NetBSD/sys/netinet6/in6.c
tls 3afd44cf08 First step of random number subsystem rework described in
<20111022023242.BA26F14A158@mail.netbsd.org>.  This change includes
the following:

	An initial cleanup and minor reorganization of the entropy pool
	code in sys/dev/rnd.c and sys/dev/rndpool.c.  Several bugs are
	fixed.  Some effort is made to accumulate entropy more quickly at
	boot time.

	A generic interface, "rndsink", is added, for stream generators to
	request that they be re-keyed with good quality entropy from the pool
	as soon as it is available.

	The arc4random()/arc4randbytes() implementation in libkern is
	adjusted to use the rndsink interface for rekeying, which helps
	address the problem of low-quality keys at boot time.

	An implementation of the FIPS 140-2 statistical tests for random
	number generator quality is provided (libkern/rngtest.c).  This
	is based on Greg Rose's implementation from Qualcomm.

	A new random stream generator, nist_ctr_drbg, is provided.  It is
	based on an implementation of the NIST SP800-90 CTR_DRBG by
	Henric Jungheim.  This generator users AES in a modified counter
	mode to generate a backtracking-resistant random stream.

	An abstraction layer, "cprng", is provided for in-kernel consumers
	of randomness.  The arc4random/arc4randbytes API is deprecated for
	in-kernel use.  It is replaced by "cprng_strong".  The current
	cprng_fast implementation wraps the existing arc4random
	implementation.  The current cprng_strong implementation wraps the
	new CTR_DRBG implementation.  Both interfaces are rekeyed from
	the entropy pool automatically at intervals justifiable from best
	current cryptographic practice.

	In some quick tests, cprng_fast() is about the same speed as
	the old arc4randbytes(), and cprng_strong() is about 20% faster
	than rnd_extract_data().  Performance is expected to improve.

	The AES code in src/crypto/rijndael is no longer an optional
	kernel component, as it is required by cprng_strong, which is
	not an optional kernel component.

	The entropy pool output is subjected to the rngtest tests at
	startup time; if it fails, the system will reboot.  There is
	approximately a 3/10000 chance of a false positive from these
	tests.  Entropy pool _input_ from hardware random numbers is
	subjected to the rngtest tests at attach time, as well as the
	FIPS continuous-output test, to detect bad or stuck hardware
	RNGs; if any are detected, they are detached, but the system
	continues to run.

	A problem with rndctl(8) is fixed -- datastructures with
	pointers in arrays are no longer passed to userspace (this
	was not a security problem, but rather a major issue for
	compat32).  A new kernel will require a new rndctl.

	The sysctl kern.arandom() and kern.urandom() nodes are hooked
	up to the new generators, but the /dev/*random pseudodevices
	are not, yet.

	Manual pages for the new kernel interfaces are forthcoming.
2011-11-19 22:51:18 +00:00

2356 lines
63 KiB
C

/* $NetBSD: in6.c,v 1.159 2011/11/19 22:51:26 tls Exp $ */
/* $KAME: in6.c,v 1.198 2001/07/18 09:12:38 itojun Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in.c 8.2 (Berkeley) 11/15/93
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: in6.c,v 1.159 2011/11/19 22:51:26 tls Exp $");
#include "opt_inet.h"
#include "opt_pfil_hooks.h"
#include "opt_compat_netbsd.h"
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/sockio.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <sys/syslog.h>
#include <sys/kauth.h>
#include <sys/cprng.h>
#include <net/if.h>
#include <net/if_types.h>
#include <net/route.h>
#include <net/if_dl.h>
#include <netinet/in.h>
#include <netinet/in_var.h>
#include <net/if_ether.h>
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/nd6.h>
#include <netinet6/mld6_var.h>
#include <netinet6/ip6_mroute.h>
#include <netinet6/in6_ifattach.h>
#include <netinet6/scope6_var.h>
#include <net/net_osdep.h>
#ifdef PFIL_HOOKS
#include <net/pfil.h>
#endif
#ifdef COMPAT_50
#include <compat/netinet6/in6_var.h>
#endif
MALLOC_DEFINE(M_IP6OPT, "ip6_options", "IPv6 options");
/* enable backward compatibility code for obsoleted ioctls */
#define COMPAT_IN6IFIOCTL
#ifdef IN6_DEBUG
#define IN6_DPRINTF(__fmt, ...) printf(__fmt, __VA_ARGS__)
#else
#define IN6_DPRINTF(__fmt, ...) do { } while (/*CONSTCOND*/0)
#endif /* IN6_DEBUG */
/*
* Definitions of some constant IP6 addresses.
*/
const struct in6_addr in6addr_any = IN6ADDR_ANY_INIT;
const struct in6_addr in6addr_loopback = IN6ADDR_LOOPBACK_INIT;
const struct in6_addr in6addr_nodelocal_allnodes =
IN6ADDR_NODELOCAL_ALLNODES_INIT;
const struct in6_addr in6addr_linklocal_allnodes =
IN6ADDR_LINKLOCAL_ALLNODES_INIT;
const struct in6_addr in6addr_linklocal_allrouters =
IN6ADDR_LINKLOCAL_ALLROUTERS_INIT;
const struct in6_addr in6mask0 = IN6MASK0;
const struct in6_addr in6mask32 = IN6MASK32;
const struct in6_addr in6mask64 = IN6MASK64;
const struct in6_addr in6mask96 = IN6MASK96;
const struct in6_addr in6mask128 = IN6MASK128;
const struct sockaddr_in6 sa6_any = {sizeof(sa6_any), AF_INET6,
0, 0, IN6ADDR_ANY_INIT, 0};
static int in6_lifaddr_ioctl(struct socket *, u_long, void *,
struct ifnet *, struct lwp *);
static int in6_ifinit(struct ifnet *, struct in6_ifaddr *,
const struct sockaddr_in6 *, int);
static void in6_unlink_ifa(struct in6_ifaddr *, struct ifnet *);
/*
* Subroutine for in6_ifaddloop() and in6_ifremloop().
* This routine does actual work.
*/
static void
in6_ifloop_request(int cmd, struct ifaddr *ifa)
{
struct sockaddr_in6 lo_sa;
struct sockaddr_in6 all1_sa;
struct rtentry *nrt = NULL;
int e;
sockaddr_in6_init(&all1_sa, &in6mask128, 0, 0, 0);
sockaddr_in6_init(&lo_sa, &in6addr_loopback, 0, 0, 0);
/*
* We specify the address itself as the gateway, and set the
* RTF_LLINFO flag, so that the corresponding host route would have
* the flag, and thus applications that assume traditional behavior
* would be happy. Note that we assume the caller of the function
* (probably implicitly) set nd6_rtrequest() to ifa->ifa_rtrequest,
* which changes the outgoing interface to the loopback interface.
*/
e = rtrequest(cmd, ifa->ifa_addr, ifa->ifa_addr,
(struct sockaddr *)&all1_sa, RTF_UP|RTF_HOST|RTF_LLINFO, &nrt);
if (e != 0) {
log(LOG_ERR, "in6_ifloop_request: "
"%s operation failed for %s (errno=%d)\n",
cmd == RTM_ADD ? "ADD" : "DELETE",
ip6_sprintf(&((struct in6_ifaddr *)ifa)->ia_addr.sin6_addr),
e);
}
/*
* Make sure rt_ifa be equal to IFA, the second argument of the
* function.
* We need this because when we refer to rt_ifa->ia6_flags in
* ip6_input, we assume that the rt_ifa points to the address instead
* of the loopback address.
*/
if (cmd == RTM_ADD && nrt && ifa != nrt->rt_ifa)
rt_replace_ifa(nrt, ifa);
/*
* Report the addition/removal of the address to the routing socket.
* XXX: since we called rtinit for a p2p interface with a destination,
* we end up reporting twice in such a case. Should we rather
* omit the second report?
*/
if (nrt) {
rt_newaddrmsg(cmd, ifa, e, nrt);
if (cmd == RTM_DELETE) {
if (nrt->rt_refcnt <= 0) {
/* XXX: we should free the entry ourselves. */
nrt->rt_refcnt++;
rtfree(nrt);
}
} else {
/* the cmd must be RTM_ADD here */
nrt->rt_refcnt--;
}
}
}
/*
* Add ownaddr as loopback rtentry. We previously add the route only if
* necessary (ex. on a p2p link). However, since we now manage addresses
* separately from prefixes, we should always add the route. We can't
* rely on the cloning mechanism from the corresponding interface route
* any more.
*/
void
in6_ifaddloop(struct ifaddr *ifa)
{
struct rtentry *rt;
/* If there is no loopback entry, allocate one. */
rt = rtalloc1(ifa->ifa_addr, 0);
if (rt == NULL || (rt->rt_flags & RTF_HOST) == 0 ||
(rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
in6_ifloop_request(RTM_ADD, ifa);
if (rt != NULL)
rt->rt_refcnt--;
}
/*
* Remove loopback rtentry of ownaddr generated by in6_ifaddloop(),
* if it exists.
*/
void
in6_ifremloop(struct ifaddr *ifa)
{
struct in6_ifaddr *alt_ia = NULL, *ia;
struct rtentry *rt;
int ia_count = 0;
/*
* Some of BSD variants do not remove cloned routes
* from an interface direct route, when removing the direct route
* (see comments in net/net_osdep.h). Even for variants that do remove
* cloned routes, they could fail to remove the cloned routes when
* we handle multple addresses that share a common prefix.
* So, we should remove the route corresponding to the deleted address.
*/
/*
* Delete the entry only if exactly one ifaddr matches the
* address, ifa->ifa_addr.
