NetBSD/sys/arch/atari/dev/clock.c
1995-03-26 07:12:03 +00:00

698 lines
16 KiB
C

/* $NetBSD: clock.c,v 1.1.1.1 1995/03/26 07:12:13 leo Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from: Utah $Hdr: clock.c 1.18 91/01/21$
*
* @(#)clock.c 7.6 (Berkeley) 5/7/91
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/device.h>
#include <machine/psl.h>
#include <machine/cpu.h>
#include <machine/iomap.h>
#include <machine/mfp.h>
#include <atari/dev/clockreg.h>
#if defined(PROF) && defined(PROFTIMER)
#include <sys/PROF.h>
#endif
/*
* Machine-dependent clock routines.
*
* Startrtclock restarts the real-time clock, which provides
* hardclock interrupts to kern_clock.c.
*
* Inittodr initializes the time of day hardware which provides
* date functions.
*
* Resettodr restores the time of day hardware after a time change.
*
* A note on the real-time clock:
* We actually load the clock with CLK_INTERVAL-1 instead of CLK_INTERVAL.
* This is because the counter decrements to zero after N+1 enabled clock
* periods where N is the value loaded into the counter.
*/
int clockmatch __P((struct device *, struct cfdata *, void *));
void clockattach __P((struct device *, struct device *, void *));
struct cfdriver clockcd = {
NULL, "clock", (cfmatch_t)clockmatch, clockattach,
DV_DULL, sizeof(struct device), NULL, 0
};
static u_long gettod __P((void));
static int settod __P((u_long));
static int divisor;
int
clockmatch(pdp, cfp, auxp)
struct device *pdp;
struct cfdata *cfp;
void *auxp;
{
if(!strcmp("clock", auxp))
return(1);
return(0);
}
/*
* Start the real-time clock.
*/
void clockattach(pdp, dp, auxp)
struct device *pdp, *dp;
void *auxp;
{
/*
* Initialize Timer-A in the TT-MFP. An exact reduce to HZ is not
* possible by hardware. We use a divisor of 64 and reduce by software
* with a factor of 4. The MFP clock runs at 2457600Hz. Therefore the
* timer runs at an effective rate of: 2457600/(64*4) = 9600Hz. The
* following expression works for all 'normal' values of hz.
*/
divisor = 9600/hz;
MFP2->mf_tacr = 0; /* Stop timer */
MFP2->mf_iera &= ~IA_TIMA2; /* Disable timer interrupts */
MFP2->mf_tadr = divisor; /* Set divisor */
printf(": system hz %d timer-A divisor %d\n", hz, divisor);
/*
* Initialize Timer-B in the TT-MFP. This timer is used by the 'delay'
* function below. This time is setup to be continueously counting from
* 255 back to zero at a frequency of 614400Hz.
*/
MFP2->mf_tbcr = 0; /* Stop timer */
MFP2->mf_iera &= ~IA_TIMB2; /* Disable timer interrupts */
MFP2->mf_tbdr = 0;
MFP2->mf_tbcr = T_Q004; /* Start timer */
}
void cpu_initclocks()
{
MFP2->mf_tacr = T_Q064; /* Start timer */
MFP2->mf_ipra &= ~IA_TIMA2; /* Clear pending interrupts */
MFP2->mf_iera |= IA_TIMA2; /* Enable timer interrupts */
MFP2->mf_imra |= IA_TIMA2; /* ..... */
}
setstatclockrate(hz)
int hz;
{
}
/*
* Returns number of usec since last recorded clock "tick"
* (i.e. clock interrupt).
*/
clkread()
{
extern short clk_div;
u_int delta, elapsed;
elapsed = (divisor - MFP2->mf_tadr) + ((4 - clk_div) * divisor);
delta = (elapsed * tick) / (divisor << 2);
/*
* Account for pending clock interrupts
*/
if(MFP2->mf_iera & IA_TIMA2)
return(delta + tick);
return(delta);
}
#define TIMB2_FREQ 614400
#define TIMB2_LIMIT 256
/*
* Wait "n" microseconds.
* Relies on MFP2-Timer B counting down from TIMB2_LIMIT at TIMB2_FREQ Hz.
* Note: timer had better have been programmed before this is first used!
*/
void delay(n)
int n;
{
int tick, otick;
/*
* Read the counter first, so that the rest of the setup overhead is
* counted.
*/
otick = MFP2->mf_tbdr;
/*
* Calculate ((n * TIMER_FREQ) / 1e6) using explicit assembler code so
* we can take advantage of the intermediate 64-bit quantity to prevent
* loss of significance.
