NetBSD/sys/arch/amd64/include/pmap.h

591 lines
18 KiB
C

/* $NetBSD: pmap.h,v 1.9 2006/02/16 20:17:13 perry Exp $ */
/*
*
* Copyright (c) 1997 Charles D. Cranor and Washington University.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgment:
* This product includes software developed by Charles D. Cranor and
* Washington University.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 2001 Wasabi Systems, Inc.
* All rights reserved.
*
* Written by Frank van der Linden for Wasabi Systems, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project by
* Wasabi Systems, Inc.
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
* or promote products derived from this software without specific prior
* written permission.
*
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* pmap.h: see pmap.c for the history of this pmap module.
*/
#ifndef _AMD64_PMAP_H_
#define _AMD64_PMAP_H_
#ifndef _LOCORE
#if defined(_KERNEL_OPT)
#include "opt_largepages.h"
#endif
#include <machine/cpufunc.h>
#include <machine/pte.h>
#include <machine/segments.h>
#include <uvm/uvm_object.h>
#endif
/*
* The x86_64 pmap module closely resembles the i386 one. It uses
* the same recursive entry scheme, and the same alternate area
* trick for accessing non-current pmaps. See the i386 pmap.h
* for a description. The obvious difference is that 3 extra
* levels of page table need to be dealt with. The level 1 page
* table pages are at:
*
* l1: 0x00007f8000000000 - 0x00007fffffffffff (39 bits, needs PML4 entry)
*
* The alternate space is at:
*
* l1: 0xffffff8000000000 - 0xffffffffffffffff (39 bits, needs PML4 entry)
*
* The rest is kept as physical pages in 3 UVM objects, and is
* temporarily mapped for virtual access when needed.
*
* Note that address space is signed, so the layout for 48 bits is:
*
* +---------------------------------+ 0xffffffffffffffff
* | |
* | alt.L1 table (PTE pages) |
* | |
* +---------------------------------+ 0xffffff8000000000
* ~ ~
* | |
* | Kernel Space |
* | |
* | |
* +---------------------------------+ 0xffff800000000000 = 0x0000800000000000
* | |
* | alt.L1 table (PTE pages) |
* | |
* +---------------------------------+ 0x00007f8000000000
* ~ ~
* | |
* | User Space |
* | |
* | |
* +---------------------------------+ 0x0000000000000000
*
* In other words, there is a 'VA hole' at 0x0000800000000000 -
* 0xffff800000000000 which will trap, just as on, for example,
* sparcv9.
*
* The unused space can be used if needed, but it adds a little more
* complexity to the calculations.
*/
/*
* The first generation of Hammer processors can use 48 bits of
* virtual memory, and 40 bits of physical memory. This will be
* more for later generations. These defines can be changed to
* variable names containing the # of bits, extracted from an
* extended cpuid instruction (variables are harder to use during
* bootstrap, though)
*/
#define VIRT_BITS 48
#define PHYS_BITS 40
/*
* Mask to get rid of the sign-extended part of addresses.
*/
#define VA_SIGN_MASK 0xffff000000000000
#define VA_SIGN_NEG(va) ((va) | VA_SIGN_MASK)
/*
* XXXfvdl this one's not right.
