7a44ef30a5
> Fix a bug in calculation of checksum deduction: > - To get 16 bit one's complement value from uint32_t variable, > higher 16 bits should be ignored. > - RFC 1624 describes methods to recalculate checksum field in headers, > i.e. one's complement of one's complement sum that could be 0x0000, > but we don't have to use the strategy to deduct one's complement sum > itself which won't be zero but should be 0xffff.
2555 lines
67 KiB
C
2555 lines
67 KiB
C
/* $NetBSD: i82557.c,v 1.129 2009/03/16 12:13:04 tsutsui Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1997, 1998, 1999, 2001, 2002 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
|
|
* NASA Ames Research Center.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1995, David Greenman
|
|
* Copyright (c) 2001 Jonathan Lemon <jlemon@freebsd.org>
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice unmodified, this list of conditions, and the following
|
|
* disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* Id: if_fxp.c,v 1.113 2001/05/17 23:50:24 jlemon
|
|
*/
|
|
|
|
/*
|
|
* Device driver for the Intel i82557 fast Ethernet controller,
|
|
* and its successors, the i82558 and i82559.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: i82557.c,v 1.129 2009/03/16 12:13:04 tsutsui Exp $");
|
|
|
|
#include "bpfilter.h"
|
|
#include "rnd.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/malloc.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/device.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <machine/endian.h>
|
|
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
#if NRND > 0
|
|
#include <sys/rnd.h>
|
|
#endif
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_media.h>
|
|
#include <net/if_ether.h>
|
|
|
|
#include <netinet/in.h>
|
|
#include <netinet/in_systm.h>
|
|
#include <netinet/ip.h>
|
|
#include <netinet/tcp.h>
|
|
#include <netinet/udp.h>
|
|
|
|
#if NBPFILTER > 0
|
|
#include <net/bpf.h>
|
|
#endif
|
|
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
|
|
#include <dev/ic/i82557reg.h>
|
|
#include <dev/ic/i82557var.h>
|
|
|
|
#include <dev/microcode/i8255x/rcvbundl.h>
|
|
|
|
/*
|
|
* NOTE! On the Alpha, we have an alignment constraint. The
|
|
* card DMAs the packet immediately following the RFA. However,
|
|
* the first thing in the packet is a 14-byte Ethernet header.
|
|
* This means that the packet is misaligned. To compensate,
|
|
* we actually offset the RFA 2 bytes into the cluster. This
|
|
* alignes the packet after the Ethernet header at a 32-bit
|
|
* boundary. HOWEVER! This means that the RFA is misaligned!
|
|
*/
|
|
#define RFA_ALIGNMENT_FUDGE 2
|
|
|
|
/*
|
|
* The configuration byte map has several undefined fields which
|
|
* must be one or must be zero. Set up a template for these bits
|
|
* only (assuming an i82557 chip), leaving the actual configuration
|
|
* for fxp_init().
|
|
*
|
|
* See the definition of struct fxp_cb_config for the bit definitions.
|
|
*/
|
|
const uint8_t fxp_cb_config_template[] = {
|
|
0x0, 0x0, /* cb_status */
|
|
0x0, 0x0, /* cb_command */
|
|
0x0, 0x0, 0x0, 0x0, /* link_addr */
|
|
0x0, /* 0 */
|
|
0x0, /* 1 */
|
|
0x0, /* 2 */
|
|
0x0, /* 3 */
|
|
0x0, /* 4 */
|
|
0x0, /* 5 */
|
|
0x32, /* 6 */
|
|
0x0, /* 7 */
|
|
0x0, /* 8 */
|
|
0x0, /* 9 */
|
|
0x6, /* 10 */
|
|
0x0, /* 11 */
|
|
0x0, /* 12 */
|
|
0x0, /* 13 */
|
|
0xf2, /* 14 */
|
|
0x48, /* 15 */
|
|
0x0, /* 16 */
|
|
0x40, /* 17 */
|
|
0xf0, /* 18 */
|
|
0x0, /* 19 */
|
|
0x3f, /* 20 */
|
|
0x5, /* 21 */
|
|
0x0, /* 22 */
|
|
0x0, /* 23 */
|
|
0x0, /* 24 */
|
|
0x0, /* 25 */
|
|
0x0, /* 26 */
|
|
0x0, /* 27 */
|
|
0x0, /* 28 */
|
|
0x0, /* 29 */
|
|
0x0, /* 30 */
|
|
0x0, /* 31 */
|
|
};
|
|
|
|
void fxp_mii_initmedia(struct fxp_softc *);
|
|
void fxp_mii_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
void fxp_80c24_initmedia(struct fxp_softc *);
|
|
int fxp_80c24_mediachange(struct ifnet *);
|
|
void fxp_80c24_mediastatus(struct ifnet *, struct ifmediareq *);
|
|
|
|
void fxp_start(struct ifnet *);
|
|
int fxp_ioctl(struct ifnet *, u_long, void *);
|
|
void fxp_watchdog(struct ifnet *);
|
|
int fxp_init(struct ifnet *);
|
|
void fxp_stop(struct ifnet *, int);
|
|
|
|
void fxp_txintr(struct fxp_softc *);
|
|
int fxp_rxintr(struct fxp_softc *);
|
|
|
|
void fxp_rx_hwcksum(struct fxp_softc *,struct mbuf *,
|
|
const struct fxp_rfa *, u_int);
|
|
|
|
void fxp_rxdrain(struct fxp_softc *);
|
|
int fxp_add_rfabuf(struct fxp_softc *, bus_dmamap_t, int);
|
|
int fxp_mdi_read(device_t, int, int);
|
|
void fxp_statchg(device_t);
|
|
void fxp_mdi_write(device_t, int, int, int);
|
|
void fxp_autosize_eeprom(struct fxp_softc*);
|
|
void fxp_read_eeprom(struct fxp_softc *, uint16_t *, int, int);
|
|
void fxp_write_eeprom(struct fxp_softc *, uint16_t *, int, int);
|
|
void fxp_eeprom_update_cksum(struct fxp_softc *);
|
|
void fxp_get_info(struct fxp_softc *, uint8_t *);
|
|
void fxp_tick(void *);
|
|
void fxp_mc_setup(struct fxp_softc *);
|
|
void fxp_load_ucode(struct fxp_softc *);
|
|
|
|
int fxp_copy_small = 0;
|
|
|
|
/*
|
|
* Variables for interrupt mitigating microcode.
|
|
*/
|
|
int fxp_int_delay = 1000; /* usec */
|
|
int fxp_bundle_max = 6; /* packets */
|
|
|
|
struct fxp_phytype {
|
|
int fp_phy; /* type of PHY, -1 for MII at the end. */
|
|
void (*fp_init)(struct fxp_softc *);
|
|
} fxp_phytype_table[] = {
|
|
{ FXP_PHY_80C24, fxp_80c24_initmedia },
|
|
{ -1, fxp_mii_initmedia },
|
|
};
|
|
|
|
/*
|
|
* Set initial transmit threshold at 64 (512 bytes). This is
|
|
* increased by 64 (512 bytes) at a time, to maximum of 192
|
|
* (1536 bytes), if an underrun occurs.
|
|
*/
|
|
static int tx_threshold = 64;
|
|
|
|
/*
|
|
* Wait for the previous command to be accepted (but not necessarily
|
|
* completed).
|
|
*/
|
|
static inline void
|
|
fxp_scb_wait(struct fxp_softc *sc)
|
|
{
|
|
int i = 10000;
|
|
|
|
while (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) && --i)
|
|
delay(2);
|
|
if (i == 0)
|
|
log(LOG_WARNING,
|
|
"%s: WARNING: SCB timed out!\n", device_xname(sc->sc_dev));
|
|
}
|
|
|
|
/*
|
|
* Submit a command to the i82557.
|
|
*/
|
|
static inline void
|
|
fxp_scb_cmd(struct fxp_softc *sc, uint8_t cmd)
|
|
{
|
|
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_COMMAND, cmd);
|
|
}
|
|
|
|
/*
|
|
* Finish attaching an i82557 interface. Called by bus-specific front-end.
|
|
*/
|
|
void
|
|
fxp_attach(struct fxp_softc *sc)
|
|
{
|
|
uint8_t enaddr[ETHER_ADDR_LEN];
|
|
struct ifnet *ifp;
|
|
bus_dma_segment_t seg;
|
|
int rseg, i, error;
|
|
struct fxp_phytype *fp;
|
|
|
|
callout_init(&sc->sc_callout, 0);
|
|
|
|
/*
|
|
* Enable use of extended RFDs and IPCBs for 82550 and later chips.
|
|
* Note: to use IPCB we need extended TXCB support too, and
|
|
* these feature flags should be set in each bus attachment.
|
|
*/
|
|
if (sc->sc_flags & FXPF_EXT_RFA) {
|
|
sc->sc_txcmd = htole16(FXP_CB_COMMAND_IPCBXMIT);
|
|
sc->sc_rfa_size = RFA_EXT_SIZE;
|
|
} else {
|
|
sc->sc_txcmd = htole16(FXP_CB_COMMAND_XMIT);
|
|
sc->sc_rfa_size = RFA_SIZE;
|
|
}
|
|
|
|
/*
|
|
* Allocate the control data structures, and create and load the
|
|
* DMA map for it.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
sizeof(struct fxp_control_data), PAGE_SIZE, 0, &seg, 1, &rseg,
|
|
0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to allocate control data, error = %d\n",
|
|
error);
|
|
goto fail_0;
|
|
}
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg,
|
|
sizeof(struct fxp_control_data), (void **)&sc->sc_control_data,
|
|
BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to map control data, error = %d\n", error);
|
|
goto fail_1;
|
|
}
|
|
sc->sc_cdseg = seg;
|
|
sc->sc_cdnseg = rseg;
|
|
|
|
memset(sc->sc_control_data, 0, sizeof(struct fxp_control_data));
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
sizeof(struct fxp_control_data), 1,
|
|
sizeof(struct fxp_control_data), 0, 0, &sc->sc_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_2;
|
|
}
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap,
|
|
sc->sc_control_data, sizeof(struct fxp_control_data), NULL,
|
|
0)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load control data DMA map, error = %d\n",
|
|
error);
|
|
goto fail_3;
|
|
}
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
(sc->sc_flags & FXPF_EXT_RFA) ?
|
|
FXP_IPCB_NTXSEG : FXP_NTXSEG,
|
|
MCLBYTES, 0, 0, &FXP_DSTX(sc, i)->txs_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create tx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_4;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1,
|
|
MCLBYTES, 0, 0, &sc->sc_rxmaps[i])) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"unable to create rx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail_5;
|
|
}
|
|
}
|
|
|
|
/* Initialize MAC address and media structures. */
|
|
fxp_get_info(sc, enaddr);
|
|
|
|
aprint_normal_dev(sc->sc_dev, "Ethernet address %s\n",
|
|
ether_sprintf(enaddr));
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/*
|
|
* Get info about our media interface, and initialize it. Note
|
|
* the table terminates itself with a phy of -1, indicating
|
|
* that we're using MII.
|
|
*/
|
|
for (fp = fxp_phytype_table; fp->fp_phy != -1; fp++)
|
|
if (fp->fp_phy == sc->phy_primary_device)
|
|
break;
|
|
(*fp->fp_init)(sc);
|
|
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
|
|
ifp->if_ioctl = fxp_ioctl;
|
|
ifp->if_start = fxp_start;
|
|
ifp->if_watchdog = fxp_watchdog;
|
|
ifp->if_init = fxp_init;
|
|
ifp->if_stop = fxp_stop;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
if (sc->sc_flags & FXPF_EXT_RFA) {
|
|
/*
|
|
* Enable hardware cksum support by EXT_RFA and IPCB.