*
* If more than one ifaddr matches, replace the ifaddr in
* the routing table, rt_ifa, with a different ifaddr than
* the one we are purging, ifa. It is important to do
* this, or else the routing table can accumulate dangling
* pointers rt->rt_ifa->ifa_ifp to destroyed interfaces,
* which will lead to crashes, later. (More than one ifaddr
* can match if we assign the same address to multiple---probably
* p2p---interfaces.)
*
* XXX An old comment at this place said, "we should avoid
* XXX such a configuration [i.e., interfaces with the same
* XXX addressed assigned --ed.] in IPv6...". I do not
* XXX agree, especially now that I have fixed the dangling
* XXX ifp-pointers bug.
*/
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
if (!IN6_ARE_ADDR_EQUAL(IFA_IN6(ifa), &ia->ia_addr.sin6_addr))
continue;
if (ia->ia_ifp != ifa->ifa_ifp)
alt_ia = ia;
if (++ia_count > 1 && alt_ia != NULL)
break;
}
if (ia_count == 0)
return;
if ((rt = rtalloc1(ifa->ifa_addr, 0)) == NULL)
return;
rt->rt_refcnt--;
/*
* Before deleting, check if a corresponding loopbacked
* host route surely exists. With this check, we can avoid
* deleting an interface direct route whose destination is
* the same as the address being removed. This can happen
* when removing a subnet-router anycast address on an
* interface attached to a shared medium.
*/
if ((rt->rt_flags & RTF_HOST) == 0 ||
(rt->rt_ifp->if_flags & IFF_LOOPBACK) == 0)
return;
/* If we cannot replace the route's ifaddr with the equivalent
* ifaddr of another interface, I believe it is safest to
* delete the route.
*/
if (ia_count == 1 || alt_ia == NULL)
in6_ifloop_request(RTM_DELETE, ifa);
else
rt_replace_ifa(rt, &alt_ia->ia_ifa);
}
int
in6_mask2len(struct in6_addr *mask, u_char *lim0)
{
int x = 0, y;
u_char *lim = lim0, *p;
/* ignore the scope_id part */
if (lim0 == NULL || lim0 - (u_char *)mask > sizeof(*mask))
lim = (u_char *)mask + sizeof(*mask);
for (p = (u_char *)mask; p < lim; x++, p++) {
if (*p != 0xff)
break;
}
y = 0;
if (p < lim) {
for (y = 0; y < NBBY; y++) {
if ((*p & (0x80 >> y)) == 0)
break;
}
}
/*
* when the limit pointer is given, do a stricter check on the
* remaining bits.
*/
if (p < lim) {
if (y != 0 && (*p & (0x00ff >> y)) != 0)
return -1;
for (p = p + 1; p < lim; p++)
if (*p != 0)
return -1;
}
return x * NBBY + y;
}
#define ifa2ia6(ifa) ((struct in6_ifaddr *)(ifa))
#define ia62ifa(ia6) (&((ia6)->ia_ifa))
static int
in6_control1(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
lwp_t *l)
{
struct in6_ifreq *ifr = (struct in6_ifreq *)data;
struct in6_ifaddr *ia = NULL;
struct in6_aliasreq *ifra = (struct in6_aliasreq *)data;
struct sockaddr_in6 *sa6;
int error;
switch (cmd) {
/*
* XXX: Fix me, once we fix SIOCSIFADDR, SIOCIFDSTADDR, etc.
*/
case SIOCSIFADDR:
case SIOCSIFDSTADDR:
#ifdef SIOCSIFCONF_X25
case SIOCSIFCONF_X25:
#endif
return EOPNOTSUPP;
case SIOCGETSGCNT_IN6:
case SIOCGETMIFCNT_IN6:
return mrt6_ioctl(cmd, data);
case SIOCGIFADDRPREF:
case SIOCSIFADDRPREF:
if (ifp == NULL)
return EINVAL;
return ifaddrpref_ioctl(so, cmd, data, ifp, l);
}
if (ifp == NULL)
return EOPNOTSUPP;
switch (cmd) {
case SIOCSNDFLUSH_IN6:
case SIOCSPFXFLUSH_IN6:
case SIOCSRTRFLUSH_IN6:
case SIOCSDEFIFACE_IN6:
case SIOCSIFINFO_FLAGS:
case SIOCSIFINFO_IN6:
/* Privileged. */
/* FALLTHROUGH */
case OSIOCGIFINFO_IN6:
case SIOCGIFINFO_IN6:
case SIOCGDRLST_IN6:
case SIOCGPRLST_IN6:
case SIOCGNBRINFO_IN6:
case SIOCGDEFIFACE_IN6:
return nd6_ioctl(cmd, data, ifp);
}
switch (cmd) {
case SIOCSIFPREFIX_IN6:
case SIOCDIFPREFIX_IN6:
case SIOCAIFPREFIX_IN6:
case SIOCCIFPREFIX_IN6:
case SIOCSGIFPREFIX_IN6:
case SIOCGIFPREFIX_IN6:
log(LOG_NOTICE,
"prefix ioctls are now invalidated. "
"please use ifconfig.\n");
return EOPNOTSUPP;
}
switch (cmd) {
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* Privileged. */
/* FALLTHROUGH */
case SIOCGLIFADDR:
return in6_lifaddr_ioctl(so, cmd, data, ifp, l);
}
/*
* Find address for this interface, if it exists.
*
* In netinet code, we have checked ifra_addr in SIOCSIF*ADDR operation
* only, and used the first interface address as the target of other
* operations (without checking ifra_addr). This was because netinet
* code/API assumed at most 1 interface address per interface.
* Since IPv6 allows a node to assign multiple addresses
* on a single interface, we almost always look and check the
* presence of ifra_addr, and reject invalid ones here.
* It also decreases duplicated code among SIOC*_IN6 operations.
*/
switch (cmd) {
case SIOCAIFADDR_IN6:
#ifdef OSIOCAIFADDR_IN6
case OSIOCAIFADDR_IN6:
#endif
#ifdef OSIOCSIFPHYADDR_IN6
case OSIOCSIFPHYADDR_IN6:
#endif
case SIOCSIFPHYADDR_IN6:
sa6 = &ifra->ifra_addr;
break;
case SIOCSIFADDR_IN6:
case SIOCGIFADDR_IN6:
case SIOCSIFDSTADDR_IN6:
case SIOCSIFNETMASK_IN6:
case SIOCGIFDSTADDR_IN6:
case SIOCGIFNETMASK_IN6:
case SIOCDIFADDR_IN6:
case SIOCGIFPSRCADDR_IN6:
case SIOCGIFPDSTADDR_IN6:
case SIOCGIFAFLAG_IN6:
case SIOCSNDFLUSH_IN6:
case SIOCSPFXFLUSH_IN6:
case SIOCSRTRFLUSH_IN6:
case SIOCGIFALIFETIME_IN6:
#ifdef OSIOCGIFALIFETIME_IN6
case OSIOCGIFALIFETIME_IN6:
#endif
case SIOCGIFSTAT_IN6:
case SIOCGIFSTAT_ICMP6:
sa6 = &ifr->ifr_addr;
break;
default:
sa6 = NULL;
break;
}
if (sa6 && sa6->sin6_family == AF_INET6) {
if (sa6->sin6_scope_id != 0)
error = sa6_embedscope(sa6, 0);
else
error = in6_setscope(&sa6->sin6_addr, ifp, NULL);
if (error != 0)
return error;
ia = in6ifa_ifpwithaddr(ifp, &sa6->sin6_addr);
} else
ia = NULL;
switch (cmd) {
case SIOCSIFADDR_IN6:
case SIOCSIFDSTADDR_IN6:
case SIOCSIFNETMASK_IN6:
/*
* Since IPv6 allows a node to assign multiple addresses
* on a single interface, SIOCSIFxxx ioctls are deprecated.
*/
return EINVAL;
case SIOCDIFADDR_IN6:
/*
* for IPv4, we look for existing in_ifaddr here to allow
* "ifconfig if0 delete" to remove the first IPv4 address on
* the interface. For IPv6, as the spec allows multiple
* interface address from the day one, we consider "remove the
* first one" semantics to be not preferable.
*/
if (ia == NULL)
return EADDRNOTAVAIL;
/* FALLTHROUGH */
#ifdef OSIOCAIFADDR_IN6
case OSIOCAIFADDR_IN6:
#endif
case SIOCAIFADDR_IN6:
/*
* We always require users to specify a valid IPv6 address for
* the corresponding operation.
*/
if (ifra->ifra_addr.sin6_family != AF_INET6 ||
ifra->ifra_addr.sin6_len != sizeof(struct sockaddr_in6))
return EAFNOSUPPORT;
/* Privileged. */
break;
case SIOCGIFADDR_IN6:
/* This interface is basically deprecated. use SIOCGIFCONF. */
/* FALLTHROUGH */
case SIOCGIFAFLAG_IN6:
case SIOCGIFNETMASK_IN6:
case SIOCGIFDSTADDR_IN6:
case SIOCGIFALIFETIME_IN6:
#ifdef OSIOCGIFALIFETIME_IN6
case OSIOCGIFALIFETIME_IN6:
#endif
/* must think again about its semantics */
if (ia == NULL)
return EADDRNOTAVAIL;
break;
}
switch (cmd) {
case SIOCGIFADDR_IN6:
ifr->ifr_addr = ia->ia_addr;
if ((error = sa6_recoverscope(&ifr->ifr_addr)) != 0)
return error;
break;
case SIOCGIFDSTADDR_IN6:
if ((ifp->if_flags & IFF_POINTOPOINT) == 0)
return EINVAL;
/*
* XXX: should we check if ifa_dstaddr is NULL and return
* an error?
