454af1c0e8
There are still about 1600 left, but they have ',' or /* ... */ in the actual variable definitions - which my awk script doesn't handle. There are also many that need () -> (void). (The script does handle misordered arguments.)
701 lines
22 KiB
C
701 lines
22 KiB
C
/* $NetBSD: rf_paritylogDiskMgr.c,v 1.23 2009/03/14 15:36:20 dsl Exp $ */
|
|
/*
|
|
* Copyright (c) 1995 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Author: William V. Courtright II
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
/* Code for flushing and reintegration operations related to parity logging.
|
|
*
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: rf_paritylogDiskMgr.c,v 1.23 2009/03/14 15:36:20 dsl Exp $");
|
|
|
|
#include "rf_archs.h"
|
|
|
|
#if RF_INCLUDE_PARITYLOGGING > 0
|
|
|
|
#include <dev/raidframe/raidframevar.h>
|
|
|
|
#include "rf_threadstuff.h"
|
|
#include "rf_mcpair.h"
|
|
#include "rf_raid.h"
|
|
#include "rf_dag.h"
|
|
#include "rf_dagfuncs.h"
|
|
#include "rf_desc.h"
|
|
#include "rf_layout.h"
|
|
#include "rf_diskqueue.h"
|
|
#include "rf_paritylog.h"
|
|
#include "rf_general.h"
|
|
#include "rf_etimer.h"
|
|
#include "rf_paritylogging.h"
|
|
#include "rf_engine.h"
|
|
#include "rf_dagutils.h"
|
|
#include "rf_map.h"
|
|
#include "rf_parityscan.h"
|
|
|
|
#include "rf_paritylogDiskMgr.h"
|
|
|
|
static void *AcquireReintBuffer(RF_RegionBufferQueue_t *);
|
|
|
|
static void *
|
|
AcquireReintBuffer(RF_RegionBufferQueue_t *pool)
|
|
{
|
|
void *bufPtr = NULL;
|
|
|
|
/* Return a region buffer from the free list (pool). If the free list
|
|
* is empty, WAIT. BLOCKING */
|
|
|
|
RF_LOCK_MUTEX(pool->mutex);
|
|
if (pool->availableBuffers > 0) {
|
|
bufPtr = pool->buffers[pool->availBuffersIndex];
|
|
pool->availableBuffers--;
|
|
pool->availBuffersIndex++;
|
|
if (pool->availBuffersIndex == pool->totalBuffers)
|
|
pool->availBuffersIndex = 0;
|
|
RF_UNLOCK_MUTEX(pool->mutex);
|
|
} else {
|
|
RF_PANIC(); /* should never happen in correct config,
|
|
* single reint */
|
|
RF_WAIT_COND(pool->cond, pool->mutex);
|
|
}
|
|
return (bufPtr);
|
|
}
|
|
|
|
static void
|
|
ReleaseReintBuffer(
|
|
RF_RegionBufferQueue_t * pool,
|
|
void *bufPtr)
|
|
{
|
|
/* Insert a region buffer (bufPtr) into the free list (pool).
|
|
* NON-BLOCKING */
|
|
|
|
RF_LOCK_MUTEX(pool->mutex);
|
|
pool->availableBuffers++;
|
|
pool->buffers[pool->emptyBuffersIndex] = bufPtr;
|
|
pool->emptyBuffersIndex++;
|
|
if (pool->emptyBuffersIndex == pool->totalBuffers)
|
|
pool->emptyBuffersIndex = 0;
|
|
RF_ASSERT(pool->availableBuffers <= pool->totalBuffers);
|
|
RF_UNLOCK_MUTEX(pool->mutex);
|
|
RF_SIGNAL_COND(pool->cond);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
ReadRegionLog(
|
|
RF_RegionId_t regionID,
|
|
RF_MCPair_t * rrd_mcpair,
|
|
void *regionBuffer,
|
|
RF_Raid_t * raidPtr,
|
|
RF_DagHeader_t ** rrd_dag_h,
|
|
RF_AllocListElem_t ** rrd_alloclist,
|
|
RF_PhysDiskAddr_t ** rrd_pda)
|
|
{
|
|
/* Initiate the read a region log from disk. Once initiated, return
|
|
* to the calling routine.