|
|
*
|
|
* IFCAP_CSUM_IPv4_Tx seems to have a problem,
|
|
* at least, on i82550 rev.12.
|
|
* specifically, it doesn't set ipv4 checksum properly
|
|
* when sending UDP (and probably TCP) packets with
|
|
* 20 byte ipv4 header + 1 or 2 byte data,
|
|
* though ICMP packets seem working.
|
|
* FreeBSD driver has related comments.
|
|
* We've added a workaround to handle the bug by padding
|
|
* such packets manually.
|
|
*/
|
|
ifp->if_capabilities =
|
|
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_HWTAGGING;
|
|
} else if (sc->sc_flags & FXPF_82559_RXCSUM) {
|
|
ifp->if_capabilities =
|
|
IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Rx;
|
|
}
|
|
|
|
/*
|
|
* We can support 802.1Q VLAN-sized frames.
|
|
*/
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* Attach the interface.
|
|
*/
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, enaddr);
|
|
#if NRND > 0
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
|
|
RND_TYPE_NET, 0);
|
|
#endif
|
|
|
|
#ifdef FXP_EVENT_COUNTERS
|
|
evcnt_attach_dynamic(&sc->sc_ev_txstall, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->sc_dev), "txstall");
|
|
evcnt_attach_dynamic(&sc->sc_ev_txintr, EVCNT_TYPE_INTR,
|
|
NULL, device_xname(sc->sc_dev), "txintr");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxintr, EVCNT_TYPE_INTR,
|
|
NULL, device_xname(sc->sc_dev), "rxintr");
|
|
if (sc->sc_flags & FXPF_FC) {
|
|
evcnt_attach_dynamic(&sc->sc_ev_txpause, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->sc_dev), "txpause");
|
|
evcnt_attach_dynamic(&sc->sc_ev_rxpause, EVCNT_TYPE_MISC,
|
|
NULL, device_xname(sc->sc_dev), "rxpause");
|
|
}
|
|
#endif /* FXP_EVENT_COUNTERS */
|
|
|
|
/* The attach is successful. */
|
|
sc->sc_flags |= FXPF_ATTACHED;
|
|
|
|
return;
|
|
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall though.
|
|
*/
|
|
fail_5:
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
if (sc->sc_rxmaps[i] != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
|
|
}
|
|
fail_4:
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
if (FXP_DSTX(sc, i)->txs_dmamap != NULL)
|
|
bus_dmamap_destroy(sc->sc_dmat,
|
|
FXP_DSTX(sc, i)->txs_dmamap);
|
|
}
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
|
|
fail_3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
|
|
fail_2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct fxp_control_data));
|
|
fail_1:
|
|
bus_dmamem_free(sc->sc_dmat, &seg, rseg);
|
|
fail_0:
|
|
return;
|
|
}
|
|
|
|
void
|
|
fxp_mii_initmedia(struct fxp_softc *sc)
|
|
{
|
|
int flags;
|
|
|
|
sc->sc_flags |= FXPF_MII;
|
|
|
|
sc->sc_mii.mii_ifp = &sc->sc_ethercom.ec_if;
|
|
sc->sc_mii.mii_readreg = fxp_mdi_read;
|
|
sc->sc_mii.mii_writereg = fxp_mdi_write;
|
|
sc->sc_mii.mii_statchg = fxp_statchg;
|
|
|
|
sc->sc_ethercom.ec_mii = &sc->sc_mii;
|
|
ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, ether_mediachange,
|
|
fxp_mii_mediastatus);
|
|
|
|
flags = MIIF_NOISOLATE;
|
|
if (sc->sc_flags & FXPF_FC)
|
|
flags |= MIIF_FORCEANEG|MIIF_DOPAUSE;
|
|
/*
|
|
* The i82557 wedges if all of its PHYs are isolated!
|
|
*/
|
|
mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
|
|
MII_OFFSET_ANY, flags);
|
|
if (LIST_EMPTY(&sc->sc_mii.mii_phys)) {
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
|
|
void
|
|
fxp_80c24_initmedia(struct fxp_softc *sc)
|
|
{
|
|
|
|
/*
|
|
* The Seeq 80c24 AutoDUPLEX(tm) Ethernet Interface Adapter
|
|
* doesn't have a programming interface of any sort. The
|
|
* media is sensed automatically based on how the link partner
|
|
* is configured. This is, in essence, manual configuration.
|
|
*/
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"Seeq 80c24 AutoDUPLEX media interface present\n");
|
|
ifmedia_init(&sc->sc_mii.mii_media, 0, fxp_80c24_mediachange,
|
|
fxp_80c24_mediastatus);
|
|
ifmedia_add(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL, 0, NULL);
|
|
ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_MANUAL);
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface media.
|
|
*/
|
|
void
|
|
fxp_get_info(struct fxp_softc *sc, uint8_t *enaddr)
|
|
{
|
|
uint16_t data, myea[ETHER_ADDR_LEN / 2];
|
|
|
|
/*
|
|
* Reset to a stable state.
|
|
*/
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SELECTIVE_RESET);
|
|
DELAY(100);
|
|
|
|
sc->sc_eeprom_size = 0;
|
|
fxp_autosize_eeprom(sc);
|
|
if (sc->sc_eeprom_size == 0) {
|
|
aprint_error_dev(sc->sc_dev, "failed to detect EEPROM size\n");
|
|
sc->sc_eeprom_size = 6; /* XXX panic here? */
|
|
}
|
|
#ifdef DEBUG
|
|
aprint_debug_dev(sc->sc_dev, "detected %d word EEPROM\n",
|
|
1 << sc->sc_eeprom_size);
|
|
#endif
|
|
|
|
/*
|
|
* Get info about the primary PHY
|
|
*/
|
|
fxp_read_eeprom(sc, &data, 6, 1);
|
|
sc->phy_primary_device =
|
|
(data & FXP_PHY_DEVICE_MASK) >> FXP_PHY_DEVICE_SHIFT;
|
|
|
|
/*
|
|
* Read MAC address.
|
|
*/
|
|
fxp_read_eeprom(sc, myea, 0, 3);
|
|
enaddr[0] = myea[0] & 0xff;
|
|
enaddr[1] = myea[0] >> 8;
|
|
enaddr[2] = myea[1] & 0xff;
|
|
enaddr[3] = myea[1] >> 8;
|
|
enaddr[4] = myea[2] & 0xff;
|
|
enaddr[5] = myea[2] >> 8;
|
|
|
|
/*
|
|
* Systems based on the ICH2/ICH2-M chip from Intel, as well
|
|
* as some i82559 designs, have a defect where the chip can
|
|
* cause a PCI protocol violation if it receives a CU_RESUME
|
|
* command when it is entering the IDLE state.
|
|
*
|
|
* The work-around is to disable Dynamic Standby Mode, so that
|
|
* the chip never deasserts #CLKRUN, and always remains in the
|
|
* active state.
|
|
*
|
|
* Unfortunately, the only way to disable Dynamic Standby is
|
|
* to frob an EEPROM setting and reboot (the EEPROM setting
|
|
* is only consulted when the PCI bus comes out of reset).
|
|
*
|
|
* See Intel 82801BA/82801BAM Specification Update, Errata #30.
|
|
*/
|
|
if (sc->sc_flags & FXPF_HAS_RESUME_BUG) {
|
|
fxp_read_eeprom(sc, &data, 10, 1);
|
|
if (data & 0x02) { /* STB enable */
|
|
aprint_error_dev(sc->sc_dev, "WARNING: "
|
|
"Disabling dynamic standby mode in EEPROM "
|
|
"to work around a\n");
|
|
aprint_normal_dev(sc->sc_dev,
|
|
"WARNING: hardware bug. You must reset "
|
|
"the system before using this\n");
|
|
aprint_normal_dev(sc->sc_dev, "WARNING: interface.\n");
|
|
data &= ~0x02;
|
|
fxp_write_eeprom(sc, &data, 10, 1);
|
|
aprint_normal_dev(sc->sc_dev, "new EEPROM ID: 0x%04x\n",
|
|
data);
|
|
fxp_eeprom_update_cksum(sc);
|
|
}
|
|
}
|
|
|
|
/* Receiver lock-up workaround detection. (FXPF_RECV_WORKAROUND) */
|
|
/* Due to false positives we make it conditional on setting link1 */
|
|
fxp_read_eeprom(sc, &data, 3, 1);
|
|
if ((data & 0x03) != 0x03) {
|
|
aprint_verbose_dev(sc->sc_dev,
|
|
"May need receiver lock-up workaround\n");
|
|
}
|
|
}
|
|
|
|
static void
|
|
fxp_eeprom_shiftin(struct fxp_softc *sc, int data, int len)
|
|
{
|
|
uint16_t reg;
|
|
int x;
|
|
|
|
for (x = 1 << (len - 1); x != 0; x >>= 1) {
|
|
DELAY(40);
|
|
if (data & x)
|
|
reg = FXP_EEPROM_EECS | FXP_EEPROM_EEDI;
|
|
else
|
|
reg = FXP_EEPROM_EECS;
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
DELAY(40);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
|
|
reg | FXP_EEPROM_EESK);
|
|
DELAY(40);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
}
|
|
DELAY(40);
|
|
}
|
|
|
|
/*
|
|
* Figure out EEPROM size.
|
|
*
|
|
* 559's can have either 64-word or 256-word EEPROMs, the 558
|
|
* datasheet only talks about 64-word EEPROMs, and the 557 datasheet
|
|
* talks about the existence of 16 to 256 word EEPROMs.
|
|
*
|
|
* The only known sizes are 64 and 256, where the 256 version is used
|
|
* by CardBus cards to store CIS information.
|
|
*
|
|
* The address is shifted in msb-to-lsb, and after the last
|
|
* address-bit the EEPROM is supposed to output a `dummy zero' bit,
|
|
* after which follows the actual data. We try to detect this zero, by
|
|
* probing the data-out bit in the EEPROM control register just after
|
|
* having shifted in a bit. If the bit is zero, we assume we've
|
|
* shifted enough address bits. The data-out should be tri-state,
|
|
* before this, which should translate to a logical one.
|
|
*
|
|
* Other ways to do this would be to try to read a register with known
|
|
* contents with a varying number of address bits, but no such
|
|
* register seem to be available. The high bits of register 10 are 01
|
|
* on the 558 and 559, but apparently not on the 557.
|
|
*
|
|
* The Linux driver computes a checksum on the EEPROM data, but the
|
|
* value of this checksum is not very well documented.
|
|
*/
|
|
|
|
void
|
|
fxp_autosize_eeprom(struct fxp_softc *sc)
|
|
{
|
|
int x;
|
|
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
DELAY(40);
|
|
|
|
/* Shift in read opcode. */
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
|
|
|
|
/*
|
|
* Shift in address, wait for the dummy zero following a correct
|
|
* address shift.