*/
n -= 5;
if(n < 0)
return;
{
u_int temp;
__asm __volatile ("mulul %2,%1:%0" : "=d" (n), "=d" (temp)
: "d" (TIMB2_FREQ));
__asm __volatile ("divul %1,%2:%0" : "=d" (n)
: "d"(1000000),"d"(temp),"0"(n));
}
while(n > 0) {
tick = MFP2->mf_tbdr;
if(tick > otick)
n -= TIMB2_LIMIT - (tick - otick);
else n -= otick - tick;
otick = tick;
}
}
#ifdef notyet
/*
* Needs to be calibrated for use, its way off most of the time
*/
void
DELAY(mic)
int mic;
{
u_long n;
short hpos;
/*
* this function uses HSync pulses as base units. The custom chips
* display only deals with 31.6kHz/2 refresh, this gives us a
* resolution of 1/15800 s, which is ~63us (add some fuzz so we really
* wait awhile, even if using small timeouts)
*/
n = mic/63 + 2;
do {
hpos = custom.vhposr & 0xff00;
while (hpos == (custom.vhposr & 0xff00))
;
} while (n--);
}
#endif /* notyet */
#if notyet
/* implement this later. I'd suggest using both timers in CIA-A, they're
not yet used. */
#include "clock.h"
#if NCLOCK > 0
/*
* /dev/clock: mappable high resolution timer.
*
* This code implements a 32-bit recycling counter (with a 4 usec period)
* using timers 2 & 3 on the 6840 clock chip. The counter can be mapped
* RO into a user's address space to achieve low overhead (no system calls),
* high-precision timing.
*
* Note that timer 3 is also used for the high precision profiling timer
* (PROFTIMER code above). Care should be taken when both uses are
* configured as only a token effort is made to avoid conflicting use.
*/
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <vm/vm.h>
#include <amiga/amiga/clockioctl.h>
#include <sys/specdev.h>
#include <sys/vnode.h>
#include <sys/mman.h>
int clockon = 0; /* non-zero if high-res timer enabled */
#ifdef PROFTIMER
int profprocs = 0; /* # of procs using profiling timer */
#endif
#ifdef DEBUG
int clockdebug = 0;
#endif
/*ARGSUSED*/
clockopen(dev, flags)
dev_t dev;
{
#ifdef PROFTIMER
#ifdef PROF
/*
* Kernel profiling enabled, give up.
*/
if (profiling)
return(EBUSY);
#endif
/*
* If any user processes are profiling, give up.
*/
if (profprocs)
return(EBUSY);
#endif
if (!clockon) {
startclock();
clockon++;
}
return(0);
}
/*ARGSUSED*/
clockclose(dev, flags)
dev_t dev;
{
(void) clockunmmap(dev, (caddr_t)0, curproc); /* XXX */
stopclock();
clockon = 0;
return(0);
}
/*ARGSUSED*/
clockioctl(dev, cmd, data, flag, p)
dev_t dev;
u_long cmd;
caddr_t data;
struct proc *p;
{
int error = 0;
switch (cmd) {
case CLOCKMAP:
error = clockmmap(dev, (caddr_t *)data, p);
break;
case CLOCKUNMAP:
error = clockunmmap(dev, *(caddr_t *)data, p);
break;
case CLOCKGETRES:
*(int *)data = CLK_RESOLUTION;
break;
default:
error = EINVAL;
break;
}
return(error);
}
/*ARGSUSED*/
clockmap(dev, off, prot)
dev_t dev;
{
return((off + (INTIOBASE+CLKBASE+CLKSR-1)) >> PGSHIFT);
}
clockmmap(dev, addrp, p)
dev_t dev;
caddr_t *addrp;
struct proc *p;
{
int error;
struct vnode vn;
struct specinfo si;
int flags;
flags = MAP_FILE|MAP_SHARED;
if (*addrp)
flags |= MAP_FIXED;
else
*addrp = (caddr_t)0x1000000; /* XXX */
vn.v_type = VCHR; /* XXX */
vn.v_specinfo = &si; /* XXX */
vn.v_rdev = dev; /* XXX */
error = vm_mmap(&p->p_vmspace->vm_map, (vm_offset_t *)addrp,
PAGE_SIZE, VM_PROT_ALL, flags, (caddr_t)&vn, 0);
return(error);
}
clockunmmap(dev, addr, p)
dev_t dev;
caddr_t addr;
struct proc *p;
{
int rv;
if (addr == 0)
return(EINVAL); /* XXX: how do we deal with this? */
rv = vm_deallocate(p->p_vmspace->vm_map, (vm_offset_t)addr, PAGE_SIZE);
return(rv == KERN_SUCCESS ? 0 : EINVAL);
}
startclock()
{
register struct clkreg *clk = (struct clkreg *)clkstd[0];
clk->clk_msb2 = -1; clk->clk_lsb2 = -1;
clk->clk_msb3 = -1; clk->clk_lsb3 = -1;
clk->clk_cr2 = CLK_CR3;
clk->clk_cr3 = CLK_OENAB|CLK_8BIT;
clk->clk_cr2 = CLK_CR1;
clk->clk_cr1 = CLK_IENAB;
}
stopclock()
{
register struct clkreg *clk = (struct clkreg *)clkstd[0];
clk->clk_cr2 = CLK_CR3;
clk->clk_cr3 = 0;
clk->clk_cr2 = CLK_CR1;
clk->clk_cr1 = CLK_IENAB;
}
#endif
#endif
#ifdef PROFTIMER
/*
* This code allows the amiga kernel to use one of the extra timers on
* the clock chip for profiling, instead of the regular system timer.