|
|
*
|
|
* NON-BLOCKING */
|
|
|
|
RF_AccTraceEntry_t *tracerec;
|
|
RF_DagNode_t *rrd_rdNode;
|
|
|
|
/* create DAG to read region log from disk */
|
|
rf_MakeAllocList(*rrd_alloclist);
|
|
*rrd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, regionBuffer,
|
|
rf_DiskReadFunc, rf_DiskReadUndoFunc,
|
|
"Rrl", *rrd_alloclist,
|
|
RF_DAG_FLAGS_NONE,
|
|
RF_IO_NORMAL_PRIORITY);
|
|
|
|
/* create and initialize PDA for the core log */
|
|
/* RF_Malloc(*rrd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
|
|
* *)); */
|
|
*rrd_pda = rf_AllocPDAList(1);
|
|
rf_MapLogParityLogging(raidPtr, regionID, 0,
|
|
&((*rrd_pda)->col), &((*rrd_pda)->startSector));
|
|
(*rrd_pda)->numSector = raidPtr->regionInfo[regionID].capacity;
|
|
|
|
if ((*rrd_pda)->next) {
|
|
(*rrd_pda)->next = NULL;
|
|
printf("set rrd_pda->next to NULL\n");
|
|
}
|
|
/* initialize DAG parameters */
|
|
RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
|
|
memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
|
|
(*rrd_dag_h)->tracerec = tracerec;
|
|
rrd_rdNode = (*rrd_dag_h)->succedents[0]->succedents[0];
|
|
rrd_rdNode->params[0].p = *rrd_pda;
|
|
/* rrd_rdNode->params[1] = regionBuffer; */
|
|
rrd_rdNode->params[2].v = 0;
|
|
rrd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
|
|
|
|
/* launch region log read dag */
|
|
rf_DispatchDAG(*rrd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
|
|
(void *) rrd_mcpair);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
WriteCoreLog(
|
|
RF_ParityLog_t * log,
|
|
RF_MCPair_t * fwr_mcpair,
|
|
RF_Raid_t * raidPtr,
|
|
RF_DagHeader_t ** fwr_dag_h,
|
|
RF_AllocListElem_t ** fwr_alloclist,
|
|
RF_PhysDiskAddr_t ** fwr_pda)
|
|
{
|
|
RF_RegionId_t regionID = log->regionID;
|
|
RF_AccTraceEntry_t *tracerec;
|
|
RF_SectorNum_t regionOffset;
|
|
RF_DagNode_t *fwr_wrNode;
|
|
|
|
/* Initiate the write of a core log to a region log disk. Once
|
|
* initiated, return to the calling routine.
|
|
*
|
|
* NON-BLOCKING */
|
|
|
|
/* create DAG to write a core log to a region log disk */
|
|
rf_MakeAllocList(*fwr_alloclist);
|
|
*fwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, log->bufPtr,
|
|
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
|
|
"Wcl", *fwr_alloclist, RF_DAG_FLAGS_NONE, RF_IO_NORMAL_PRIORITY);
|
|
|
|
/* create and initialize PDA for the region log */
|
|
/* RF_Malloc(*fwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
|
|
* *)); */
|
|
*fwr_pda = rf_AllocPDAList(1);
|
|
regionOffset = log->diskOffset;
|
|
rf_MapLogParityLogging(raidPtr, regionID, regionOffset,
|
|
&((*fwr_pda)->col),
|
|
&((*fwr_pda)->startSector));
|
|
(*fwr_pda)->numSector = raidPtr->numSectorsPerLog;
|
|
|
|
/* initialize DAG parameters */
|
|
RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
|
|
memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
|
|
(*fwr_dag_h)->tracerec = tracerec;
|
|
fwr_wrNode = (*fwr_dag_h)->succedents[0]->succedents[0];
|
|
fwr_wrNode->params[0].p = *fwr_pda;
|
|
/* fwr_wrNode->params[1] = log->bufPtr; */
|
|
fwr_wrNode->params[2].v = 0;
|
|
fwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
|
|
|
|
/* launch the dag to write the core log to disk */
|
|
rf_DispatchDAG(*fwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
|
|
(void *) fwr_mcpair);
|
|
}
|
|
|
|
|
|
static void
|
|
ReadRegionParity(
|
|
RF_RegionId_t regionID,
|
|
RF_MCPair_t * prd_mcpair,
|
|
void *parityBuffer,
|
|
RF_Raid_t * raidPtr,
|
|
RF_DagHeader_t ** prd_dag_h,
|
|
RF_AllocListElem_t ** prd_alloclist,
|
|
RF_PhysDiskAddr_t ** prd_pda)
|
|
{
|
|
/* Initiate the read region parity from disk. Once initiated, return
|
|
* to the calling routine.