|
|
*/
|
|
for (x = 1; x <= 8; x++) {
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
DELAY(40);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
|
|
FXP_EEPROM_EECS | FXP_EEPROM_EESK);
|
|
DELAY(40);
|
|
if ((CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
|
|
FXP_EEPROM_EEDO) == 0)
|
|
break;
|
|
DELAY(40);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
DELAY(40);
|
|
}
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(40);
|
|
if (x != 6 && x != 8) {
|
|
#ifdef DEBUG
|
|
printf("%s: strange EEPROM size (%d)\n",
|
|
device_xname(sc->sc_dev), 1 << x);
|
|
#endif
|
|
} else
|
|
sc->sc_eeprom_size = x;
|
|
}
|
|
|
|
/*
|
|
* Read from the serial EEPROM. Basically, you manually shift in
|
|
* the read opcode (one bit at a time) and then shift in the address,
|
|
* and then you shift out the data (all of this one bit at a time).
|
|
* The word size is 16 bits, so you have to provide the address for
|
|
* every 16 bits of data.
|
|
*/
|
|
void
|
|
fxp_read_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
|
|
{
|
|
uint16_t reg;
|
|
int i, x;
|
|
|
|
for (i = 0; i < words; i++) {
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
|
|
/* Shift in read opcode. */
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_READ, 3);
|
|
|
|
/* Shift in address. */
|
|
fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
|
|
|
|
reg = FXP_EEPROM_EECS;
|
|
data[i] = 0;
|
|
|
|
/* Shift out data. */
|
|
for (x = 16; x > 0; x--) {
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL,
|
|
reg | FXP_EEPROM_EESK);
|
|
DELAY(40);
|
|
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
|
|
FXP_EEPROM_EEDO)
|
|
data[i] |= (1 << (x - 1));
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, reg);
|
|
DELAY(40);
|
|
}
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(40);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Write data to the serial EEPROM.
|
|
*/
|
|
void
|
|
fxp_write_eeprom(struct fxp_softc *sc, uint16_t *data, int offset, int words)
|
|
{
|
|
int i, j;
|
|
|
|
for (i = 0; i < words; i++) {
|
|
/* Erase/write enable. */
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
|
|
fxp_eeprom_shiftin(sc, 0x3 << (sc->sc_eeprom_size - 2),
|
|
sc->sc_eeprom_size);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(4);
|
|
|
|
/* Shift in write opcode, address, data. */
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_WRITE, 3);
|
|
fxp_eeprom_shiftin(sc, i + offset, sc->sc_eeprom_size);
|
|
fxp_eeprom_shiftin(sc, data[i], 16);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(4);
|
|
|
|
/* Wait for the EEPROM to finish up. */
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
DELAY(4);
|
|
for (j = 0; j < 1000; j++) {
|
|
if (CSR_READ_2(sc, FXP_CSR_EEPROMCONTROL) &
|
|
FXP_EEPROM_EEDO)
|
|
break;
|
|
DELAY(50);
|
|
}
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(4);
|
|
|
|
/* Erase/write disable. */
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, FXP_EEPROM_EECS);
|
|
fxp_eeprom_shiftin(sc, FXP_EEPROM_OPC_ERASE, 3);
|
|
fxp_eeprom_shiftin(sc, 0, sc->sc_eeprom_size);
|
|
CSR_WRITE_2(sc, FXP_CSR_EEPROMCONTROL, 0);
|
|
DELAY(4);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update the checksum of the EEPROM.
|
|
*/
|
|
void
|
|
fxp_eeprom_update_cksum(struct fxp_softc *sc)
|
|
{
|
|
int i;
|
|
uint16_t data, cksum;
|
|
|
|
cksum = 0;
|
|
for (i = 0; i < (1 << sc->sc_eeprom_size) - 1; i++) {
|
|
fxp_read_eeprom(sc, &data, i, 1);
|
|
cksum += data;
|
|
}
|
|
i = (1 << sc->sc_eeprom_size) - 1;
|
|
cksum = 0xbaba - cksum;
|
|
fxp_read_eeprom(sc, &data, i, 1);
|
|
fxp_write_eeprom(sc, &cksum, i, 1);
|
|
log(LOG_INFO, "%s: EEPROM checksum @ 0x%x: 0x%04x -> 0x%04x\n",
|
|
device_xname(sc->sc_dev), i, data, cksum);
|
|
}
|
|
|
|
/*
|
|
* Start packet transmission on the interface.
|
|
*/
|
|
void
|
|
fxp_start(struct ifnet *ifp)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
struct mbuf *m0, *m;
|
|
struct fxp_txdesc *txd;
|
|
struct fxp_txsoft *txs;
|
|
bus_dmamap_t dmamap;
|
|
int error, lasttx, nexttx, opending, seg, nsegs, len;
|
|
|
|
/*
|
|
* If we want a re-init, bail out now.
|
|
*/
|
|
if (sc->sc_flags & FXPF_WANTINIT) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
return;
|
|
}
|
|
|
|
if ((ifp->if_flags & (IFF_RUNNING|IFF_OACTIVE)) != IFF_RUNNING)
|
|
return;
|
|
|
|
/*
|
|
* Remember the previous txpending and the current lasttx.
|
|
*/
|
|
opending = sc->sc_txpending;
|
|
lasttx = sc->sc_txlast;
|
|
|
|
/*
|
|
* Loop through the send queue, setting up transmit descriptors
|
|
* until we drain the queue, or use up all available transmit
|
|
* descriptors.
|
|
*/
|
|
for (;;) {
|
|
struct fxp_tbd *tbdp;
|
|
int csum_flags;
|
|
|
|
/*
|
|
* Grab a packet off the queue.
|
|
*/
|
|
IFQ_POLL(&ifp->if_snd, m0);
|
|
if (m0 == NULL)
|
|
break;
|
|
m = NULL;
|
|
|
|
if (sc->sc_txpending == FXP_NTXCB - 1) {
|
|
FXP_EVCNT_INCR(&sc->sc_ev_txstall);
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Get the next available transmit descriptor.
|
|
*/
|
|
nexttx = FXP_NEXTTX(sc->sc_txlast);
|
|
txd = FXP_CDTX(sc, nexttx);
|
|
txs = FXP_DSTX(sc, nexttx);
|
|
dmamap = txs->txs_dmamap;
|
|
|
|
/*
|
|
* Load the DMA map. If this fails, the packet either
|
|
* didn't fit in the allotted number of frags, or we were
|
|
* short on resources. In this case, we'll copy and try
|
|
* again.
|
|
*/
|
|
if (bus_dmamap_load_mbuf(sc->sc_dmat, dmamap, m0,
|
|
BUS_DMA_WRITE|BUS_DMA_NOWAIT) != 0) {
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL) {
|
|
log(LOG_ERR, "%s: unable to allocate Tx mbuf\n",
|
|
device_xname(sc->sc_dev));
|
|
break;
|
|
}
|
|
MCLAIM(m, &sc->sc_ethercom.ec_tx_mowner);
|
|
if (m0->m_pkthdr.len > MHLEN) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
log(LOG_ERR, "%s: unable to allocate "
|
|
"Tx cluster\n",
|
|
device_xname(sc->sc_dev));
|
|
m_freem(m);
|
|
break;
|
|
}
|
|
}
|
|
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(m, void *));
|
|
m->m_pkthdr.len = m->m_len = m0->m_pkthdr.len;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
m, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
log(LOG_ERR, "%s: unable to load Tx buffer, "
|
|
"error = %d\n",
|
|
device_xname(sc->sc_dev), error);
|
|
break;
|
|
}
|
|
}
|
|
|
|
IFQ_DEQUEUE(&ifp->if_snd, m0);
|
|
csum_flags = m0->m_pkthdr.csum_flags;
|
|
if (m != NULL) {
|
|
m_freem(m0);
|
|
m0 = m;
|
|
}
|
|
|
|
/* Initialize the fraglist. */
|
|
tbdp = txd->txd_tbd;
|
|
len = m0->m_pkthdr.len;
|
|
nsegs = dmamap->dm_nsegs;
|
|
if (sc->sc_flags & FXPF_EXT_RFA)
|
|
tbdp++;
|
|
for (seg = 0; seg < nsegs; seg++) {
|
|
tbdp[seg].tb_addr =
|
|
htole32(dmamap->dm_segs[seg].ds_addr);
|
|
tbdp[seg].tb_size =
|
|
htole32(dmamap->dm_segs[seg].ds_len);
|
|
}
|
|
if (__predict_false(len <= FXP_IP4CSUMTX_PADLEN &&
|
|
(csum_flags & M_CSUM_IPv4) != 0)) {
|
|
/*
|
|
* Pad short packets to avoid ip4csum-tx bug.
|
|
*
|
|
* XXX Should we still consider if such short
|
|
* (36 bytes or less) packets might already
|
|
* occupy FXP_IPCB_NTXSEG (15) fragments here?
|
|
*/
|
|
KASSERT(nsegs < FXP_IPCB_NTXSEG);
|
|
nsegs++;
|
|
tbdp[seg].tb_addr = htole32(FXP_CDTXPADADDR(sc));
|
|
tbdp[seg].tb_size =
|
|
htole32(FXP_IP4CSUMTX_PADLEN + 1 - len);
|
|
}
|
|
|
|
/* Sync the DMA map. */
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Store a pointer to the packet so we can free it later.
|
|
*/
|
|
txs->txs_mbuf = m0;
|
|
|
|
/*
|
|
* Initialize the transmit descriptor.
|
|
*/
|
|
/* BIG_ENDIAN: no need to swap to store 0 */
|
|
txd->txd_txcb.cb_status = 0;
|
|
txd->txd_txcb.cb_command =
|
|
sc->sc_txcmd | htole16(FXP_CB_COMMAND_SF);
|
|
txd->txd_txcb.tx_threshold = tx_threshold;
|
|
txd->txd_txcb.tbd_number = nsegs;
|
|
|
|
KASSERT((csum_flags & (M_CSUM_TCPv6 | M_CSUM_UDPv6)) == 0);
|
|
if (sc->sc_flags & FXPF_EXT_RFA) {
|
|
struct m_tag *vtag;
|
|
struct fxp_ipcb *ipcb;
|
|
/*
|
|
* Deal with TCP/IP checksum offload. Note that
|
|
* in order for TCP checksum offload to work,
|
|
* the pseudo header checksum must have already
|
|
* been computed and stored in the checksum field
|
|
* in the TCP header. The stack should have
|
|
* already done this for us.
|
|
*/
|
|
ipcb = &txd->txd_u.txdu_ipcb;
|
|
memset(ipcb, 0, sizeof(*ipcb));
|
|
/*
|
|
* always do hardware parsing.
|
|
*/
|
|
ipcb->ipcb_ip_activation_high =
|
|
FXP_IPCB_HARDWAREPARSING_ENABLE;
|
|
/*
|
|
* ip checksum offloading.
|
|
*/
|
|
if (csum_flags & M_CSUM_IPv4) {
|
|
ipcb->ipcb_ip_schedule |=
|
|
FXP_IPCB_IP_CHECKSUM_ENABLE;
|
|
}
|
|
/*
|
|
* TCP/UDP checksum offloading.
|
|
*/
|
|
if (csum_flags & (M_CSUM_TCPv4 | M_CSUM_UDPv4)) {
|
|
ipcb->ipcb_ip_schedule |=
|
|
FXP_IPCB_TCPUDP_CHECKSUM_ENABLE;
|
|
}
|
|
|
|
/*
|
|
* request VLAN tag insertion if needed.