*/
ifr->ifr_dstaddr = ia->ia_dstaddr;
if ((error = sa6_recoverscope(&ifr->ifr_dstaddr)) != 0)
return error;
break;
case SIOCGIFNETMASK_IN6:
ifr->ifr_addr = ia->ia_prefixmask;
break;
case SIOCGIFAFLAG_IN6:
ifr->ifr_ifru.ifru_flags6 = ia->ia6_flags;
break;
case SIOCGIFSTAT_IN6:
if (ifp == NULL)
return EINVAL;
memset(&ifr->ifr_ifru.ifru_stat, 0,
sizeof(ifr->ifr_ifru.ifru_stat));
ifr->ifr_ifru.ifru_stat =
*((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->in6_ifstat;
break;
case SIOCGIFSTAT_ICMP6:
if (ifp == NULL)
return EINVAL;
memset(&ifr->ifr_ifru.ifru_icmp6stat, 0,
sizeof(ifr->ifr_ifru.ifru_icmp6stat));
ifr->ifr_ifru.ifru_icmp6stat =
*((struct in6_ifextra *)ifp->if_afdata[AF_INET6])->icmp6_ifstat;
break;
#ifdef OSIOCGIFALIFETIME_IN6
case OSIOCGIFALIFETIME_IN6:
#endif
case SIOCGIFALIFETIME_IN6:
ifr->ifr_ifru.ifru_lifetime = ia->ia6_lifetime;
if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
time_t maxexpire;
struct in6_addrlifetime *retlt =
&ifr->ifr_ifru.ifru_lifetime;
/*
* XXX: adjust expiration time assuming time_t is
* signed.
*/
maxexpire = ((time_t)~0) &
~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1));
if (ia->ia6_lifetime.ia6t_vltime <
maxexpire - ia->ia6_updatetime) {
retlt->ia6t_expire = ia->ia6_updatetime +
ia->ia6_lifetime.ia6t_vltime;
} else
retlt->ia6t_expire = maxexpire;
}
if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
time_t maxexpire;
struct in6_addrlifetime *retlt =
&ifr->ifr_ifru.ifru_lifetime;
/*
* XXX: adjust expiration time assuming time_t is
* signed.
*/
maxexpire = ((time_t)~0) &
~((time_t)1 << ((sizeof(maxexpire) * NBBY) - 1));
if (ia->ia6_lifetime.ia6t_pltime <
maxexpire - ia->ia6_updatetime) {
retlt->ia6t_preferred = ia->ia6_updatetime +
ia->ia6_lifetime.ia6t_pltime;
} else
retlt->ia6t_preferred = maxexpire;
}
#ifdef OSIOCFIFALIFETIME_IN6
if (cmd == OSIOCFIFALIFETIME_IN6)
in6_addrlifetime_to_in6_addrlifetime50(
&ifr->ifru.ifru_lifetime);
#endif
break;
#ifdef OSIOCAIFADDR_IN6
case OSIOCAIFADDR_IN6:
in6_aliasreq50_to_in6_aliasreq(ifra);
/*FALLTHROUGH*/
#endif
case SIOCAIFADDR_IN6:
{
int i;
struct nd_prefixctl pr0;
struct nd_prefix *pr;
/* reject read-only flags */
if ((ifra->ifra_flags & IN6_IFF_DUPLICATED) != 0 ||
(ifra->ifra_flags & IN6_IFF_DETACHED) != 0 ||
(ifra->ifra_flags & IN6_IFF_NODAD) != 0 ||
(ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0) {
return EINVAL;
}
/*
* first, make or update the interface address structure,
* and link it to the list.
*/
if ((error = in6_update_ifa(ifp, ifra, ia, 0)) != 0)
return error;
if ((ia = in6ifa_ifpwithaddr(ifp, &ifra->ifra_addr.sin6_addr))
== NULL) {
/*
* this can happen when the user specify the 0 valid
* lifetime.
*/
break;
}
/*
* then, make the prefix on-link on the interface.
* XXX: we'd rather create the prefix before the address, but
* we need at least one address to install the corresponding
* interface route, so we configure the address first.
*/
/*
* convert mask to prefix length (prefixmask has already
* been validated in in6_update_ifa().
*/
memset(&pr0, 0, sizeof(pr0));
pr0.ndpr_ifp = ifp;
pr0.ndpr_plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
NULL);
if (pr0.ndpr_plen == 128) {
break; /* we don't need to install a host route. */
}
pr0.ndpr_prefix = ifra->ifra_addr;
/* apply the mask for safety. */
for (i = 0; i < 4; i++) {
pr0.ndpr_prefix.sin6_addr.s6_addr32[i] &=
ifra->ifra_prefixmask.sin6_addr.s6_addr32[i];
}
/*
* XXX: since we don't have an API to set prefix (not address)
* lifetimes, we just use the same lifetimes as addresses.
* The (temporarily) installed lifetimes can be overridden by
* later advertised RAs (when accept_rtadv is non 0), which is
* an intended behavior.
*/
pr0.ndpr_raf_onlink = 1; /* should be configurable? */
pr0.ndpr_raf_auto =
((ifra->ifra_flags & IN6_IFF_AUTOCONF) != 0);
pr0.ndpr_vltime = ifra->ifra_lifetime.ia6t_vltime;
pr0.ndpr_pltime = ifra->ifra_lifetime.ia6t_pltime;
/* add the prefix if not yet. */
if ((pr = nd6_prefix_lookup(&pr0)) == NULL) {
/*
* nd6_prelist_add will install the corresponding
* interface route.
*/
if ((error = nd6_prelist_add(&pr0, NULL, &pr)) != 0)
return error;
if (pr == NULL) {
log(LOG_ERR, "nd6_prelist_add succeeded but "
"no prefix\n");
return EINVAL; /* XXX panic here? */
}
}
/* relate the address to the prefix */
if (ia->ia6_ndpr == NULL) {
ia->ia6_ndpr = pr;
pr->ndpr_refcnt++;
/*
* If this is the first autoconf address from the
* prefix, create a temporary address as well
* (when required).
*/
if ((ia->ia6_flags & IN6_IFF_AUTOCONF) &&
ip6_use_tempaddr && pr->ndpr_refcnt == 1) {
int e;
if ((e = in6_tmpifadd(ia, 1, 0)) != 0) {
log(LOG_NOTICE, "in6_control: failed "
"to create a temporary address, "
"errno=%d\n", e);
}
}
}
/*
* this might affect the status of autoconfigured addresses,
* that is, this address might make other addresses detached.
*/
pfxlist_onlink_check();
#ifdef PFIL_HOOKS
(void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCAIFADDR_IN6,
ifp, PFIL_IFADDR);
#endif
break;
}
case SIOCDIFADDR_IN6:
{
struct nd_prefix *pr;
/*
* If the address being deleted is the only one that owns
* the corresponding prefix, expire the prefix as well.
* XXX: theoretically, we don't have to worry about such
* relationship, since we separate the address management
* and the prefix management. We do this, however, to provide
* as much backward compatibility as possible in terms of
* the ioctl operation.
* Note that in6_purgeaddr() will decrement ndpr_refcnt.
*/
pr = ia->ia6_ndpr;
in6_purgeaddr(&ia->ia_ifa);
if (pr && pr->ndpr_refcnt == 0)
prelist_remove(pr);
#ifdef PFIL_HOOKS
(void)pfil_run_hooks(&if_pfil, (struct mbuf **)SIOCDIFADDR_IN6,
ifp, PFIL_IFADDR);
#endif
break;
}
default:
return ENOTTY;
}
return 0;
}
int
in6_control(struct socket *so, u_long cmd, void *data, struct ifnet *ifp,
struct lwp *l)
{
int error, s;
switch (cmd) {
case SIOCSNDFLUSH_IN6:
case SIOCSPFXFLUSH_IN6:
case SIOCSRTRFLUSH_IN6:
case SIOCSDEFIFACE_IN6:
case SIOCSIFINFO_FLAGS:
case SIOCSIFINFO_IN6:
case SIOCALIFADDR:
case SIOCDLIFADDR:
case SIOCDIFADDR_IN6:
#ifdef OSIOCAIFADDR_IN6
case OSIOCAIFADDR_IN6:
#endif
case SIOCAIFADDR_IN6:
if (l == NULL || kauth_authorize_generic(l->l_cred,
KAUTH_GENERIC_ISSUSER, NULL))
return EPERM;
break;
}
s = splnet();
error = in6_control1(so , cmd, data, ifp, l);
splx(s);
return error;
}
/*
* Update parameters of an IPv6 interface address.
* If necessary, a new entry is created and linked into address chains.
* This function is separated from in6_control().
* XXX: should this be performed under splnet()?
*/
static int
in6_update_ifa1(struct ifnet *ifp, struct in6_aliasreq *ifra,
struct in6_ifaddr *ia, int flags)
{
int error = 0, hostIsNew = 0, plen = -1;
struct in6_ifaddr *oia;
struct sockaddr_in6 dst6;
struct in6_addrlifetime *lt;
struct in6_multi_mship *imm;
struct in6_multi *in6m_sol;
struct rtentry *rt;
int dad_delay;
in6m_sol = NULL;
/* Validate parameters */
if (ifp == NULL || ifra == NULL) /* this maybe redundant */
return EINVAL;
/*
* The destination address for a p2p link must have a family
* of AF_UNSPEC or AF_INET6.
*/
if ((ifp->if_flags & IFF_POINTOPOINT) != 0 &&
ifra->ifra_dstaddr.sin6_family != AF_INET6 &&
ifra->ifra_dstaddr.sin6_family != AF_UNSPEC)
return EAFNOSUPPORT;
/*
* validate ifra_prefixmask. don't check sin6_family, netmask
* does not carry fields other than sin6_len.