|
|
*
|
|
* NON-BLOCKING */
|
|
|
|
RF_AccTraceEntry_t *tracerec;
|
|
RF_DagNode_t *prd_rdNode;
|
|
|
|
/* create DAG to read region parity from disk */
|
|
rf_MakeAllocList(*prd_alloclist);
|
|
*prd_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, NULL, rf_DiskReadFunc,
|
|
rf_DiskReadUndoFunc, "Rrp",
|
|
*prd_alloclist, RF_DAG_FLAGS_NONE,
|
|
RF_IO_NORMAL_PRIORITY);
|
|
|
|
/* create and initialize PDA for region parity */
|
|
/* RF_Malloc(*prd_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
|
|
* *)); */
|
|
*prd_pda = rf_AllocPDAList(1);
|
|
rf_MapRegionParity(raidPtr, regionID,
|
|
&((*prd_pda)->col), &((*prd_pda)->startSector),
|
|
&((*prd_pda)->numSector));
|
|
if (rf_parityLogDebug)
|
|
printf("[reading %d sectors of parity from region %d]\n",
|
|
(int) (*prd_pda)->numSector, regionID);
|
|
if ((*prd_pda)->next) {
|
|
(*prd_pda)->next = NULL;
|
|
printf("set prd_pda->next to NULL\n");
|
|
}
|
|
/* initialize DAG parameters */
|
|
RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
|
|
memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
|
|
(*prd_dag_h)->tracerec = tracerec;
|
|
prd_rdNode = (*prd_dag_h)->succedents[0]->succedents[0];
|
|
prd_rdNode->params[0].p = *prd_pda;
|
|
prd_rdNode->params[1].p = parityBuffer;
|
|
prd_rdNode->params[2].v = 0;
|
|
prd_rdNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
|
|
#if RF_DEBUG_VALIDATE_DAG
|
|
if (rf_validateDAGDebug)
|
|
rf_ValidateDAG(*prd_dag_h);
|
|
#endif
|
|
/* launch region parity read dag */
|
|
rf_DispatchDAG(*prd_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
|
|
(void *) prd_mcpair);
|
|
}
|
|
|
|
static void
|
|
WriteRegionParity(
|
|
RF_RegionId_t regionID,
|
|
RF_MCPair_t * pwr_mcpair,
|
|
void *parityBuffer,
|
|
RF_Raid_t * raidPtr,
|
|
RF_DagHeader_t ** pwr_dag_h,
|
|
RF_AllocListElem_t ** pwr_alloclist,
|
|
RF_PhysDiskAddr_t ** pwr_pda)
|
|
{
|
|
/* Initiate the write of region parity to disk. Once initiated, return
|
|
* to the calling routine.
