match)(parent, cf, aux));
|
|
}
|
|
|
|
/*
|
|
* Iterate over all potential children of some device, calling the given
|
|
* function (default being the child's match function) for each one.
|
|
* Nonzero returns are matches; the highest value returned is considered
|
|
* the best match. Return the `found child' if we got a match, or NULL
|
|
* otherwise. The `aux' pointer is simply passed on through.
|
|
*
|
|
* Note that this function is designed so that it can be used to apply
|
|
* an arbitrary function to all potential children (its return value
|
|
* can be ignored).
|
|
*/
|
|
cfdata_t
|
|
config_search_loc(cfsubmatch_t fn, device_t parent,
|
|
const char *ifattr, const int *locs, void *aux)
|
|
{
|
|
struct cftable *ct;
|
|
cfdata_t cf;
|
|
struct matchinfo m;
|
|
|
|
KASSERT(config_initialized);
|
|
KASSERT(!ifattr || cfdriver_get_iattr(parent->dv_cfdriver, ifattr));
|
|
|
|
m.fn = fn;
|
|
m.parent = parent;
|
|
m.locs = locs;
|
|
m.aux = aux;
|
|
m.match = NULL;
|
|
m.pri = 0;
|
|
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
|
|
/* We don't match root nodes here. */
|
|
if (!cf->cf_pspec)
|
|
continue;
|
|
|
|
/*
|
|
* Skip cf if no longer eligible, otherwise scan
|
|
* through parents for one matching `parent', and
|
|
* try match function.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_FOUND)
|
|
continue;
|
|
if (cf->cf_fstate == FSTATE_DNOTFOUND ||
|
|
cf->cf_fstate == FSTATE_DSTAR)
|
|
continue;
|
|
|
|
/*
|
|
* If an interface attribute was specified,
|
|
* consider only children which attach to
|
|
* that attribute.
|
|
*/
|
|
if (ifattr && !STREQ(ifattr, cf->cf_pspec->cfp_iattr))
|
|
continue;
|
|
|
|
if (cfparent_match(parent, cf->cf_pspec))
|
|
mapply(&m, cf);
|
|
}
|
|
}
|
|
return (m.match);
|
|
}
|
|
|
|
cfdata_t
|
|
config_search_ia(cfsubmatch_t fn, device_t parent, const char *ifattr,
|
|
void *aux)
|
|
{
|
|
|
|
return (config_search_loc(fn, parent, ifattr, NULL, aux));
|
|
}
|
|
|
|
/*
|
|
* Find the given root device.
|
|
* This is much like config_search, but there is no parent.
|
|
* Don't bother with multiple cfdata tables; the root node
|
|
* must always be in the initial table.
|
|
*/
|
|
cfdata_t
|
|
config_rootsearch(cfsubmatch_t fn, const char *rootname, void *aux)
|
|
{
|
|
cfdata_t cf;
|
|
const short *p;
|
|
struct matchinfo m;
|
|
|
|
m.fn = fn;
|
|
m.parent = ROOT;
|
|
m.aux = aux;
|
|
m.match = NULL;
|
|
m.pri = 0;
|
|
m.locs = 0;
|
|
/*
|
|
* Look at root entries for matching name. We do not bother
|
|
* with found-state here since only one root should ever be
|
|
* searched (and it must be done first).
|
|
*/
|
|
for (p = cfroots; *p >= 0; p++) {
|
|
cf = &cfdata[*p];
|
|
if (strcmp(cf->cf_name, rootname) == 0)
|
|
mapply(&m, cf);
|
|
}
|
|
return (m.match);
|
|
}
|
|
|
|
static const char * const msgs[3] = { "", " not configured\n", " unsupported\n" };
|
|
|
|
/*
|
|
* The given `aux' argument describes a device that has been found
|
|
* on the given parent, but not necessarily configured. Locate the
|
|
* configuration data for that device (using the submatch function
|
|
* provided, or using candidates' cd_match configuration driver
|
|
* functions) and attach it, and return true. If the device was
|
|
* not configured, call the given `print' function and return 0.
|
|
*/
|
|
device_t
|
|
config_found_sm_loc(device_t parent,
|
|
const char *ifattr, const int *locs, void *aux,
|
|
cfprint_t print, cfsubmatch_t submatch)
|
|
{
|
|
cfdata_t cf;
|
|
|
|
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
|
|
if (splash_progress_state)
|
|
splash_progress_update(splash_progress_state);
|
|
#endif
|
|
|
|
if ((cf = config_search_loc(submatch, parent, ifattr, locs, aux)))
|
|
return(config_attach_loc(parent, cf, locs, aux, print));
|
|
if (print) {
|
|
if (config_do_twiddle)
|
|
twiddle();
|
|
aprint_normal("%s", msgs[(*print)(aux, device_xname(parent))]);
|
|
}
|
|
|
|
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
|
|
if (splash_progress_state)
|
|
splash_progress_update(splash_progress_state);
|
|
#endif
|
|
|
|
return (NULL);
|
|
}
|
|
|
|
device_t
|
|
config_found_ia(device_t parent, const char *ifattr, void *aux,
|
|
cfprint_t print)
|
|
{
|
|
|
|
return (config_found_sm_loc(parent, ifattr, NULL, aux, print, NULL));
|
|
}
|
|
|
|
device_t
|
|
config_found(device_t parent, void *aux, cfprint_t print)
|
|
{
|
|
|
|
return (config_found_sm_loc(parent, NULL, NULL, aux, print, NULL));
|
|
}
|
|
|
|
/*
|
|
* As above, but for root devices.
|
|
*/
|
|
device_t
|
|
config_rootfound(const char *rootname, void *aux)
|
|
{
|
|
cfdata_t cf;
|
|
|
|
if ((cf = config_rootsearch((cfsubmatch_t)NULL, rootname, aux)) != NULL)
|
|
return (config_attach(ROOT, cf, aux, (cfprint_t)NULL));
|
|
aprint_error("root device %s not configured\n", rootname);
|
|
return (NULL);
|
|
}
|
|
|
|
/* just like sprintf(buf, "%d") except that it works from the end */
|
|
static char *
|
|
number(char *ep, int n)
|
|
{
|
|
|
|
*--ep = 0;
|
|
while (n >= 10) {
|
|
*--ep = (n % 10) + '0';
|
|
n /= 10;
|
|
}
|
|
*--ep = n + '0';
|
|
return (ep);
|
|
}
|
|
|
|
/*
|
|
* Expand the size of the cd_devs array if necessary.
|
|
*/
|
|
static void
|
|
config_makeroom(int n, struct cfdriver *cd)
|
|
{
|
|
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
|
|
int old, new;
|
|
device_t *nsp;
|
|
|
|
if (n < cd->cd_ndevs)
|
|
return;
|
|
|
|
/*
|
|
* Need to expand the array.
|
|
*/
|
|
old = cd->cd_ndevs;
|
|
if (old == 0)
|
|
new = 4;
|
|
else
|
|
new = old * 2;
|
|
while (new <= n)
|
|
new *= 2;
|
|
cd->cd_ndevs = new;
|
|
nsp = kmem_alloc(sizeof(device_t [new]), kmflags);
|
|
if (nsp == NULL)
|
|
panic("config_attach: %sing dev array",
|
|
old != 0 ? "expand" : "creat");
|
|
memset(nsp + old, 0, sizeof(device_t [new - old]));
|
|
if (old != 0) {
|
|
memcpy(nsp, cd->cd_devs, sizeof(device_t [old]));
|
|
kmem_free(cd->cd_devs, sizeof(device_t [old]));
|
|
}
|
|
cd->cd_devs = nsp;
|
|
}
|
|
|
|
static void
|
|
config_devlink(device_t dev)
|
|
{
|
|
struct cfdriver *cd = dev->dv_cfdriver;
|
|
|
|
/* put this device in the devices array */
|
|
config_makeroom(dev->dv_unit, cd);
|
|
if (cd->cd_devs[dev->dv_unit])
|
|
panic("config_attach: duplicate %s", device_xname(dev));
|
|
cd->cd_devs[dev->dv_unit] = dev;
|
|
|
|
/* It is safe to add a device to the tail of the list while
|
|
* readers are in the list, but not while a writer is in
|
|
* the list. Wait for any writer to complete.