*/
if (ifra->ifra_prefixmask.sin6_len > sizeof(struct sockaddr_in6))
return EINVAL;
/*
* Because the IPv6 address architecture is classless, we require
* users to specify a (non 0) prefix length (mask) for a new address.
* We also require the prefix (when specified) mask is valid, and thus
* reject a non-consecutive mask.
*/
if (ia == NULL && ifra->ifra_prefixmask.sin6_len == 0)
return EINVAL;
if (ifra->ifra_prefixmask.sin6_len != 0) {
plen = in6_mask2len(&ifra->ifra_prefixmask.sin6_addr,
(u_char *)&ifra->ifra_prefixmask +
ifra->ifra_prefixmask.sin6_len);
if (plen <= 0)
return EINVAL;
} else {
/*
* In this case, ia must not be NULL. We just use its prefix
* length.
*/
plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
}
/*
* If the destination address on a p2p interface is specified,
* and the address is a scoped one, validate/set the scope
* zone identifier.
*/
dst6 = ifra->ifra_dstaddr;
if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) != 0 &&
(dst6.sin6_family == AF_INET6)) {
struct in6_addr in6_tmp;
u_int32_t zoneid;
in6_tmp = dst6.sin6_addr;
if (in6_setscope(&in6_tmp, ifp, &zoneid))
return EINVAL; /* XXX: should be impossible */
if (dst6.sin6_scope_id != 0) {
if (dst6.sin6_scope_id != zoneid)
return EINVAL;
} else /* user omit to specify the ID. */
dst6.sin6_scope_id = zoneid;
/* convert into the internal form */
if (sa6_embedscope(&dst6, 0))
return EINVAL; /* XXX: should be impossible */
}
/*
* The destination address can be specified only for a p2p or a
* loopback interface. If specified, the corresponding prefix length
* must be 128.
*/
if (ifra->ifra_dstaddr.sin6_family == AF_INET6) {
#ifdef FORCE_P2PPLEN
int i;
#endif
if ((ifp->if_flags & (IFF_POINTOPOINT|IFF_LOOPBACK)) == 0) {
/* XXX: noisy message */
nd6log((LOG_INFO, "in6_update_ifa: a destination can "
"be specified for a p2p or a loopback IF only\n"));
return EINVAL;
}
if (plen != 128) {
nd6log((LOG_INFO, "in6_update_ifa: prefixlen should "
"be 128 when dstaddr is specified\n"));
#ifdef FORCE_P2PPLEN
/*
* To be compatible with old configurations,
* such as ifconfig gif0 inet6 2001::1 2001::2
* prefixlen 126, we override the specified
* prefixmask as if the prefix length was 128.
*/
ifra->ifra_prefixmask.sin6_len =
sizeof(struct sockaddr_in6);
for (i = 0; i < 4; i++)
ifra->ifra_prefixmask.sin6_addr.s6_addr32[i] =
0xffffffff;
plen = 128;
#else
return EINVAL;
#endif
}
}
/* lifetime consistency check */
lt = &ifra->ifra_lifetime;
if (lt->ia6t_pltime > lt->ia6t_vltime)
return EINVAL;
if (lt->ia6t_vltime == 0) {
/*
* the following log might be noisy, but this is a typical
* configuration mistake or a tool's bug.
*/
nd6log((LOG_INFO,
"in6_update_ifa: valid lifetime is 0 for %s\n",
ip6_sprintf(&ifra->ifra_addr.sin6_addr)));
if (ia == NULL)
return 0; /* there's nothing to do */
}
/*
* If this is a new address, allocate a new ifaddr and link it
* into chains.
*/
if (ia == NULL) {
hostIsNew = 1;
/*
* When in6_update_ifa() is called in a process of a received
* RA, it is called under an interrupt context. So, we should
* call malloc with M_NOWAIT.
*/
ia = (struct in6_ifaddr *) malloc(sizeof(*ia), M_IFADDR,
M_NOWAIT);
if (ia == NULL)
return ENOBUFS;
memset(ia, 0, sizeof(*ia));
LIST_INIT(&ia->ia6_memberships);
/* Initialize the address and masks, and put time stamp */
ia->ia_ifa.ifa_addr = (struct sockaddr *)&ia->ia_addr;
ia->ia_addr.sin6_family = AF_INET6;
ia->ia_addr.sin6_len = sizeof(ia->ia_addr);
ia->ia6_createtime = time_second;
if ((ifp->if_flags & (IFF_POINTOPOINT | IFF_LOOPBACK)) != 0) {
/*
* XXX: some functions expect that ifa_dstaddr is not
* NULL for p2p interfaces.
*/
ia->ia_ifa.ifa_dstaddr =
(struct sockaddr *)&ia->ia_dstaddr;
} else {
ia->ia_ifa.ifa_dstaddr = NULL;
}
ia->ia_ifa.ifa_netmask =
(struct sockaddr *)&ia->ia_prefixmask;
ia->ia_ifp = ifp;
if ((oia = in6_ifaddr) != NULL) {
for ( ; oia->ia_next; oia = oia->ia_next)
continue;
oia->ia_next = ia;
} else
in6_ifaddr = ia;
/* gain a refcnt for the link from in6_ifaddr */
IFAREF(&ia->ia_ifa);
ifa_insert(ifp, &ia->ia_ifa);
}
/* update timestamp */
ia->ia6_updatetime = time_second;
/* set prefix mask */
if (ifra->ifra_prefixmask.sin6_len) {
/*
* We prohibit changing the prefix length of an existing
* address, because
* + such an operation should be rare in IPv6, and
* + the operation would confuse prefix management.
*/
if (ia->ia_prefixmask.sin6_len &&
in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL) != plen) {
nd6log((LOG_INFO, "in6_update_ifa: the prefix length of an"
" existing (%s) address should not be changed\n",
ip6_sprintf(&ia->ia_addr.sin6_addr)));
error = EINVAL;
goto unlink;
}
ia->ia_prefixmask = ifra->ifra_prefixmask;
}
/*
* If a new destination address is specified, scrub the old one and
* install the new destination. Note that the interface must be
* p2p or loopback (see the check above.)
*/
if (dst6.sin6_family == AF_INET6 &&
!IN6_ARE_ADDR_EQUAL(&dst6.sin6_addr, &ia->ia_dstaddr.sin6_addr)) {
if ((ia->ia_flags & IFA_ROUTE) != 0 &&
rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST) != 0) {
nd6log((LOG_ERR, "in6_update_ifa: failed to remove "
"a route to the old destination: %s\n",
ip6_sprintf(&ia->ia_addr.sin6_addr)));
/* proceed anyway... */
} else
ia->ia_flags &= ~IFA_ROUTE;
ia->ia_dstaddr = dst6;
}
/*
* Set lifetimes. We do not refer to ia6t_expire and ia6t_preferred
* to see if the address is deprecated or invalidated, but initialize
* these members for applications.
*/
ia->ia6_lifetime = ifra->ifra_lifetime;
if (ia->ia6_lifetime.ia6t_vltime != ND6_INFINITE_LIFETIME) {
ia->ia6_lifetime.ia6t_expire =
time_second + ia->ia6_lifetime.ia6t_vltime;
} else
ia->ia6_lifetime.ia6t_expire = 0;
if (ia->ia6_lifetime.ia6t_pltime != ND6_INFINITE_LIFETIME) {
ia->ia6_lifetime.ia6t_preferred =
time_second + ia->ia6_lifetime.ia6t_pltime;
} else
ia->ia6_lifetime.ia6t_preferred = 0;
/* reset the interface and routing table appropriately. */
if ((error = in6_ifinit(ifp, ia, &ifra->ifra_addr, hostIsNew)) != 0)
goto unlink;
/*
* configure address flags.
*/
ia->ia6_flags = ifra->ifra_flags;
/*
* backward compatibility - if IN6_IFF_DEPRECATED is set from the
* userland, make it deprecated.
*/
if ((ifra->ifra_flags & IN6_IFF_DEPRECATED) != 0) {
ia->ia6_lifetime.ia6t_pltime = 0;
ia->ia6_lifetime.ia6t_preferred = time_second;
}
/*
* Make the address tentative before joining multicast addresses,
* so that corresponding MLD responses would not have a tentative
* source address.
*/
ia->ia6_flags &= ~IN6_IFF_DUPLICATED; /* safety */
if (hostIsNew && in6if_do_dad(ifp))
ia->ia6_flags |= IN6_IFF_TENTATIVE;
/*
* We are done if we have simply modified an existing address.
*/
if (!hostIsNew)
return error;
/*
* Beyond this point, we should call in6_purgeaddr upon an error,
* not just go to unlink.
*/
/* join necessary multicast groups */
if ((ifp->if_flags & IFF_MULTICAST) != 0) {
struct sockaddr_in6 mltaddr, mltmask;
struct in6_addr llsol;
/* join solicited multicast addr for new host id */
memset(&llsol, 0, sizeof(struct in6_addr));
llsol.s6_addr16[0] = htons(0xff02);
llsol.s6_addr32[1] = 0;
llsol.s6_addr32[2] = htonl(1);
llsol.s6_addr32[3] = ifra->ifra_addr.sin6_addr.s6_addr32[3];
llsol.s6_addr8[12] = 0xff;
if ((error = in6_setscope(&llsol, ifp, NULL)) != 0) {
/* XXX: should not happen */
log(LOG_ERR, "in6_update_ifa: "
"in6_setscope failed\n");
goto cleanup;
}
dad_delay = 0;
if ((flags & IN6_IFAUPDATE_DADDELAY)) {
/*
* We need a random delay for DAD on the address
* being configured. It also means delaying
* transmission of the corresponding MLD report to
* avoid report collision.