|
|
*
|
|
* NON-BLOCKING */
|
|
|
|
RF_AccTraceEntry_t *tracerec;
|
|
RF_DagNode_t *pwr_wrNode;
|
|
|
|
/* create DAG to write region log from disk */
|
|
rf_MakeAllocList(*pwr_alloclist);
|
|
*pwr_dag_h = rf_MakeSimpleDAG(raidPtr, 1, 0, parityBuffer,
|
|
rf_DiskWriteFunc, rf_DiskWriteUndoFunc,
|
|
"Wrp", *pwr_alloclist,
|
|
RF_DAG_FLAGS_NONE,
|
|
RF_IO_NORMAL_PRIORITY);
|
|
|
|
/* create and initialize PDA for region parity */
|
|
/* RF_Malloc(*pwr_pda, sizeof(RF_PhysDiskAddr_t), (RF_PhysDiskAddr_t
|
|
* *)); */
|
|
*pwr_pda = rf_AllocPDAList(1);
|
|
rf_MapRegionParity(raidPtr, regionID,
|
|
&((*pwr_pda)->col), &((*pwr_pda)->startSector),
|
|
&((*pwr_pda)->numSector));
|
|
|
|
/* initialize DAG parameters */
|
|
RF_Malloc(tracerec,sizeof(RF_AccTraceEntry_t), (RF_AccTraceEntry_t *));
|
|
memset((char *) tracerec, 0, sizeof(RF_AccTraceEntry_t));
|
|
(*pwr_dag_h)->tracerec = tracerec;
|
|
pwr_wrNode = (*pwr_dag_h)->succedents[0]->succedents[0];
|
|
pwr_wrNode->params[0].p = *pwr_pda;
|
|
/* pwr_wrNode->params[1] = parityBuffer; */
|
|
pwr_wrNode->params[2].v = 0;
|
|
pwr_wrNode->params[3].v = RF_CREATE_PARAM3(RF_IO_NORMAL_PRIORITY, 0);
|
|
|
|
/* launch the dag to write region parity to disk */
|
|
rf_DispatchDAG(*pwr_dag_h, (void (*) (void *)) rf_MCPairWakeupFunc,
|
|
(void *) pwr_mcpair);
|
|
}
|
|
|
|
static void
|
|
FlushLogsToDisk(
|
|
RF_Raid_t * raidPtr,
|
|
RF_ParityLog_t * logList)
|
|
{
|
|
/* Flush a linked list of core logs to the log disk. Logs contain the
|
|
* disk location where they should be written. Logs were written in
|
|
* FIFO order and that order must be preserved.
|
|
*
|
|
* Recommended optimizations: 1) allow multiple flushes to occur
|
|
* simultaneously 2) coalesce contiguous flush operations
|
|
*
|
|
* BLOCKING */
|
|
|
|
RF_ParityLog_t *log;
|
|
RF_RegionId_t regionID;
|
|
RF_MCPair_t *fwr_mcpair;
|
|
RF_DagHeader_t *fwr_dag_h;
|
|
RF_AllocListElem_t *fwr_alloclist;
|
|
RF_PhysDiskAddr_t *fwr_pda;
|
|
|
|
fwr_mcpair = rf_AllocMCPair();
|
|
RF_LOCK_MUTEX(fwr_mcpair->mutex);
|
|
|
|
RF_ASSERT(logList);
|
|
log = logList;
|
|
while (log) {
|
|
regionID = log->regionID;
|
|
|
|
/* create and launch a DAG to write the core log */
|
|
if (rf_parityLogDebug)
|
|
printf("[initiating write of core log for region %d]\n", regionID);
|
|
fwr_mcpair->flag = RF_FALSE;
|
|
WriteCoreLog(log, fwr_mcpair, raidPtr, &fwr_dag_h,
|
|
&fwr_alloclist, &fwr_pda);
|
|
|
|
/* wait for the DAG to complete */
|
|
while (!fwr_mcpair->flag)
|
|
RF_WAIT_COND(fwr_mcpair->cond, fwr_mcpair->mutex);
|
|
if (fwr_dag_h->status != rf_enable) {
|
|
RF_ERRORMSG1("Unable to write core log to disk (region %d)\n", regionID);
|
|
RF_ASSERT(0);
|
|
}
|
|
/* RF_Free(fwr_pda, sizeof(RF_PhysDiskAddr_t)); */
|
|