*/
#define VA_SIGN_POS(va) ((va) & ~VA_SIGN_MASK)
#define L4_SLOT_PTE 255
#define L4_SLOT_KERN 256
#define L4_SLOT_KERNBASE 511
#define L4_SLOT_APTE 510
#define PDIR_SLOT_KERN L4_SLOT_KERN
#define PDIR_SLOT_PTE L4_SLOT_PTE
#define PDIR_SLOT_APTE L4_SLOT_APTE
/*
* the following defines give the virtual addresses of various MMU
* data structures:
* PTE_BASE and APTE_BASE: the base VA of the linear PTE mappings
* PTD_BASE and APTD_BASE: the base VA of the recursive mapping of the PTD
* PDP_PDE and APDP_PDE: the VA of the PDE that points back to the PDP/APDP
*
*/
#define PTE_BASE ((pt_entry_t *) (L4_SLOT_PTE * NBPD_L4))
#define APTE_BASE ((pt_entry_t *) (VA_SIGN_NEG((L4_SLOT_APTE * NBPD_L4))))
#define L1_BASE PTE_BASE
#define AL1_BASE APTE_BASE
#define L2_BASE ((pd_entry_t *)((char *)L1_BASE + L4_SLOT_PTE * NBPD_L3))
#define L3_BASE ((pd_entry_t *)((char *)L2_BASE + L4_SLOT_PTE * NBPD_L2))
#define L4_BASE ((pd_entry_t *)((char *)L3_BASE + L4_SLOT_PTE * NBPD_L1))
#define AL2_BASE ((pd_entry_t *)((char *)AL1_BASE + L4_SLOT_PTE * NBPD_L3))
#define AL3_BASE ((pd_entry_t *)((char *)AL2_BASE + L4_SLOT_PTE * NBPD_L2))
#define AL4_BASE ((pd_entry_t *)((char *)AL3_BASE + L4_SLOT_PTE * NBPD_L1))
#define PDP_PDE (L4_BASE + PDIR_SLOT_PTE)
#define APDP_PDE (L4_BASE + PDIR_SLOT_APTE)
#define PDP_BASE L4_BASE
#define APDP_BASE AL4_BASE
#define NKL4_MAX_ENTRIES (unsigned long)1
#define NKL3_MAX_ENTRIES (unsigned long)(NKL4_MAX_ENTRIES * 512)
#define NKL2_MAX_ENTRIES (unsigned long)(NKL3_MAX_ENTRIES * 512)
#define NKL1_MAX_ENTRIES (unsigned long)(NKL2_MAX_ENTRIES * 512)
#define NKL4_KIMG_ENTRIES 1
#define NKL3_KIMG_ENTRIES 1
#define NKL2_KIMG_ENTRIES 8
/*
* Since kva space is below the kernel in its entirety, we start off
* with zero entries on each level.
*/
#define NKL4_START_ENTRIES 0
#define NKL3_START_ENTRIES 0
#define NKL2_START_ENTRIES 0
#define NKL1_START_ENTRIES 0 /* XXX */
#define NTOPLEVEL_PDES (PAGE_SIZE / (sizeof (pd_entry_t)))
#define KERNSPACE (NKL4_ENTRIES * NBPD_L4)
#define NPDPG (PAGE_SIZE / sizeof (pd_entry_t))
#define ptei(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
/*
* pl*_pi: index in the ptp page for a pde mapping a VA.
* (pl*_i below is the index in the virtual array of all pdes per level)
*/
#define pl1_pi(VA) (((VA_SIGN_POS(VA)) & L1_MASK) >> L1_SHIFT)
#define pl2_pi(VA) (((VA_SIGN_POS(VA)) & L2_MASK) >> L2_SHIFT)
#define pl3_pi(VA) (((VA_SIGN_POS(VA)) & L3_MASK) >> L3_SHIFT)
#define pl4_pi(VA) (((VA_SIGN_POS(VA)) & L4_MASK) >> L4_SHIFT)
/*
* pl*_i: generate index into pde/pte arrays in virtual space
*/
#define pl1_i(VA) (((VA_SIGN_POS(VA)) & L1_FRAME) >> L1_SHIFT)
#define pl2_i(VA) (((VA_SIGN_POS(VA)) & L2_FRAME) >> L2_SHIFT)
#define pl3_i(VA) (((VA_SIGN_POS(VA)) & L3_FRAME) >> L3_SHIFT)
#define pl4_i(VA) (((VA_SIGN_POS(VA)) & L4_FRAME) >> L4_SHIFT)
#define pl_i(va, lvl) \
(((VA_SIGN_POS(va)) & ptp_masks[(lvl)-1]) >> ptp_shifts[(lvl)-1])
#define PTP_MASK_INITIALIZER { L1_FRAME, L2_FRAME, L3_FRAME, L4_FRAME }