* [draft-ietf-ipv6-rfc2462bis-02.txt]
*/
dad_delay = cprng_fast32() %
(MAX_RTR_SOLICITATION_DELAY * hz);
}
#define MLTMASK_LEN 4 /* mltmask's masklen (=32bit=4octet) */
/* join solicited multicast addr for new host id */
imm = in6_joingroup(ifp, &llsol, &error, dad_delay);
if (!imm) {
nd6log((LOG_ERR,
"in6_update_ifa: addmulti "
"failed for %s on %s (errno=%d)\n",
ip6_sprintf(&llsol), if_name(ifp), error));
goto cleanup;
}
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
in6m_sol = imm->i6mm_maddr;
sockaddr_in6_init(&mltmask, &in6mask32, 0, 0, 0);
/*
* join link-local all-nodes address
*/
sockaddr_in6_init(&mltaddr, &in6addr_linklocal_allnodes,
0, 0, 0);
if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
goto cleanup; /* XXX: should not fail */
/*
* XXX: do we really need this automatic routes?
* We should probably reconsider this stuff. Most applications
* actually do not need the routes, since they usually specify
* the outgoing interface.
*/
rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
if (rt) {
if (memcmp(&mltaddr.sin6_addr,
&satocsin6(rt_getkey(rt))->sin6_addr,
MLTMASK_LEN)) {
RTFREE(rt);
rt = NULL;
} else if (rt->rt_ifp != ifp) {
IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) "
"network %04x:%04x::/32 = %04x:%04x::/32\n",
__func__, rt->rt_ifp, ifp, ifp->if_xname,
ntohs(mltaddr.sin6_addr.s6_addr16[0]),
ntohs(mltaddr.sin6_addr.s6_addr16[1]),
satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0],
satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]);
rt_replace_ifa(rt, &ia->ia_ifa);
rt->rt_ifp = ifp;
}
}
if (!rt) {
struct rt_addrinfo info;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
info.rti_info[RTAX_GATEWAY] =
(struct sockaddr *)&ia->ia_addr;
info.rti_info[RTAX_NETMASK] =
(struct sockaddr *)&mltmask;
info.rti_info[RTAX_IFA] =
(struct sockaddr *)&ia->ia_addr;
/* XXX: we need RTF_CLONING to fake nd6_rtrequest */
info.rti_flags = RTF_UP | RTF_CLONING;
error = rtrequest1(RTM_ADD, &info, NULL);
if (error)
goto cleanup;
} else {
RTFREE(rt);
}
imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
if (!imm) {
nd6log((LOG_WARNING,
"in6_update_ifa: addmulti failed for "
"%s on %s (errno=%d)\n",
ip6_sprintf(&mltaddr.sin6_addr),
if_name(ifp), error));
goto cleanup;
}
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
/*
* join node information group address
*/
dad_delay = 0;
if ((flags & IN6_IFAUPDATE_DADDELAY)) {
/*
* The spec doesn't say anything about delay for this
* group, but the same logic should apply.
*/
dad_delay = cprng_fast32() %
(MAX_RTR_SOLICITATION_DELAY * hz);
}
if (in6_nigroup(ifp, hostname, hostnamelen, &mltaddr) != 0)
;
else if ((imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error,
dad_delay)) == NULL) { /* XXX jinmei */
nd6log((LOG_WARNING, "in6_update_ifa: "
"addmulti failed for %s on %s (errno=%d)\n",
ip6_sprintf(&mltaddr.sin6_addr),
if_name(ifp), error));
/* XXX not very fatal, go on... */
} else {
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
}
/*
* join interface-local all-nodes address.
* (ff01::1%ifN, and ff01::%ifN/32)
*/
mltaddr.sin6_addr = in6addr_nodelocal_allnodes;
if ((error = in6_setscope(&mltaddr.sin6_addr, ifp, NULL)) != 0)
goto cleanup; /* XXX: should not fail */
/* XXX: again, do we really need the route? */
rt = rtalloc1((struct sockaddr *)&mltaddr, 0);
if (rt) {
/* 32bit came from "mltmask" */
if (memcmp(&mltaddr.sin6_addr,
&satocsin6(rt_getkey(rt))->sin6_addr,
32 / NBBY)) {
RTFREE(rt);
rt = NULL;
} else if (rt->rt_ifp != ifp) {
IN6_DPRINTF("%s: rt_ifp %p -> %p (%s) "
"network %04x:%04x::/32 = %04x:%04x::/32\n",
__func__, rt->rt_ifp, ifp, ifp->if_xname,
ntohs(mltaddr.sin6_addr.s6_addr16[0]),
ntohs(mltaddr.sin6_addr.s6_addr16[1]),
satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[0],
satocsin6(rt_getkey(rt))->sin6_addr.s6_addr16[1]);
rt_replace_ifa(rt, &ia->ia_ifa);
rt->rt_ifp = ifp;
}
}
if (!rt) {
struct rt_addrinfo info;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = (struct sockaddr *)&mltaddr;
info.rti_info[RTAX_GATEWAY] =
(struct sockaddr *)&ia->ia_addr;
info.rti_info[RTAX_NETMASK] =
(struct sockaddr *)&mltmask;
info.rti_info[RTAX_IFA] =
(struct sockaddr *)&ia->ia_addr;
info.rti_flags = RTF_UP | RTF_CLONING;
error = rtrequest1(RTM_ADD, &info, NULL);
if (error)
goto cleanup;
#undef MLTMASK_LEN
} else {
RTFREE(rt);
}
imm = in6_joingroup(ifp, &mltaddr.sin6_addr, &error, 0);
if (!imm) {
nd6log((LOG_WARNING, "in6_update_ifa: "
"addmulti failed for %s on %s (errno=%d)\n",
ip6_sprintf(&mltaddr.sin6_addr),
if_name(ifp), error));
goto cleanup;
} else {
LIST_INSERT_HEAD(&ia->ia6_memberships, imm, i6mm_chain);
}
}
/*
* Perform DAD, if needed.
* XXX It may be of use, if we can administratively
* disable DAD.
*/
if (hostIsNew && in6if_do_dad(ifp) &&
((ifra->ifra_flags & IN6_IFF_NODAD) == 0) &&
(ia->ia6_flags & IN6_IFF_TENTATIVE))
{
int mindelay, maxdelay;
dad_delay = 0;
if ((flags & IN6_IFAUPDATE_DADDELAY)) {
/*
* We need to impose a delay before sending an NS
* for DAD. Check if we also needed a delay for the
* corresponding MLD message. If we did, the delay
* should be larger than the MLD delay (this could be
* relaxed a bit, but this simple logic is at least
* safe).
*/
mindelay = 0;
if (in6m_sol != NULL &&
in6m_sol->in6m_state == MLD_REPORTPENDING) {
mindelay = in6m_sol->in6m_timer;
}
maxdelay = MAX_RTR_SOLICITATION_DELAY * hz;
if (maxdelay - mindelay == 0)
dad_delay = 0;
else {
dad_delay =
(cprng_fast32() % (maxdelay - mindelay)) +
mindelay;
}
}
nd6_dad_start(&ia->ia_ifa, dad_delay);
}
return error;
unlink:
/*
* XXX: if a change of an existing address failed, keep the entry
* anyway.
*/
if (hostIsNew)
in6_unlink_ifa(ia, ifp);
return error;
cleanup:
in6_purgeaddr(&ia->ia_ifa);
return error;
}
int
in6_update_ifa(struct ifnet *ifp, struct in6_aliasreq *ifra,
struct in6_ifaddr *ia, int flags)
{
int rc, s;
s = splnet();
rc = in6_update_ifa1(ifp, ifra, ia, flags);
splx(s);
return rc;
}
void
in6_purgeaddr(struct ifaddr *ifa)
{
struct ifnet *ifp = ifa->ifa_ifp;
struct in6_ifaddr *ia = (struct in6_ifaddr *) ifa;
struct in6_multi_mship *imm;
/* stop DAD processing */
nd6_dad_stop(ifa);
/*
* delete route to the destination of the address being purged.
* The interface must be p2p or loopback in this case.
*/
if ((ia->ia_flags & IFA_ROUTE) != 0 && ia->ia_dstaddr.sin6_len != 0) {
int e;
if ((e = rtinit(&(ia->ia_ifa), (int)RTM_DELETE, RTF_HOST))
!= 0) {
log(LOG_ERR, "in6_purgeaddr: failed to remove "
"a route to the p2p destination: %s on %s, "
"errno=%d\n",
ip6_sprintf(&ia->ia_addr.sin6_addr), if_name(ifp),
e);
/* proceed anyway... */
} else
ia->ia_flags &= ~IFA_ROUTE;
}
/* Remove ownaddr's loopback rtentry, if it exists. */
in6_ifremloop(&(ia->ia_ifa));
/*
* leave from multicast groups we have joined for the interface
*/
while ((imm = LIST_FIRST(&ia->ia6_memberships)) != NULL) {
LIST_REMOVE(imm, i6mm_chain);
in6_leavegroup(imm);
}
in6_unlink_ifa(ia, ifp);
}
static void
in6_unlink_ifa(struct in6_ifaddr *ia, struct ifnet *ifp)
{
struct in6_ifaddr *oia;
int s = splnet();
ifa_remove(ifp, &ia->ia_ifa);
oia = ia;
if (oia == (ia = in6_ifaddr))
in6_ifaddr = ia->ia_next;
else {
while (ia->ia_next && (ia->ia_next != oia))
ia = ia->ia_next;
if (ia->ia_next)
ia->ia_next = oia->ia_next;
else {
/* search failed */
printf("Couldn't unlink in6_ifaddr from in6_ifaddr\n");
}
}
/*
* XXX thorpej@NetBSD.org -- if the interface is going
* XXX away, don't save the multicast entries, delete them!