rf_FreePhysDiskAddr(fwr_pda);
|
|
rf_FreeDAG(fwr_dag_h);
|
|
rf_FreeAllocList(fwr_alloclist);
|
|
|
|
log = log->next;
|
|
}
|
|
RF_UNLOCK_MUTEX(fwr_mcpair->mutex);
|
|
rf_FreeMCPair(fwr_mcpair);
|
|
rf_ReleaseParityLogs(raidPtr, logList);
|
|
}
|
|
|
|
static void
|
|
ReintegrateRegion(
|
|
RF_Raid_t * raidPtr,
|
|
RF_RegionId_t regionID,
|
|
RF_ParityLog_t * coreLog)
|
|
{
|
|
RF_MCPair_t *rrd_mcpair = NULL, *prd_mcpair, *pwr_mcpair;
|
|
RF_DagHeader_t *rrd_dag_h = NULL, *prd_dag_h, *pwr_dag_h;
|
|
RF_AllocListElem_t *rrd_alloclist = NULL, *prd_alloclist, *pwr_alloclist;
|
|
RF_PhysDiskAddr_t *rrd_pda = NULL, *prd_pda, *pwr_pda;
|
|
void *parityBuffer, *regionBuffer = NULL;
|
|
|
|
/* Reintegrate a region (regionID).
|
|
*
|
|
* 1. acquire region and parity buffers
|
|
* 2. read log from disk
|
|
* 3. read parity from disk
|
|
* 4. apply log to parity
|
|
* 5. apply core log to parity
|
|
* 6. write new parity to disk
|
|
*
|
|
* BLOCKING */
|
|
|
|
if (rf_parityLogDebug)
|
|
printf("[reintegrating region %d]\n", regionID);
|
|
|
|
/* initiate read of region parity */
|
|
if (rf_parityLogDebug)
|
|
printf("[initiating read of parity for region %d]\n",regionID);
|
|
parityBuffer = AcquireReintBuffer(&raidPtr->parityBufferPool);
|
|
prd_mcpair = rf_AllocMCPair();
|
|
RF_LOCK_MUTEX(prd_mcpair->mutex);
|
|
prd_mcpair->flag = RF_FALSE;
|
|
ReadRegionParity(regionID, prd_mcpair, parityBuffer, raidPtr,
|
|
&prd_dag_h, &prd_alloclist, &prd_pda);
|
|
|
|
/* if region log nonempty, initiate read */
|
|
if (raidPtr->regionInfo[regionID].diskCount > 0) {
|
|
if (rf_parityLogDebug)
|
|
printf("[initiating read of disk log for region %d]\n",
|
|
regionID);
|
|
regionBuffer = AcquireReintBuffer(&raidPtr->regionBufferPool);
|
|
rrd_mcpair = rf_AllocMCPair();
|
|
RF_LOCK_MUTEX(rrd_mcpair->mutex);
|
|
rrd_mcpair->flag = RF_FALSE;
|
|
ReadRegionLog(regionID, rrd_mcpair, regionBuffer, raidPtr,
|
|
&rrd_dag_h, &rrd_alloclist, &rrd_pda);
|
|
}
|
|
/* wait on read of region parity to complete */
|
|
while (!prd_mcpair->flag) {
|
|
RF_WAIT_COND(prd_mcpair->cond, prd_mcpair->mutex);
|
|
}
|
|
RF_UNLOCK_MUTEX(prd_mcpair->mutex);
|
|
if (prd_dag_h->status != rf_enable) {
|
|
RF_ERRORMSG("Unable to read parity from disk\n");
|
|
/* add code to fail the parity disk */
|
|
RF_ASSERT(0);
|
|
}
|
|
/* apply core log to parity */
|
|
/* if (coreLog) ApplyLogsToParity(coreLog, parityBuffer); */
|
|
|
|
if (raidPtr->regionInfo[regionID].diskCount > 0) {
|
|
/* wait on read of region log to complete */
|
|
while (!rrd_mcpair->flag)
|
|
RF_WAIT_COND(rrd_mcpair->cond, rrd_mcpair->mutex);
|
|
RF_UNLOCK_MUTEX(rrd_mcpair->mutex);
|
|
if (rrd_dag_h->status != rf_enable) {
|
|
RF_ERRORMSG("Unable to read region log from disk\n");
|
|
/* add code to fail the log disk */