|
|
*/
|
|
vtag = VLAN_OUTPUT_TAG(&sc->sc_ethercom, m0);
|
|
if (vtag) {
|
|
ipcb->ipcb_vlan_id =
|
|
htobe16(*(u_int *)(vtag + 1));
|
|
ipcb->ipcb_ip_activation_high |=
|
|
FXP_IPCB_INSERTVLAN_ENABLE;
|
|
}
|
|
} else {
|
|
KASSERT((csum_flags &
|
|
(M_CSUM_IPv4 | M_CSUM_TCPv4 | M_CSUM_UDPv4)) == 0);
|
|
}
|
|
|
|
FXP_CDTXSYNC(sc, nexttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/* Advance the tx pointer. */
|
|
sc->sc_txpending++;
|
|
sc->sc_txlast = nexttx;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass packet to bpf if there is a listener.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m0);
|
|
#endif
|
|
}
|
|
|
|
if (sc->sc_txpending == FXP_NTXCB - 1) {
|
|
/* No more slots; notify upper layer. */
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
}
|
|
|
|
if (sc->sc_txpending != opending) {
|
|
/*
|
|
* We enqueued packets. If the transmitter was idle,
|
|
* reset the txdirty pointer.
|
|
*/
|
|
if (opending == 0)
|
|
sc->sc_txdirty = FXP_NEXTTX(lasttx);
|
|
|
|
/*
|
|
* Cause the chip to interrupt and suspend command
|
|
* processing once the last packet we've enqueued
|
|
* has been transmitted.
|
|
*
|
|
* To avoid a race between updating status bits
|
|
* by the fxp chip and clearing command bits
|
|
* by this function on machines which don't have
|
|
* atomic methods to clear/set bits in memory
|
|
* smaller than 32bits (both cb_status and cb_command
|
|
* members are uint16_t and in the same 32bit word),
|
|
* we have to prepare a dummy TX descriptor which has
|
|
* NOP command and just causes a TX completion interrupt.
|
|
*/
|
|
sc->sc_txpending++;
|
|
sc->sc_txlast = FXP_NEXTTX(sc->sc_txlast);
|
|
txd = FXP_CDTX(sc, sc->sc_txlast);
|
|
/* BIG_ENDIAN: no need to swap to store 0 */
|
|
txd->txd_txcb.cb_status = 0;
|
|
txd->txd_txcb.cb_command = htole16(FXP_CB_COMMAND_NOP |
|
|
FXP_CB_COMMAND_I | FXP_CB_COMMAND_S);
|
|
FXP_CDTXSYNC(sc, sc->sc_txlast,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* The entire packet chain is set up. Clear the suspend bit
|
|
* on the command prior to the first packet we set up.
|
|
*/
|
|
FXP_CDTXSYNC(sc, lasttx,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
FXP_CDTX(sc, lasttx)->txd_txcb.cb_command &=
|
|
htole16(~FXP_CB_COMMAND_S);
|
|
FXP_CDTXSYNC(sc, lasttx,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Issue a Resume command in case the chip was suspended.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_RESUME);
|
|
|
|
/* Set a watchdog timer in case the chip flakes out. */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Process interface interrupts.
|
|
*/
|
|
int
|
|
fxp_intr(void *arg)
|
|
{
|
|
struct fxp_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_dmamap_t rxmap;
|
|
int claimed = 0, rnr;
|
|
uint8_t statack;
|
|
|
|
if (!device_is_active(sc->sc_dev) || sc->sc_enabled == 0)
|
|
return (0);
|
|
/*
|
|
* If the interface isn't running, don't try to
|
|
* service the interrupt.. just ack it and bail.
|
|
*/
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0) {
|
|
statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK);
|
|
if (statack) {
|
|
claimed = 1;
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
|
|
}
|
|
return (claimed);
|
|
}
|
|
|
|
while ((statack = CSR_READ_1(sc, FXP_CSR_SCB_STATACK)) != 0) {
|
|
claimed = 1;
|
|
|
|
/*
|
|
* First ACK all the interrupts in this pass.
|
|
*/
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_STATACK, statack);
|
|
|
|
/*
|
|
* Process receiver interrupts. If a no-resource (RNR)
|
|
* condition exists, get whatever packets we can and
|
|
* re-start the receiver.
|
|
*/
|
|
rnr = (statack & (FXP_SCB_STATACK_RNR | FXP_SCB_STATACK_SWI)) ?
|
|
1 : 0;
|
|
if (statack & (FXP_SCB_STATACK_FR | FXP_SCB_STATACK_RNR |
|
|
FXP_SCB_STATACK_SWI)) {
|
|
FXP_EVCNT_INCR(&sc->sc_ev_rxintr);
|
|
rnr |= fxp_rxintr(sc);
|
|
}
|
|
|
|
/*
|
|
* Free any finished transmit mbuf chains.
|
|
*/
|
|
if (statack & (FXP_SCB_STATACK_CXTNO|FXP_SCB_STATACK_CNA)) {
|
|
FXP_EVCNT_INCR(&sc->sc_ev_txintr);
|
|
fxp_txintr(sc);
|
|
|
|
/*
|
|
* Try to get more packets going.
|
|
*/
|
|
fxp_start(ifp);
|
|
|
|
if (sc->sc_txpending == 0) {
|
|
/*
|
|
* Tell them that they can re-init now.
|
|
*/
|
|
if (sc->sc_flags & FXPF_WANTINIT)
|
|
wakeup(sc);
|
|
}
|
|
}
|
|
|
|
if (rnr) {
|
|
fxp_scb_wait(sc);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_ABORT);
|
|
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
rxmap->dm_segs[0].ds_addr +
|
|
RFA_ALIGNMENT_FUDGE);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
|
|
}
|
|
}
|
|
|
|
#if NRND > 0
|
|
if (claimed)
|
|
rnd_add_uint32(&sc->rnd_source, statack);
|
|
#endif
|
|
return (claimed);
|
|
}
|
|
|
|
/*
|
|
* Handle transmit completion interrupts.
|
|
*/
|
|
void
|
|
fxp_txintr(struct fxp_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct fxp_txdesc *txd;
|
|
struct fxp_txsoft *txs;
|
|
int i;
|
|
uint16_t txstat;
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
for (i = sc->sc_txdirty; sc->sc_txpending != 0;
|
|
i = FXP_NEXTTX(i), sc->sc_txpending--) {
|
|
txd = FXP_CDTX(sc, i);
|
|
txs = FXP_DSTX(sc, i);
|
|
|
|
FXP_CDTXSYNC(sc, i,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
/* skip dummy NOP TX descriptor */
|
|
if ((le16toh(txd->txd_txcb.cb_command) & FXP_CB_COMMAND_CMD)
|
|
== FXP_CB_COMMAND_NOP)
|
|
continue;
|
|
|
|
txstat = le16toh(txd->txd_txcb.cb_status);
|
|
|
|
if ((txstat & FXP_CB_STATUS_C) == 0)
|
|
break;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, txs->txs_dmamap,
|
|
0, txs->txs_dmamap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
|
|
/* Update the dirty transmit buffer pointer. */
|
|
sc->sc_txdirty = i;
|
|
|
|
/*
|
|
* Cancel the watchdog timer if there are no pending
|
|
* transmissions.
|
|
*/
|
|
if (sc->sc_txpending == 0)
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
/*
|
|
* fxp_rx_hwcksum: check status of H/W offloading for received packets.
|
|
*/
|
|
|
|
void
|
|
fxp_rx_hwcksum(struct fxp_softc *sc, struct mbuf *m, const struct fxp_rfa *rfa,
|
|
u_int len)
|
|
{
|
|
uint32_t csum_data;
|
|
int csum_flags;
|
|
|
|
/*
|
|
* check H/W Checksumming.
|
|
*/
|
|
|
|
csum_flags = 0;
|
|
csum_data = 0;
|
|
|
|
if ((sc->sc_flags & FXPF_EXT_RFA) != 0) {
|
|
uint8_t rxparsestat;
|
|
uint8_t csum_stat;
|
|
|
|
csum_stat = rfa->cksum_stat;
|
|
rxparsestat = rfa->rx_parse_stat;
|
|
if ((rfa->rfa_status & htole16(FXP_RFA_STATUS_PARSE)) == 0)
|
|
goto out;
|
|
|
|
if (csum_stat & FXP_RFDX_CS_IP_CSUM_BIT_VALID) {
|
|
csum_flags = M_CSUM_IPv4;
|
|
if ((csum_stat & FXP_RFDX_CS_IP_CSUM_VALID) == 0)
|
|
csum_flags |= M_CSUM_IPv4_BAD;
|
|
}
|
|
|
|
if (csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_BIT_VALID) {
|
|
csum_flags |= (M_CSUM_TCPv4|M_CSUM_UDPv4); /* XXX */
|
|
if ((csum_stat & FXP_RFDX_CS_TCPUDP_CSUM_VALID) == 0)
|
|
csum_flags |= M_CSUM_TCP_UDP_BAD;
|
|
}
|
|
|
|
} else if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ether_header *eh;
|
|
struct ip *ip;
|
|
struct udphdr *uh;
|
|
u_int hlen, pktlen;
|
|
|
|
if (len < ETHER_HDR_LEN + sizeof(struct ip))
|
|
goto out;
|
|
pktlen = len - ETHER_HDR_LEN;
|
|
eh = mtod(m, struct ether_header *);
|
|
if (ntohs(eh->ether_type) != ETHERTYPE_IP)
|
|
goto out;
|
|
ip = (struct ip *)((uint8_t *)eh + ETHER_HDR_LEN);
|
|
if (ip->ip_v != IPVERSION)
|
|
goto out;
|
|
|
|
hlen = ip->ip_hl << 2;
|
|
if (hlen < sizeof(struct ip))
|
|
goto out;
|
|
|
|
/*
|
|
* Bail if too short, has random trailing garbage, truncated,
|
|
* fragment, or has ethernet pad.
|
|
*/
|
|
if (ntohs(ip->ip_len) < hlen ||
|
|
ntohs(ip->ip_len) != pktlen ||
|
|
(ntohs(ip->ip_off) & (IP_MF | IP_OFFMASK)) != 0)
|
|
goto out;
|
|
|
|
switch (ip->ip_p) {
|
|
case IPPROTO_TCP:
|
|
if ((ifp->if_csum_flags_rx & M_CSUM_TCPv4) == 0 ||
|
|
pktlen < (hlen + sizeof(struct tcphdr)))
|
|
goto out;
|
|
csum_flags =
|
|
M_CSUM_TCPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
|
|
break;
|
|
case IPPROTO_UDP:
|
|
if ((ifp->if_csum_flags_rx & M_CSUM_UDPv4) == 0 ||
|
|
pktlen < (hlen + sizeof(struct udphdr)))
|
|
goto out;
|
|
uh = (struct udphdr *)((uint8_t *)ip + hlen);
|
|
if (uh->uh_sum == 0)
|
|
goto out; /* no checksum */
|
|
csum_flags =
|
|
M_CSUM_UDPv4 | M_CSUM_DATA | M_CSUM_NO_PSEUDOHDR;
|
|
break;
|
|
default:
|
|
goto out;
|
|
}
|
|
|
|
/* Extract computed checksum. */
|
|
csum_data = be16dec(mtod(m, uint8_t *) + len);
|
|
|
|
/*
|
|
* The computed checksum includes IP headers,
|
|
* so we have to deduct them.
|
|
*/
|
|
#if 0
|
|
/*
|
|
* But in TCP/UDP layer we can assume the IP header is valid,
|
|
* i.e. a sum of the whole IP header should be 0xffff,
|
|
* so we don't have to bother to deduct it.