|
|
*/
|
|
mutex_enter(&alldevs_mtx);
|
|
while (alldevs_nwrite != 0 && alldevs_writer != curlwp)
|
|
cv_wait(&alldevs_cv, &alldevs_mtx);
|
|
TAILQ_INSERT_TAIL(&alldevs, dev, dv_list); /* link up */
|
|
cv_signal(&alldevs_cv);
|
|
mutex_exit(&alldevs_mtx);
|
|
}
|
|
|
|
static void
|
|
config_devunlink(device_t dev)
|
|
{
|
|
struct cfdriver *cd = dev->dv_cfdriver;
|
|
int i;
|
|
|
|
/* Unlink from device list. */
|
|
TAILQ_REMOVE(&alldevs, dev, dv_list);
|
|
|
|
/* Remove from cfdriver's array. */
|
|
cd->cd_devs[dev->dv_unit] = NULL;
|
|
|
|
/*
|
|
* If the device now has no units in use, deallocate its softc array.
|
|
*/
|
|
for (i = 0; i < cd->cd_ndevs; i++) {
|
|
if (cd->cd_devs[i] != NULL)
|
|
return;
|
|
}
|
|
/* nothing found; deallocate */
|
|
kmem_free(cd->cd_devs, sizeof(device_t [cd->cd_ndevs]));
|
|
cd->cd_devs = NULL;
|
|
cd->cd_ndevs = 0;
|
|
}
|
|
|
|
static device_t
|
|
config_devalloc(const device_t parent, const cfdata_t cf, const int *locs)
|
|
{
|
|
struct cfdriver *cd;
|
|
struct cfattach *ca;
|
|
size_t lname, lunit;
|
|
const char *xunit;
|
|
int myunit;
|
|
char num[10];
|
|
device_t dev;
|
|
void *dev_private;
|
|
const struct cfiattrdata *ia;
|
|
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
|
|
|
|
cd = config_cfdriver_lookup(cf->cf_name);
|
|
if (cd == NULL)
|
|
return (NULL);
|
|
|
|
ca = config_cfattach_lookup_cd(cd, cf->cf_atname);
|
|
if (ca == NULL)
|
|
return (NULL);
|
|
|
|
if ((ca->ca_flags & DVF_PRIV_ALLOC) == 0 &&
|
|
ca->ca_devsize < sizeof(struct device))
|
|
panic("config_devalloc: %s", cf->cf_atname);
|
|
|
|
#ifndef __BROKEN_CONFIG_UNIT_USAGE
|
|
if (cf->cf_fstate == FSTATE_STAR) {
|
|
for (myunit = cf->cf_unit; myunit < cd->cd_ndevs; myunit++)
|
|
if (cd->cd_devs[myunit] == NULL)
|
|
break;
|
|
/*
|
|
* myunit is now the unit of the first NULL device pointer,
|
|
* or max(cd->cd_ndevs,cf->cf_unit).
|
|
*/
|
|
} else {
|
|
myunit = cf->cf_unit;
|
|
if (myunit < cd->cd_ndevs && cd->cd_devs[myunit] != NULL)
|
|
return (NULL);
|
|
}
|
|
#else
|
|
myunit = cf->cf_unit;
|
|
#endif /* ! __BROKEN_CONFIG_UNIT_USAGE */
|
|
|
|
/* compute length of name and decimal expansion of unit number */
|
|
lname = strlen(cd->cd_name);
|
|
xunit = number(&num[sizeof(num)], myunit);
|
|
lunit = &num[sizeof(num)] - xunit;
|
|
if (lname + lunit > sizeof(dev->dv_xname))
|
|
panic("config_devalloc: device name too long");
|
|
|
|
/* get memory for all device vars */
|
|
KASSERT((ca->ca_flags & DVF_PRIV_ALLOC) || ca->ca_devsize >= sizeof(struct device));
|
|
if (ca->ca_devsize > 0) {
|
|
dev_private = kmem_zalloc(ca->ca_devsize, kmflags);
|
|
if (dev_private == NULL)
|
|
panic("config_devalloc: memory allocation for device softc failed");
|
|
} else {
|
|
KASSERT(ca->ca_flags & DVF_PRIV_ALLOC);
|
|
dev_private = NULL;
|
|
}
|
|
|
|
if ((ca->ca_flags & DVF_PRIV_ALLOC) != 0) {
|
|
dev = kmem_zalloc(sizeof(*dev), kmflags);
|
|
} else {
|
|
dev = dev_private;
|
|
}
|
|
if (dev == NULL)
|
|
panic("config_devalloc: memory allocation for device_t failed");
|
|
|
|
dev->dv_class = cd->cd_class;
|
|
dev->dv_cfdata = cf;
|
|
dev->dv_cfdriver = cd;
|
|
dev->dv_cfattach = ca;
|
|
dev->dv_unit = myunit;
|
|
dev->dv_activity_count = 0;
|
|
dev->dv_activity_handlers = NULL;
|
|
dev->dv_private = dev_private;
|
|
memcpy(dev->dv_xname, cd->cd_name, lname);
|
|
memcpy(dev->dv_xname + lname, xunit, lunit);
|
|
dev->dv_parent = parent;
|
|
if (parent != NULL)
|
|
dev->dv_depth = parent->dv_depth + 1;
|
|
else
|
|
dev->dv_depth = 0;
|
|
dev->dv_flags = DVF_ACTIVE; /* always initially active */
|
|
dev->dv_flags |= ca->ca_flags; /* inherit flags from class */
|
|
if (locs) {
|
|
KASSERT(parent); /* no locators at root */
|
|
ia = cfiattr_lookup(cf->cf_pspec->cfp_iattr,
|
|
parent->dv_cfdriver);
|
|
dev->dv_locators =
|
|
kmem_alloc(sizeof(int [ia->ci_loclen + 1]), kmflags);
|
|
*dev->dv_locators++ = sizeof(int [ia->ci_loclen + 1]);
|
|
memcpy(dev->dv_locators, locs, sizeof(int [ia->ci_loclen]));
|
|
}
|
|
dev->dv_properties = prop_dictionary_create();
|
|
KASSERT(dev->dv_properties != NULL);
|
|
|
|
prop_dictionary_set_cstring_nocopy(dev->dv_properties,
|
|
"device-driver", dev->dv_cfdriver->cd_name);
|
|
prop_dictionary_set_uint16(dev->dv_properties,
|
|
"device-unit", dev->dv_unit);
|
|
|
|
return (dev);
|
|
}
|
|
|
|
static void
|
|
config_devdealloc(device_t dev)
|
|
{
|
|
int priv = (dev->dv_flags & DVF_PRIV_ALLOC);
|
|
|
|
KASSERT(dev->dv_properties != NULL);
|
|
prop_object_release(dev->dv_properties);
|
|
|
|
if (dev->dv_activity_handlers)
|
|
panic("config_devdealloc with registered handlers");
|
|
|
|
if (dev->dv_locators) {
|
|
size_t amount = *--dev->dv_locators;
|
|
kmem_free(dev->dv_locators, amount);
|
|
}
|
|
|
|
if (dev->dv_cfattach->ca_devsize > 0)
|
|
kmem_free(dev->dv_private, dev->dv_cfattach->ca_devsize);
|
|
if (priv)
|
|
kmem_free(dev, sizeof(*dev));
|
|
}
|
|
|
|
/*
|
|
* Attach a found device.
