NetBSD/sys/arch/sparc/dev/fd.c

2370 lines
57 KiB
C

/* $NetBSD: fd.c,v 1.89 2002/03/11 16:27:02 pk Exp $ */
/*-
* Copyright (c) 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Paul Kranenburg.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1993, 1994, 1995 Charles M. Hannum.
* Copyright (c) 1995 Paul Kranenburg.
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Don Ahn.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)fd.c 7.4 (Berkeley) 5/25/91
*/
#include "opt_ddb.h"
#include "opt_md.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/callout.h>
#include <sys/kernel.h>
#include <sys/file.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/disklabel.h>
#include <sys/dkstat.h>
#include <sys/disk.h>
#include <sys/fdio.h>
#include <sys/buf.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/uio.h>
#include <sys/stat.h>
#include <sys/syslog.h>
#include <sys/queue.h>
#include <sys/conf.h>
#include <dev/cons.h>
#include <uvm/uvm_extern.h>
#include <machine/autoconf.h>
#include <machine/intr.h>
#include <machine/conf.h>
#include <sparc/sparc/auxreg.h>
#include <sparc/dev/fdreg.h>
#include <sparc/dev/fdvar.h>
#define FDUNIT(dev) (minor(dev) / 8)
#define FDTYPE(dev) (minor(dev) % 8)
/* XXX misuse a flag to identify format operation */
#define B_FORMAT B_XXX
#define FD_DEBUG
#ifdef FD_DEBUG
int fdc_debug = 0;
#endif
enum fdc_state {
DEVIDLE = 0,
MOTORWAIT, /* 1 */
DOSEEK, /* 2 */
SEEKWAIT, /* 3 */
SEEKTIMEDOUT, /* 4 */
SEEKCOMPLETE, /* 5 */
DOIO, /* 6 */
IOCOMPLETE, /* 7 */
IOTIMEDOUT, /* 8 */
IOCLEANUPWAIT, /* 9 */
IOCLEANUPTIMEDOUT,/*10 */
DORESET, /* 11 */
RESETCOMPLETE, /* 12 */
RESETTIMEDOUT, /* 13 */
DORECAL, /* 14 */
RECALWAIT, /* 15 */
RECALTIMEDOUT, /* 16 */
RECALCOMPLETE, /* 17 */
};
/* software state, per controller */
struct fdc_softc {
struct device sc_dev; /* boilerplate */
bus_space_tag_t sc_bustag;
struct callout sc_timo_ch; /* timeout callout */
struct callout sc_intr_ch; /* pseudo-intr callout */
struct fd_softc *sc_fd[4]; /* pointers to children */
TAILQ_HEAD(drivehead, fd_softc) sc_drives;
enum fdc_state sc_state;
int sc_flags;
#define FDC_82077 0x01
#define FDC_NEEDHEADSETTLE 0x02
#define FDC_EIS 0x04
#define FDC_NEEDMOTORWAIT 0x08
int sc_errors; /* number of retries so far */
int sc_overruns; /* number of DMA overruns */
int sc_cfg; /* current configuration */
struct fdcio sc_io;
#define sc_handle sc_io.fdcio_handle
#define sc_reg_msr sc_io.fdcio_reg_msr
#define sc_reg_fifo sc_io.fdcio_reg_fifo
#define sc_reg_dor sc_io.fdcio_reg_dor
#define sc_reg_drs sc_io.fdcio_reg_msr
#define sc_itask sc_io.fdcio_itask
#define sc_istatus sc_io.fdcio_istatus
#define sc_data sc_io.fdcio_data
#define sc_tc sc_io.fdcio_tc
#define sc_nstat sc_io.fdcio_nstat
#define sc_status sc_io.fdcio_status
#define sc_intrcnt sc_io.fdcio_intrcnt
};
extern struct fdcio *fdciop; /* I/O descriptor used in fdintr.s */
/* controller driver configuration */
int fdcmatch_mainbus __P((struct device *, struct cfdata *, void *));
int fdcmatch_obio __P((struct device *, struct cfdata *, void *));
void fdcattach_mainbus __P((struct device *, struct device *, void *));
void fdcattach_obio __P((struct device *, struct device *, void *));
int fdcattach __P((struct fdc_softc *, int));
struct cfattach fdc_mainbus_ca = {
sizeof(struct fdc_softc), fdcmatch_mainbus, fdcattach_mainbus
};
struct cfattach fdc_obio_ca = {
sizeof(struct fdc_softc), fdcmatch_obio, fdcattach_obio
};
__inline struct fd_type *fd_dev_to_type __P((struct fd_softc *, dev_t));
/*
* Floppies come in various flavors, e.g., 1.2MB vs 1.44MB; here is how
* we tell them apart.