|
|
*/
|
|
if (hlen > 0) {
|
|
uint32_t hsum;
|
|
const uint16_t *iphdr;
|
|
hsum = 0;
|
|
iphdr = (uint16_t *)ip;
|
|
|
|
while (hlen > 1) {
|
|
hsum += ntohs(*iphdr++);
|
|
hlen -= sizeof(uint16_t);
|
|
}
|
|
while (hsum >> 16)
|
|
hsum = (hsum >> 16) + (hsum & 0xffff);
|
|
|
|
csum_data += (uint16_t)~hsum;
|
|
|
|
while (csum_data >> 16)
|
|
csum_data =
|
|
(csum_data >> 16) + (csum_data & 0xffff);
|
|
}
|
|
#endif
|
|
}
|
|
out:
|
|
m->m_pkthdr.csum_flags = csum_flags;
|
|
m->m_pkthdr.csum_data = csum_data;
|
|
}
|
|
|
|
/*
|
|
* Handle receive interrupts.
|
|
*/
|
|
int
|
|
fxp_rxintr(struct fxp_softc *sc)
|
|
{
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct mbuf *m, *m0;
|
|
bus_dmamap_t rxmap;
|
|
struct fxp_rfa *rfa;
|
|
int rnr;
|
|
uint16_t len, rxstat;
|
|
|
|
rnr = 0;
|
|
|
|
for (;;) {
|
|
m = sc->sc_rxq.ifq_head;
|
|
rfa = FXP_MTORFA(m);
|
|
rxmap = M_GETCTX(m, bus_dmamap_t);
|
|
|
|
FXP_RFASYNC(sc, m,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
|
|
rxstat = le16toh(rfa->rfa_status);
|
|
|
|
if ((rxstat & FXP_RFA_STATUS_RNR) != 0)
|
|
rnr = 1;
|
|
|
|
if ((rxstat & FXP_RFA_STATUS_C) == 0) {
|
|
/*
|
|
* We have processed all of the
|
|
* receive buffers.
|
|
*/
|
|
FXP_RFASYNC(sc, m, BUS_DMASYNC_PREREAD);
|
|
return rnr;
|
|
}
|
|
|
|
IF_DEQUEUE(&sc->sc_rxq, m);
|
|
|
|
FXP_RXBUFSYNC(sc, m, BUS_DMASYNC_POSTREAD);
|
|
|
|
len = le16toh(rfa->actual_size) &
|
|
(m->m_ext.ext_size - 1);
|
|
if ((sc->sc_flags & FXPF_82559_RXCSUM) != 0) {
|
|
/* Adjust for appended checksum bytes. */
|
|
len -= sizeof(uint16_t);
|
|
}
|
|
|
|
if (len < sizeof(struct ether_header)) {
|
|
/*
|
|
* Runt packet; drop it now.
|
|
*/
|
|
FXP_INIT_RFABUF(sc, m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* If support for 802.1Q VLAN sized frames is
|
|
* enabled, we need to do some additional error
|
|
* checking (as we are saving bad frames, in
|
|
* order to receive the larger ones).
|
|
*/
|
|
if ((ec->ec_capenable & ETHERCAP_VLAN_MTU) != 0 &&
|
|
(rxstat & (FXP_RFA_STATUS_OVERRUN|
|
|
FXP_RFA_STATUS_RNR|
|
|
FXP_RFA_STATUS_ALIGN|
|
|
FXP_RFA_STATUS_CRC)) != 0) {
|
|
FXP_INIT_RFABUF(sc, m);
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* check VLAN tag stripping.
|
|
*/
|
|
if ((sc->sc_flags & FXPF_EXT_RFA) != 0 &&
|
|
(rfa->rfa_status & htole16(FXP_RFA_STATUS_VLAN)) != 0) {
|
|
struct m_tag *vtag;
|
|
|
|
vtag = m_tag_get(PACKET_TAG_VLAN, sizeof(u_int),
|
|
M_NOWAIT);
|
|
if (vtag == NULL)
|
|
goto dropit;
|
|
*(u_int *)(vtag + 1) = be16toh(rfa->vlan_id);
|
|
m_tag_prepend(m, vtag);
|
|
}
|
|
|
|
/* Do checksum checking. */
|
|
if ((ifp->if_csum_flags_rx & (M_CSUM_TCPv4|M_CSUM_UDPv4)) != 0)
|
|
fxp_rx_hwcksum(sc, m, rfa, len);
|
|
|
|
/*
|
|
* If the packet is small enough to fit in a
|
|
* single header mbuf, allocate one and copy
|
|
* the data into it. This greatly reduces
|
|
* memory consumption when we receive lots
|
|
* of small packets.
|
|
*
|
|
* Otherwise, we add a new buffer to the receive
|
|
* chain. If this fails, we drop the packet and
|
|
* recycle the old buffer.
|
|
*/
|
|
if (fxp_copy_small != 0 && len <= MHLEN) {
|
|
MGETHDR(m0, M_DONTWAIT, MT_DATA);
|
|
if (m0 == NULL)
|
|
goto dropit;
|
|
MCLAIM(m0, &sc->sc_ethercom.ec_rx_mowner);
|
|
memcpy(mtod(m0, void *),
|
|
mtod(m, void *), len);
|
|
m0->m_pkthdr.csum_flags = m->m_pkthdr.csum_flags;
|
|
m0->m_pkthdr.csum_data = m->m_pkthdr.csum_data;
|
|
FXP_INIT_RFABUF(sc, m);
|
|
m = m0;
|
|
} else {
|
|
if (fxp_add_rfabuf(sc, rxmap, 1) != 0) {
|
|
dropit:
|
|
ifp->if_ierrors++;
|
|
FXP_INIT_RFABUF(sc, m);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = len;
|
|
|
|
#if NBPFILTER > 0
|
|
/*
|
|
* Pass this up to any BPF listeners, but only
|
|
* pass it up the stack if it's for us.
|
|
*/
|
|
if (ifp->if_bpf)
|
|
bpf_mtap(ifp->if_bpf, m);
|
|
#endif
|
|
|
|
/* Pass it on. */
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Update packet in/out/collision statistics. The i82557 doesn't
|
|
* allow you to access these counters without doing a fairly
|
|
* expensive DMA to get _all_ of the statistics it maintains, so
|
|
* we do this operation here only once per second. The statistics
|
|
* counters in the kernel are updated from the previous dump-stats
|
|
* DMA and then a new dump-stats DMA is started. The on-chip
|
|
* counters are zeroed when the DMA completes. If we can't start
|
|
* the DMA immediately, we don't wait - we just prepare to read
|
|
* them again next time.
|
|
*/
|
|
void
|
|
fxp_tick(void *arg)
|
|
{
|
|
struct fxp_softc *sc = arg;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct fxp_stats *sp = &sc->sc_control_data->fcd_stats;
|
|
int s;
|
|
|
|
if (!device_is_active(sc->sc_dev))
|
|
return;
|
|
|
|
s = splnet();
|
|
|
|
FXP_CDSTATSSYNC(sc, BUS_DMASYNC_POSTREAD);
|
|
|
|
ifp->if_opackets += le32toh(sp->tx_good);
|
|
ifp->if_collisions += le32toh(sp->tx_total_collisions);
|
|
if (sp->rx_good) {
|
|
ifp->if_ipackets += le32toh(sp->rx_good);
|
|
sc->sc_rxidle = 0;
|
|
} else if (sc->sc_flags & FXPF_RECV_WORKAROUND) {
|
|
sc->sc_rxidle++;
|
|
}
|
|
ifp->if_ierrors +=
|
|
le32toh(sp->rx_crc_errors) +
|
|
le32toh(sp->rx_alignment_errors) +
|
|
le32toh(sp->rx_rnr_errors) +
|
|
le32toh(sp->rx_overrun_errors);
|
|
/*
|
|
* If any transmit underruns occurred, bump up the transmit
|
|
* threshold by another 512 bytes (64 * 8).
|
|
*/
|
|
if (sp->tx_underruns) {
|
|
ifp->if_oerrors += le32toh(sp->tx_underruns);
|
|
if (tx_threshold < 192)
|
|
tx_threshold += 64;
|
|
}
|
|
#ifdef FXP_EVENT_COUNTERS
|
|
if (sc->sc_flags & FXPF_FC) {
|
|
sc->sc_ev_txpause.ev_count += sp->tx_pauseframes;
|
|
sc->sc_ev_rxpause.ev_count += sp->rx_pauseframes;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* If we haven't received any packets in FXP_MAX_RX_IDLE seconds,
|
|
* then assume the receiver has locked up and attempt to clear
|
|
* the condition by reprogramming the multicast filter (actually,
|
|
* resetting the interface). This is a work-around for a bug in
|
|
* the 82557 where the receiver locks up if it gets certain types
|
|
* of garbage in the synchronization bits prior to the packet header.
|
|
* This bug is supposed to only occur in 10Mbps mode, but has been
|
|
* seen to occur in 100Mbps mode as well (perhaps due to a 10/100
|
|
* speed transition).
|
|
*/
|
|
if (sc->sc_rxidle > FXP_MAX_RX_IDLE) {
|
|
(void) fxp_init(ifp);
|
|
splx(s);
|
|
return;
|
|
}
|
|
/*
|
|
* If there is no pending command, start another stats
|
|
* dump. Otherwise punt for now.
|
|
*/
|
|
if (CSR_READ_1(sc, FXP_CSR_SCB_COMMAND) == 0) {
|
|
/*
|
|
* Start another stats dump.
|
|
*/
|
|
FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMPRESET);
|
|
} else {
|
|
/*
|
|
* A previous command is still waiting to be accepted.
|
|
* Just zero our copy of the stats and wait for the
|
|
* next timer event to update them.
|
|
*/
|
|
/* BIG_ENDIAN: no swap required to store 0 */
|
|
sp->tx_good = 0;
|
|
sp->tx_underruns = 0;
|
|
sp->tx_total_collisions = 0;
|
|
|
|
sp->rx_good = 0;
|
|
sp->rx_crc_errors = 0;
|
|
sp->rx_alignment_errors = 0;
|
|
sp->rx_rnr_errors = 0;
|
|
sp->rx_overrun_errors = 0;
|
|
if (sc->sc_flags & FXPF_FC) {
|
|
sp->tx_pauseframes = 0;
|
|
sp->rx_pauseframes = 0;
|
|
}
|
|
}
|
|
|
|
if (sc->sc_flags & FXPF_MII) {
|
|
/* Tick the MII clock. */
|
|
mii_tick(&sc->sc_mii);
|
|
}
|
|
|
|
splx(s);
|
|
|
|
/*
|
|
* Schedule another timeout one second from now.
|
|
*/
|
|
callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
|
|
}
|
|
|
|
/*
|
|
* Drain the receive queue.
|
|
*/
|
|
void
|
|
fxp_rxdrain(struct fxp_softc *sc)
|
|
{
|
|
bus_dmamap_t rxmap;
|
|
struct mbuf *m;
|
|
|
|
for (;;) {
|
|
IF_DEQUEUE(&sc->sc_rxq, m);
|
|
if (m == NULL)
|
|
break;
|
|
rxmap = M_GETCTX(m, bus_dmamap_t);
|
|
bus_dmamap_unload(sc->sc_dmat, rxmap);
|
|
FXP_RXMAP_PUT(sc, rxmap);
|
|
m_freem(m);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Stop the interface. Cancels the statistics updater and resets
|
|
* the interface.