#define PTP_SHIFT_INITIALIZER { L1_SHIFT, L2_SHIFT, L3_SHIFT, L4_SHIFT }
#define NKPTP_INITIALIZER { NKL1_START_ENTRIES, NKL2_START_ENTRIES, \
NKL3_START_ENTRIES, NKL4_START_ENTRIES }
#define NKPTPMAX_INITIALIZER { NKL1_MAX_ENTRIES, NKL2_MAX_ENTRIES, \
NKL3_MAX_ENTRIES, NKL4_MAX_ENTRIES }
#define NBPD_INITIALIZER { NBPD_L1, NBPD_L2, NBPD_L3, NBPD_L4 }
#define PDES_INITIALIZER { L2_BASE, L3_BASE, L4_BASE }
#define APDES_INITIALIZER { AL2_BASE, AL3_BASE, AL4_BASE }
/*
* PTP macros:
* a PTP's index is the PD index of the PDE that points to it
* a PTP's offset is the byte-offset in the PTE space that this PTP is at
* a PTP's VA is the first VA mapped by that PTP
*
* note that PAGE_SIZE == number of bytes in a PTP (4096 bytes == 1024 entries)
* NBPD == number of bytes a PTP can map (4MB)
*/
#define ptp_va2o(va, lvl) (pl_i(va, (lvl)+1) * PAGE_SIZE)
#define PTP_LEVELS 4
/*
* PG_AVAIL usage: we make use of the ignored bits of the PTE
*/
#define PG_W PG_AVAIL1 /* "wired" mapping */
#define PG_PVLIST PG_AVAIL2 /* mapping has entry on pvlist */
/* PG_AVAIL3 not used */
/*
* Number of PTE's per cache line. 8 byte pte, 64-byte cache line
* Used to avoid false sharing of cache lines.
*/
#define NPTECL 8
#if defined(_KERNEL) && !defined(_LOCORE)
/*
* pmap data structures: see pmap.c for details of locking.
*/
struct pmap;
typedef struct pmap *pmap_t;
/*
* we maintain a list of all non-kernel pmaps
*/
LIST_HEAD(pmap_head, pmap); /* struct pmap_head: head of a pmap list */
/*
* the pmap structure
*
* note that the pm_obj contains the simple_lock, the reference count,
* page list, and number of PTPs within the pmap.
*
* pm_lock is the same as the spinlock for vm object 0. Changes to
* the other objects may only be made if that lock has been taken
* (the other object locks are only used when uvm_pagealloc is called)
*/
struct pmap {
struct uvm_object pm_obj[PTP_LEVELS-1]; /* objects for lvl >= 1) */
#define pm_lock pm_obj[0].vmobjlock
#define pm_obj_l1 pm_obj[0]
#define pm_obj_l2 pm_obj[1]
#define pm_obj_l3 pm_obj[2]
LIST_ENTRY(pmap) pm_list; /* list (lck by pm_list lock) */
pd_entry_t *pm_pdir; /* VA of PD (lck by object lock) */
paddr_t pm_pdirpa; /* PA of PD (read-only after create) */
struct vm_page *pm_ptphint[PTP_LEVELS-1];
/* pointer to a PTP in our pmap */
struct pmap_statistics pm_stats; /* pmap stats (lck by object lock) */
int pm_flags; /* see below */
union descriptor *pm_ldt; /* user-set LDT */
int pm_ldt_len; /* number of LDT entries */
int pm_ldt_sel; /* LDT selector */
u_int32_t pm_cpus; /* mask of CPUs using pmap */
};
/* pm_flags */
#define PMF_USER_LDT 0x01 /* pmap has user-set LDT */
/*
* for each managed physical page we maintain a list of <PMAP,VA>'s
* which it is mapped at. the list is headed by a pv_head structure.
* there is one pv_head per managed phys page (allocated at boot time).
* the pv_head structure points to a list of pv_entry structures (each
* describes one mapping).