*/
struct fd_type {
int sectrac; /* sectors per track */
int heads; /* number of heads */
int seccyl; /* sectors per cylinder */
int secsize; /* size code for sectors */
int datalen; /* data len when secsize = 0 */
int steprate; /* step rate and head unload time */
int gap1; /* gap len between sectors */
int gap2; /* formatting gap */
int cylinders; /* total num of cylinders */
int size; /* size of disk in sectors */
int step; /* steps per cylinder */
int rate; /* transfer speed code */
int fillbyte; /* format fill byte */
int interleave; /* interleave factor (formatting) */
char *name;
};
/* The order of entries in the following table is important -- BEWARE! */
struct fd_type fd_types[] = {
{ 18,2,36,2,0xff,0xcf,0x1b,0x54,80,2880,1,FDC_500KBPS,0xf6,1, "1.44MB" }, /* 1.44MB diskette */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,80,1440,1,FDC_250KBPS,0xf6,1, "720KB" }, /* 3.5" 720kB diskette */
{ 9,2,18,2,0xff,0xdf,0x2a,0x50,40, 720,2,FDC_250KBPS,0xf6,1, "360KB/x" }, /* 360kB in 720kB drive */
{ 8,2,16,3,0xff,0xdf,0x35,0x74,77,1232,1,FDC_500KBPS,0xf6,1, "1.2MB/NEC" } /* 1.2 MB japanese format */
};
/* software state, per disk (with up to 4 disks per ctlr) */
struct fd_softc {
struct device sc_dv; /* generic device info */
struct disk sc_dk; /* generic disk info */
struct fd_type *sc_deftype; /* default type descriptor */
struct fd_type *sc_type; /* current type descriptor */
struct callout sc_motoron_ch;
struct callout sc_motoroff_ch;
daddr_t sc_blkno; /* starting block number */
int sc_bcount; /* byte count left */
int sc_skip; /* bytes already transferred */
int sc_nblks; /* number of blocks currently transferring */
int sc_nbytes; /* number of bytes currently transferring */
int sc_drive; /* physical unit number */
int sc_flags;
#define FD_OPEN 0x01 /* it's open */
#define FD_MOTOR 0x02 /* motor should be on */
#define FD_MOTOR_WAIT 0x04 /* motor coming up */
int sc_cylin; /* where we think the head is */
int sc_opts; /* user-set options */
void *sc_sdhook; /* shutdownhook cookie */
TAILQ_ENTRY(fd_softc) sc_drivechain;
int sc_ops; /* I/O ops since last switch */
struct buf_queue sc_q; /* pending I/O requests */
int sc_active; /* number of active I/O requests */
};
/* floppy driver configuration */
int fdmatch __P((struct device *, struct cfdata *, void *));
void fdattach __P((struct device *, struct device *, void *));
struct cfattach fd_ca = {
sizeof(struct fd_softc), fdmatch, fdattach
};
extern struct cfdriver fd_cd;
void fdgetdisklabel __P((dev_t));
int fd_get_parms __P((struct fd_softc *));
void fdstrategy __P((struct buf *));
void fdstart __P((struct fd_softc *));
int fdprint __P((void *, const char *));
struct dkdriver fddkdriver = { fdstrategy };
struct fd_type *fd_nvtotype __P((char *, int, int));
void fd_set_motor __P((struct fdc_softc *fdc));
void fd_motor_off __P((void *arg));
void fd_motor_on __P((void *arg));
int fdcresult __P((struct fdc_softc *fdc));
int fdc_wrfifo __P((struct fdc_softc *fdc, u_char x));
void fdcstart __P((struct fdc_softc *fdc));
void fdcstatus __P((struct fdc_softc *fdc, char *s));
void fdc_reset __P((struct fdc_softc *fdc));
void fdctimeout __P((void *arg));
void fdcpseudointr __P((void *arg));
int fdc_c_hwintr __P((void *));
void fdchwintr __P((void));
int fdcswintr __P((void *));
int fdcstate __P((struct fdc_softc *));
void fdcretry __P((struct fdc_softc *fdc));
void fdfinish __P((struct fd_softc *fd, struct buf *bp));
int fdformat __P((dev_t, struct ne7_fd_formb *, struct proc *));
void fd_do_eject __P((struct fd_softc *));
void fd_mountroot_hook __P((struct device *));
static int fdconf __P((struct fdc_softc *));
static void establish_chip_type __P((
struct fdc_softc *,
bus_space_tag_t,
bus_addr_t,
bus_size_t,
bus_space_handle_t));
#if PIL_FDSOFT == 4
#define IE_FDSOFT IE_L4
#else
#error 4
#endif
#if defined(SUN4M)
#define FD_SET_SWINTR do { \
if (CPU_ISSUN4M) \
raise(0, PIL_FDSOFT); \
else \
ienab_bis(IE_L4); \
} while(0)
#else
#define FD_SET_SWINTR ienab_bis(IE_FDSOFT)
#endif /* defined(SUN4M) */
#define OBP_FDNAME (CPU_ISSUN4M ? "SUNW,fdtwo" : "fd")
int
fdcmatch_mainbus(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct mainbus_attach_args *ma = aux;
/*
* Floppy controller is on mainbus on sun4c.
