NetBSD/sys/dev/ic/i82557.c
tsutsui 7a44ef30a5 Pull a fix from hme.c rev 1.73 (to #if 0'ed out part):
> Fix a bug in calculation of checksum deduction:
> - To get 16 bit one's complement value from uint32_t variable,
>   higher 16 bits should be ignored.
> - RFC 1624 describes methods to recalculate checksum field in headers,
>   i.e. one's complement of one's complement sum that could be 0x0000,
>   but we don't have to use the strategy to deduct one's complement sum
>   itself which won't be zero but should be 0xffff.
2009-03-16 12:13:04 +00:00

2555 lines
67 KiB
C

/* $NetBSD: i82557.c,v 1.129 2009/03/16 12:13:04 tsutsui Exp $ */
/*-
* Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1995, David Greenman
* Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
*/
/*
* Device driver for the Intel i82557 fast Ethernet controller,
* and its successors, the i82558 and i82559.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.129 2009/03/16 12:13:04 tsutsui Exp $");
#include "bpfilter.h"
#include "rnd.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/mbuf.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/device.h>
#include <sys/syslog.h>
#include <machine/endian.h>
#include <uvm/uvm_extern.h>
#if NRND > 0
#include <sys/rnd.h>
#endif
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_media.h>
#include <net/if_ether.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/tcp.h>
#include <netinet/udp.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <sys/bus.h>
#include <sys/intr.h>
#include <dev/mii/miivar.h>
#include <dev/ic/i82557reg.h>
#include <dev/ic/i82557var.h>
#include <dev/microcode/i8255x/rcvbundl.h>
/*
* NOTE! On the Alpha, we have an alignment constraint. The
* card DMAs the packet immediately following the RFA. However,
* the first thing in the packet is a 14-byte Ethernet header.
* This means that the packet is misaligned. To compensate,
* we actually offset the RFA 2 bytes into the cluster. This
* alignes the packet after the Ethernet header at a 32-bit
* boundary. HOWEVER! This means that the RFA is misaligned!
*/
#define RFA_ALIGNMENT_FUDGE 2
/*
* The configuration byte map has several undefined fields which
* must be one or must be zero. Set up a template for these bits
* only (assuming an i82557 chip), leaving the actual configuration
* for fxp_init().
*
* See the definition of struct fxp_cb_config for the bit definitions.
*/
const uint8_t fxp_cb_config_template[] = {
0x0, 0x0, /* cb_status */
0x0, 0x0, /* cb_command */
0x0, 0x0, 0x0, 0x0, /* link_addr */
0x0, /* 0 */
0x0, /* 1 */
0x0, /* 2 */
0x0, /* 3 */
0x0, /* 4 */
0x0, /* 5 */
0x32, /* 6 */
0x0, /* 7 */
0x0, /* 8 */
0x0, /* 9 */
0x6, /* 10 */
0x0, /* 11 */
0x0, /* 12 */
0x0, /* 13 */
0xf2, /* 14 */
0x48, /* 15 */
0x0, /* 16 */
0x40, /* 17 */
0xf0, /* 18 */
0x0, /* 19 */
0x3f, /* 20 */
0x5, /* 21 */
0x0, /* 22 */
0x0, /* 23 */
0x0, /* 24 */
0x0, /* 25 */
0x0, /* 26 */
0x0, /* 27 */
0x0, /* 28 */
0x0, /* 29 */
0x0, /* 30 */
0x0, /* 31 */
};
void fxp_mii_initmedia(struct fxp_softc *);
void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
void fxp_80c24_initmedia(struct fxp_softc *);
int fxp_80c24_mediachange(struct ifnet *);
void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
void fxp_start(struct ifnet *);
int fxp_ioctl(struct ifnet *, u_long, void *);
void fxp_watchdog(struct ifnet *);
int fxp_init(struct ifnet *);
void fxp_stop(struct ifnet *, int);
void fxp_txintr(struct fxp_softc *);
int fxp_rxintr(struct fxp_softc *);
void fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
const struct fxp_rfa *, u_int);
void fxp_rxdrain(struct fxp_softc *);
int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
int fxp_mdi_read(device_t, int, int);
void fxp_statchg(device_t);
void fxp_mdi_write(device_t, int, int, int);
void fxp_autosize_eeprom(struct fxp_softc*);
void fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
void fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
void fxp_eeprom_update_cksum(struct fxp_softc *);
void fxp_get_info(struct fxp_softc *, uint8_t *);
void fxp_tick(void *);
void fxp_mc_setup(struct fxp_softc *);
void fxp_load_ucode(struct fxp_softc *);
int fxp_copy_small = 0;
/*
* Variables for interrupt mitigating microcode.
*/
int fxp_int_delay = 1000; /* usec */
int fxp_bundle_max = 6; /* packets */
struct fxp_phytype {
int fp_phy; /* type of PHY, -1 for MII at the end. */
void (*fp_init)(struct fxp_softc *);
} fxp_phytype_table[] = {
{ FXP_PHY_80C24, fxp_80c24_initmedia },
{ -1, fxp_mii_initmedia },
};
/*
* Set initial transmit threshold at 64 (512 bytes). This is
* increased by 64 (512 bytes) at a time, to maximum of 192
* (1536 bytes), if an underrun occurs.
*/
static int tx_threshold = 64;
/*
* Wait for the previous command to be accepted (but not necessarily
* completed).
*/
static inline void
fxp_scb_wait(struct fxp_softc *sc)
{
int i = 10000;
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
delay(2);
if (i == 0)
log(LOG_WARNING,
"%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
}
/*
* Submit a command to the i82557.
*/
static inline void
fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
{
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
}
/*
* Finish attaching an i82557 interface. Called by bus-specific front-end.
*/
void
fxp_attach(struct fxp_softc *sc)
{
uint8_t enaddr[ETHER_ADDR_LEN];
struct ifnet *ifp;
bus_dma_segment_t seg;
int rseg, i, error;
struct fxp_phytype *fp;
callout_init(&sc->sc_callout, 0);
/*
* Enable use of extended RFDs and IPCBs for 82550 and later chips.
* Note: to use IPCB we need extended TXCB support too, and
* these feature flags should be set in each bus attachment.
*/
if (sc->sc_flags & FXPF_EXT_RFA) {
sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
sc->sc_rfa_size = RFA_EXT_SIZE;
} else {
sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
sc->sc_rfa_size = RFA_SIZE;
}
/*
* Allocate the control data structures, and create and load the
* DMA map for it.
*/
if ((error = bus_dmamem_alloc(sc->sc_dmat,
sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to allocate control data, error = %d\n",
error);
goto fail_0;
}
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
BUS_DMA_COHERENT)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to map control data, error = %d\n", error);
goto fail_1;
}
sc->sc_cdseg = seg;
sc->sc_cdnseg = rseg;
memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
if ((error = bus_dmamap_create(sc->sc_dmat,
sizeof(struct fxp_control_data), 1,
sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create control data DMA map, error = %d\n",
error);
goto fail_2;
}
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
0)) != 0) {
aprint_error_dev(sc->sc_dev,
"can't load control data DMA map, error = %d\n",
error);
goto fail_3;
}
/*
* Create the transmit buffer DMA maps.