* The advantage of this is that the profiling timer can be turned up to
* a higher interrupt rate, giving finer resolution timing. The profclock
* routine is called from the lev6intr in locore, and is a specialized
* routine that calls addupc. The overhead then is far less than if
* hardclock/softclock was called. Further, the context switch code in
* locore has been changed to turn the profile clock on/off when switching
* into/out of a process that is profiling (startprofclock/stopprofclock).
* This reduces the impact of the profiling clock on other users, and might
* possibly increase the accuracy of the profiling.
*/
int profint = PRF_INTERVAL; /* Clock ticks between interrupts */
int profscale = 0; /* Scale factor from sys clock to prof clock */
char profon = 0; /* Is profiling clock on? */
/* profon values - do not change, locore.s assumes these values */
#define PRF_NONE 0x00
#define PRF_USER 0x01
#define PRF_KERNEL 0x80
initprofclock()
{
#if NCLOCK > 0
struct proc *p = curproc; /* XXX */
/*
* If the high-res timer is running, force profiling off.
* Unfortunately, this gets reflected back to the user not as
* an error but as a lack of results.
*/
if (clockon) {
p->p_stats->p_prof.pr_scale = 0;
return;
}
/*
* Keep track of the number of user processes that are profiling
* by checking the scale value.
*
* XXX: this all assumes that the profiling code is well behaved;
* i.e. profil() is called once per process with pcscale non-zero
* to turn it on, and once with pcscale zero to turn it off.
* Also assumes you don't do any forks or execs. Oh well, there
* is always adb...
*/
if (p->p_stats->p_prof.pr_scale)
profprocs++;
else
profprocs--;
#endif
/*
* The profile interrupt interval must be an even divisor
* of the CLK_INTERVAL so that scaling from a system clock
* tick to a profile clock tick is possible using integer math.
*/
if (profint > CLK_INTERVAL || (CLK_INTERVAL % profint) != 0)
profint = CLK_INTERVAL;
profscale = CLK_INTERVAL / profint;
}
startprofclock()
{
unsigned short interval;
/* stop timer B */
ciab.crb = ciab.crb & 0xc0;
/* load interval into registers.
the clocks run at NTSC: 715.909kHz or PAL: 709.379kHz */
interval = profint - 1;
/* order of setting is important ! */
ciab.tblo = interval & 0xff;
ciab.tbhi = interval >> 8;
/* enable interrupts for timer B */
ciab.icr = (1<<7) | (1<<1);
/* start timer B in continuous shot mode */
ciab.crb = (ciab.crb & 0xc0) | 1;
}
stopprofclock()
{
/* stop timer B */
ciab.crb = ciab.crb & 0xc0;
}
#ifdef PROF
/*
* profclock() is expanded in line in lev6intr() unless profiling kernel.
* Assumes it is called with clock interrupts blocked.
*/
profclock(pc, ps)
caddr_t pc;
int ps;
{
/*
* Came from user mode.
* If this process is being profiled record the tick.
*/
if (USERMODE(ps)) {
if (p->p_stats.p_prof.pr_scale)
addupc(pc, &curproc->p_stats.p_prof, 1);
}
/*
* Came from kernel (supervisor) mode.
* If we are profiling the kernel, record the tick.