|
|
*/
|
|
device_t
|
|
config_attach_loc(device_t parent, cfdata_t cf,
|
|
const int *locs, void *aux, cfprint_t print)
|
|
{
|
|
device_t dev;
|
|
struct cftable *ct;
|
|
const char *drvname;
|
|
|
|
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
|
|
if (splash_progress_state)
|
|
splash_progress_update(splash_progress_state);
|
|
#endif
|
|
|
|
dev = config_devalloc(parent, cf, locs);
|
|
if (!dev)
|
|
panic("config_attach: allocation of device softc failed");
|
|
|
|
/* XXX redundant - see below? */
|
|
if (cf->cf_fstate != FSTATE_STAR) {
|
|
KASSERT(cf->cf_fstate == FSTATE_NOTFOUND);
|
|
cf->cf_fstate = FSTATE_FOUND;
|
|
}
|
|
#ifdef __BROKEN_CONFIG_UNIT_USAGE
|
|
else
|
|
cf->cf_unit++;
|
|
#endif
|
|
|
|
config_devlink(dev);
|
|
|
|
if (config_do_twiddle)
|
|
twiddle();
|
|
else
|
|
aprint_naive("Found ");
|
|
/*
|
|
* We want the next two printfs for normal, verbose, and quiet,
|
|
* but not silent (in which case, we're twiddling, instead).
|
|
*/
|
|
if (parent == ROOT) {
|
|
aprint_naive("%s (root)", device_xname(dev));
|
|
aprint_normal("%s (root)", device_xname(dev));
|
|
} else {
|
|
aprint_naive("%s at %s", device_xname(dev), device_xname(parent));
|
|
aprint_normal("%s at %s", device_xname(dev), device_xname(parent));
|
|
if (print)
|
|
(void) (*print)(aux, NULL);
|
|
}
|
|
|
|
/*
|
|
* Before attaching, clobber any unfound devices that are
|
|
* otherwise identical.
|
|
* XXX code above is redundant?
|
|
*/
|
|
drvname = dev->dv_cfdriver->cd_name;
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
if (STREQ(cf->cf_name, drvname) &&
|
|
cf->cf_unit == dev->dv_unit) {
|
|
if (cf->cf_fstate == FSTATE_NOTFOUND)
|
|
cf->cf_fstate = FSTATE_FOUND;
|
|
#ifdef __BROKEN_CONFIG_UNIT_USAGE
|
|
/*
|
|
* Bump the unit number on all starred cfdata
|
|
* entries for this device.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_STAR)
|
|
cf->cf_unit++;
|
|
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
|
|
}
|
|
}
|
|
}
|
|
#ifdef __HAVE_DEVICE_REGISTER
|
|
device_register(dev, aux);
|
|
#endif
|
|
|
|
/* Let userland know */
|
|
devmon_report_device(dev, true);
|
|
|
|
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
|
|
if (splash_progress_state)
|
|
splash_progress_update(splash_progress_state);
|
|
#endif
|
|
(*dev->dv_cfattach->ca_attach)(parent, dev, aux);
|
|
#if defined(SPLASHSCREEN) && defined(SPLASHSCREEN_PROGRESS)
|
|
if (splash_progress_state)
|
|
splash_progress_update(splash_progress_state);
|
|
#endif
|
|
|
|
if (!device_pmf_is_registered(dev))
|
|
aprint_debug_dev(dev, "WARNING: power management not supported\n");
|
|
|
|
config_process_deferred(&deferred_config_queue, dev);
|
|
return (dev);
|
|
}
|
|
|
|
device_t
|
|
config_attach(device_t parent, cfdata_t cf, void *aux, cfprint_t print)
|
|
{
|
|
|
|
return (config_attach_loc(parent, cf, NULL, aux, print));
|
|
}
|
|
|
|
/*
|
|
* As above, but for pseudo-devices. Pseudo-devices attached in this
|
|
* way are silently inserted into the device tree, and their children
|
|
* attached.
|
|
*
|
|
* Note that because pseudo-devices are attached silently, any information
|
|
* the attach routine wishes to print should be prefixed with the device
|
|
* name by the attach routine.
|
|
*/
|
|
device_t
|
|
config_attach_pseudo(cfdata_t cf)
|
|
{
|
|
device_t dev;
|
|
|
|
dev = config_devalloc(ROOT, cf, NULL);
|
|
if (!dev)
|
|
return (NULL);
|
|
|
|
/* XXX mark busy in cfdata */
|
|
|
|
config_devlink(dev);
|
|
|
|
#if 0 /* XXXJRT not yet */
|
|
#ifdef __HAVE_DEVICE_REGISTER
|
|
device_register(dev, NULL); /* like a root node */
|
|
#endif
|
|
#endif
|
|
(*dev->dv_cfattach->ca_attach)(ROOT, dev, NULL);
|
|
config_process_deferred(&deferred_config_queue, dev);
|
|
return (dev);
|
|
}
|
|
|
|
/*
|
|
* Detach a device. Optionally forced (e.g. because of hardware
|
|
* removal) and quiet. Returns zero if successful, non-zero
|
|
* (an error code) otherwise.
|
|
*
|
|
* Note that this code wants to be run from a process context, so
|
|
* that the detach can sleep to allow processes which have a device
|
|
* open to run and unwind their stacks.
|
|
*/
|
|
int
|
|
config_detach(device_t dev, int flags)
|
|
{
|
|
struct cftable *ct;
|
|
cfdata_t cf;
|
|
const struct cfattach *ca;
|
|
struct cfdriver *cd;
|
|
#ifdef DIAGNOSTIC
|
|
device_t d;
|
|
#endif
|
|
int rv = 0;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
cf = dev->dv_cfdata;
|
|
if (cf != NULL && cf->cf_fstate != FSTATE_FOUND &&
|
|
cf->cf_fstate != FSTATE_STAR)
|
|
panic("config_detach: %s: bad device fstate %d",
|
|
device_xname(dev), cf ? cf->cf_fstate : -1);
|
|
#endif
|
|
cd = dev->dv_cfdriver;
|
|
KASSERT(cd != NULL);
|
|
|
|
ca = dev->dv_cfattach;
|
|
KASSERT(ca != NULL);
|
|
|
|
KASSERT(curlwp != NULL);
|
|
mutex_enter(&alldevs_mtx);
|
|
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
|
|
;
|
|
else while (alldevs_nread != 0 ||
|
|
(alldevs_nwrite != 0 && alldevs_writer != curlwp))
|
|
cv_wait(&alldevs_cv, &alldevs_mtx);
|
|
if (alldevs_nwrite++ == 0)
|
|
alldevs_writer = curlwp;
|
|
mutex_exit(&alldevs_mtx);
|
|
|
|
/*
|
|
* Ensure the device is deactivated. If the device doesn't
|
|
* have an activation entry point, we allow DVF_ACTIVE to
|
|
* remain set. Otherwise, if DVF_ACTIVE is still set, the
|
|
* device is busy, and the detach fails.
|
|
*/
|
|
if (ca->ca_activate != NULL)
|
|
rv = config_deactivate(dev);
|
|
|
|
/*
|
|
* Try to detach the device. If that's not possible, then
|
|
* we either panic() (for the forced but failed case), or
|
|
* return an error.
|
|
*/
|
|
if (rv == 0) {
|
|
if (ca->ca_detach != NULL)
|
|
rv = (*ca->ca_detach)(dev, flags);
|
|
else
|
|
rv = EOPNOTSUPP;
|
|
}
|
|
if (rv != 0) {
|
|
if ((flags & DETACH_FORCE) == 0)
|
|
goto out;
|
|
else
|
|
panic("config_detach: forced detach of %s failed (%d)",
|
|
device_xname(dev), rv);
|
|
}
|
|
|
|
/*
|
|
* The device has now been successfully detached.
|
|
*/
|
|
|
|
/* Let userland know */
|
|
devmon_report_device(dev, false);
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Sanity: If you're successfully detached, you should have no
|
|
* children. (Note that because children must be attached
|
|
* after parents, we only need to search the latter part of
|
|
* the list.)