*/
for (i = 0; i < FXP_NTXCB; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
(sc->sc_flags & FXPF_EXT_RFA) ?
FXP_IPCB_NTXSEG : FXP_NTXSEG,
MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create tx DMA map %d, error = %d\n",
i, error);
goto fail_4;
}
}
/*
* Create the receive buffer DMA maps.
*/
for (i = 0; i < FXP_NRFABUFS; i++) {
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
aprint_error_dev(sc->sc_dev,
"unable to create rx DMA map %d, error = %d\n",
i, error);
goto fail_5;
}
}
/* Initialize MAC address and media structures. */
fxp_get_info(sc, enaddr);
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
ether_sprintf(enaddr));
ifp = &sc->sc_ethercom.ec_if;
/*
* Get info about our media interface, and initialize it. Note
* the table terminates itself with a phy of -1, indicating
* that we're using MII.
*/
for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
if (fp->fp_phy == sc->phy_primary_device)
break;
(*fp->fp_init)(sc);
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_ioctl = fxp_ioctl;
ifp->if_start = fxp_start;
ifp->if_watchdog = fxp_watchdog;
ifp->if_init = fxp_init;
ifp->if_stop = fxp_stop;
IFQ_SET_READY(&ifp->if_snd);
if (sc->sc_flags & FXPF_EXT_RFA) {
/*
* Enable hardware cksum support by EXT_RFA and IPCB.
*
* IFCAP_CSUM_IPv4_Tx seems to have a problem,
* at least, on i82550 rev.12.
* specifically, it doesn't set ipv4 checksum properly
* when sending UDP (and probably TCP) packets with
* 20 byte ipv4 header + 1 or 2 byte data,
* though ICMP packets seem working.
* FreeBSD driver has related comments.
* We've added a workaround to handle the bug by padding
* such packets manually.
*/
ifp->if_capabilities =
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
ifp->if_capabilities =
IFCAP_CSUM_TCPv4_Rx |
IFCAP_CSUM_UDPv4_Rx;
}
/*
* We can support 802.1Q VLAN-sized frames.
*/
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
/*
* Attach the interface.
*/
if_attach(ifp);
ether_ifattach(ifp, enaddr);
#if NRND > 0
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
RND_TYPE_NET, 0);
#endif
#ifdef FXP_EVENT_COUNTERS
evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txstall");
evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "txintr");
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
NULL, device_xname(sc->sc_dev), "rxintr");
if (sc->sc_flags & FXPF_FC) {
evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "txpause");
evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
NULL, device_xname(sc->sc_dev), "rxpause");
}
#endif /* FXP_EVENT_COUNTERS */
/* The attach is successful. */
sc->sc_flags |= FXPF_ATTACHED;
return;
/*
* Free any resources we've allocated during the failed attach
* attempt. Do this in reverse order and fall though.
*/
fail_5:
for (i = 0; i < FXP_NRFABUFS; i++) {
if (sc->sc_rxmaps[i] != NULL)
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
}
fail_4:
for (i = 0; i < FXP_NTXCB; i++) {
if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
bus_dmamap_destroy(sc->sc_dmat,
FXP_DSTX(sc, i)->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
fail_3:
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
fail_2:
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct fxp_control_data));
fail_1:
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
fail_0:
return;
}
void
fxp_mii_initmedia(struct fxp_softc *sc)
{
int flags;
sc->sc_flags |= FXPF_MII;
sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
sc->sc_mii.mii_readreg = fxp_mdi_read;
sc->sc_mii.mii_writereg = fxp_mdi_write;
sc->sc_mii.mii_statchg = fxp_statchg;
sc->sc_ethercom.ec_mii = &sc->sc_mii;
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
fxp_mii_mediastatus);
flags = MIIF_NOISOLATE;
if (sc->sc_flags & FXPF_FC)
flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
/*
* The i82557 wedges if all of its PHYs are isolated!
*/
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
MII_OFFSET_ANY, flags);
if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
} else
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
}
void
fxp_80c24_initmedia(struct fxp_softc *sc)
{
/*
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
* doesn't have a programming interface of any sort. The
* media is sensed automatically based on how the link partner
* is configured. This is, in essence, manual configuration.
*/
aprint_normal_dev(sc->sc_dev,
"Seeq 80c24 AutoDUPLEX media interface present\n");
ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
fxp_80c24_mediastatus);
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
}
/*
* Initialize the interface media.
*/
void
fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
{
uint16_t data, myea[ETHER_ADDR_LEN / 2];
/*
* Reset to a stable state.
*/
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
DELAY(100);
sc->sc_eeprom_size = 0;
fxp_autosize_eeprom(sc);
if (sc->sc_eeprom_size == 0) {
aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
sc->sc_eeprom_size = 6; /* XXX panic here? */
}
#ifdef DEBUG
aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
1 << sc->sc_eeprom_size);
#endif
/*
* Get info about the primary PHY
*/
fxp_read_eeprom(sc, &data, 6, 1);
sc->phy_primary_device =
(data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
/*
* Read MAC address.
*/
fxp_read_eeprom(sc, myea, 0, 3);
enaddr[0] = myea[0] & 0xff;
enaddr[1] = myea[0] >> 8;
enaddr[2] = myea[1] & 0xff;
enaddr[3] = myea[1] >> 8;
enaddr[4] = myea[2] & 0xff;
enaddr[5] = myea[2] >> 8;
/*
* Systems based on the ICH2/ICH2-M chip from Intel, as well
* as some i82559 designs, have a defect where the chip can
* cause a PCI protocol violation if it receives a CU_RESUME
* command when it is entering the IDLE state.
*
* The work-around is to disable Dynamic Standby Mode, so that
* the chip never deasserts #CLKRUN, and always remains in the
* active state.
*
* Unfortunately, the only way to disable Dynamic Standby is
* to frob an EEPROM setting and reboot (the EEPROM setting
* is only consulted when the PCI bus comes out of reset).
*
* See Intel 82801BA/82801BAM Specification Update, Errata #30.
*/
if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
fxp_read_eeprom(sc, &data, 10, 1);
if (data & 0x02) { /* STB enable */
aprint_error_dev(sc->sc_dev, "WARNING: "
"Disabling dynamic standby mode in EEPROM "
"to work around a\n");
aprint_normal_dev(sc->sc_dev,
"WARNING: hardware bug. You must reset "
"the system before using this\n");
aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
data &= ~0x02;
fxp_write_eeprom(sc, &data, 10, 1);
aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
data);
fxp_eeprom_update_cksum(sc);
}
}
/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
/* Due to false positives we make it conditional on setting link1 */
fxp_read_eeprom(sc, &data, 3, 1);
if ((data & 0x03) != 0x03) {
aprint_verbose_dev(sc->sc_dev,
"May need receiver lock-up workaround\n");
}
}
static void
fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
{
uint16_t reg;
int x;
for (x = 1 << (len - 1); x != 0; x >>= 1) {
DELAY(40);
if (data & x)
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
else
reg = FXP_EEPROM_EECS;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(40);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(40);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
}
DELAY(40);
}
/*
* Figure out EEPROM size.