*/
struct pv_entry { /* locked by its list's pvh_lock */
SPLAY_ENTRY(pv_entry) pv_node; /* splay-tree node */
struct pmap *pv_pmap; /* the pmap */
vaddr_t pv_va; /* the virtual address */
struct vm_page *pv_ptp; /* the vm_page of the PTP */
};
/*
* pv_entrys are dynamically allocated in chunks from a single page.
* we keep track of how many pv_entrys are in use for each page and
* we can free pv_entry pages if needed. there is one lock for the
* entire allocation system.
*/
struct pv_page_info {
TAILQ_ENTRY(pv_page) pvpi_list;
struct pv_entry *pvpi_pvfree;
int pvpi_nfree;
};
/*
* number of pv_entry's in a pv_page
* (note: won't work on systems where NPBG isn't a constant)
*/
#define PVE_PER_PVPAGE ((PAGE_SIZE - sizeof(struct pv_page_info)) / \
sizeof(struct pv_entry))
/*
* a pv_page: where pv_entrys are allocated from
*/
struct pv_page {
struct pv_page_info pvinfo;
struct pv_entry pvents[PVE_PER_PVPAGE];
};
/*
* pmap_remove_record: a record of VAs that have been unmapped, used to
* flush TLB. if we have more than PMAP_RR_MAX then we stop recording.
*/
#define PMAP_RR_MAX 16 /* max of 16 pages (64K) */
struct pmap_remove_record {
int prr_npages;
vaddr_t prr_vas[PMAP_RR_MAX];
};
/*
* global kernel variables
*/
/* PTDpaddr: is the physical address of the kernel's PDP */
extern u_long PTDpaddr;
extern struct pmap kernel_pmap_store; /* kernel pmap */
extern int pmap_pg_g; /* do we support PG_G? */
extern paddr_t ptp_masks[];
extern int ptp_shifts[];
extern long nkptp[], nbpd[], nkptpmax[];
/*
* macros
*/
#define pmap_kernel() (&kernel_pmap_store)
#define pmap_resident_count(pmap) ((pmap)->pm_stats.resident_count)
#define pmap_wired_count(pmap) ((pmap)->pm_stats.wired_count)
#define pmap_update(pmap) /* nothing (yet) */
#define pmap_clear_modify(pg) pmap_clear_attrs(pg, PG_M)
#define pmap_clear_reference(pg) pmap_clear_attrs(pg, PG_U)
#define pmap_copy(DP,SP,D,L,S)
#define pmap_is_modified(pg) pmap_test_attrs(pg, PG_M)
#define pmap_is_referenced(pg) pmap_test_attrs(pg, PG_U)
#define pmap_move(DP,SP,D,L,S)
#define pmap_phys_address(ppn) ptob(ppn)
#define pmap_valid_entry(E) ((E) & PG_V) /* is PDE or PTE valid? */
/*
* prototypes
*/
void pmap_activate __P((struct lwp *));
void pmap_bootstrap __P((vaddr_t));
boolean_t pmap_clear_attrs __P((struct vm_page *, unsigned));
void pmap_deactivate __P((struct lwp *));
static void pmap_page_protect __P((struct vm_page *, vm_prot_t));
void pmap_page_remove __P((struct vm_page *));
static void pmap_protect __P((struct pmap *, vaddr_t,
vaddr_t, vm_prot_t));
void pmap_remove __P((struct pmap *, vaddr_t, vaddr_t));
boolean_t pmap_test_attrs __P((struct vm_page *, unsigned));
static void pmap_update_pg __P((vaddr_t));
static void pmap_update_2pg __P((vaddr_t,vaddr_t));
void pmap_write_protect __P((struct pmap *, vaddr_t,
vaddr_t, vm_prot_t));
void pmap_changeprot_local(vaddr_t, vm_prot_t);
vaddr_t reserve_dumppages __P((vaddr_t)); /* XXX: not a pmap fn */
void pmap_tlb_shootdown __P((pmap_t, vaddr_t, pt_entry_t, int32_t *));
void pmap_tlb_shootnow __P((int32_t));
void pmap_do_tlb_shootdown __P((struct cpu_info *));
void pmap_prealloc_lowmem_ptps __P((void));
#define PMAP_GROWKERNEL /* turn on pmap_growkernel interface */
/*
* Do idle page zero'ing uncached to avoid polluting the cache.