|
|
*/
|
|
void
|
|
fxp_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
struct fxp_txsoft *txs;
|
|
int i;
|
|
|
|
/*
|
|
* Turn down interface (done early to avoid bad interactions
|
|
* between panics, shutdown hooks, and the watchdog timer)
|
|
*/
|
|
ifp->if_timer = 0;
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
|
|
/*
|
|
* Cancel stats updater.
|
|
*/
|
|
callout_stop(&sc->sc_callout);
|
|
if (sc->sc_flags & FXPF_MII) {
|
|
/* Down the MII. */
|
|
mii_down(&sc->sc_mii);
|
|
}
|
|
|
|
/*
|
|
* Issue software reset. This unloads any microcode that
|
|
* might already be loaded.
|
|
*/
|
|
sc->sc_flags &= ~FXPF_UCODE_LOADED;
|
|
CSR_WRITE_4(sc, FXP_CSR_PORT, FXP_PORT_SOFTWARE_RESET);
|
|
DELAY(50);
|
|
|
|
/*
|
|
* Release any xmit buffers.
|
|
*/
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
txs = FXP_DSTX(sc, i);
|
|
if (txs->txs_mbuf != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, txs->txs_dmamap);
|
|
m_freem(txs->txs_mbuf);
|
|
txs->txs_mbuf = NULL;
|
|
}
|
|
}
|
|
sc->sc_txpending = 0;
|
|
|
|
if (disable) {
|
|
fxp_rxdrain(sc);
|
|
fxp_disable(sc);
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Watchdog/transmission transmit timeout handler. Called when a
|
|
* transmission is started on the interface, but no interrupt is
|
|
* received before the timeout. This usually indicates that the
|
|
* card has wedged for some reason.
|
|
*/
|
|
void
|
|
fxp_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
|
|
ifp->if_oerrors++;
|
|
|
|
(void) fxp_init(ifp);
|
|
}
|
|
|
|
/*
|
|
* Initialize the interface. Must be called at splnet().
|
|
*/
|
|
int
|
|
fxp_init(struct ifnet *ifp)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
struct fxp_cb_config *cbp;
|
|
struct fxp_cb_ias *cb_ias;
|
|
struct fxp_txdesc *txd;
|
|
bus_dmamap_t rxmap;
|
|
int i, prm, save_bf, lrxen, vlan_drop, allm, error = 0;
|
|
uint16_t status;
|
|
|
|
if ((error = fxp_enable(sc)) != 0)
|
|
goto out;
|
|
|
|
/*
|
|
* Cancel any pending I/O
|
|
*/
|
|
fxp_stop(ifp, 0);
|
|
|
|
/*
|
|
* XXX just setting sc_flags to 0 here clears any FXPF_MII
|
|
* flag, and this prevents the MII from detaching resulting in
|
|
* a panic. The flags field should perhaps be split in runtime
|
|
* flags and more static information. For now, just clear the
|
|
* only other flag set.
|
|
*/
|
|
|
|
sc->sc_flags &= ~FXPF_WANTINIT;
|
|
|
|
/*
|
|
* Initialize base of CBL and RFA memory. Loading with zero
|
|
* sets it up for regular linear addressing.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, 0);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_BASE);
|
|
|
|
fxp_scb_wait(sc);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_BASE);
|
|
|
|
/*
|
|
* Initialize the multicast filter. Do this now, since we might
|
|
* have to setup the config block differently.
|
|
*/
|
|
fxp_mc_setup(sc);
|
|
|
|
prm = (ifp->if_flags & IFF_PROMISC) ? 1 : 0;
|
|
allm = (ifp->if_flags & IFF_ALLMULTI) ? 1 : 0;
|
|
|
|
/*
|
|
* In order to support receiving 802.1Q VLAN frames, we have to
|
|
* enable "save bad frames", since they are 4 bytes larger than
|
|
* the normal Ethernet maximum frame length. On i82558 and later,
|
|
* we have a better mechanism for this.
|
|
*/
|
|
save_bf = 0;
|
|
lrxen = 0;
|
|
vlan_drop = 0;
|
|
if (sc->sc_ethercom.ec_capenable & ETHERCAP_VLAN_MTU) {
|
|
if (sc->sc_rev < FXP_REV_82558_A4)
|
|
save_bf = 1;
|
|
else
|
|
lrxen = 1;
|
|
if (sc->sc_rev >= FXP_REV_82550)
|
|
vlan_drop = 1;
|
|
}
|
|
|
|
/*
|
|
* Initialize base of dump-stats buffer.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
sc->sc_cddma + FXP_CDSTATSOFF);
|
|
FXP_CDSTATSSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_DUMP_ADR);
|
|
|
|
cbp = &sc->sc_control_data->fcd_configcb;
|
|
memset(cbp, 0, sizeof(struct fxp_cb_config));
|
|
|
|
/*
|
|
* Load microcode for this controller.
|
|
*/
|
|
fxp_load_ucode(sc);
|
|
|
|
if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK1))
|
|
sc->sc_flags |= FXPF_RECV_WORKAROUND;
|
|
else
|
|
sc->sc_flags &= ~FXPF_RECV_WORKAROUND;
|
|
|
|
/*
|
|
* This copy is kind of disgusting, but there are a bunch of must be
|
|
* zero and must be one bits in this structure and this is the easiest
|
|
* way to initialize them all to proper values.
|
|
*/
|
|
memcpy(cbp, fxp_cb_config_template, sizeof(fxp_cb_config_template));
|
|
|
|
/* BIG_ENDIAN: no need to swap to store 0 */
|
|
cbp->cb_status = 0;
|
|
cbp->cb_command = htole16(FXP_CB_COMMAND_CONFIG |
|
|
FXP_CB_COMMAND_EL);
|
|
/* BIG_ENDIAN: no need to swap to store 0xffffffff */
|
|
cbp->link_addr = 0xffffffff; /* (no) next command */
|
|
/* bytes in config block */
|
|
cbp->byte_count = (sc->sc_flags & FXPF_EXT_RFA) ?
|
|
FXP_EXT_CONFIG_LEN : FXP_CONFIG_LEN;
|
|
cbp->rx_fifo_limit = 8; /* rx fifo threshold (32 bytes) */
|
|
cbp->tx_fifo_limit = 0; /* tx fifo threshold (0 bytes) */
|
|
cbp->adaptive_ifs = 0; /* (no) adaptive interframe spacing */
|
|
cbp->mwi_enable = (sc->sc_flags & FXPF_MWI) ? 1 : 0;
|
|
cbp->type_enable = 0; /* actually reserved */
|
|
cbp->read_align_en = (sc->sc_flags & FXPF_READ_ALIGN) ? 1 : 0;
|
|
cbp->end_wr_on_cl = (sc->sc_flags & FXPF_WRITE_ALIGN) ? 1 : 0;
|
|
cbp->rx_dma_bytecount = 0; /* (no) rx DMA max */
|
|
cbp->tx_dma_bytecount = 0; /* (no) tx DMA max */
|
|
cbp->dma_mbce = 0; /* (disable) dma max counters */
|
|
cbp->late_scb = 0; /* (don't) defer SCB update */
|
|
cbp->tno_int_or_tco_en =0; /* (disable) tx not okay interrupt */
|
|
cbp->ci_int = 1; /* interrupt on CU idle */
|
|
cbp->ext_txcb_dis = (sc->sc_flags & FXPF_EXT_TXCB) ? 0 : 1;
|
|
cbp->ext_stats_dis = 1; /* disable extended counters */
|
|
cbp->keep_overrun_rx = 0; /* don't pass overrun frames to host */
|
|
cbp->save_bf = save_bf;/* save bad frames */
|
|
cbp->disc_short_rx = !prm; /* discard short packets */
|
|
cbp->underrun_retry = 1; /* retry mode (1) on DMA underrun */
|
|
cbp->ext_rfa = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
|
|
cbp->two_frames = 0; /* do not limit FIFO to 2 frames */
|
|
cbp->dyn_tbd = 0; /* (no) dynamic TBD mode */
|
|
/* interface mode */
|
|
cbp->mediatype = (sc->sc_flags & FXPF_MII) ? 1 : 0;
|
|
cbp->csma_dis = 0; /* (don't) disable link */
|
|
cbp->tcp_udp_cksum = (sc->sc_flags & FXPF_82559_RXCSUM) ? 1 : 0;
|
|
/* (don't) enable RX checksum */
|
|
cbp->vlan_tco = 0; /* (don't) enable vlan wakeup */
|
|
cbp->link_wake_en = 0; /* (don't) assert PME# on link change */
|
|
cbp->arp_wake_en = 0; /* (don't) assert PME# on arp */
|
|
cbp->mc_wake_en = 0; /* (don't) assert PME# on mcmatch */
|
|
cbp->nsai = 1; /* (don't) disable source addr insert */
|
|
cbp->preamble_length = 2; /* (7 byte) preamble */
|
|
cbp->loopback = 0; /* (don't) loopback */
|
|
cbp->linear_priority = 0; /* (normal CSMA/CD operation) */
|
|
cbp->linear_pri_mode = 0; /* (wait after xmit only) */
|
|
cbp->interfrm_spacing = 6; /* (96 bits of) interframe spacing */
|
|
cbp->promiscuous = prm; /* promiscuous mode */
|
|
cbp->bcast_disable = 0; /* (don't) disable broadcasts */
|
|
cbp->wait_after_win = 0; /* (don't) enable modified backoff alg*/
|
|
cbp->ignore_ul = 0; /* consider U/L bit in IA matching */
|
|
cbp->crc16_en = 0; /* (don't) enable crc-16 algorithm */
|
|
cbp->crscdt = (sc->sc_flags & FXPF_MII) ? 0 : 1;
|
|
cbp->stripping = !prm; /* truncate rx packet to byte count */
|
|
cbp->padding = 1; /* (do) pad short tx packets */
|
|
cbp->rcv_crc_xfer = 0; /* (don't) xfer CRC to host */
|
|
cbp->long_rx_en = lrxen; /* long packet receive enable */
|
|
cbp->ia_wake_en = 0; /* (don't) wake up on address match */
|
|
cbp->magic_pkt_dis = 0; /* (don't) disable magic packet */
|
|
/* must set wake_en in PMCSR also */
|
|
cbp->force_fdx = 0; /* (don't) force full duplex */
|
|
cbp->fdx_pin_en = 1; /* (enable) FDX# pin */
|
|
cbp->multi_ia = 0; /* (don't) accept multiple IAs */
|
|
cbp->mc_all = allm; /* accept all multicasts */
|
|
cbp->ext_rx_mode = (sc->sc_flags & FXPF_EXT_RFA) ? 1 : 0;
|
|
cbp->vlan_drop_en = vlan_drop;
|
|
|
|
if (!(sc->sc_flags & FXPF_FC)) {
|
|
/*
|
|
* The i82557 has no hardware flow control, the values
|
|
* here are the defaults for the chip.