*
* 559's can have either 64-word or 256-word EEPROMs, the 558
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
* talks about the existence of 16 to 256 word EEPROMs.
*
* The only known sizes are 64 and 256, where the 256 version is used
* by CardBus cards to store CIS information.
*
* The address is shifted in msb-to-lsb, and after the last
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
* after which follows the actual data. We try to detect this zero, by
* probing the data-out bit in the EEPROM control register just after
* having shifted in a bit. If the bit is zero, we assume we've
* shifted enough address bits. The data-out should be tri-state,
* before this, which should translate to a logical one.
*
* Other ways to do this would be to try to read a register with known
* contents with a varying number of address bits, but no such
* register seem to be available. The high bits of register 10 are 01
* on the 558 and 559, but apparently not on the 557.
*
* The Linux driver computes a checksum on the EEPROM data, but the
* value of this checksum is not very well documented.
*/
void
fxp_autosize_eeprom(struct fxp_softc *sc)
{
int x;
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(40);
/* Shift in read opcode. */
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
/*
* Shift in address, wait for the dummy zero following a correct
* address shift.
*/
for (x = 1; x <= 8; x++) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(40);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
FXP_EEPROM_EECS | FXP_EEPROM_EESK);
DELAY(40);
if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO) == 0)
break;
DELAY(40);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(40);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(40);
if (x != 6 && x != 8) {
#ifdef DEBUG
printf("%s: strange EEPROM size (%d)\n",
device_xname(sc->sc_dev), 1 << x);
#endif
} else
sc->sc_eeprom_size = x;
}
/*
* Read from the serial EEPROM. Basically, you manually shift in
* the read opcode (one bit at a time) and then shift in the address,
* and then you shift out the data (all of this one bit at a time).
* The word size is 16 bits, so you have to provide the address for
* every 16 bits of data.
*/
void
fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
{
uint16_t reg;
int i, x;
for (i = 0; i < words; i++) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
/* Shift in read opcode. */
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
/* Shift in address. */
fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
reg = FXP_EEPROM_EECS;
data[i] = 0;
/* Shift out data. */
for (x = 16; x > 0; x--) {
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
reg | FXP_EEPROM_EESK);
DELAY(40);
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO)
data[i] |= (1 << (x - 1));
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
DELAY(40);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(40);
}
}
/*
* Write data to the serial EEPROM.
*/
void
fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
{
int i, j;
for (i = 0; i < words; i++) {
/* Erase/write enable. */
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
sc->sc_eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(4);
/* Shift in write opcode, address, data. */
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
fxp_eeprom_shiftin(sc, data[i], 16);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(4);
/* Wait for the EEPROM to finish up. */
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
DELAY(4);
for (j = 0; j < 1000; j++) {
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
FXP_EEPROM_EEDO)
break;
DELAY(50);
}
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(4);
/* Erase/write disable. */
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
DELAY(4);
}
}
/*
* Update the checksum of the EEPROM.
*/
void
fxp_eeprom_update_cksum(struct fxp_softc *sc)
{
int i;
uint16_t data, cksum;
cksum = 0;
for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
fxp_read_eeprom(sc, &data, i, 1);
cksum += data;
}
i = (1 << sc->sc_eeprom_size) - 1;
cksum = 0xbaba - cksum;
fxp_read_eeprom(sc, &data, i, 1);
fxp_write_eeprom(sc, &cksum, i, 1);
log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
device_xname(sc->sc_dev), i, data, cksum);
}
/*
* Start packet transmission on the interface.
*/
void
fxp_start(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
struct fxp_txdesc *txd;
struct fxp_txsoft *txs;
bus_dmamap_t dmamap;
int error, lasttx, nexttx, opending, seg, nsegs, len;
/*
* If we want a re-init, bail out now.
*/
if (sc->sc_flags & FXPF_WANTINIT) {
ifp->if_flags |= IFF_OACTIVE;
return;
}
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
return;
/*
* Remember the previous txpending and the current lasttx.
*/
opending = sc->sc_txpending;
lasttx = sc->sc_txlast;
/*
* Loop through the send queue, setting up transmit descriptors
* until we drain the queue, or use up all available transmit
* descriptors.
*/
for (;;) {
struct fxp_tbd *tbdp;
int csum_flags;
/*
* Grab a packet off the queue.
*/
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
m = NULL;
if (sc->sc_txpending == FXP_NTXCB - 1) {
FXP_EVCNT_INCR(&sc->sc_ev_txstall);
break;
}
/*
* Get the next available transmit descriptor.
*/
nexttx = FXP_NEXTTX(sc->sc_txlast);
txd = FXP_CDTX(sc, nexttx);
txs = FXP_DSTX(sc, nexttx);
dmamap = txs->txs_dmamap;
/*
* Load the DMA map. If this fails, the packet either
* didn't fit in the allotted number of frags, or we were
* short on resources. In this case, we'll copy and try
* again.
*/
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
device_xname(sc->sc_dev));
break;
}
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
log(LOG_ERR, "%s: unable to allocate "
"Tx cluster\n",
device_xname(sc->sc_dev));
m_freem(m);
break;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
if (error) {
log(LOG_ERR, "%s: unable to load Tx buffer, "
"error = %d\n",
device_xname(sc->sc_dev), error);
break;
}
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
csum_flags = m0->m_pkthdr.csum_flags;
if (m != NULL) {
m_freem(m0);
m0 = m;
}
/* Initialize the fraglist. */
tbdp = txd->txd_tbd;
len = m0->m_pkthdr.len;
nsegs = dmamap->dm_nsegs;
if (sc->sc_flags & FXPF_EXT_RFA)
tbdp++;
for (seg = 0; seg < nsegs; seg++) {
tbdp[seg].tb_addr =
htole32(dmamap->dm_segs[seg].ds_addr);
tbdp[seg].tb_size =
htole32(dmamap->dm_segs[seg].ds_len);
}
if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
(csum_flags & M_CSUM_IPv4) != 0)) {
/*
* Pad short packets to avoid ip4csum-tx bug.
*
* XXX Should we still consider if such short
* (36 bytes or less) packets might already
* occupy FXP_IPCB_NTXSEG (15) fragments here?
*/
KASSERT(nsegs < FXP_IPCB_NTXSEG);
nsegs++;
tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
tbdp[seg].tb_size =
htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
}
/* Sync the DMA map. */
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
BUS_DMASYNC_PREWRITE);
/*
* Store a pointer to the packet so we can free it later.
*/
txs->txs_mbuf = m0;
/*
* Initialize the transmit descriptor.