|
|
RF_ASSERT(0);
|
|
}
|
|
/* apply region log to parity */
|
|
/* ApplyRegionToParity(regionID, regionBuffer, parityBuffer); */
|
|
/* release resources associated with region log */
|
|
/* RF_Free(rrd_pda, sizeof(RF_PhysDiskAddr_t)); */
|
|
rf_FreePhysDiskAddr(rrd_pda);
|
|
rf_FreeDAG(rrd_dag_h);
|
|
rf_FreeAllocList(rrd_alloclist);
|
|
rf_FreeMCPair(rrd_mcpair);
|
|
ReleaseReintBuffer(&raidPtr->regionBufferPool, regionBuffer);
|
|
}
|
|
/* write reintegrated parity to disk */
|
|
if (rf_parityLogDebug)
|
|
printf("[initiating write of parity for region %d]\n",
|
|
regionID);
|
|
pwr_mcpair = rf_AllocMCPair();
|
|
RF_LOCK_MUTEX(pwr_mcpair->mutex);
|
|
pwr_mcpair->flag = RF_FALSE;
|
|
WriteRegionParity(regionID, pwr_mcpair, parityBuffer, raidPtr,
|
|
&pwr_dag_h, &pwr_alloclist, &pwr_pda);
|
|
while (!pwr_mcpair->flag)
|
|
RF_WAIT_COND(pwr_mcpair->cond, pwr_mcpair->mutex);
|
|
RF_UNLOCK_MUTEX(pwr_mcpair->mutex);
|
|
if (pwr_dag_h->status != rf_enable) {
|
|
RF_ERRORMSG("Unable to write parity to disk\n");
|
|
/* add code to fail the parity disk */
|
|
RF_ASSERT(0);
|
|
}
|
|
/* release resources associated with read of old parity */
|
|
/* RF_Free(prd_pda, sizeof(RF_PhysDiskAddr_t)); */
|
|
rf_FreePhysDiskAddr(prd_pda);
|
|
rf_FreeDAG(prd_dag_h);
|
|
rf_FreeAllocList(prd_alloclist);
|
|
rf_FreeMCPair(prd_mcpair);
|
|
|
|
/* release resources associated with write of new parity */
|
|
ReleaseReintBuffer(&raidPtr->parityBufferPool, parityBuffer);
|
|
/* RF_Free(pwr_pda, sizeof(RF_PhysDiskAddr_t)); */
|
|
rf_FreePhysDiskAddr(pwr_pda);
|
|
rf_FreeDAG(pwr_dag_h);
|
|
rf_FreeAllocList(pwr_alloclist);
|
|
rf_FreeMCPair(pwr_mcpair);
|
|
|
|
if (rf_parityLogDebug)
|
|
printf("[finished reintegrating region %d]\n", regionID);
|
|
}
|
|
|
|
|
|
|
|
static void
|
|
ReintegrateLogs(
|
|
RF_Raid_t * raidPtr,
|
|
RF_ParityLog_t * logList)
|
|
{
|
|
RF_ParityLog_t *log, *freeLogList = NULL;
|
|
RF_ParityLogData_t *logData, *logDataList;
|
|
RF_RegionId_t regionID;
|
|
|
|
RF_ASSERT(logList);
|
|
while (logList) {
|
|
log = logList;
|
|
logList = logList->next;
|
|
log->next = NULL;
|
|
regionID = log->regionID;
|
|
ReintegrateRegion(raidPtr, regionID, log);
|
|
log->numRecords = 0;
|
|
|
|
/* remove all items which are blocked on reintegration of this
|
|
* region */
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
logData = rf_SearchAndDequeueParityLogData(raidPtr, regionID,
|
|
&raidPtr->parityLogDiskQueue.reintBlockHead,
|
|
&raidPtr->parityLogDiskQueue.reintBlockTail,
|
|
RF_TRUE);
|
|
logDataList = logData;
|
|
while (logData) {
|
|
logData->next = rf_SearchAndDequeueParityLogData(
|
|
raidPtr, regionID,
|
|
&raidPtr->parityLogDiskQueue.reintBlockHead,
|
|
&raidPtr->parityLogDiskQueue.reintBlockTail,