|
|
*/
|
|
cbp->fc_delay_lsb = 0;
|
|
cbp->fc_delay_msb = 0x40;
|
|
cbp->pri_fc_thresh = 3;
|
|
cbp->tx_fc_dis = 0;
|
|
cbp->rx_fc_restop = 0;
|
|
cbp->rx_fc_restart = 0;
|
|
cbp->fc_filter = 0;
|
|
cbp->pri_fc_loc = 1;
|
|
} else {
|
|
cbp->fc_delay_lsb = 0x1f;
|
|
cbp->fc_delay_msb = 0x01;
|
|
cbp->pri_fc_thresh = 3;
|
|
cbp->tx_fc_dis = 0; /* enable transmit FC */
|
|
cbp->rx_fc_restop = 1; /* enable FC restop frames */
|
|
cbp->rx_fc_restart = 1; /* enable FC restart frames */
|
|
cbp->fc_filter = !prm; /* drop FC frames to host */
|
|
cbp->pri_fc_loc = 1; /* FC pri location (byte31) */
|
|
cbp->ext_stats_dis = 0; /* enable extended stats */
|
|
}
|
|
|
|
FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Start the config command/DMA.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDCONFIGOFF);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
/* ...and wait for it to complete. */
|
|
for (i = 1000; i > 0; i--) {
|
|
FXP_CDCONFIGSYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
status = le16toh(cbp->cb_status);
|
|
FXP_CDCONFIGSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
if ((status & FXP_CB_STATUS_C) != 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == 0) {
|
|
log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
|
|
device_xname(sc->sc_dev), __LINE__);
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
/*
|
|
* Initialize the station address.
|
|
*/
|
|
cb_ias = &sc->sc_control_data->fcd_iascb;
|
|
/* BIG_ENDIAN: no need to swap to store 0 */
|
|
cb_ias->cb_status = 0;
|
|
cb_ias->cb_command = htole16(FXP_CB_COMMAND_IAS | FXP_CB_COMMAND_EL);
|
|
/* BIG_ENDIAN: no need to swap to store 0xffffffff */
|
|
cb_ias->link_addr = 0xffffffff;
|
|
memcpy(cb_ias->macaddr, CLLADDR(ifp->if_sadl), ETHER_ADDR_LEN);
|
|
|
|
FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Start the IAS (Individual Address Setup) command/DMA.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDIASOFF);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
/* ...and wait for it to complete. */
|
|
for (i = 1000; i > 0; i++) {
|
|
FXP_CDIASSYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
status = le16toh(cb_ias->cb_status);
|
|
FXP_CDIASSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
if ((status & FXP_CB_STATUS_C) != 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (i == 0) {
|
|
log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
|
|
device_xname(sc->sc_dev), __LINE__);
|
|
return (ETIMEDOUT);
|
|
}
|
|
|
|
/*
|
|
* Initialize the transmit descriptor ring. txlast is initialized
|
|
* to the end of the list so that it will wrap around to the first
|
|
* descriptor when the first packet is transmitted.
|
|
*/
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
txd = FXP_CDTX(sc, i);
|
|
memset(txd, 0, sizeof(*txd));
|
|
txd->txd_txcb.cb_command =
|
|
htole16(FXP_CB_COMMAND_NOP | FXP_CB_COMMAND_S);
|
|
txd->txd_txcb.link_addr =
|
|
htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(i)));
|
|
if (sc->sc_flags & FXPF_EXT_TXCB)
|
|
txd->txd_txcb.tbd_array_addr =
|
|
htole32(FXP_CDTBDADDR(sc, i) +
|
|
(2 * sizeof(struct fxp_tbd)));
|
|
else
|
|
txd->txd_txcb.tbd_array_addr =
|
|
htole32(FXP_CDTBDADDR(sc, i));
|
|
FXP_CDTXSYNC(sc, i, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->sc_txpending = 0;
|
|
sc->sc_txdirty = 0;
|
|
sc->sc_txlast = FXP_NTXCB - 1;
|
|
|
|
/*
|
|
* Initialize the receive buffer list.
|
|
*/
|
|
sc->sc_rxq.ifq_maxlen = FXP_NRFABUFS;
|
|
while (sc->sc_rxq.ifq_len < FXP_NRFABUFS) {
|
|
rxmap = FXP_RXMAP_GET(sc);
|
|
if ((error = fxp_add_rfabuf(sc, rxmap, 0)) != 0) {
|
|
log(LOG_ERR, "%s: unable to allocate or map rx "
|
|
"buffer %d, error = %d\n",
|
|
device_xname(sc->sc_dev),
|
|
sc->sc_rxq.ifq_len, error);
|
|
/*
|
|
* XXX Should attempt to run with fewer receive
|
|
* XXX buffers instead of just failing.
|
|
*/
|
|
FXP_RXMAP_PUT(sc, rxmap);
|
|
fxp_rxdrain(sc);
|
|
goto out;
|
|
}
|
|
}
|
|
sc->sc_rxidle = 0;
|
|
|
|
/*
|
|
* Give the transmit ring to the chip. We do this by pointing
|
|
* the chip at the last descriptor (which is a NOP|SUSPEND), and
|
|
* issuing a start command. It will execute the NOP and then
|
|
* suspend, pointing at the first descriptor.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, FXP_CDTXADDR(sc, sc->sc_txlast));
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/*
|
|
* Initialize receiver buffer area - RFA.
|
|
*/
|
|
#if 0 /* initialization will be done by FXP_SCB_INTRCNTL_REQUEST_SWI later */
|
|
rxmap = M_GETCTX(sc->sc_rxq.ifq_head, bus_dmamap_t);
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL,
|
|
rxmap->dm_segs[0].ds_addr + RFA_ALIGNMENT_FUDGE);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_RU_START);
|
|
#endif
|
|
|
|
if (sc->sc_flags & FXPF_MII) {
|
|
/*
|
|
* Set current media.
|
|
*/
|
|
if ((error = mii_ifmedia_change(&sc->sc_mii)) != 0)
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* ...all done!
|
|
*/
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
/*
|
|
* Request a software generated interrupt that will be used to
|
|
* (re)start the RU processing. If we direct the chip to start
|
|
* receiving from the start of queue now, instead of letting the
|
|
* interrupt handler first process all received packets, we run
|
|
* the risk of having it overwrite mbuf clusters while they are
|
|
* being processed or after they have been returned to the pool.
|
|
*/
|
|
CSR_WRITE_1(sc, FXP_CSR_SCB_INTRCNTL, FXP_SCB_INTRCNTL_REQUEST_SWI);
|
|
|
|
/*
|
|
* Start the one second timer.
|
|
*/
|
|
callout_reset(&sc->sc_callout, hz, fxp_tick, sc);
|
|
|
|
/*
|
|
* Attempt to start output on the interface.
|
|
*/
|
|
fxp_start(ifp);
|
|
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
log(LOG_ERR, "%s: interface not running\n",
|
|
device_xname(sc->sc_dev));
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Notify the world which media we're using.
|
|
*/
|
|
void
|
|
fxp_mii_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
if (sc->sc_enabled == 0) {
|
|
ifmr->ifm_active = IFM_ETHER | IFM_NONE;
|
|
ifmr->ifm_status = 0;
|
|
return;
|
|
}
|
|
|
|
ether_mediastatus(ifp, ifmr);
|
|
}
|
|
|
|
int
|
|
fxp_80c24_mediachange(struct ifnet *ifp)
|
|
{
|
|
|
|
/* Nothing to do here. */
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
fxp_80c24_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
|
|
/*
|
|
* Media is currently-selected media. We cannot determine
|
|
* the link status.
|
|
*/
|
|
ifmr->ifm_status = 0;
|
|
ifmr->ifm_active = sc->sc_mii.mii_media.ifm_cur->ifm_media;
|
|
}
|
|
|
|
/*
|
|
* Add a buffer to the end of the RFA buffer list.
|
|
* Return 0 if successful, error code on failure.
|
|
*
|
|
* The RFA struct is stuck at the beginning of mbuf cluster and the
|
|
* data pointer is fixed up to point just past it.
|
|
*/
|
|
int
|
|
fxp_add_rfabuf(struct fxp_softc *sc, bus_dmamap_t rxmap, int unload)
|
|
{
|
|
struct mbuf *m;
|
|
int error;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m == NULL)
|
|
return (ENOBUFS);
|
|
|
|
MCLAIM(m, &sc->sc_ethercom.ec_rx_mowner);
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
return (ENOBUFS);
|
|
}
|
|
|
|
if (unload)
|
|
bus_dmamap_unload(sc->sc_dmat, rxmap);
|
|
|
|
M_SETCTX(m, rxmap);
|
|
|
|
m->m_len = m->m_pkthdr.len = m->m_ext.ext_size;
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, rxmap, m,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
/* XXX XXX XXX */
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load rx DMA map %d, error = %d\n",
|
|
sc->sc_rxq.ifq_len, error);
|
|
panic("fxp_add_rfabuf");
|
|
}
|
|
|
|
FXP_INIT_RFABUF(sc, m);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
fxp_mdi_read(device_t self, int phy, int reg)
|
|
{
|
|
struct fxp_softc *sc = device_private(self);
|
|
int count = 10000;
|
|
int value;
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
|
|
(FXP_MDI_READ << 26) | (reg << 16) | (phy << 21));
|
|
|
|
while (((value = CSR_READ_4(sc, FXP_CSR_MDICONTROL)) &
|
|
0x10000000) == 0 && count--)
|
|
DELAY(10);
|
|
|
|
if (count <= 0)
|
|
log(LOG_WARNING,
|
|
"%s: fxp_mdi_read: timed out\n", device_xname(self));
|
|
|
|
return (value & 0xffff);
|
|
}
|
|
|
|
void
|
|
fxp_statchg(device_t self)
|
|
{
|
|
|
|
/* Nothing to do. */
|
|
}
|
|
|
|
void
|
|
fxp_mdi_write(device_t self, int phy, int reg, int value)
|
|
{
|
|
struct fxp_softc *sc = device_private(self);
|
|
int count = 10000;
|
|
|
|
CSR_WRITE_4(sc, FXP_CSR_MDICONTROL,
|
|
(FXP_MDI_WRITE << 26) | (reg << 16) | (phy << 21) |
|
|
(value & 0xffff));
|
|
|
|
while ((CSR_READ_4(sc, FXP_CSR_MDICONTROL) & 0x10000000) == 0 &&
|
|
count--)
|
|
DELAY(10);
|
|
|
|
if (count <= 0)
|
|
log(LOG_WARNING,
|
|
"%s: fxp_mdi_write: timed out\n", device_xname(self));
|
|
}
|
|
|
|
int
|
|
fxp_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct fxp_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
|
|
break;
|
|
|
|
default:
|
|
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
|
|
;
|
|
else if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Multicast list has changed; set the
|
|
* hardware filter accordingly.
|
|
*/
|
|
while (sc->sc_txpending) {
|
|
sc->sc_flags |= FXPF_WANTINIT;
|
|
tsleep(sc, PSOCK, "fxp_init", 0);
|
|
}
|
|
error = fxp_init(ifp);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/* Try to get more packets going. */
|
|
if (sc->sc_enabled)
|
|
fxp_start(ifp);
|
|
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* Program the multicast filter.
|
|
*
|
|
* This function must be called at splnet().
|
|
*/
|
|
void
|
|
fxp_mc_setup(struct fxp_softc *sc)
|
|
{
|
|
struct fxp_cb_mcs *mcsp = &sc->sc_control_data->fcd_mcscb;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep step;
|
|
int count, nmcasts;
|
|
uint16_t status;
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (sc->sc_txpending)
|
|
panic("fxp_mc_setup: pending transmissions");
|
|
#endif
|
|
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
|
|
/*
|
|
* Initialize multicast setup descriptor.