*/
/* BIG_ENDIAN: no need to swap to store 0 */
txd->txd_txcb.cb_status = 0;
txd->txd_txcb.cb_command =
sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
txd->txd_txcb.tx_threshold = tx_threshold;
txd->txd_txcb.tbd_number = nsegs;
KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
if (sc->sc_flags & FXPF_EXT_RFA) {
struct m_tag *vtag;
struct fxp_ipcb *ipcb;
/*
* Deal with TCP/IP checksum offload. Note that
* in order for TCP checksum offload to work,
* the pseudo header checksum must have already
* been computed and stored in the checksum field
* in the TCP header. The stack should have
* already done this for us.
*/
ipcb = &txd->txd_u.txdu_ipcb;
memset(ipcb, 0, sizeof(*ipcb));
/*
* always do hardware parsing.
*/
ipcb->ipcb_ip_activation_high =
FXP_IPCB_HARDWAREPARSING_ENABLE;
/*
* ip checksum offloading.
*/
if (csum_flags & M_CSUM_IPv4) {
ipcb->ipcb_ip_schedule |=
FXP_IPCB_IP_CHECKSUM_ENABLE;
}
/*
* TCP/UDP checksum offloading.
*/
if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
ipcb->ipcb_ip_schedule |=
FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
}
/*
* request VLAN tag insertion if needed.
*/
vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
if (vtag) {
ipcb->ipcb_vlan_id =
htobe16(*(u_int *)(vtag + 1));
ipcb->ipcb_ip_activation_high |=
FXP_IPCB_INSERTVLAN_ENABLE;
}
} else {
KASSERT((csum_flags &
(M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
}
FXP_CDTXSYNC(sc, nexttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/* Advance the tx pointer. */
sc->sc_txpending++;
sc->sc_txlast = nexttx;
#if NBPFILTER > 0
/*
* Pass packet to bpf if there is a listener.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m0);
#endif
}
if (sc->sc_txpending == FXP_NTXCB - 1) {
/* No more slots; notify upper layer. */
ifp->if_flags |= IFF_OACTIVE;
}
if (sc->sc_txpending != opending) {
/*
* We enqueued packets. If the transmitter was idle,
* reset the txdirty pointer.
*/
if (opending == 0)
sc->sc_txdirty = FXP_NEXTTX(lasttx);
/*
* Cause the chip to interrupt and suspend command
* processing once the last packet we've enqueued
* has been transmitted.
*
* To avoid a race between updating status bits
* by the fxp chip and clearing command bits
* by this function on machines which don't have
* atomic methods to clear/set bits in memory
* smaller than 32bits (both cb_status and cb_command
* members are uint16_t and in the same 32bit word),
* we have to prepare a dummy TX descriptor which has
* NOP command and just causes a TX completion interrupt.
*/
sc->sc_txpending++;
sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
txd = FXP_CDTX(sc, sc->sc_txlast);
/* BIG_ENDIAN: no need to swap to store 0 */
txd->txd_txcb.cb_status = 0;
txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
FXP_CDTXSYNC(sc, sc->sc_txlast,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* The entire packet chain is set up. Clear the suspend bit
* on the command prior to the first packet we set up.
*/
FXP_CDTXSYNC(sc, lasttx,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
htole16(~FXP_CB_COMMAND_S);
FXP_CDTXSYNC(sc, lasttx,
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Issue a Resume command in case the chip was suspended.
*/
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
/* Set a watchdog timer in case the chip flakes out. */
ifp->if_timer = 5;
}
}
/*
* Process interface interrupts.
*/
int
fxp_intr(void *arg)
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
bus_dmamap_t rxmap;
int claimed = 0, rnr;
uint8_t statack;
if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
return (0);
/*
* If the interface isn't running, don't try to
* service the interrupt.. just ack it and bail.
*/
if ((ifp->if_flags & IFF_RUNNING) == 0) {
statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
if (statack) {
claimed = 1;
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
}
return (claimed);
}
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
claimed = 1;
/*
* First ACK all the interrupts in this pass.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
/*
* Process receiver interrupts. If a no-resource (RNR)
* condition exists, get whatever packets we can and
* re-start the receiver.
*/
rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
1 : 0;
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
FXP_SCB_STATACK_SWI)) {
FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
rnr |= fxp_rxintr(sc);
}
/*
* Free any finished transmit mbuf chains.
*/
if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
FXP_EVCNT_INCR(&sc->sc_ev_txintr);
fxp_txintr(sc);
/*
* Try to get more packets going.
*/
fxp_start(ifp);
if (sc->sc_txpending == 0) {
/*
* Tell them that they can re-init now.
*/
if (sc->sc_flags & FXPF_WANTINIT)
wakeup(sc);
}
}
if (rnr) {
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
rxmap->dm_segs[0].ds_addr +
RFA_ALIGNMENT_FUDGE);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
}
}
#if NRND > 0
if (claimed)
rnd_add_uint32(&sc->rnd_source, statack);
#endif
return (claimed);
}
/*
* Handle transmit completion interrupts.
*/
void
fxp_txintr(struct fxp_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct fxp_txdesc *txd;
struct fxp_txsoft *txs;
int i;
uint16_t txstat;
ifp->if_flags &= ~IFF_OACTIVE;
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
i = FXP_NEXTTX(i), sc->sc_txpending--) {
txd = FXP_CDTX(sc, i);
txs = FXP_DSTX(sc, i);
FXP_CDTXSYNC(sc, i,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
/* skip dummy NOP TX descriptor */
if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
== FXP_CB_COMMAND_NOP)
continue;
txstat = le16toh(txd->txd_txcb.cb_status);
if ((txstat & FXP_CB_STATUS_C) == 0)
break;
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
0, txs->txs_dmamap->dm_mapsize,
BUS_DMASYNC_POSTWRITE);
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
/* Update the dirty transmit buffer pointer. */
sc->sc_txdirty = i;
/*
* Cancel the watchdog timer if there are no pending
* transmissions.
*/
if (sc->sc_txpending == 0)
ifp->if_timer = 0;
}
/*
* fxp_rx_hwcksum: check status of H/W offloading for received packets.
*/
void
fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
u_int len)
{
uint32_t csum_data;
int csum_flags;
/*
* check H/W Checksumming.
*/
csum_flags = 0;
csum_data = 0;
if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
uint8_t rxparsestat;
uint8_t csum_stat;
csum_stat = rfa->cksum_stat;
rxparsestat = rfa->rx_parse_stat;
if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
goto out;
if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
csum_flags = M_CSUM_IPv4;
if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
csum_flags |= M_CSUM_IPv4_BAD;
}
if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
csum_flags |= M_CSUM_TCP_UDP_BAD;
}
} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ether_header *eh;
struct ip *ip;
struct udphdr *uh;
u_int hlen, pktlen;
if (len < ETHER_HDR_LEN + sizeof(struct ip))
goto out;
pktlen = len - ETHER_HDR_LEN;
eh = mtod(m, struct ether_header *);
if (ntohs(eh->ether_type) != ETHERTYPE_IP)
goto out;
ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
if (ip->ip_v != IPVERSION)
goto out;
hlen = ip->ip_hl << 2;
if (hlen < sizeof(struct ip))
goto out;
/*
* Bail if too short, has random trailing garbage, truncated,
* fragment, or has ethernet pad.