|
|
RF_TRUE);
|
|
logData = logData->next;
|
|
}
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
|
|
/* process blocked log data and clear reintInProgress flag for
|
|
* this region */
|
|
if (logDataList)
|
|
rf_ParityLogAppend(logDataList, RF_TRUE, &log, RF_TRUE);
|
|
else {
|
|
/* Enable flushing for this region. Holding both
|
|
* locks provides a synchronization barrier with
|
|
* DumpParityLogToDisk */
|
|
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
|
|
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex);
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
raidPtr->regionInfo[regionID].diskCount = 0;
|
|
raidPtr->regionInfo[regionID].reintInProgress = RF_FALSE;
|
|
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
|
|
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].reintMutex); /* flushing is now
|
|
* enabled */
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
}
|
|
/* if log wasn't used, attach it to the list of logs to be
|
|
* returned */
|
|
if (log) {
|
|
log->next = freeLogList;
|
|
freeLogList = log;
|
|
}
|
|
}
|
|
if (freeLogList)
|
|
rf_ReleaseParityLogs(raidPtr, freeLogList);
|
|
}
|
|
|
|
int
|
|
rf_ShutdownLogging(RF_Raid_t * raidPtr)
|
|
{
|
|
/* shutdown parity logging 1) disable parity logging in all regions 2)
|
|
* reintegrate all regions */
|
|
|
|
RF_SectorCount_t diskCount;
|
|
RF_RegionId_t regionID;
|
|
RF_ParityLog_t *log;
|
|
|
|
if (rf_parityLogDebug)
|
|
printf("[shutting down parity logging]\n");
|
|
/* Since parity log maps are volatile, we must reintegrate all
|
|
* regions. */
|
|
if (rf_forceParityLogReint) {
|
|
for (regionID = 0; regionID < rf_numParityRegions; regionID++) {
|
|
RF_LOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
|
|
raidPtr->regionInfo[regionID].loggingEnabled =
|
|
RF_FALSE;
|
|
log = raidPtr->regionInfo[regionID].coreLog;
|
|
raidPtr->regionInfo[regionID].coreLog = NULL;
|
|
diskCount = raidPtr->regionInfo[regionID].diskCount;
|
|
RF_UNLOCK_MUTEX(raidPtr->regionInfo[regionID].mutex);
|
|
if (diskCount > 0 || log != NULL)
|
|
ReintegrateRegion(raidPtr, regionID, log);
|
|
if (log != NULL)
|
|
rf_ReleaseParityLogs(raidPtr, log);
|
|
}
|
|
}
|
|
if (rf_parityLogDebug) {
|
|
printf("[parity logging disabled]\n");
|
|
printf("[should be done!]\n");
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
rf_ParityLoggingDiskManager(RF_Raid_t * raidPtr)
|
|
{
|
|
RF_ParityLog_t *reintQueue, *flushQueue;
|
|
int workNeeded, done = RF_FALSE;
|
|
int s;
|
|
|
|
/* Main program for parity logging disk thread. This routine waits
|
|
* for work to appear in either the flush or reintegration queues and
|
|
* is responsible for flushing core logs to the log disk as well as
|
|
* reintegrating parity regions.