*/
if (LIST_EMPTY(&oia->ia6_multiaddrs))
;
else if (oia->ia_ifa.ifa_ifp->if_output == if_nulloutput) {
struct in6_multi *in6m, *next;
for (in6m = LIST_FIRST(&oia->ia6_multiaddrs); in6m != NULL;
in6m = next) {
next = LIST_NEXT(in6m, in6m_entry);
in6_delmulti(in6m);
}
} else
in6_savemkludge(oia);
/*
* Release the reference to the base prefix. There should be a
* positive reference.
*/
if (oia->ia6_ndpr == NULL) {
nd6log((LOG_NOTICE, "in6_unlink_ifa: autoconf'ed address "
"%p has no prefix\n", oia));
} else {
oia->ia6_ndpr->ndpr_refcnt--;
oia->ia6_ndpr = NULL;
}
/*
* Also, if the address being removed is autoconf'ed, call
* pfxlist_onlink_check() since the release might affect the status of
* other (detached) addresses.
*/
if ((oia->ia6_flags & IN6_IFF_AUTOCONF) != 0)
pfxlist_onlink_check();
/*
* release another refcnt for the link from in6_ifaddr.
* Note that we should decrement the refcnt at least once for all *BSD.
*/
IFAFREE(&oia->ia_ifa);
splx(s);
}
void
in6_purgeif(struct ifnet *ifp)
{
if_purgeaddrs(ifp, AF_INET6, in6_purgeaddr);
in6_ifdetach(ifp);
}
/*
* SIOC[GAD]LIFADDR.
* SIOCGLIFADDR: get first address. (?)
* SIOCGLIFADDR with IFLR_PREFIX:
* get first address that matches the specified prefix.
* SIOCALIFADDR: add the specified address.
* SIOCALIFADDR with IFLR_PREFIX:
* add the specified prefix, filling hostid part from
* the first link-local address. prefixlen must be <= 64.
* SIOCDLIFADDR: delete the specified address.
* SIOCDLIFADDR with IFLR_PREFIX:
* delete the first address that matches the specified prefix.
* return values:
* EINVAL on invalid parameters
* EADDRNOTAVAIL on prefix match failed/specified address not found
* other values may be returned from in6_ioctl()
*
* NOTE: SIOCALIFADDR(with IFLR_PREFIX set) allows prefixlen less than 64.
* this is to accommodate address naming scheme other than RFC2374,
* in the future.
* RFC2373 defines interface id to be 64bit, but it allows non-RFC2374
* address encoding scheme. (see figure on page 8)
*/
static int
in6_lifaddr_ioctl(struct socket *so, u_long cmd, void *data,
struct ifnet *ifp, struct lwp *l)
{
struct in6_ifaddr *ia;
struct if_laddrreq *iflr = (struct if_laddrreq *)data;
struct ifaddr *ifa;
struct sockaddr *sa;
/* sanity checks */
if (!data || !ifp) {
panic("invalid argument to in6_lifaddr_ioctl");
/* NOTREACHED */
}
switch (cmd) {
case SIOCGLIFADDR:
/* address must be specified on GET with IFLR_PREFIX */
if ((iflr->flags & IFLR_PREFIX) == 0)
break;
/* FALLTHROUGH */
case SIOCALIFADDR:
case SIOCDLIFADDR:
/* address must be specified on ADD and DELETE */
sa = (struct sockaddr *)&iflr->addr;
if (sa->sa_family != AF_INET6)
return EINVAL;
if (sa->sa_len != sizeof(struct sockaddr_in6))
return EINVAL;
/* XXX need improvement */
sa = (struct sockaddr *)&iflr->dstaddr;
if (sa->sa_family && sa->sa_family != AF_INET6)
return EINVAL;
if (sa->sa_len && sa->sa_len != sizeof(struct sockaddr_in6))
return EINVAL;
break;
default: /* shouldn't happen */
#if 0
panic("invalid cmd to in6_lifaddr_ioctl");
/* NOTREACHED */
#else
return EOPNOTSUPP;
#endif
}
if (sizeof(struct in6_addr) * NBBY < iflr->prefixlen)
return EINVAL;
switch (cmd) {
case SIOCALIFADDR:
{
struct in6_aliasreq ifra;
struct in6_addr *xhostid = NULL;
int prefixlen;
if ((iflr->flags & IFLR_PREFIX) != 0) {
struct sockaddr_in6 *sin6;
/*
* xhostid is to fill in the hostid part of the
* address. xhostid points to the first link-local
* address attached to the interface.
*/
ia = in6ifa_ifpforlinklocal(ifp, 0);
if (ia == NULL)
return EADDRNOTAVAIL;
xhostid = IFA_IN6(&ia->ia_ifa);
/* prefixlen must be <= 64. */
if (64 < iflr->prefixlen)
return EINVAL;
prefixlen = iflr->prefixlen;
/* hostid part must be zero. */
sin6 = (struct sockaddr_in6 *)&iflr->addr;
if (sin6->sin6_addr.s6_addr32[2] != 0
|| sin6->sin6_addr.s6_addr32[3] != 0) {
return EINVAL;
}
} else
prefixlen = iflr->prefixlen;
/* copy args to in6_aliasreq, perform ioctl(SIOCAIFADDR_IN6). */
memset(&ifra, 0, sizeof(ifra));
memcpy(ifra.ifra_name, iflr->iflr_name, sizeof(ifra.ifra_name));
memcpy(&ifra.ifra_addr, &iflr->addr,
((struct sockaddr *)&iflr->addr)->sa_len);
if (xhostid) {
/* fill in hostid part */
ifra.ifra_addr.sin6_addr.s6_addr32[2] =
xhostid->s6_addr32[2];
ifra.ifra_addr.sin6_addr.s6_addr32[3] =
xhostid->s6_addr32[3];
}
if (((struct sockaddr *)&iflr->dstaddr)->sa_family) { /* XXX */
memcpy(&ifra.ifra_dstaddr, &iflr->dstaddr,
((struct sockaddr *)&iflr->dstaddr)->sa_len);
if (xhostid) {
ifra.ifra_dstaddr.sin6_addr.s6_addr32[2] =
xhostid->s6_addr32[2];
ifra.ifra_dstaddr.sin6_addr.s6_addr32[3] =
xhostid->s6_addr32[3];
}
}
ifra.ifra_prefixmask.sin6_len = sizeof(struct sockaddr_in6);
in6_prefixlen2mask(&ifra.ifra_prefixmask.sin6_addr, prefixlen);
ifra.ifra_lifetime.ia6t_vltime = ND6_INFINITE_LIFETIME;
ifra.ifra_lifetime.ia6t_pltime = ND6_INFINITE_LIFETIME;
ifra.ifra_flags = iflr->flags & ~IFLR_PREFIX;
return in6_control(so, SIOCAIFADDR_IN6, &ifra, ifp, l);
}
case SIOCGLIFADDR:
case SIOCDLIFADDR:
{
struct in6_addr mask, candidate, match;
struct sockaddr_in6 *sin6;
int cmp;
memset(&mask, 0, sizeof(mask));
if (iflr->flags & IFLR_PREFIX) {
/* lookup a prefix rather than address. */
in6_prefixlen2mask(&mask, iflr->prefixlen);
sin6 = (struct sockaddr_in6 *)&iflr->addr;
memcpy(&match, &sin6->sin6_addr, sizeof(match));
match.s6_addr32[0] &= mask.s6_addr32[0];
match.s6_addr32[1] &= mask.s6_addr32[1];
match.s6_addr32[2] &= mask.s6_addr32[2];
match.s6_addr32[3] &= mask.s6_addr32[3];
/* if you set extra bits, that's wrong */
if (memcmp(&match, &sin6->sin6_addr, sizeof(match)))
return EINVAL;
cmp = 1;
} else {
if (cmd == SIOCGLIFADDR) {
/* on getting an address, take the 1st match */
cmp = 0; /* XXX */
} else {
/* on deleting an address, do exact match */
in6_prefixlen2mask(&mask, 128);
sin6 = (struct sockaddr_in6 *)&iflr->addr;
memcpy(&match, &sin6->sin6_addr, sizeof(match));
cmp = 1;
}
}
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (!cmp)
break;
/*
* XXX: this is adhoc, but is necessary to allow
* a user to specify fe80::/64 (not /10) for a
* link-local address.
*/
memcpy(&candidate, IFA_IN6(ifa), sizeof(candidate));
in6_clearscope(&candidate);
candidate.s6_addr32[0] &= mask.s6_addr32[0];
candidate.s6_addr32[1] &= mask.s6_addr32[1];
candidate.s6_addr32[2] &= mask.s6_addr32[2];
candidate.s6_addr32[3] &= mask.s6_addr32[3];
if (IN6_ARE_ADDR_EQUAL(&candidate, &match))
break;
}
if (!ifa)
return EADDRNOTAVAIL;
ia = ifa2ia6(ifa);
if (cmd == SIOCGLIFADDR) {
int error;
/* fill in the if_laddrreq structure */
memcpy(&iflr->addr, &ia->ia_addr, ia->ia_addr.sin6_len);
error = sa6_recoverscope(
(struct sockaddr_in6 *)&iflr->addr);
if (error != 0)
return error;
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
memcpy(&iflr->dstaddr, &ia->ia_dstaddr,
ia->ia_dstaddr.sin6_len);
error = sa6_recoverscope(
(struct sockaddr_in6 *)&iflr->dstaddr);
if (error != 0)
return error;
} else
memset(&iflr->dstaddr, 0, sizeof(iflr->dstaddr));
iflr->prefixlen =
in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL);
iflr->flags = ia->ia6_flags; /* XXX */
return 0;
} else {
struct in6_aliasreq ifra;
/* fill in6_aliasreq and do ioctl(SIOCDIFADDR_IN6) */
memset(&ifra, 0, sizeof(ifra));
memcpy(ifra.ifra_name, iflr->iflr_name,
sizeof(ifra.ifra_name));
memcpy(&ifra.ifra_addr, &ia->ia_addr,
ia->ia_addr.sin6_len);
if ((ifp->if_flags & IFF_POINTOPOINT) != 0) {
memcpy(&ifra.ifra_dstaddr, &ia->ia_dstaddr,
ia->ia_dstaddr.sin6_len);
} else {
memset(&ifra.ifra_dstaddr, 0,
sizeof(ifra.ifra_dstaddr));
}
memcpy(&ifra.ifra_dstaddr, &ia->ia_prefixmask,
ia->ia_prefixmask.sin6_len);
ifra.ifra_flags = ia->ia6_flags;
return in6_control(so, SIOCDIFADDR_IN6, &ifra, ifp, l);
}
}
}
return EOPNOTSUPP; /* just for safety */
}
/*
* Initialize an interface's internet6 address
* and routing table entry.