*/
if (ntohs(ip->ip_len) < hlen ||
ntohs(ip->ip_len) != pktlen ||
(ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
goto out;
switch (ip->ip_p) {
case IPPROTO_TCP:
if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
pktlen < (hlen + sizeof(struct tcphdr)))
goto out;
csum_flags =
M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
break;
case IPPROTO_UDP:
if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
pktlen < (hlen + sizeof(struct udphdr)))
goto out;
uh = (struct udphdr *)((uint8_t *)ip + hlen);
if (uh->uh_sum == 0)
goto out; /* no checksum */
csum_flags =
M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
break;
default:
goto out;
}
/* Extract computed checksum. */
csum_data = be16dec(mtod(m, uint8_t *) + len);
/*
* The computed checksum includes IP headers,
* so we have to deduct them.
*/
#if 0
/*
* But in TCP/UDP layer we can assume the IP header is valid,
* i.e. a sum of the whole IP header should be 0xffff,
* so we don't have to bother to deduct it.
*/
if (hlen > 0) {
uint32_t hsum;
const uint16_t *iphdr;
hsum = 0;
iphdr = (uint16_t *)ip;
while (hlen > 1) {
hsum += ntohs(*iphdr++);
hlen -= sizeof(uint16_t);
}
while (hsum >> 16)
hsum = (hsum >> 16) + (hsum & 0xffff);
csum_data += (uint16_t)~hsum;
while (csum_data >> 16)
csum_data =
(csum_data >> 16) + (csum_data & 0xffff);
}
#endif
}
out:
m->m_pkthdr.csum_flags = csum_flags;
m->m_pkthdr.csum_data = csum_data;
}
/*
* Handle receive interrupts.
*/
int
fxp_rxintr(struct fxp_softc *sc)
{
struct ethercom *ec = &sc->sc_ethercom;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct mbuf *m, *m0;
bus_dmamap_t rxmap;
struct fxp_rfa *rfa;
int rnr;
uint16_t len, rxstat;
rnr = 0;
for (;;) {
m = sc->sc_rxq.ifq_head;
rfa = FXP_MTORFA(m);
rxmap = M_GETCTX(m, bus_dmamap_t);
FXP_RFASYNC(sc, m,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
rxstat = le16toh(rfa->rfa_status);
if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
rnr = 1;
if ((rxstat & FXP_RFA_STATUS_C) == 0) {
/*
* We have processed all of the
* receive buffers.
*/
FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
return rnr;
}
IF_DEQUEUE(&sc->sc_rxq, m);
FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
len = le16toh(rfa->actual_size) &
(m->m_ext.ext_size - 1);
if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
/* Adjust for appended checksum bytes. */
len -= sizeof(uint16_t);
}
if (len < sizeof(struct ether_header)) {
/*
* Runt packet; drop it now.
*/
FXP_INIT_RFABUF(sc, m);
continue;
}
/*
* If support for 802.1Q VLAN sized frames is
* enabled, we need to do some additional error
* checking (as we are saving bad frames, in
* order to receive the larger ones).
*/
if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
(rxstat & (FXP_RFA_STATUS_OVERRUN|
FXP_RFA_STATUS_RNR|
FXP_RFA_STATUS_ALIGN|
FXP_RFA_STATUS_CRC)) != 0) {
FXP_INIT_RFABUF(sc, m);
continue;
}
/*
* check VLAN tag stripping.
*/
if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
(rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
struct m_tag *vtag;
vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
M_NOWAIT);
if (vtag == NULL)
goto dropit;
*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
m_tag_prepend(m, vtag);
}
/* Do checksum checking. */
if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
fxp_rx_hwcksum(sc, m, rfa, len);
/*
* If the packet is small enough to fit in a
* single header mbuf, allocate one and copy
* the data into it. This greatly reduces
* memory consumption when we receive lots
* of small packets.
*
* Otherwise, we add a new buffer to the receive
* chain. If this fails, we drop the packet and
* recycle the old buffer.
*/
if (fxp_copy_small != 0 && len <= MHLEN) {
MGETHDR(m0, M_DONTWAIT, MT_DATA);
if (m0 == NULL)
goto dropit;
MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
memcpy(mtod(m0, void *),
mtod(m, void *), len);
m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
FXP_INIT_RFABUF(sc, m);
m = m0;
} else {
if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
dropit:
ifp->if_ierrors++;
FXP_INIT_RFABUF(sc, m);
continue;
}
}
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = len;
#if NBPFILTER > 0
/*
* Pass this up to any BPF listeners, but only
* pass it up the stack if it's for us.
*/
if (ifp->if_bpf)
bpf_mtap(ifp->if_bpf, m);
#endif
/* Pass it on. */
(*ifp->if_input)(ifp, m);
}
}
/*
* Update packet in/out/collision statistics. The i82557 doesn't
* allow you to access these counters without doing a fairly
* expensive DMA to get _all_ of the statistics it maintains, so
* we do this operation here only once per second. The statistics
* counters in the kernel are updated from the previous dump-stats
* DMA and then a new dump-stats DMA is started. The on-chip
* counters are zeroed when the DMA completes. If we can't start
* the DMA immediately, we don't wait - we just prepare to read
* them again next time.
*/
void
fxp_tick(void *arg)
{
struct fxp_softc *sc = arg;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
int s;
if (!device_is_active(sc->sc_dev))
return;
s = splnet();
FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
ifp->if_opackets += le32toh(sp->tx_good);
ifp->if_collisions += le32toh(sp->tx_total_collisions);
if (sp->rx_good) {
ifp->if_ipackets += le32toh(sp->rx_good);
sc->sc_rxidle = 0;
} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
sc->sc_rxidle++;
}
ifp->if_ierrors +=
le32toh(sp->rx_crc_errors) +
le32toh(sp->rx_alignment_errors) +
le32toh(sp->rx_rnr_errors) +
le32toh(sp->rx_overrun_errors);
/*
* If any transmit underruns occurred, bump up the transmit
* threshold by another 512 bytes (64 * 8).
*/
if (sp->tx_underruns) {
ifp->if_oerrors += le32toh(sp->tx_underruns);
if (tx_threshold < 192)
tx_threshold += 64;
}
#ifdef FXP_EVENT_COUNTERS
if (sc->sc_flags & FXPF_FC) {
sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
}
#endif
/*
* If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
* then assume the receiver has locked up and attempt to clear
* the condition by reprogramming the multicast filter (actually,
* resetting the interface). This is a work-around for a bug in
* the 82557 where the receiver locks up if it gets certain types
* of garbage in the synchronization bits prior to the packet header.
* This bug is supposed to only occur in 10Mbps mode, but has been
* seen to occur in 100Mbps mode as well (perhaps due to a 10/100
* speed transition).