*/
boolean_t pmap_pageidlezero __P((paddr_t));
#define PMAP_PAGEIDLEZERO(pa) pmap_pageidlezero((pa))
/*
* inline functions
*/
static __inline void
pmap_remove_all(struct pmap *pmap)
{
/* Nothing. */
}
/*
* pmap_update_pg: flush one page from the TLB (or flush the whole thing
* if hardware doesn't support one-page flushing)
*/
__inline static void
pmap_update_pg(va)
vaddr_t va;
{
invlpg(va);
}
/*
* pmap_update_2pg: flush two pages from the TLB
*/
__inline static void
pmap_update_2pg(va, vb)
vaddr_t va, vb;
{
invlpg(va);
invlpg(vb);
}
/*
* pmap_page_protect: change the protection of all recorded mappings
* of a managed page
*
* => this function is a frontend for pmap_page_remove/pmap_clear_attrs
* => we only have to worry about making the page more protected.
* unprotecting a page is done on-demand at fault time.
*/
__inline static void
pmap_page_protect(struct vm_page *pg, vm_prot_t prot)
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
(void) pmap_clear_attrs(pg, PG_RW);
} else {
pmap_page_remove(pg);
}
}
}
/*
* pmap_protect: change the protection of pages in a pmap
*
* => this function is a frontend for pmap_remove/pmap_write_protect
* => we only have to worry about making the page more protected.
* unprotecting a page is done on-demand at fault time.
*/
__inline static void
pmap_protect(pmap, sva, eva, prot)
struct pmap *pmap;
vaddr_t sva, eva;
vm_prot_t prot;
{
if ((prot & VM_PROT_WRITE) == 0) {
if (prot & (VM_PROT_READ|VM_PROT_EXECUTE)) {
pmap_write_protect(pmap, sva, eva, prot);
} else {
pmap_remove(pmap, sva, eva);
}
}
}
/*
* various address inlines
*
* vtopte: return a pointer to the PTE mapping a VA, works only for
* user and PT addresses
*
* kvtopte: return a pointer to the PTE mapping a kernel VA
*/
#include <lib/libkern/libkern.h>
static __inline pt_entry_t *
vtopte(vaddr_t va)
{
KASSERT(va < (L4_SLOT_KERN * NBPD_L4));
return (PTE_BASE + pl1_i(va));
}
static __inline pt_entry_t *
kvtopte(vaddr_t va)
{
KASSERT(va >= (L4_SLOT_KERN * NBPD_L4));
#ifdef LARGEPAGES
{
pd_entry_t *pde;
pde = L2_BASE + pl2_i(va);
if (*pde & PG_PS)
return ((pt_entry_t *)pde);
}
#endif
return (PTE_BASE + pl1_i(va));
}
#define pmap_pte_set(p, n) x86_atomic_testset_u64(p, n)
#define pmap_pte_clearbits(p, b) x86_atomic_clearbits_u64(p, b)
#define pmap_cpu_has_pg_n() (1)
#define pmap_cpu_has_invlpg (1)
paddr_t vtophys __P((vaddr_t));
vaddr_t pmap_map __P((vaddr_t, paddr_t, paddr_t, vm_prot_t));
#if 0 /* XXXfvdl was USER_LDT, need to check if that can be supported */
void pmap_ldt_cleanup __P((struct lwp *));
#define PMAP_FORK
#endif /* USER_LDT */
/*
* Hooks for the pool allocator.
*/
#define POOL_VTOPHYS(va) vtophys((vaddr_t) (va))
#endif /* _KERNEL && !_LOCORE */
#endif /* _AMD64_PMAP_H_ */