|
|
*/
|
|
for (d = TAILQ_NEXT(dev, dv_list); d != NULL;
|
|
d = TAILQ_NEXT(d, dv_list)) {
|
|
if (d->dv_parent == dev) {
|
|
printf("config_detach: detached device %s"
|
|
" has children %s\n", device_xname(dev), device_xname(d));
|
|
panic("config_detach");
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* notify the parent that the child is gone */
|
|
if (dev->dv_parent) {
|
|
device_t p = dev->dv_parent;
|
|
if (p->dv_cfattach->ca_childdetached)
|
|
(*p->dv_cfattach->ca_childdetached)(p, dev);
|
|
}
|
|
|
|
/*
|
|
* Mark cfdata to show that the unit can be reused, if possible.
|
|
*/
|
|
TAILQ_FOREACH(ct, &allcftables, ct_list) {
|
|
for (cf = ct->ct_cfdata; cf->cf_name; cf++) {
|
|
if (STREQ(cf->cf_name, cd->cd_name)) {
|
|
if (cf->cf_fstate == FSTATE_FOUND &&
|
|
cf->cf_unit == dev->dv_unit)
|
|
cf->cf_fstate = FSTATE_NOTFOUND;
|
|
#ifdef __BROKEN_CONFIG_UNIT_USAGE
|
|
/*
|
|
* Note that we can only re-use a starred
|
|
* unit number if the unit being detached
|
|
* had the last assigned unit number.
|
|
*/
|
|
if (cf->cf_fstate == FSTATE_STAR &&
|
|
cf->cf_unit == dev->dv_unit + 1)
|
|
cf->cf_unit--;
|
|
#endif /* __BROKEN_CONFIG_UNIT_USAGE */
|
|
}
|
|
}
|
|
}
|
|
|
|
config_devunlink(dev);
|
|
|
|
if (dev->dv_cfdata != NULL && (flags & DETACH_QUIET) == 0)
|
|
aprint_normal_dev(dev, "detached\n");
|
|
|
|
config_devdealloc(dev);
|
|
|
|
out:
|
|
mutex_enter(&alldevs_mtx);
|
|
if (--alldevs_nwrite == 0)
|
|
alldevs_writer = NULL;
|
|
cv_signal(&alldevs_cv);
|
|
mutex_exit(&alldevs_mtx);
|
|
return rv;
|
|
}
|
|
|
|
int
|
|
config_detach_children(device_t parent, int flags)
|
|
{
|
|
device_t dv;
|
|
deviter_t di;
|
|
int error = 0;
|
|
|
|
for (dv = deviter_first(&di, DEVITER_F_RW); dv != NULL;
|
|
dv = deviter_next(&di)) {
|
|
if (device_parent(dv) != parent)
|
|
continue;
|
|
if ((error = config_detach(dv, flags)) != 0)
|
|
break;
|
|
}
|
|
deviter_release(&di);
|
|
return error;
|
|
}
|
|
|
|
int
|
|
config_activate(device_t dev)
|
|
{
|
|
const struct cfattach *ca = dev->dv_cfattach;
|
|
int rv = 0, oflags = dev->dv_flags;
|
|
|
|
if (ca->ca_activate == NULL)
|
|
return (EOPNOTSUPP);
|
|
|
|
if ((dev->dv_flags & DVF_ACTIVE) == 0) {
|
|
dev->dv_flags |= DVF_ACTIVE;
|
|
rv = (*ca->ca_activate)(dev, DVACT_ACTIVATE);
|
|
if (rv)
|
|
dev->dv_flags = oflags;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
int
|
|
config_deactivate(device_t dev)
|
|
{
|
|
const struct cfattach *ca = dev->dv_cfattach;
|
|
int rv = 0, oflags = dev->dv_flags;
|
|
|
|
if (ca->ca_activate == NULL)
|
|
return (EOPNOTSUPP);
|
|
|
|
if (dev->dv_flags & DVF_ACTIVE) {
|
|
dev->dv_flags &= ~DVF_ACTIVE;
|
|
rv = (*ca->ca_activate)(dev, DVACT_DEACTIVATE);
|
|
if (rv)
|
|
dev->dv_flags = oflags;
|
|
}
|
|
return (rv);
|
|
}
|
|
|
|
/*
|
|
* Defer the configuration of the specified device until all
|
|
* of its parent's devices have been attached.
|
|
*/
|
|
void
|
|
config_defer(device_t dev, void (*func)(device_t))
|
|
{
|
|
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
|
|
struct deferred_config *dc;
|
|
|
|
if (dev->dv_parent == NULL)
|
|
panic("config_defer: can't defer config of a root device");
|
|
|
|
#ifdef DIAGNOSTIC
|
|
for (dc = TAILQ_FIRST(&deferred_config_queue); dc != NULL;
|
|
dc = TAILQ_NEXT(dc, dc_queue)) {
|
|
if (dc->dc_dev == dev)
|
|
panic("config_defer: deferred twice");
|
|
}
|
|
#endif
|
|
|
|
dc = kmem_alloc(sizeof(*dc), kmflags);
|
|
if (dc == NULL)
|
|
panic("config_defer: unable to allocate callback");
|
|
|
|
dc->dc_dev = dev;
|
|
dc->dc_func = func;
|
|
TAILQ_INSERT_TAIL(&deferred_config_queue, dc, dc_queue);
|
|
config_pending_incr();
|
|
}
|
|
|
|
/*
|
|
* Defer some autoconfiguration for a device until after interrupts
|
|
* are enabled.
|
|
*/
|
|
void
|
|
config_interrupts(device_t dev, void (*func)(device_t))
|
|
{
|
|
const km_flag_t kmflags = (cold ? KM_NOSLEEP : KM_SLEEP);
|
|
struct deferred_config *dc;
|
|
|
|
/*
|
|
* If interrupts are enabled, callback now.
|
|
*/
|
|
if (cold == 0) {
|
|
(*func)(dev);
|
|
return;
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
for (dc = TAILQ_FIRST(&interrupt_config_queue); dc != NULL;
|
|
dc = TAILQ_NEXT(dc, dc_queue)) {
|
|
if (dc->dc_dev == dev)
|
|
panic("config_interrupts: deferred twice");
|
|
}
|
|
#endif
|
|
|
|
dc = kmem_alloc(sizeof(*dc), kmflags);
|
|
if (dc == NULL)
|
|
panic("config_interrupts: unable to allocate callback");
|
|
|
|
dc->dc_dev = dev;
|
|
dc->dc_func = func;
|
|
TAILQ_INSERT_TAIL(&interrupt_config_queue, dc, dc_queue);
|
|
config_pending_incr();
|
|
}
|
|
|
|
/*
|
|
* Process a deferred configuration queue.
|
|
*/
|
|
static void
|
|
config_process_deferred(struct deferred_config_head *queue,
|
|
device_t parent)
|
|
{
|
|
struct deferred_config *dc, *ndc;
|
|
|
|
for (dc = TAILQ_FIRST(queue); dc != NULL; dc = ndc) {
|
|
ndc = TAILQ_NEXT(dc, dc_queue);
|
|
if (parent == NULL || dc->dc_dev->dv_parent == parent) {
|
|
TAILQ_REMOVE(queue, dc, dc_queue);
|
|
(*dc->dc_func)(dc->dc_dev);
|
|
kmem_free(dc, sizeof(*dc));
|
|
config_pending_decr();
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manipulate the config_pending semaphore.
|
|
*/
|
|
void
|
|
config_pending_incr(void)
|
|
{
|
|
|
|
mutex_enter(&config_misc_lock);
|
|
config_pending++;
|
|
mutex_exit(&config_misc_lock);
|
|
}
|
|
|
|
void
|
|
config_pending_decr(void)
|
|
{
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (config_pending == 0)
|
|
panic("config_pending_decr: config_pending == 0");
|
|
#endif
|
|
mutex_enter(&config_misc_lock);
|
|
config_pending--;
|
|
if (config_pending == 0)
|
|
cv_broadcast(&config_misc_cv);
|
|
mutex_exit(&config_misc_lock);
|
|
}
|
|
|
|
/*
|
|
* Register a "finalization" routine. Finalization routines are
|
|
* called iteratively once all real devices have been found during
|
|
* autoconfiguration, for as long as any one finalizer has done
|
|
* any work.