*/
if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
(void) fxp_init(ifp);
splx(s);
return;
}
/*
* If there is no pending command, start another stats
* dump. Otherwise punt for now.
*/
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
/*
* Start another stats dump.
*/
FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
} else {
/*
* A previous command is still waiting to be accepted.
* Just zero our copy of the stats and wait for the
* next timer event to update them.
*/
/* BIG_ENDIAN: no swap required to store 0 */
sp->tx_good = 0;
sp->tx_underruns = 0;
sp->tx_total_collisions = 0;
sp->rx_good = 0;
sp->rx_crc_errors = 0;
sp->rx_alignment_errors = 0;
sp->rx_rnr_errors = 0;
sp->rx_overrun_errors = 0;
if (sc->sc_flags & FXPF_FC) {
sp->tx_pauseframes = 0;
sp->rx_pauseframes = 0;
}
}
if (sc->sc_flags & FXPF_MII) {
/* Tick the MII clock. */
mii_tick(&sc->sc_mii);
}
splx(s);
/*
* Schedule another timeout one second from now.
*/
callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
}
/*
* Drain the receive queue.
*/
void
fxp_rxdrain(struct fxp_softc *sc)
{
bus_dmamap_t rxmap;
struct mbuf *m;
for (;;) {
IF_DEQUEUE(&sc->sc_rxq, m);
if (m == NULL)
break;
rxmap = M_GETCTX(m, bus_dmamap_t);
bus_dmamap_unload(sc->sc_dmat, rxmap);
FXP_RXMAP_PUT(sc, rxmap);
m_freem(m);
}
}
/*
* Stop the interface. Cancels the statistics updater and resets
* the interface.
*/
void
fxp_stop(struct ifnet *ifp, int disable)
{
struct fxp_softc *sc = ifp->if_softc;
struct fxp_txsoft *txs;
int i;
/*
* Turn down interface (done early to avoid bad interactions
* between panics, shutdown hooks, and the watchdog timer)
*/
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
/*
* Cancel stats updater.
*/
callout_stop(&sc->sc_callout);
if (sc->sc_flags & FXPF_MII) {
/* Down the MII. */
mii_down(&sc->sc_mii);
}
/*
* Issue software reset. This unloads any microcode that
* might already be loaded.
*/
sc->sc_flags &= ~FXPF_UCODE_LOADED;
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
DELAY(50);
/*
* Release any xmit buffers.
*/
for (i = 0; i < FXP_NTXCB; i++) {
txs = FXP_DSTX(sc, i);
if (txs->txs_mbuf != NULL) {
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
m_freem(txs->txs_mbuf);
txs->txs_mbuf = NULL;
}
}
sc->sc_txpending = 0;
if (disable) {
fxp_rxdrain(sc);
fxp_disable(sc);
}
}
/*
* Watchdog/transmission transmit timeout handler. Called when a
* transmission is started on the interface, but no interrupt is
* received before the timeout. This usually indicates that the
* card has wedged for some reason.
*/
void
fxp_watchdog(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
ifp->if_oerrors++;
(void) fxp_init(ifp);
}
/*
* Initialize the interface. Must be called at splnet().
*/
int
fxp_init(struct ifnet *ifp)
{
struct fxp_softc *sc = ifp->if_softc;
struct fxp_cb_config *cbp;
struct fxp_cb_ias *cb_ias;
struct fxp_txdesc *txd;
bus_dmamap_t rxmap;
int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
uint16_t status;
if ((error = fxp_enable(sc)) != 0)
goto out;
/*
* Cancel any pending I/O
*/
fxp_stop(ifp, 0);
/*
* XXX just setting sc_flags to 0 here clears any FXPF_MII
* flag, and this prevents the MII from detaching resulting in
* a panic. The flags field should perhaps be split in runtime
* flags and more static information. For now, just clear the
* only other flag set.
*/
sc->sc_flags &= ~FXPF_WANTINIT;
/*
* Initialize base of CBL and RFA memory. Loading with zero
* sets it up for regular linear addressing.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
fxp_scb_wait(sc);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
/*
* Initialize the multicast filter. Do this now, since we might
* have to setup the config block differently.
*/
fxp_mc_setup(sc);
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
/*
* In order to support receiving 802.1Q VLAN frames, we have to
* enable "save bad frames", since they are 4 bytes larger than
* the normal Ethernet maximum frame length. On i82558 and later,
* we have a better mechanism for this.
*/
save_bf = 0;
lrxen = 0;
vlan_drop = 0;
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
if (sc->sc_rev < FXP_REV_82558_A4)
save_bf = 1;
else
lrxen = 1;
if (sc->sc_rev >= FXP_REV_82550)
vlan_drop = 1;
}
/*
* Initialize base of dump-stats buffer.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
sc->sc_cddma + FXP_CDSTATSOFF);
FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
cbp = &sc->sc_control_data->fcd_configcb;
memset(cbp, 0, sizeof(struct fxp_cb_config));
/*
* Load microcode for this controller.
*/
fxp_load_ucode(sc);
if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
sc->sc_flags |= FXPF_RECV_WORKAROUND;
else
sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
/*
* This copy is kind of disgusting, but there are a bunch of must be
* zero and must be one bits in this structure and this is the easiest
* way to initialize them all to proper values.
*/
memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
/* BIG_ENDIAN: no need to swap to store 0 */
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
FXP_CB_COMMAND_EL);
/* BIG_ENDIAN: no need to swap to store 0xffffffff */
cbp->link_addr = 0xffffffff; /* (no) next command */
/* bytes in config block */
cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
cbp->type_enable = 0; /* actually reserved */
cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
cbp->dma_mbce = 0; /* (disable) dma max counters */
cbp->late_scb = 0; /* (don't) defer SCB update */
cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
cbp->ci_int = 1; /* interrupt on CU idle */
cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
cbp->ext_stats_dis = 1; /* disable extended counters */
cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
cbp->save_bf = save_bf;/* save bad frames */
cbp->disc_short_rx = !prm; /* discard short packets */
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
/* interface mode */
cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
cbp->csma_dis = 0; /* (don't) disable link */
cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
/* (don't) enable RX checksum */
cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
cbp->nsai = 1; /* (don't) disable source addr insert */
cbp->preamble_length = 2; /* (7 byte) preamble */
cbp->loopback = 0; /* (don't) loopback */
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
cbp->promiscuous = prm; /* promiscuous mode */
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
cbp->stripping = !prm; /* truncate rx packet to byte count */
cbp->padding = 1; /* (do) pad short tx packets */
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
cbp->long_rx_en = lrxen; /* long packet receive enable */
cbp->ia_wake_en = 0; /* (don't) wake up on address match */
cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
/* must set wake_en in PMCSR also */
cbp->force_fdx = 0; /* (don't) force full duplex */
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
cbp->mc_all = allm; /* accept all multicasts */
cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
cbp->vlan_drop_en = vlan_drop;
if (!(sc->sc_flags & FXPF_FC)) {
/*
* The i82557 has no hardware flow control, the values
* here are the defaults for the chip.