|
|
*/
|
|
nmcasts = 0;
|
|
ETHER_FIRST_MULTI(step, ec, enm);
|
|
while (enm != NULL) {
|
|
/*
|
|
* Check for too many multicast addresses or if we're
|
|
* listening to a range. Either way, we simply have
|
|
* to accept all multicasts.
|
|
*/
|
|
if (nmcasts >= MAXMCADDR ||
|
|
memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
ETHER_ADDR_LEN) != 0) {
|
|
/*
|
|
* Callers of this function must do the
|
|
* right thing with this. If we're called
|
|
* from outside fxp_init(), the caller must
|
|
* detect if the state if IFF_ALLMULTI changes.
|
|
* If it does, the caller must then call
|
|
* fxp_init(), since allmulti is handled by
|
|
* the config block.
|
|
*/
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
return;
|
|
}
|
|
memcpy(&mcsp->mc_addr[nmcasts][0], enm->enm_addrlo,
|
|
ETHER_ADDR_LEN);
|
|
nmcasts++;
|
|
ETHER_NEXT_MULTI(step, enm);
|
|
}
|
|
|
|
/* BIG_ENDIAN: no need to swap to store 0 */
|
|
mcsp->cb_status = 0;
|
|
mcsp->cb_command = htole16(FXP_CB_COMMAND_MCAS | FXP_CB_COMMAND_EL);
|
|
mcsp->link_addr = htole32(FXP_CDTXADDR(sc, FXP_NEXTTX(sc->sc_txlast)));
|
|
mcsp->mc_cnt = htole16(nmcasts * ETHER_ADDR_LEN);
|
|
|
|
FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Wait until the command unit is not active. This should never
|
|
* happen since nothing is queued, but make sure anyway.
|
|
*/
|
|
count = 100;
|
|
while ((CSR_READ_1(sc, FXP_CSR_SCB_RUSCUS) >> 6) ==
|
|
FXP_SCB_CUS_ACTIVE && --count)
|
|
DELAY(1);
|
|
if (count == 0) {
|
|
log(LOG_WARNING, "%s: line %d: command queue timeout\n",
|
|
device_xname(sc->sc_dev), __LINE__);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Start the multicast setup command/DMA.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDMCSOFF);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/* ...and wait for it to complete. */
|
|
for (count = 1000; count > 0; count--) {
|
|
FXP_CDMCSSYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
status = le16toh(mcsp->cb_status);
|
|
FXP_CDMCSSYNC(sc, BUS_DMASYNC_PREREAD);
|
|
if ((status & FXP_CB_STATUS_C) != 0)
|
|
break;
|
|
DELAY(1);
|
|
}
|
|
if (count == 0) {
|
|
log(LOG_WARNING, "%s: line %d: dmasync timeout\n",
|
|
device_xname(sc->sc_dev), __LINE__);
|
|
return;
|
|
}
|
|
}
|
|
|
|
static const uint32_t fxp_ucode_d101a[] = D101_A_RCVBUNDLE_UCODE;
|
|
static const uint32_t fxp_ucode_d101b0[] = D101_B0_RCVBUNDLE_UCODE;
|
|
static const uint32_t fxp_ucode_d101ma[] = D101M_B_RCVBUNDLE_UCODE;
|
|
static const uint32_t fxp_ucode_d101s[] = D101S_RCVBUNDLE_UCODE;
|
|
static const uint32_t fxp_ucode_d102[] = D102_B_RCVBUNDLE_UCODE;
|
|
static const uint32_t fxp_ucode_d102c[] = D102_C_RCVBUNDLE_UCODE;
|
|
|
|
#define UCODE(x) x, sizeof(x)/sizeof(uint32_t)
|
|
|
|
static const struct ucode {
|
|
int32_t revision;
|
|
const uint32_t *ucode;
|
|
size_t length;
|
|
uint16_t int_delay_offset;
|
|
uint16_t bundle_max_offset;
|
|
} ucode_table[] = {
|
|
{ FXP_REV_82558_A4, UCODE(fxp_ucode_d101a),
|
|
D101_CPUSAVER_DWORD, 0 },
|
|
|
|
{ FXP_REV_82558_B0, UCODE(fxp_ucode_d101b0),
|
|
D101_CPUSAVER_DWORD, 0 },
|
|
|
|
{ FXP_REV_82559_A0, UCODE(fxp_ucode_d101ma),
|
|
D101M_CPUSAVER_DWORD, D101M_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ FXP_REV_82559S_A, UCODE(fxp_ucode_d101s),
|
|
D101S_CPUSAVER_DWORD, D101S_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ FXP_REV_82550, UCODE(fxp_ucode_d102),
|
|
D102_B_CPUSAVER_DWORD, D102_B_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ FXP_REV_82550_C, UCODE(fxp_ucode_d102c),
|
|
D102_C_CPUSAVER_DWORD, D102_C_CPUSAVER_BUNDLE_MAX_DWORD },
|
|
|
|
{ 0, NULL, 0, 0, 0 }
|
|
};
|
|
|
|
void
|
|
fxp_load_ucode(struct fxp_softc *sc)
|
|
{
|
|
const struct ucode *uc;
|
|
struct fxp_cb_ucode *cbp = &sc->sc_control_data->fcd_ucode;
|
|
int count, i;
|
|
uint16_t status;
|
|
|
|
if (sc->sc_flags & FXPF_UCODE_LOADED)
|
|
return;
|
|
|
|
/*
|
|
* Only load the uCode if the user has requested that
|
|
* we do so.
|
|
*/
|
|
if ((sc->sc_ethercom.ec_if.if_flags & IFF_LINK0) == 0) {
|
|
sc->sc_int_delay = 0;
|
|
sc->sc_bundle_max = 0;
|
|
return;
|
|
}
|
|
|
|
for (uc = ucode_table; uc->ucode != NULL; uc++) {
|
|
if (sc->sc_rev == uc->revision)
|
|
break;
|
|
}
|
|
if (uc->ucode == NULL)
|
|
return;
|
|
|
|
/* BIG ENDIAN: no need to swap to store 0 */
|
|
cbp->cb_status = 0;
|
|
cbp->cb_command = htole16(FXP_CB_COMMAND_UCODE | FXP_CB_COMMAND_EL);
|
|
cbp->link_addr = 0xffffffff; /* (no) next command */
|
|
for (i = 0; i < uc->length; i++)
|
|
cbp->ucode[i] = htole32(uc->ucode[i]);
|
|
|
|
if (uc->int_delay_offset)
|
|
*(volatile uint16_t *) &cbp->ucode[uc->int_delay_offset] =
|
|
htole16(fxp_int_delay + (fxp_int_delay / 2));
|
|
|
|
if (uc->bundle_max_offset)
|
|
*(volatile uint16_t *) &cbp->ucode[uc->bundle_max_offset] =
|
|
htole16(fxp_bundle_max);
|
|
|
|
FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* Download the uCode to the chip.
|
|
*/
|
|
fxp_scb_wait(sc);
|
|
CSR_WRITE_4(sc, FXP_CSR_SCB_GENERAL, sc->sc_cddma + FXP_CDUCODEOFF);
|
|
fxp_scb_cmd(sc, FXP_SCB_COMMAND_CU_START);
|
|
|
|
/* ...and wait for it to complete. */
|
|
for (count = 10000; count > 0; count--) {
|
|
FXP_CDUCODESYNC(sc,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
status = le16toh(cbp->cb_status);
|
|
FXP_CDUCODESYNC(sc, BUS_DMASYNC_PREREAD);
|
|
if ((status & FXP_CB_STATUS_C) != 0)
|
|
break;
|
|
DELAY(2);
|
|
}
|
|
if (count == 0) {
|
|
sc->sc_int_delay = 0;
|
|
sc->sc_bundle_max = 0;
|
|
log(LOG_WARNING, "%s: timeout loading microcode\n",
|
|
device_xname(sc->sc_dev));
|
|
return;
|
|
}
|
|
|
|
if (sc->sc_int_delay != fxp_int_delay ||
|
|
sc->sc_bundle_max != fxp_bundle_max) {
|
|
sc->sc_int_delay = fxp_int_delay;
|
|
sc->sc_bundle_max = fxp_bundle_max;
|
|
log(LOG_INFO, "%s: Microcode loaded: int delay: %d usec, "
|
|
"max bundle: %d\n", device_xname(sc->sc_dev),
|
|
sc->sc_int_delay,
|
|
uc->bundle_max_offset == 0 ? 0 : sc->sc_bundle_max);
|
|
}
|
|
|
|
sc->sc_flags |= FXPF_UCODE_LOADED;
|
|
}
|
|
|
|
int
|
|
fxp_enable(struct fxp_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_enabled == 0 && sc->sc_enable != NULL) {
|
|
if ((*sc->sc_enable)(sc) != 0) {
|
|
log(LOG_ERR, "%s: device enable failed\n",
|
|
device_xname(sc->sc_dev));
|
|
return (EIO);
|
|
}
|
|
}
|
|
|
|
sc->sc_enabled = 1;
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
fxp_disable(struct fxp_softc *sc)
|
|
{
|
|
|
|
if (sc->sc_enabled != 0 && sc->sc_disable != NULL) {
|
|
(*sc->sc_disable)(sc);
|
|
sc->sc_enabled = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* fxp_activate:
|
|
*
|
|
* Handle device activation/deactivation requests.
|
|
*/
|
|
int
|
|
fxp_activate(device_t self, enum devact act)
|
|
{
|
|
struct fxp_softc *sc = device_private(self);
|
|
int s, error = 0;
|
|
|
|
s = splnet();
|
|
switch (act) {
|
|
case DVACT_ACTIVATE:
|
|
error = EOPNOTSUPP;
|
|
break;
|
|
|
|
case DVACT_DEACTIVATE:
|
|
if (sc->sc_flags & FXPF_MII)
|
|
mii_activate(&sc->sc_mii, act, MII_PHY_ANY,
|
|
MII_OFFSET_ANY);
|
|
if_deactivate(&sc->sc_ethercom.ec_if);
|
|
break;
|
|
}
|
|
splx(s);
|
|
|
|
return (error);
|
|
}
|
|
|
|
/*
|
|
* fxp_detach:
|
|
*
|
|
* Detach an i82557 interface.
|
|
*/
|
|
int
|
|
fxp_detach(struct fxp_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
int i;
|
|
|
|
/* Succeed now if there's no work to do. */
|
|
if ((sc->sc_flags & FXPF_ATTACHED) == 0)
|
|
return (0);
|
|
|
|
/* Unhook our tick handler. */
|
|
callout_stop(&sc->sc_callout);
|
|
|
|
if (sc->sc_flags & FXPF_MII) {
|
|
/* Detach all PHYs */
|
|
mii_detach(&sc->sc_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
}
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_delete_instance(&sc->sc_mii.mii_media, IFM_INST_ANY);
|
|
|
|
#if NRND > 0
|
|
rnd_detach_source(&sc->rnd_source);
|
|
#endif
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
for (i = 0; i < FXP_NRFABUFS; i++) {
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_rxmaps[i]);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rxmaps[i]);
|
|
}
|
|
|
|
for (i = 0; i < FXP_NTXCB; i++) {
|
|
bus_dmamap_unload(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, FXP_DSTX(sc, i)->txs_dmamap);
|
|
}
|
|
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_control_data,
|
|
sizeof(struct fxp_control_data));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_cdseg, sc->sc_cdnseg);
|
|
|
|
return (0);
|
|
}
|