*/
static int
in6_ifinit(struct ifnet *ifp, struct in6_ifaddr *ia,
const struct sockaddr_in6 *sin6, int newhost)
{
int error = 0, plen, ifacount = 0;
int s = splnet();
struct ifaddr *ifa;
/*
* Give the interface a chance to initialize
* if this is its first address,
* and to validate the address if necessary.
*/
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr == NULL)
continue; /* just for safety */
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ifacount++;
}
ia->ia_addr = *sin6;
if (ifacount <= 1 &&
(error = if_addr_init(ifp, &ia->ia_ifa, true)) != 0) {
splx(s);
return error;
}
splx(s);
ia->ia_ifa.ifa_metric = ifp->if_metric;
/* we could do in(6)_socktrim here, but just omit it at this moment. */
/*
* Special case:
* If the destination address is specified for a point-to-point
* interface, install a route to the destination as an interface
* direct route.
*/
plen = in6_mask2len(&ia->ia_prefixmask.sin6_addr, NULL); /* XXX */
if (plen == 128 && ia->ia_dstaddr.sin6_family == AF_INET6) {
if ((error = rtinit(&ia->ia_ifa, RTM_ADD,
RTF_UP | RTF_HOST)) != 0)
return error;
ia->ia_flags |= IFA_ROUTE;
}
/* Add ownaddr as loopback rtentry, if necessary (ex. on p2p link). */
if (newhost) {
/* set the rtrequest function to create llinfo */
ia->ia_ifa.ifa_rtrequest = nd6_rtrequest;
in6_ifaddloop(&ia->ia_ifa);
}
if (ifp->if_flags & IFF_MULTICAST)
in6_restoremkludge(ia, ifp);
return error;
}
static struct ifaddr *
bestifa(struct ifaddr *best_ifa, struct ifaddr *ifa)
{
if (best_ifa == NULL || best_ifa->ifa_preference < ifa->ifa_preference)
return ifa;
return best_ifa;
}
/*
* Find an IPv6 interface link-local address specific to an interface.
*/
struct in6_ifaddr *
in6ifa_ifpforlinklocal(const struct ifnet *ifp, const int ignoreflags)
{
struct ifaddr *best_ifa = NULL, *ifa;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr == NULL)
continue; /* just for safety */
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (!IN6_IS_ADDR_LINKLOCAL(IFA_IN6(ifa)))
continue;
if ((((struct in6_ifaddr *)ifa)->ia6_flags & ignoreflags) != 0)
continue;
best_ifa = bestifa(best_ifa, ifa);
}
return (struct in6_ifaddr *)best_ifa;
}
/*
* find the internet address corresponding to a given interface and address.
*/
struct in6_ifaddr *
in6ifa_ifpwithaddr(const struct ifnet *ifp, const struct in6_addr *addr)
{
struct ifaddr *best_ifa = NULL, *ifa;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr == NULL)
continue; /* just for safety */
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
if (!IN6_ARE_ADDR_EQUAL(addr, IFA_IN6(ifa)))
continue;
best_ifa = bestifa(best_ifa, ifa);
}
return (struct in6_ifaddr *)best_ifa;
}
static struct in6_ifaddr *
bestia(struct in6_ifaddr *best_ia, struct in6_ifaddr *ia)
{
if (best_ia == NULL ||
best_ia->ia_ifa.ifa_preference < ia->ia_ifa.ifa_preference)
return ia;
return best_ia;
}
/*
* find the internet address on a given interface corresponding to a neighbor's
* address.
*/
struct in6_ifaddr *
in6ifa_ifplocaladdr(const struct ifnet *ifp, const struct in6_addr *addr)
{
struct ifaddr *ifa;
struct in6_ifaddr *best_ia = NULL, *ia;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr == NULL)
continue; /* just for safety */
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (!IN6_ARE_MASKED_ADDR_EQUAL(addr,
&ia->ia_addr.sin6_addr,
&ia->ia_prefixmask.sin6_addr))
continue;
best_ia = bestia(best_ia, ia);
}
return best_ia;
}
/*
* Convert IP6 address to printable (loggable) representation.
*/
static int ip6round = 0;
char *
ip6_sprintf(const struct in6_addr *addr)
{
static char ip6buf[8][48];
int i;
char *bp;
char *cp;
const u_int16_t *a = (const u_int16_t *)addr;
const u_int8_t *d;
int dcolon = 0;
ip6round = (ip6round + 1) & 7;
cp = ip6buf[ip6round];
for (i = 0; i < 8; i++) {
if (dcolon == 1) {
if (*a == 0) {
if (i == 7)
*cp++ = ':';
a++;
continue;
} else
dcolon = 2;
}
if (*a == 0) {
if (dcolon == 0 && *(a + 1) == 0) {
if (i == 0)
*cp++ = ':';
*cp++ = ':';
dcolon = 1;
} else {
*cp++ = '0';
*cp++ = ':';
}
a++;
continue;
}
d = (const u_char *)a;
bp = cp;
*cp = hexdigits[*d >> 4];
if (*cp != '0')
cp++;
*cp = hexdigits[*d++ & 0xf];
if (cp != bp || *cp != '0')
cp++;
*cp = hexdigits[*d >> 4];
if (cp != bp || *cp != '0')
cp++;
*cp++ = hexdigits[*d & 0xf];
*cp++ = ':';
a++;
}
*--cp = 0;
return ip6buf[ip6round];
}
/*
* Determine if an address is on a local network.
*/
int
in6_localaddr(const struct in6_addr *in6)
{
struct in6_ifaddr *ia;
if (IN6_IS_ADDR_LOOPBACK(in6) || IN6_IS_ADDR_LINKLOCAL(in6))
return 1;
for (ia = in6_ifaddr; ia; ia = ia->ia_next)
if (IN6_ARE_MASKED_ADDR_EQUAL(in6, &ia->ia_addr.sin6_addr,
&ia->ia_prefixmask.sin6_addr))
return 1;
return 0;
}
int
in6_is_addr_deprecated(struct sockaddr_in6 *sa6)
{
struct in6_ifaddr *ia;
for (ia = in6_ifaddr; ia; ia = ia->ia_next) {
if (IN6_ARE_ADDR_EQUAL(&ia->ia_addr.sin6_addr,
&sa6->sin6_addr) &&
#ifdef SCOPEDROUTING
ia->ia_addr.sin6_scope_id == sa6->sin6_scope_id &&
#endif
(ia->ia6_flags & IN6_IFF_DEPRECATED) != 0)
return 1; /* true */
/* XXX: do we still have to go thru the rest of the list? */
}
return 0; /* false */
}
/*
* return length of part which dst and src are equal
* hard coding...
*/
int
in6_matchlen(struct in6_addr *src, struct in6_addr *dst)
{
int match = 0;
u_char *s = (u_char *)src, *d = (u_char *)dst;
u_char *lim = s + 16, r;
while (s < lim)
if ((r = (*d++ ^ *s++)) != 0) {
while (r < 128) {
match++;
r <<= 1;
}
break;
} else
match += NBBY;
return match;
}
/* XXX: to be scope conscious */
int
in6_are_prefix_equal(struct in6_addr *p1, struct in6_addr *p2, int len)
{
int bytelen, bitlen;
/* sanity check */
if (len < 0 || len > 128) {
log(LOG_ERR, "in6_are_prefix_equal: invalid prefix length(%d)\n",
len);
return 0;
}
bytelen = len / NBBY;
bitlen = len % NBBY;
if (memcmp(&p1->s6_addr, &p2->s6_addr, bytelen))
return 0;
if (bitlen != 0 &&
p1->s6_addr[bytelen] >> (NBBY - bitlen) !=
p2->s6_addr[bytelen] >> (NBBY - bitlen))
return 0;
return 1;
}
void
in6_prefixlen2mask(struct in6_addr *maskp, int len)
{
static const u_char maskarray[NBBY] = {0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, 0xff};
int bytelen, bitlen, i;
/* sanity check */
if (len < 0 || len > 128) {
log(LOG_ERR, "in6_prefixlen2mask: invalid prefix length(%d)\n",
len);
return;
}
memset(maskp, 0, sizeof(*maskp));
bytelen = len / NBBY;
bitlen = len % NBBY;
for (i = 0; i < bytelen; i++)
maskp->s6_addr[i] = 0xff;
if (bitlen)
maskp->s6_addr[bytelen] = maskarray[bitlen - 1];
}
/*
* return the best address out of the same scope. if no address was
* found, return the first valid address from designated IF.