*/
else if (profiling < 2) {
register int s = pc - s_lowpc;
if (s < s_textsize)
kcount[s / (HISTFRACTION * sizeof (*kcount))]++;
}
/*
* Kernel profiling was on but has been disabled.
* Mark as no longer profiling kernel and if all profiling done,
* disable the clock.
*/
if (profiling && (profon & PRF_KERNEL)) {
profon &= ~PRF_KERNEL;
if (profon == PRF_NONE)
stopprofclock();
}
}
#endif
#endif
/*
* Initialize the time of day register, based on the time base which is, e.g.
* from a filesystem.
*/
inittodr(base)
time_t base;
{
u_long timbuf = base; /* assume no battery clock exists */
timbuf = gettod();
if(timbuf < base) {
printf("WARNING: bad date in battery clock\n");
timbuf = base;
}
/* Battery clock does not store usec's, so forget about it. */
time.tv_sec = timbuf;
}
resettodr()
{
if(settod(time.tv_sec) == 1)
return;
printf("Cannot set battery backed clock\n");
}
static char dmsize[12] =
{
31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static char ldmsize[12] =
{
31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
};
static __inline__ int rtc_getclkreg(regno)
int regno;
{
RTC->rtc_regno = RTC_REGA;
RTC->rtc_regno = regno;
return(RTC->rtc_data & 0377);
}
static __inline__ void rtc_setclkreg(regno, value)
int regno, value;
{
RTC->rtc_regno = regno;
RTC->rtc_data = value;
}
static u_long
gettod()
{
int i, year, mon, day, hour, min, sec;
u_long new_time = 0;
char *msize;
/*
* Hold clock
*/
rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) | RTC_B_SET);
/*
* Read clock
*/
sec = rtc_getclkreg(RTC_SEC);
min = rtc_getclkreg(RTC_MIN);
hour = rtc_getclkreg(RTC_HOUR);
day = rtc_getclkreg(RTC_DAY) - 1;
mon = rtc_getclkreg(RTC_MONTH) - 1;
year = rtc_getclkreg(RTC_YEAR) + STARTOFTIME;
/*
* Let it run again..
*/
rtc_setclkreg(RTC_REGB, rtc_getclkreg(RTC_REGB) & ~RTC_B_SET);
if(range_test(hour, 0, 23))
return(0);
if(range_test(day, 0, 30))
return(0);
if (range_test(mon, 0, 11))
return(0);
if(range_test(year, STARTOFTIME, 2000))
return(0);
for(i = STARTOFTIME; i < year; i++) {
if(is_leap(i))
new_time += 366;
else new_time += 365;
}
msize = is_leap(year) ? ldmsize : dmsize;
for(i = 0; i < mon; i++)
new_time += msize[i];
new_time += day;
return((new_time * SECS_DAY) + (hour * 3600) + (min * 60) + sec);
}
static int
settod(newtime)
u_long newtime;
{
register long days, rem, year;
register char *ml;
int sec, min, hour, month;
/* Number of days since Jan. 1 1970 */
days = newtime / SECS_DAY;
rem = newtime % SECS_DAY;
/*
* Calculate sec, min, hour
*/
hour = rem / SECS_HOUR;
rem %= SECS_HOUR;
min = rem / 60;
sec = rem % 60;
/*
* Figure out the year. Day in year is left in 'days'.
*/
year = STARTOFTIME;
while(days >= (rem = is_leap(year) ? 366 : 365)) {
++year;
days -= rem;
}
while(days < 0) {
--year;
days += is_leap(year) ? 366 : 365;
}
/*
* Determine the month
*/
ml = is_leap(year) ? ldmsize : dmsize;
for(month = 0; days >= ml[month]; ++month)
days -= ml[month];
/*
* Now that everything is calculated, program the RTC
*/
rtc_setclkreg(RTC_REGB, RTC_B_SET);
rtc_setclkreg(RTC_REGA, RTC_A_DV1|RTC_A_RS2|RTC_A_RS3);
rtc_setclkreg(RTC_REGB, RTC_B_SET|RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
rtc_setclkreg(RTC_SEC, sec);
rtc_setclkreg(RTC_MIN, min);
rtc_setclkreg(RTC_HOUR, hour);
rtc_setclkreg(RTC_DAY, days+1);
rtc_setclkreg(RTC_MONTH, month+1);
rtc_setclkreg(RTC_YEAR, year-1970);
rtc_setclkreg(RTC_REGB, RTC_B_SQWE|RTC_B_DM|RTC_B_24_12);
return(1);
}