*/
cbp->fc_delay_lsb = 0;
cbp->fc_delay_msb = 0x40;
cbp->pri_fc_thresh = 3;
cbp->tx_fc_dis = 0;
cbp->rx_fc_restop = 0;
cbp->rx_fc_restart = 0;
cbp->fc_filter = 0;
cbp->pri_fc_loc = 1;
} else {
cbp->fc_delay_lsb = 0x1f;
cbp->fc_delay_msb = 0x01;
cbp->pri_fc_thresh = 3;
cbp->tx_fc_dis = 0; /* enable transmit FC */
cbp->rx_fc_restop = 1; /* enable FC restop frames */
cbp->rx_fc_restart = 1; /* enable FC restart frames */
cbp->fc_filter = !prm; /* drop FC frames to host */
cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
cbp->ext_stats_dis = 0; /* enable extended stats */
}
FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Start the config command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
for (i = 1000; i > 0; i--) {
FXP_CDCONFIGSYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = le16toh(cbp->cb_status);
FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
if ((status & FXP_CB_STATUS_C) != 0)
break;
DELAY(1);
}
if (i == 0) {
log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
device_xname(sc->sc_dev), __LINE__);
return (ETIMEDOUT);
}
/*
* Initialize the station address.
*/
cb_ias = &sc->sc_control_data->fcd_iascb;
/* BIG_ENDIAN: no need to swap to store 0 */
cb_ias->cb_status = 0;
cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
/* BIG_ENDIAN: no need to swap to store 0xffffffff */
cb_ias->link_addr = 0xffffffff;
memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Start the IAS (Individual Address Setup) command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
for (i = 1000; i > 0; i++) {
FXP_CDIASSYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = le16toh(cb_ias->cb_status);
FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
if ((status & FXP_CB_STATUS_C) != 0)
break;
DELAY(1);
}
if (i == 0) {
log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
device_xname(sc->sc_dev), __LINE__);
return (ETIMEDOUT);
}
/*
* Initialize the transmit descriptor ring. txlast is initialized
* to the end of the list so that it will wrap around to the first
* descriptor when the first packet is transmitted.
*/
for (i = 0; i < FXP_NTXCB; i++) {
txd = FXP_CDTX(sc, i);
memset(txd, 0, sizeof(*txd));
txd->txd_txcb.cb_command =
htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
txd->txd_txcb.link_addr =
htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
if (sc->sc_flags & FXPF_EXT_TXCB)
txd->txd_txcb.tbd_array_addr =
htole32(FXP_CDTBDADDR(sc, i) +
(2 * sizeof(struct fxp_tbd)));
else
txd->txd_txcb.tbd_array_addr =
htole32(FXP_CDTBDADDR(sc, i));
FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
}
sc->sc_txpending = 0;
sc->sc_txdirty = 0;
sc->sc_txlast = FXP_NTXCB - 1;
/*
* Initialize the receive buffer list.
*/
sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
rxmap = FXP_RXMAP_GET(sc);
if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
log(LOG_ERR, "%s: unable to allocate or map rx "
"buffer %d, error = %d\n",
device_xname(sc->sc_dev),
sc->sc_rxq.ifq_len, error);
/*
* XXX Should attempt to run with fewer receive
* XXX buffers instead of just failing.
*/
FXP_RXMAP_PUT(sc, rxmap);
fxp_rxdrain(sc);
goto out;
}
}
sc->sc_rxidle = 0;
/*
* Give the transmit ring to the chip. We do this by pointing
* the chip at the last descriptor (which is a NOP|SUSPEND), and
* issuing a start command. It will execute the NOP and then
* suspend, pointing at the first descriptor.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/*
* Initialize receiver buffer area - RFA.
*/
#if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
#endif
if (sc->sc_flags & FXPF_MII) {
/*
* Set current media.
*/
if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
goto out;
}
/*
* ...all done!
*/
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/*
* Request a software generated interrupt that will be used to
* (re)start the RU processing. If we direct the chip to start
* receiving from the start of queue now, instead of letting the
* interrupt handler first process all received packets, we run
* the risk of having it overwrite mbuf clusters while they are
* being processed or after they have been returned to the pool.
*/
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
/*
* Start the one second timer.
*/
callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
/*
* Attempt to start output on the interface.
*/
fxp_start(ifp);
out:
if (error) {
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ifp->if_timer = 0;
log(LOG_ERR, "%s: interface not running\n",
device_xname(sc->sc_dev));
}
return (error);
}
/*
* Notify the world which media we're using.
*/
void
fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct fxp_softc *sc = ifp->if_softc;
if (sc->sc_enabled == 0) {
ifmr->ifm_active = IFM_ETHER | IFM_NONE;
ifmr->ifm_status = 0;
return;
}
ether_mediastatus(ifp, ifmr);
}
int
fxp_80c24_mediachange(struct ifnet *ifp)
{
/* Nothing to do here. */
return (0);
}
void
fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
{
struct fxp_softc *sc = ifp->if_softc;
/*
* Media is currently-selected media. We cannot determine
* the link status.
*/
ifmr->ifm_status = 0;
ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
}
/*
* Add a buffer to the end of the RFA buffer list.
* Return 0 if successful, error code on failure.
*
* The RFA struct is stuck at the beginning of mbuf cluster and the
* data pointer is fixed up to point just past it.
*/
int
fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
{
struct mbuf *m;
int error;
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL)
return (ENOBUFS);
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
MCLGET(m, M_DONTWAIT);
if ((m->m_flags & M_EXT) == 0) {
m_freem(m);
return (ENOBUFS);
}
if (unload)
bus_dmamap_unload(sc->sc_dmat, rxmap);
M_SETCTX(m, rxmap);
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
BUS_DMA_READ|BUS_DMA_NOWAIT);
if (error) {
/* XXX XXX XXX */
aprint_error_dev(sc->sc_dev,
"can't load rx DMA map %d, error = %d\n",
sc->sc_rxq.ifq_len, error);
panic("fxp_add_rfabuf");
}
FXP_INIT_RFABUF(sc, m);
return (0);
}
int
fxp_mdi_read(device_t self, int phy, int reg)
{
struct fxp_softc *sc = device_private(self);
int count = 10000;
int value;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
0x10000000) == 0 && count--)
DELAY(10);
if (count <= 0)
log(LOG_WARNING,
"%s: fxp_mdi_read: timed out\n", device_xname(self));
return (value & 0xffff);
}
void
fxp_statchg(device_t self)
{
/* Nothing to do. */
}
void
fxp_mdi_write(device_t self, int phy, int reg, int value)
{
struct fxp_softc *sc = device_private(self);
int count = 10000;
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
(value & 0xffff));
while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
count--)
DELAY(10);
if (count <= 0)
log(LOG_WARNING,
"%s: fxp_mdi_write: timed out\n", device_xname(self));
}
int
fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
struct fxp_softc *sc = ifp->if_softc;
struct ifreq *ifr = (struct ifreq *)data;
int s, error;
s = splnet();
switch (cmd) {
case SIOCSIFMEDIA:
case SIOCGIFMEDIA:
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
break;
default:
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
break;
error = 0;
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
;
else if (ifp->if_flags & IFF_RUNNING) {
/*
* Multicast list has changed; set the
* hardware filter accordingly.