*/
struct in6_ifaddr *
in6_ifawithifp(struct ifnet *ifp, struct in6_addr *dst)
{
int dst_scope = in6_addrscope(dst), blen = -1, tlen;
struct ifaddr *ifa;
struct in6_ifaddr *best_ia = NULL, *ia;
struct in6_ifaddr *dep[2]; /* last-resort: deprecated */
dep[0] = dep[1] = NULL;
/*
* We first look for addresses in the same scope.
* If there is one, return it.
* If two or more, return one which matches the dst longest.
* If none, return one of global addresses assigned other ifs.
*/
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (ia->ia6_flags & IN6_IFF_ANYCAST)
continue; /* XXX: is there any case to allow anycast? */
if (ia->ia6_flags & IN6_IFF_NOTREADY)
continue; /* don't use this interface */
if (ia->ia6_flags & IN6_IFF_DETACHED)
continue;
if (ia->ia6_flags & IN6_IFF_DEPRECATED) {
if (ip6_use_deprecated)
dep[0] = ia;
continue;
}
if (dst_scope != in6_addrscope(IFA_IN6(ifa)))
continue;
/*
* call in6_matchlen() as few as possible
*/
if (best_ia == NULL) {
best_ia = ia;
continue;
}
if (blen == -1)
blen = in6_matchlen(&best_ia->ia_addr.sin6_addr, dst);
tlen = in6_matchlen(IFA_IN6(ifa), dst);
if (tlen > blen) {
blen = tlen;
best_ia = ia;
} else if (tlen == blen)
best_ia = bestia(best_ia, ia);
}
if (best_ia != NULL)
return best_ia;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (ia->ia6_flags & IN6_IFF_ANYCAST)
continue; /* XXX: is there any case to allow anycast? */
if (ia->ia6_flags & IN6_IFF_NOTREADY)
continue; /* don't use this interface */
if (ia->ia6_flags & IN6_IFF_DETACHED)
continue;
if (ia->ia6_flags & IN6_IFF_DEPRECATED) {
if (ip6_use_deprecated)
dep[1] = (struct in6_ifaddr *)ifa;
continue;
}
best_ia = bestia(best_ia, ia);
}
if (best_ia != NULL)
return best_ia;
/* use the last-resort values, that are, deprecated addresses */
if (dep[0])
return dep[0];
if (dep[1])
return dep[1];
return NULL;
}
/*
* perform DAD when interface becomes IFF_UP.
*/
void
in6_if_up(struct ifnet *ifp)
{
struct ifaddr *ifa;
struct in6_ifaddr *ia;
IFADDR_FOREACH(ifa, ifp) {
if (ifa->ifa_addr->sa_family != AF_INET6)
continue;
ia = (struct in6_ifaddr *)ifa;
if (ia->ia6_flags & IN6_IFF_TENTATIVE) {
/*
* The TENTATIVE flag was likely set by hand
* beforehand, implicitly indicating the need for DAD.
* We may be able to skip the random delay in this
* case, but we impose delays just in case.
*/
nd6_dad_start(ifa,
cprng_fast32() %
(MAX_RTR_SOLICITATION_DELAY * hz));
}
}
/*
* special cases, like 6to4, are handled in in6_ifattach
*/
in6_ifattach(ifp, NULL);
}
int
in6if_do_dad(struct ifnet *ifp)
{
if ((ifp->if_flags & IFF_LOOPBACK) != 0)
return 0;
switch (ifp->if_type) {
case IFT_FAITH:
/*
* These interfaces do not have the IFF_LOOPBACK flag,
* but loop packets back. We do not have to do DAD on such
* interfaces. We should even omit it, because loop-backed
* NS would confuse the DAD procedure.
*/
return 0;
default:
/*
* Our DAD routine requires the interface up and running.
* However, some interfaces can be up before the RUNNING
* status. Additionaly, users may try to assign addresses
* before the interface becomes up (or running).
* We simply skip DAD in such a case as a work around.
* XXX: we should rather mark "tentative" on such addresses,
* and do DAD after the interface becomes ready.
*/
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) !=
(IFF_UP|IFF_RUNNING))
return 0;
return 1;
}
}
/*
* Calculate max IPv6 MTU through all the interfaces and store it
* to in6_maxmtu.
*/
void
in6_setmaxmtu(void)
{
unsigned long maxmtu = 0;
struct ifnet *ifp;
TAILQ_FOREACH(ifp, &ifnet, if_list) {
/* this function can be called during ifnet initialization */
if (!ifp->if_afdata[AF_INET6])
continue;
if ((ifp->if_flags & IFF_LOOPBACK) == 0 &&
IN6_LINKMTU(ifp) > maxmtu)
maxmtu = IN6_LINKMTU(ifp);
}
if (maxmtu) /* update only when maxmtu is positive */
in6_maxmtu = maxmtu;
}
/*
* Provide the length of interface identifiers to be used for the link attached
* to the given interface. The length should be defined in "IPv6 over
* xxx-link" document. Note that address architecture might also define
* the length for a particular set of address prefixes, regardless of the
* link type. As clarified in rfc2462bis, those two definitions should be
* consistent, and those really are as of August 2004.
*/
int
in6_if2idlen(struct ifnet *ifp)
{
switch (ifp->if_type) {
case IFT_ETHER: /* RFC2464 */
case IFT_PROPVIRTUAL: /* XXX: no RFC. treat it as ether */
case IFT_L2VLAN: /* ditto */
case IFT_IEEE80211: /* ditto */
case IFT_FDDI: /* RFC2467 */
case IFT_ISO88025: /* RFC2470 (IPv6 over Token Ring) */
case IFT_PPP: /* RFC2472 */
case IFT_ARCNET: /* RFC2497 */
case IFT_FRELAY: /* RFC2590 */
case IFT_IEEE1394: /* RFC3146 */
case IFT_GIF: /* draft-ietf-v6ops-mech-v2-07 */
case IFT_LOOP: /* XXX: is this really correct? */
return 64;
default:
/*
* Unknown link type:
* It might be controversial to use the today's common constant
* of 64 for these cases unconditionally. For full compliance,
* we should return an error in this case. On the other hand,
* if we simply miss the standard for the link type or a new
* standard is defined for a new link type, the IFID length
* is very likely to be the common constant. As a compromise,
* we always use the constant, but make an explicit notice
* indicating the "unknown" case.
*/
printf("in6_if2idlen: unknown link type (%d)\n", ifp->if_type);
return 64;
}
}
void *
in6_domifattach(struct ifnet *ifp)
{
struct in6_ifextra *ext;
ext = malloc(sizeof(*ext), M_IFADDR, M_WAITOK|M_ZERO);
ext->in6_ifstat = malloc(sizeof(struct in6_ifstat),
M_IFADDR, M_WAITOK|M_ZERO);
ext->icmp6_ifstat = malloc(sizeof(struct icmp6_ifstat),
M_IFADDR, M_WAITOK|M_ZERO);
ext->nd_ifinfo = nd6_ifattach(ifp);
ext->scope6_id = scope6_ifattach(ifp);
return ext;
}
void
in6_domifdetach(struct ifnet *ifp, void *aux)
{
struct in6_ifextra *ext = (struct in6_ifextra *)aux;
nd6_ifdetach(ext->nd_ifinfo);
free(ext->in6_ifstat, M_IFADDR);
free(ext->icmp6_ifstat, M_IFADDR);
scope6_ifdetach(ext->scope6_id);
free(ext, M_IFADDR);
}
/*
* Convert sockaddr_in6 to sockaddr_in. Original sockaddr_in6 must be
* v4 mapped addr or v4 compat addr
*/
void
in6_sin6_2_sin(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
{
memset(sin, 0, sizeof(*sin));
sin->sin_len = sizeof(struct sockaddr_in);
sin->sin_family = AF_INET;
sin->sin_port = sin6->sin6_port;
sin->sin_addr.s_addr = sin6->sin6_addr.s6_addr32[3];
}
/* Convert sockaddr_in to sockaddr_in6 in v4 mapped addr format. */
void
in6_sin_2_v4mapsin6(struct sockaddr_in *sin, struct sockaddr_in6 *sin6)
{
memset(sin6, 0, sizeof(*sin6));
sin6->sin6_len = sizeof(struct sockaddr_in6);
sin6->sin6_family = AF_INET6;
sin6->sin6_port = sin->sin_port;
sin6->sin6_addr.s6_addr32[0] = 0;
sin6->sin6_addr.s6_addr32[1] = 0;
sin6->sin6_addr.s6_addr32[2] = IPV6_ADDR_INT32_SMP;
sin6->sin6_addr.s6_addr32[3] = sin->sin_addr.s_addr;
}
/* Convert sockaddr_in6 into sockaddr_in. */
void
in6_sin6_2_sin_in_sock(struct sockaddr *nam)
{
struct sockaddr_in *sin_p;
struct sockaddr_in6 sin6;
/*
* Save original sockaddr_in6 addr and convert it
* to sockaddr_in.
*/
sin6 = *(struct sockaddr_in6 *)nam;
sin_p = (struct sockaddr_in *)nam;
in6_sin6_2_sin(sin_p, &sin6);
}
/* Convert sockaddr_in into sockaddr_in6 in v4 mapped addr format. */
void
in6_sin_2_v4mapsin6_in_sock(struct sockaddr **nam)
{
struct sockaddr_in *sin_p;
struct sockaddr_in6 *sin6_p;
sin6_p = malloc(sizeof(*sin6_p), M_SONAME, M_WAITOK);
sin_p = (struct sockaddr_in *)*nam;
in6_sin_2_v4mapsin6(sin_p, sin6_p);
free(*nam, M_SONAME);
*nam = (struct sockaddr *)sin6_p;
}