|
|
*/
|
|
int
|
|
config_finalize_register(device_t dev, int (*fn)(device_t))
|
|
{
|
|
struct finalize_hook *f;
|
|
|
|
/*
|
|
* If finalization has already been done, invoke the
|
|
* callback function now.
|
|
*/
|
|
if (config_finalize_done) {
|
|
while ((*fn)(dev) != 0)
|
|
/* loop */ ;
|
|
}
|
|
|
|
/* Ensure this isn't already on the list. */
|
|
TAILQ_FOREACH(f, &config_finalize_list, f_list) {
|
|
if (f->f_func == fn && f->f_dev == dev)
|
|
return (EEXIST);
|
|
}
|
|
|
|
f = kmem_alloc(sizeof(*f), KM_SLEEP);
|
|
f->f_func = fn;
|
|
f->f_dev = dev;
|
|
TAILQ_INSERT_TAIL(&config_finalize_list, f, f_list);
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
config_finalize(void)
|
|
{
|
|
struct finalize_hook *f;
|
|
struct pdevinit *pdev;
|
|
extern struct pdevinit pdevinit[];
|
|
int errcnt, rv;
|
|
|
|
/*
|
|
* Now that device driver threads have been created, wait for
|
|
* them to finish any deferred autoconfiguration.
|
|
*/
|
|
mutex_enter(&config_misc_lock);
|
|
while (config_pending != 0)
|
|
cv_wait(&config_misc_cv, &config_misc_lock);
|
|
mutex_exit(&config_misc_lock);
|
|
|
|
/* Attach pseudo-devices. */
|
|
for (pdev = pdevinit; pdev->pdev_attach != NULL; pdev++)
|
|
(*pdev->pdev_attach)(pdev->pdev_count);
|
|
|
|
/* Run the hooks until none of them does any work. */
|
|
do {
|
|
rv = 0;
|
|
TAILQ_FOREACH(f, &config_finalize_list, f_list)
|
|
rv |= (*f->f_func)(f->f_dev);
|
|
} while (rv != 0);
|
|
|
|
config_finalize_done = 1;
|
|
|
|
/* Now free all the hooks. */
|
|
while ((f = TAILQ_FIRST(&config_finalize_list)) != NULL) {
|
|
TAILQ_REMOVE(&config_finalize_list, f, f_list);
|
|
kmem_free(f, sizeof(*f));
|
|
}
|
|
|
|
errcnt = aprint_get_error_count();
|
|
if ((boothowto & (AB_QUIET|AB_SILENT)) != 0 &&
|
|
(boothowto & AB_VERBOSE) == 0) {
|
|
if (config_do_twiddle) {
|
|
config_do_twiddle = 0;
|
|
printf_nolog("done.\n");
|
|
}
|
|
if (errcnt != 0) {
|
|
printf("WARNING: %d error%s while detecting hardware; "
|
|
"check system log.\n", errcnt,
|
|
errcnt == 1 ? "" : "s");
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* device_lookup:
|
|
*
|
|
* Look up a device instance for a given driver.
|
|
*/
|
|
device_t
|
|
device_lookup(cfdriver_t cd, int unit)
|
|
{
|
|
|
|
if (unit < 0 || unit >= cd->cd_ndevs)
|
|
return (NULL);
|
|
|
|
return (cd->cd_devs[unit]);
|
|
}
|
|
|
|
/*
|
|
* device_lookup:
|
|
*
|
|
* Look up a device instance for a given driver.
|
|
*/
|
|
void *
|
|
device_lookup_private(cfdriver_t cd, int unit)
|
|
{
|
|
device_t dv;
|
|
|
|
if (unit < 0 || unit >= cd->cd_ndevs)
|
|
return NULL;
|
|
|
|
if ((dv = cd->cd_devs[unit]) == NULL)
|
|
return NULL;
|
|
|
|
return dv->dv_private;
|
|
}
|
|
|
|
/*
|
|
* Accessor functions for the device_t type.
|
|
*/
|
|
devclass_t
|
|
device_class(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_class);
|
|
}
|
|
|
|
cfdata_t
|
|
device_cfdata(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_cfdata);
|
|
}
|
|
|
|
cfdriver_t
|
|
device_cfdriver(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_cfdriver);
|
|
}
|
|
|
|
cfattach_t
|
|
device_cfattach(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_cfattach);
|
|
}
|
|
|
|
int
|
|
device_unit(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_unit);
|
|
}
|
|
|
|
const char *
|
|
device_xname(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_xname);
|
|
}
|
|
|
|
device_t
|
|
device_parent(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_parent);
|
|
}
|
|
|
|
bool
|
|
device_is_active(device_t dev)
|
|
{
|
|
int active_flags;
|
|
|
|
active_flags = DVF_ACTIVE;
|
|
active_flags |= DVF_CLASS_SUSPENDED;
|
|
active_flags |= DVF_DRIVER_SUSPENDED;
|
|
active_flags |= DVF_BUS_SUSPENDED;
|
|
|
|
return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
|
|
}
|
|
|
|
bool
|
|
device_is_enabled(device_t dev)
|
|
{
|
|
return (dev->dv_flags & DVF_ACTIVE) == DVF_ACTIVE;
|
|
}
|
|
|
|
bool
|
|
device_has_power(device_t dev)
|
|
{
|
|
int active_flags;
|
|
|
|
active_flags = DVF_ACTIVE | DVF_BUS_SUSPENDED;
|
|
|
|
return ((dev->dv_flags & active_flags) == DVF_ACTIVE);
|
|
}
|
|
|
|
int
|
|
device_locator(device_t dev, u_int locnum)
|
|
{
|
|
|
|
KASSERT(dev->dv_locators != NULL);
|
|
return (dev->dv_locators[locnum]);
|
|
}
|
|
|
|
void *
|
|
device_private(device_t dev)
|
|
{
|
|
|
|
/*
|
|
* The reason why device_private(NULL) is allowed is to simplify the
|
|
* work of a lot of userspace request handlers (i.e., c/bdev
|
|
* handlers) which grab cfdriver_t->cd_units[n].
|
|
* It avoids having them test for it to be NULL and only then calling
|
|
* device_private.
|
|
*/
|
|
return dev == NULL ? NULL : dev->dv_private;
|
|
}
|
|
|
|
prop_dictionary_t
|
|
device_properties(device_t dev)
|
|
{
|
|
|
|
return (dev->dv_properties);
|
|
}
|
|
|
|
/*
|
|
* device_is_a:
|
|
*
|
|
* Returns true if the device is an instance of the specified
|
|
* driver.
|
|
*/
|
|
bool
|
|
device_is_a(device_t dev, const char *dname)
|
|
{
|
|
|
|
return (strcmp(dev->dv_cfdriver->cd_name, dname) == 0);
|
|
}
|
|
|
|
/*
|
|
* device_find_by_xname:
|
|
*
|
|
* Returns the device of the given name or NULL if it doesn't exist.
|
|
*/
|
|
device_t
|
|
device_find_by_xname(const char *name)
|
|
{
|
|
device_t dv;
|
|
deviter_t di;
|
|
|
|
for (dv = deviter_first(&di, 0); dv != NULL; dv = deviter_next(&di)) {
|
|
if (strcmp(device_xname(dv), name) == 0)
|
|
break;
|
|
}
|
|
deviter_release(&di);
|
|
|
|
return dv;
|
|
}
|
|
|
|
/*
|
|
* device_find_by_driver_unit:
|
|
*
|
|
* Returns the device of the given driver name and unit or
|
|
* NULL if it doesn't exist.