*/
while (sc->sc_txpending) {
sc->sc_flags |= FXPF_WANTINIT;
tsleep(sc, PSOCK, "fxp_init", 0);
}
error = fxp_init(ifp);
}
break;
}
/* Try to get more packets going. */
if (sc->sc_enabled)
fxp_start(ifp);
splx(s);
return (error);
}
/*
* Program the multicast filter.
*
* This function must be called at splnet().
*/
void
fxp_mc_setup(struct fxp_softc *sc)
{
struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
struct ethercom *ec = &sc->sc_ethercom;
struct ether_multi *enm;
struct ether_multistep step;
int count, nmcasts;
uint16_t status;
#ifdef DIAGNOSTIC
if (sc->sc_txpending)
panic("fxp_mc_setup: pending transmissions");
#endif
ifp->if_flags &= ~IFF_ALLMULTI;
/*
* Initialize multicast setup descriptor.
*/
nmcasts = 0;
ETHER_FIRST_MULTI(step, ec, enm);
while (enm != NULL) {
/*
* Check for too many multicast addresses or if we're
* listening to a range. Either way, we simply have
* to accept all multicasts.
*/
if (nmcasts >= MAXMCADDR ||
memcmp(enm->enm_addrlo, enm->enm_addrhi,
ETHER_ADDR_LEN) != 0) {
/*
* Callers of this function must do the
* right thing with this. If we're called
* from outside fxp_init(), the caller must
* detect if the state if IFF_ALLMULTI changes.
* If it does, the caller must then call
* fxp_init(), since allmulti is handled by
* the config block.
*/
ifp->if_flags |= IFF_ALLMULTI;
return;
}
memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
ETHER_ADDR_LEN);
nmcasts++;
ETHER_NEXT_MULTI(step, enm);
}
/* BIG_ENDIAN: no need to swap to store 0 */
mcsp->cb_status = 0;
mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Wait until the command unit is not active. This should never
* happen since nothing is queued, but make sure anyway.
*/
count = 100;
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
FXP_SCB_CUS_ACTIVE && --count)
DELAY(1);
if (count == 0) {
log(LOG_WARNING, "%s: line %d: command queue timeout\n",
device_xname(sc->sc_dev), __LINE__);
return;
}
/*
* Start the multicast setup command/DMA.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
for (count = 1000; count > 0; count--) {
FXP_CDMCSSYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = le16toh(mcsp->cb_status);
FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
if ((status & FXP_CB_STATUS_C) != 0)
break;
DELAY(1);
}
if (count == 0) {
log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
device_xname(sc->sc_dev), __LINE__);
return;
}
}
static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
#define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
static const struct ucode {
int32_t revision;
const uint32_t *ucode;
size_t length;
uint16_t int_delay_offset;
uint16_t bundle_max_offset;
} ucode_table[] = {
{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
D101_CPUSAVER_DWORD, 0 },
{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550, UCODE(fxp_ucode_d102),
D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
{ 0, NULL, 0, 0, 0 }
};
void
fxp_load_ucode(struct fxp_softc *sc)
{
const struct ucode *uc;
struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
int count, i;
uint16_t status;
if (sc->sc_flags & FXPF_UCODE_LOADED)
return;
/*
* Only load the uCode if the user has requested that
* we do so.
*/
if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
sc->sc_int_delay = 0;
sc->sc_bundle_max = 0;
return;
}
for (uc = ucode_table; uc->ucode != NULL; uc++) {
if (sc->sc_rev == uc->revision)
break;
}
if (uc->ucode == NULL)
return;
/* BIG ENDIAN: no need to swap to store 0 */
cbp->cb_status = 0;
cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
cbp->link_addr = 0xffffffff; /* (no) next command */
for (i = 0; i < uc->length; i++)
cbp->ucode[i] = htole32(uc->ucode[i]);
if (uc->int_delay_offset)
*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
htole16(fxp_int_delay + (fxp_int_delay / 2));
if (uc->bundle_max_offset)
*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
htole16(fxp_bundle_max);
FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
/*
* Download the uCode to the chip.
*/
fxp_scb_wait(sc);
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
/* ...and wait for it to complete. */
for (count = 10000; count > 0; count--) {
FXP_CDUCODESYNC(sc,
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
status = le16toh(cbp->cb_status);
FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
if ((status & FXP_CB_STATUS_C) != 0)
break;
DELAY(2);
}
if (count == 0) {
sc->sc_int_delay = 0;
sc->sc_bundle_max = 0;
log(LOG_WARNING, "%s: timeout loading microcode\n",
device_xname(sc->sc_dev));
return;
}
if (sc->sc_int_delay != fxp_int_delay ||
sc->sc_bundle_max != fxp_bundle_max) {
sc->sc_int_delay = fxp_int_delay;
sc->sc_bundle_max = fxp_bundle_max;
log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
"max bundle: %d\n", device_xname(sc->sc_dev),
sc->sc_int_delay,
uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
}
sc->sc_flags |= FXPF_UCODE_LOADED;
}
int
fxp_enable(struct fxp_softc *sc)
{
if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
if ((*sc->sc_enable)(sc) != 0) {
log(LOG_ERR, "%s: device enable failed\n",
device_xname(sc->sc_dev));
return (EIO);
}
}
sc->sc_enabled = 1;
return (0);
}
void
fxp_disable(struct fxp_softc *sc)
{
if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
(*sc->sc_disable)(sc);
sc->sc_enabled = 0;
}
}
/*
* fxp_activate:
*
* Handle device activation/deactivation requests.
*/
int
fxp_activate(device_t self, enum devact act)
{
struct fxp_softc *sc = device_private(self);
int s, error = 0;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
error = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
if (sc->sc_flags & FXPF_MII)
mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
MII_OFFSET_ANY);
if_deactivate(&sc->sc_ethercom.ec_if);
break;
}
splx(s);
return (error);
}
/*
* fxp_detach:
*
* Detach an i82557 interface.
*/
int
fxp_detach(struct fxp_softc *sc)
{
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
int i;
/* Succeed now if there's no work to do. */
if ((sc->sc_flags & FXPF_ATTACHED) == 0)
return (0);
/* Unhook our tick handler. */
callout_stop(&sc->sc_callout);
if (sc->sc_flags & FXPF_MII) {
/* Detach all PHYs */
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
}
/* Delete all remaining media. */
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
#if NRND > 0
rnd_detach_source(&sc->rnd_source);
#endif
ether_ifdetach(ifp);
if_detach(ifp);
for (i = 0; i < FXP_NRFABUFS; i++) {
bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
}
for (i = 0; i < FXP_NTXCB; i++) {
bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
}
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
sizeof(struct fxp_control_data));
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
return (0);
}