|
|
*
|
|
* BLOCKING */
|
|
|
|
s = splbio();
|
|
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
|
|
/*
|
|
* Inform our creator that we're running. Don't bother doing the
|
|
* mutex lock/unlock dance- we locked above, and we'll unlock
|
|
* below with nothing to do, yet.
|
|
*/
|
|
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_RUNNING;
|
|
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
|
|
|
|
/* empty the work queues */
|
|
flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
|
|
raidPtr->parityLogDiskQueue.flushQueue = NULL;
|
|
reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
|
|
raidPtr->parityLogDiskQueue.reintQueue = NULL;
|
|
workNeeded = (flushQueue || reintQueue);
|
|
|
|
while (!done) {
|
|
while (workNeeded) {
|
|
/* First, flush all logs in the flush queue, freeing
|
|
* buffers Second, reintegrate all regions which are
|
|
* reported as full. Third, append queued log data
|
|
* until blocked.
|
|
*
|
|
* Note: Incoming appends (ParityLogAppend) can block on
|
|
* either 1. empty buffer pool 2. region under
|
|
* reintegration To preserve a global FIFO ordering of
|
|
* appends, buffers are not released to the world
|
|
* until those appends blocked on buffers are removed
|
|
* from the append queue. Similarly, regions which
|
|
* are reintegrated are not opened for general use
|
|
* until the append queue has been emptied. */
|
|
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
|
|
/* empty flushQueue, using free'd log buffers to
|
|
* process bufTail */
|
|
if (flushQueue)
|
|
FlushLogsToDisk(raidPtr, flushQueue);
|
|
|
|
/* empty reintQueue, flushing from reintTail as we go */
|
|
if (reintQueue)
|
|
ReintegrateLogs(raidPtr, reintQueue);
|
|
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
|
|
raidPtr->parityLogDiskQueue.flushQueue = NULL;
|
|
reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
|
|
raidPtr->parityLogDiskQueue.reintQueue = NULL;
|
|
workNeeded = (flushQueue || reintQueue);
|
|
}
|
|
/* no work is needed at this point */
|
|
if (raidPtr->parityLogDiskQueue.threadState & RF_PLOG_TERMINATE) {
|
|
/* shutdown parity logging 1. disable parity logging
|
|
* in all regions 2. reintegrate all regions */
|
|
done = RF_TRUE; /* thread disabled, no work needed */
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
rf_ShutdownLogging(raidPtr);
|
|
}
|
|
if (!done) {
|
|
/* thread enabled, no work needed, so sleep */
|
|
if (rf_parityLogDebug)
|
|
printf("[parity logging disk manager sleeping]\n");
|
|
RF_WAIT_COND(raidPtr->parityLogDiskQueue.cond,
|
|
raidPtr->parityLogDiskQueue.mutex);
|
|
if (rf_parityLogDebug)
|
|
printf("[parity logging disk manager just woke up]\n");
|
|
flushQueue = raidPtr->parityLogDiskQueue.flushQueue;
|
|
raidPtr->parityLogDiskQueue.flushQueue = NULL;
|
|
reintQueue = raidPtr->parityLogDiskQueue.reintQueue;
|
|
raidPtr->parityLogDiskQueue.reintQueue = NULL;
|
|
workNeeded = (flushQueue || reintQueue);
|
|
}
|
|
}
|
|
/*
|
|
* Announce that we're done.
|
|
*/
|
|
RF_LOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
raidPtr->parityLogDiskQueue.threadState |= RF_PLOG_SHUTDOWN;
|
|
RF_UNLOCK_MUTEX(raidPtr->parityLogDiskQueue.mutex);
|
|
RF_SIGNAL_COND(raidPtr->parityLogDiskQueue.cond);
|
|
|
|
splx(s);
|
|
|
|
/*
|
|
* In the NetBSD kernel, the thread must exit; returning would
|
|
* cause the proc trampoline to attempt to return to userspace.
|
|
*/
|
|
kthread_exit(0); /* does not return */
|
|
}
|
|
#endif /* RF_INCLUDE_PARITYLOGGING > 0 */
|