|
|
*/
|
|
device_t
|
|
device_find_by_driver_unit(const char *name, int unit)
|
|
{
|
|
struct cfdriver *cd;
|
|
|
|
if ((cd = config_cfdriver_lookup(name)) == NULL)
|
|
return NULL;
|
|
return device_lookup(cd, unit);
|
|
}
|
|
|
|
/*
|
|
* Power management related functions.
|
|
*/
|
|
|
|
bool
|
|
device_pmf_is_registered(device_t dev)
|
|
{
|
|
return (dev->dv_flags & DVF_POWER_HANDLERS) != 0;
|
|
}
|
|
|
|
bool
|
|
device_pmf_driver_suspend(device_t dev PMF_FN_ARGS)
|
|
{
|
|
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
|
|
return true;
|
|
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
|
|
return false;
|
|
if (*dev->dv_driver_suspend != NULL &&
|
|
!(*dev->dv_driver_suspend)(dev PMF_FN_CALL))
|
|
return false;
|
|
|
|
dev->dv_flags |= DVF_DRIVER_SUSPENDED;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_driver_resume(device_t dev PMF_FN_ARGS)
|
|
{
|
|
if ((dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
|
|
return true;
|
|
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
|
|
return false;
|
|
if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
|
|
return false;
|
|
if (*dev->dv_driver_resume != NULL &&
|
|
!(*dev->dv_driver_resume)(dev PMF_FN_CALL))
|
|
return false;
|
|
|
|
dev->dv_flags &= ~DVF_DRIVER_SUSPENDED;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_driver_shutdown(device_t dev, int how)
|
|
{
|
|
|
|
if (*dev->dv_driver_shutdown != NULL &&
|
|
!(*dev->dv_driver_shutdown)(dev, how))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_driver_register(device_t dev,
|
|
bool (*suspend)(device_t PMF_FN_PROTO),
|
|
bool (*resume)(device_t PMF_FN_PROTO),
|
|
bool (*shutdown)(device_t, int))
|
|
{
|
|
pmf_private_t *pp;
|
|
|
|
if ((pp = kmem_zalloc(sizeof(*pp), KM_NOSLEEP)) == NULL)
|
|
return false;
|
|
mutex_init(&pp->pp_mtx, MUTEX_DEFAULT, IPL_NONE);
|
|
cv_init(&pp->pp_cv, "pmfsusp");
|
|
dev->dv_pmf_private = pp;
|
|
|
|
dev->dv_driver_suspend = suspend;
|
|
dev->dv_driver_resume = resume;
|
|
dev->dv_driver_shutdown = shutdown;
|
|
dev->dv_flags |= DVF_POWER_HANDLERS;
|
|
return true;
|
|
}
|
|
|
|
static const char *
|
|
curlwp_name(void)
|
|
{
|
|
if (curlwp->l_name != NULL)
|
|
return curlwp->l_name;
|
|
else
|
|
return curlwp->l_proc->p_comm;
|
|
}
|
|
|
|
void
|
|
device_pmf_driver_deregister(device_t dev)
|
|
{
|
|
pmf_private_t *pp = dev->dv_pmf_private;
|
|
|
|
/* XXX avoid crash in case we are not initialized */
|
|
if (!pp)
|
|
return;
|
|
|
|
dev->dv_driver_suspend = NULL;
|
|
dev->dv_driver_resume = NULL;
|
|
|
|
mutex_enter(&pp->pp_mtx);
|
|
dev->dv_flags &= ~DVF_POWER_HANDLERS;
|
|
while (pp->pp_nlock > 0 || pp->pp_nwait > 0) {
|
|
/* Wake a thread that waits for the lock. That
|
|
* thread will fail to acquire the lock, and then
|
|
* it will wake the next thread that waits for the
|
|
* lock, or else it will wake us.
|
|
*/
|
|
cv_signal(&pp->pp_cv);
|
|
pmflock_debug(dev, __func__, __LINE__);
|
|
cv_wait(&pp->pp_cv, &pp->pp_mtx);
|
|
pmflock_debug(dev, __func__, __LINE__);
|
|
}
|
|
dev->dv_pmf_private = NULL;
|
|
mutex_exit(&pp->pp_mtx);
|
|
|
|
cv_destroy(&pp->pp_cv);
|
|
mutex_destroy(&pp->pp_mtx);
|
|
kmem_free(pp, sizeof(*pp));
|
|
}
|
|
|
|
bool
|
|
device_pmf_driver_child_register(device_t dev)
|
|
{
|
|
device_t parent = device_parent(dev);
|
|
|
|
if (parent == NULL || parent->dv_driver_child_register == NULL)
|
|
return true;
|
|
return (*parent->dv_driver_child_register)(dev);
|
|
}
|
|
|
|
void
|
|
device_pmf_driver_set_child_register(device_t dev,
|
|
bool (*child_register)(device_t))
|
|
{
|
|
dev->dv_driver_child_register = child_register;
|
|
}
|
|
|
|
void
|
|
device_pmf_self_resume(device_t dev PMF_FN_ARGS)
|
|
{
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
if ((dev->dv_flags & DVF_SELF_SUSPENDED) != 0)
|
|
dev->dv_flags &= ~DVF_SELF_SUSPENDED;
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
}
|
|
|
|
bool
|
|
device_is_self_suspended(device_t dev)
|
|
{
|
|
return (dev->dv_flags & DVF_SELF_SUSPENDED) != 0;
|
|
}
|
|
|
|
void
|
|
device_pmf_self_suspend(device_t dev PMF_FN_ARGS)
|
|
{
|
|
bool self = (flags & PMF_F_SELF) != 0;
|
|
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
|
|
if (!self)
|
|
dev->dv_flags &= ~DVF_SELF_SUSPENDED;
|
|
else if (device_is_active(dev))
|
|
dev->dv_flags |= DVF_SELF_SUSPENDED;
|
|
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
}
|
|
|
|
static void
|
|
pmflock_debug(device_t dev, const char *func, int line)
|
|
{
|
|
pmf_private_t *pp = device_pmf_private(dev);
|
|
|
|
aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x\n",
|
|
func, line, curlwp_name(), pp->pp_nlock, pp->pp_nwait,
|
|
dev->dv_flags);
|
|
}
|
|
|
|
static void
|
|
pmflock_debug_with_flags(device_t dev, const char *func, int line PMF_FN_ARGS)
|
|
{
|
|
pmf_private_t *pp = device_pmf_private(dev);
|
|
|
|
aprint_debug_dev(dev, "%s.%d, %s pp_nlock %d pp_nwait %d dv_flags %x "
|
|
"flags " PMF_FLAGS_FMT "\n", func, line, curlwp_name(),
|
|
pp->pp_nlock, pp->pp_nwait, dev->dv_flags PMF_FN_CALL);
|
|
}
|
|
|
|
static bool
|
|
device_pmf_lock1(device_t dev PMF_FN_ARGS)
|
|
{
|
|
pmf_private_t *pp = device_pmf_private(dev);
|
|
|
|
while (device_pmf_is_registered(dev) &&
|
|
pp->pp_nlock > 0 && pp->pp_holder != curlwp) {
|
|
pp->pp_nwait++;
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
cv_wait(&pp->pp_cv, &pp->pp_mtx);
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
pp->pp_nwait--;
|
|
}
|
|
if (!device_pmf_is_registered(dev)) {
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
/* We could not acquire the lock, but some other thread may
|
|
* wait for it, also. Wake that thread.
|
|
*/
|
|
cv_signal(&pp->pp_cv);
|
|
return false;
|
|
}
|
|
pp->pp_nlock++;
|
|
pp->pp_holder = curlwp;
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_lock(device_t dev PMF_FN_ARGS)
|
|
{
|
|
bool rc;
|
|
pmf_private_t *pp = device_pmf_private(dev);
|
|
|
|
mutex_enter(&pp->pp_mtx);
|
|
rc = device_pmf_lock1(dev PMF_FN_CALL);
|
|
mutex_exit(&pp->pp_mtx);
|
|
|
|
return rc;
|
|
}
|
|
|
|
void
|
|
device_pmf_unlock(device_t dev PMF_FN_ARGS)
|
|
{
|
|
pmf_private_t *pp = device_pmf_private(dev);
|
|
|
|
KASSERT(pp->pp_nlock > 0);
|
|
mutex_enter(&pp->pp_mtx);
|
|
if (--pp->pp_nlock == 0)
|
|
pp->pp_holder = NULL;
|
|
cv_signal(&pp->pp_cv);
|
|
pmflock_debug_with_flags(dev, __func__, __LINE__ PMF_FN_CALL);
|
|
mutex_exit(&pp->pp_mtx);
|
|
}
|
|
|
|
void *
|
|
device_pmf_private(device_t dev)
|
|
{
|
|
return dev->dv_pmf_private;
|
|
}
|
|
|
|
void *
|
|
device_pmf_bus_private(device_t dev)
|
|
{
|
|
return dev->dv_bus_private;
|
|
}
|
|
|
|
bool
|
|
device_pmf_bus_suspend(device_t dev PMF_FN_ARGS)
|
|
{
|
|
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0)
|
|
return true;
|
|
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0 ||
|
|
(dev->dv_flags & DVF_DRIVER_SUSPENDED) == 0)
|
|
return false;
|
|
if (*dev->dv_bus_suspend != NULL &&
|
|
!(*dev->dv_bus_suspend)(dev PMF_FN_CALL))
|
|
return false;
|
|
|
|
dev->dv_flags |= DVF_BUS_SUSPENDED;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_bus_resume(device_t dev PMF_FN_ARGS)
|
|
{
|
|
if ((dev->dv_flags & DVF_BUS_SUSPENDED) == 0)
|
|
return true;
|
|
if ((flags & PMF_F_SELF) != 0 && !device_is_self_suspended(dev))
|
|
return false;
|
|
if (*dev->dv_bus_resume != NULL &&
|
|
!(*dev->dv_bus_resume)(dev PMF_FN_CALL))
|
|
return false;
|
|
|
|
dev->dv_flags &= ~DVF_BUS_SUSPENDED;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_bus_shutdown(device_t dev, int how)
|
|
{
|
|
|
|
if (*dev->dv_bus_shutdown != NULL &&
|
|
!(*dev->dv_bus_shutdown)(dev, how))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
device_pmf_bus_register(device_t dev, void *priv,
|
|
bool (*suspend)(device_t PMF_FN_PROTO),
|
|
bool (*resume)(device_t PMF_FN_PROTO),
|
|
bool (*shutdown)(device_t, int), void (*deregister)(device_t))
|
|
{
|
|
dev->dv_bus_private = priv;
|
|
dev->dv_bus_resume = resume;
|
|
dev->dv_bus_suspend = suspend;
|
|
dev->dv_bus_shutdown = shutdown;
|
|
dev->dv_bus_deregister = deregister;
|
|
}
|
|
|
|
void
|
|
device_pmf_bus_deregister(device_t dev)
|
|
{
|
|
if (dev->dv_bus_deregister == NULL)
|
|
return;
|
|
(*dev->dv_bus_deregister)(dev);
|
|
dev->dv_bus_private = NULL;
|
|
dev->dv_bus_suspend = NULL;
|
|
dev->dv_bus_resume = NULL;
|
|
dev->dv_bus_deregister = NULL;
|
|
}
|
|
|
|
void *
|
|
device_pmf_class_private(device_t dev)
|
|
{
|
|
return dev->dv_class_private;
|
|
}
|
|
|
|
bool
|
|
device_pmf_class_suspend(device_t dev PMF_FN_ARGS)
|
|
{
|
|
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) != 0)
|
|
return true;
|
|
if (*dev->dv_class_suspend != NULL &&
|
|
!(*dev->dv_class_suspend)(dev PMF_FN_CALL))
|
|
return false;
|
|
|
|
dev->dv_flags |= DVF_CLASS_SUSPENDED;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_pmf_class_resume(device_t dev PMF_FN_ARGS)
|
|
{
|
|
if ((dev->dv_flags & DVF_CLASS_SUSPENDED) == 0)
|
|
return true;
|
|
if ((dev->dv_flags & DVF_BUS_SUSPENDED) != 0 ||
|
|
(dev->dv_flags & DVF_DRIVER_SUSPENDED) != 0)
|
|
return false;
|
|
if (*dev->dv_class_resume != NULL &&
|
|
!(*dev->dv_class_resume)(dev PMF_FN_CALL))
|
|
return false;
|
|
|
|
dev->dv_flags &= ~DVF_CLASS_SUSPENDED;
|
|
return true;
|
|
}
|
|
|
|
void
|
|
device_pmf_class_register(device_t dev, void *priv,
|
|
bool (*suspend)(device_t PMF_FN_PROTO),
|
|
bool (*resume)(device_t PMF_FN_PROTO),
|
|
void (*deregister)(device_t))
|
|
{
|
|
dev->dv_class_private = priv;
|
|
dev->dv_class_suspend = suspend;
|
|
dev->dv_class_resume = resume;
|
|
dev->dv_class_deregister = deregister;
|
|
}
|
|
|
|
void
|
|
device_pmf_class_deregister(device_t dev)
|
|
{
|
|
if (dev->dv_class_deregister == NULL)
|
|
return;
|
|
(*dev->dv_class_deregister)(dev);
|
|
dev->dv_class_private = NULL;
|
|
dev->dv_class_suspend = NULL;
|
|
dev->dv_class_resume = NULL;
|
|
dev->dv_class_deregister = NULL;
|
|
}
|
|
|
|
bool
|
|
device_active(device_t dev, devactive_t type)
|
|
{
|
|
size_t i;
|
|
|
|
if (dev->dv_activity_count == 0)
|
|
return false;
|
|
|
|
for (i = 0; i < dev->dv_activity_count; ++i) {
|
|
if (dev->dv_activity_handlers[i] == NULL)
|
|
break;
|
|
(*dev->dv_activity_handlers[i])(dev, type);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
device_active_register(device_t dev, void (*handler)(device_t, devactive_t))
|
|
{
|
|
void (**new_handlers)(device_t, devactive_t);
|
|
void (**old_handlers)(device_t, devactive_t);
|
|
size_t i, old_size, new_size;
|
|
int s;
|
|
|
|
old_handlers = dev->dv_activity_handlers;
|
|
old_size = dev->dv_activity_count;
|
|
|
|
for (i = 0; i < old_size; ++i) {
|
|
KASSERT(old_handlers[i] != handler);
|
|
if (old_handlers[i] == NULL) {
|
|
old_handlers[i] = handler;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
new_size = old_size + 4;
|
|
new_handlers = kmem_alloc(sizeof(void *[new_size]), KM_SLEEP);
|
|
|
|
memcpy(new_handlers, old_handlers, sizeof(void *[old_size]));
|
|
new_handlers[old_size] = handler;
|
|
memset(new_handlers + old_size + 1, 0,
|
|
sizeof(int [new_size - (old_size+1)]));
|
|
|
|
s = splhigh();
|
|
dev->dv_activity_count = new_size;
|
|
dev->dv_activity_handlers = new_handlers;
|
|
splx(s);
|
|
|
|
if (old_handlers != NULL)
|
|
kmem_free(old_handlers, sizeof(int [old_size]));
|
|
|
|
return true;
|
|
}
|
|
|
|
void
|
|
device_active_deregister(device_t dev, void (*handler)(device_t, devactive_t))
|
|
{
|
|
void (**old_handlers)(device_t, devactive_t);
|
|
size_t i, old_size;
|
|
int s;
|
|
|
|
old_handlers = dev->dv_activity_handlers;
|
|
old_size = dev->dv_activity_count;
|
|
|
|
for (i = 0; i < old_size; ++i) {
|
|
if (old_handlers[i] == handler)
|
|
break;
|
|
if (old_handlers[i] == NULL)
|
|
return; /* XXX panic? */
|
|
}
|
|
|
|
if (i == old_size)
|
|
return; /* XXX panic? */
|
|
|
|
for (; i < old_size - 1; ++i) {
|
|
if ((old_handlers[i] = old_handlers[i + 1]) != NULL)
|
|
continue;
|
|
|
|
if (i == 0) {
|
|
s = splhigh();
|
|
dev->dv_activity_count = 0;
|
|
dev->dv_activity_handlers = NULL;
|
|
splx(s);
|
|
kmem_free(old_handlers, sizeof(void *[old_size]));
|
|
}
|
|
return;
|
|
}
|
|
old_handlers[i] = NULL;
|
|
}
|
|
|
|
/*
|
|
* Device Iteration
|
|
*
|
|
* deviter_t: a device iterator. Holds state for a "walk" visiting
|
|
* each device_t's in the device tree.
|
|
*
|
|
* deviter_init(di, flags): initialize the device iterator `di'
|
|
* to "walk" the device tree. deviter_next(di) will return
|
|
* the first device_t in the device tree, or NULL if there are
|
|
* no devices.
|
|
*
|
|
* `flags' is one or more of DEVITER_F_RW, indicating that the
|
|
* caller intends to modify the device tree by calling
|
|
* config_detach(9) on devices in the order that the iterator
|
|
* returns them; DEVITER_F_ROOT_FIRST, asking for the devices
|
|
* nearest the "root" of the device tree to be returned, first;
|
|
* DEVITER_F_LEAVES_FIRST, asking for the devices furthest from
|
|
* the root of the device tree, first; and DEVITER_F_SHUTDOWN,
|
|
* indicating both that deviter_init() should not respect any
|
|
* locks on the device tree, and that deviter_next(di) may run
|
|
* in more than one LWP before the walk has finished.
|
|
*
|
|
* Only one DEVITER_F_RW iterator may be in the device tree at
|
|
* once.
|
|
*
|
|
* DEVITER_F_SHUTDOWN implies DEVITER_F_RW.
|
|
*
|
|
* Results are undefined if the flags DEVITER_F_ROOT_FIRST and
|
|
* DEVITER_F_LEAVES_FIRST are used in combination.
|
|
*
|
|
* deviter_first(di, flags): initialize the device iterator `di'
|
|
* and return the first device_t in the device tree, or NULL
|
|
* if there are no devices. The statement
|
|
*
|
|
* dv = deviter_first(di);
|
|
*
|
|
* is shorthand for
|
|
*
|
|
* deviter_init(di);
|
|
* dv = deviter_next(di);
|
|
*
|
|
* deviter_next(di): return the next device_t in the device tree,
|
|
* or NULL if there are no more devices. deviter_next(di)
|
|
* is undefined if `di' was not initialized with deviter_init() or
|
|
* deviter_first().
|
|
*
|
|
* deviter_release(di): stops iteration (subsequent calls to
|
|
* deviter_next() will return NULL), releases any locks and
|
|
* resources held by the device iterator.
|
|
*
|
|
* Device iteration does not return device_t's in any particular
|
|
* order. An iterator will never return the same device_t twice.
|
|
* Device iteration is guaranteed to complete---i.e., if deviter_next(di)
|
|
* is called repeatedly on the same `di', it will eventually return
|
|
* NULL. It is ok to attach/detach devices during device iteration.
|
|
*/
|
|
void
|
|
deviter_init(deviter_t *di, deviter_flags_t flags)
|
|
{
|
|
device_t dv;
|
|
bool rw;
|
|
|
|
mutex_enter(&alldevs_mtx);
|
|
if ((flags & DEVITER_F_SHUTDOWN) != 0) {
|
|
flags |= DEVITER_F_RW;
|
|
alldevs_nwrite++;
|
|
alldevs_writer = NULL;
|
|
alldevs_nread = 0;
|
|
} else {
|
|
rw = (flags & DEVITER_F_RW) != 0;
|
|
|
|
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
|
|
;
|
|
else while ((alldevs_nwrite != 0 && alldevs_writer != curlwp) ||
|
|
(rw && alldevs_nread != 0))
|
|
cv_wait(&alldevs_cv, &alldevs_mtx);
|
|
|
|
if (rw) {
|
|
if (alldevs_nwrite++ == 0)
|
|
alldevs_writer = curlwp;
|
|
} else
|
|
alldevs_nread++;
|
|
}
|
|
mutex_exit(&alldevs_mtx);
|
|
|
|
memset(di, 0, sizeof(*di));
|
|
|
|
di->di_flags = flags;
|
|
|
|
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
|
|
case DEVITER_F_LEAVES_FIRST:
|
|
TAILQ_FOREACH(dv, &alldevs, dv_list)
|
|
di->di_curdepth = MAX(di->di_curdepth, dv->dv_depth);
|
|
break;
|
|
case DEVITER_F_ROOT_FIRST:
|
|
TAILQ_FOREACH(dv, &alldevs, dv_list)
|
|
di->di_maxdepth = MAX(di->di_maxdepth, dv->dv_depth);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
deviter_reinit(di);
|
|
}
|
|
|
|
static void
|
|
deviter_reinit(deviter_t *di)
|
|
{
|
|
if ((di->di_flags & DEVITER_F_RW) != 0)
|
|
di->di_prev = TAILQ_LAST(&alldevs, devicelist);
|
|
else
|
|
di->di_prev = TAILQ_FIRST(&alldevs);
|
|
}
|
|
|
|
device_t
|
|
deviter_first(deviter_t *di, deviter_flags_t flags)
|
|
{
|
|
deviter_init(di, flags);
|
|
return deviter_next(di);
|
|
}
|
|
|
|
static device_t
|
|
deviter_next1(deviter_t *di)
|
|
{
|
|
device_t dv;
|
|
|
|
dv = di->di_prev;
|
|
|
|
if (dv == NULL)
|
|
;
|
|
else if ((di->di_flags & DEVITER_F_RW) != 0)
|
|
di->di_prev = TAILQ_PREV(dv, devicelist, dv_list);
|
|
else
|
|
di->di_prev = TAILQ_NEXT(dv, dv_list);
|
|
|
|
return dv;
|
|
}
|
|
|
|
device_t
|
|
deviter_next(deviter_t *di)
|
|
{
|
|
device_t dv = NULL;
|
|
|
|
switch (di->di_flags & (DEVITER_F_LEAVES_FIRST|DEVITER_F_ROOT_FIRST)) {
|
|
case 0:
|
|
return deviter_next1(di);
|
|
case DEVITER_F_LEAVES_FIRST:
|
|
while (di->di_curdepth >= 0) {
|
|
if ((dv = deviter_next1(di)) == NULL) {
|
|
di->di_curdepth--;
|
|
deviter_reinit(di);
|
|
} else if (dv->dv_depth == di->di_curdepth)
|
|
break;
|
|
}
|
|
return dv;
|
|
case DEVITER_F_ROOT_FIRST:
|
|
while (di->di_curdepth <= di->di_maxdepth) {
|
|
if ((dv = deviter_next1(di)) == NULL) {
|
|
di->di_curdepth++;
|
|
deviter_reinit(di);
|
|
} else if (dv->dv_depth == di->di_curdepth)
|
|
break;
|
|
}
|
|
return dv;
|
|
default:
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
void
|
|
deviter_release(deviter_t *di)
|
|
{
|
|
bool rw = (di->di_flags & DEVITER_F_RW) != 0;
|
|
|
|
mutex_enter(&alldevs_mtx);
|
|
if (alldevs_nwrite > 0 && alldevs_writer == NULL)
|
|
--alldevs_nwrite;
|
|
else {
|
|
|
|
if (rw) {
|
|
if (--alldevs_nwrite == 0)
|
|
alldevs_writer = NULL;
|
|
} else
|
|
--alldevs_nread;
|
|
|
|
cv_signal(&alldevs_cv);
|
|
}
|
|
mutex_exit(&alldevs_mtx);
|
|
}
|