*/
if (!CPU_ISSUN4C)
return (0);
/* sun4c PROMs call the controller "fd" */
if (strcmp("fd", ma->ma_name) != 0)
return (0);
return (bus_space_probe(ma->ma_bustag,
ma->ma_paddr,
1, /* probe size */
0, /* offset */
0, /* flags */
NULL, NULL));
}
int
fdcmatch_obio(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
union obio_attach_args *uoba = aux;
struct sbus_attach_args *sa;
/*
* Floppy controller is on obio on sun4m.
*/
if (uoba->uoba_isobio4 != 0)
return (0);
sa = &uoba->uoba_sbus;
/* sun4m PROMs call the controller "SUNW,fdtwo" */
if (strcmp("SUNW,fdtwo", sa->sa_name) != 0)
return (0);
return (bus_space_probe(sa->sa_bustag,
sbus_bus_addr(sa->sa_bustag,
sa->sa_slot, sa->sa_offset),
1, /* probe size */
0, /* offset */
0, /* flags */
NULL, NULL));
}
static void
establish_chip_type(fdc, tag, addr, size, handle)
struct fdc_softc *fdc;
bus_space_tag_t tag;
bus_addr_t addr;
bus_size_t size;
bus_space_handle_t handle;
{
u_int8_t v;
/*
* This hack from Chris Torek: apparently DOR really
* addresses MSR/DRS on a 82072.
* We used to rely on the VERSION command to tell the
* difference (which did not work).
*/
/* First, check the size of the register bank */
if (size < 8)
/* It isn't a 82077 */
return;
/* Then probe the DOR register offset */
if (bus_space_probe(tag, addr,
1, /* probe size */
FDREG77_DOR, /* offset */
0, /* flags */
NULL, NULL) == 0) {
/* It isn't a 82077 */
return;
}
v = bus_space_read_1(tag, handle, FDREG77_DOR);
if (v == NE7_RQM) {
/*
* Value in DOR looks like it's really MSR
*/
bus_space_write_1(tag, handle, FDREG77_DOR, FDC_250KBPS);
v = bus_space_read_1(tag, handle, FDREG77_DOR);
if (v == NE7_RQM) {
/*
* The value in the DOR didn't stick;
* it isn't a 82077
*/
return;
}
}
fdc->sc_flags |= FDC_82077;
}
/*
* Arguments passed between fdcattach and fdprobe.
*/
struct fdc_attach_args {
int fa_drive;
struct fd_type *fa_deftype;
};
/*
* Print the location of a disk drive (called just before attaching the
* the drive). If `fdc' is not NULL, the drive was found but was not
* in the system config file; print the drive name as well.
* Return QUIET (config_find ignores this if the device was configured) to
* avoid printing `fdN not configured' messages.
*/
int
fdprint(aux, fdc)
void *aux;
const char *fdc;
{
register struct fdc_attach_args *fa = aux;
if (!fdc)
printf(" drive %d", fa->fa_drive);
return (QUIET);
}
/*
* Configure several parameters and features on the FDC.
* Return 0 on success.
*/
static int
fdconf(fdc)
struct fdc_softc *fdc;
{
int vroom;
if (fdc_wrfifo(fdc, NE7CMD_DUMPREG) || fdcresult(fdc) != 10)
return (-1);
/*
* dumpreg[7] seems to be a motor-off timeout; set it to whatever
* the PROM thinks is appropriate.
*/
if ((vroom = fdc->sc_status[7]) == 0)
vroom = 0x64;
/* Configure controller to use FIFO and Implied Seek */
if (fdc_wrfifo(fdc, NE7CMD_CFG) != 0)
return (-1);
if (fdc_wrfifo(fdc, vroom) != 0)
return (-1);
if (fdc_wrfifo(fdc, fdc->sc_cfg) != 0)
return (-1);
if (fdc_wrfifo(fdc, 0) != 0) /* PRETRK */
return (-1);
/* No result phase for the NE7CMD_CFG command */
if ((fdc->sc_flags & FDC_82077) != 0) {
/* Lock configuration across soft resets. */
if (fdc_wrfifo(fdc, NE7CMD_LOCK | CFG_LOCK) != 0 ||
fdcresult(fdc) != 1) {
#ifdef DEBUG
printf("fdconf: CFGLOCK failed");
#endif
return (-1);
}
}
return (0);
#if 0
if (fdc_wrfifo(fdc, NE7CMD_VERSION) == 0 &&
fdcresult(fdc) == 1 && fdc->sc_status[0] == 0x90) {
if (fdc_debug)
printf("[version cmd]");
}
#endif
}
void
fdcattach_mainbus(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct fdc_softc *fdc = (void *)self;
struct mainbus_attach_args *ma = aux;
fdc->sc_bustag = ma->ma_bustag;
if (bus_space_map(
ma->ma_bustag,
ma->ma_paddr,
ma->ma_size,
BUS_SPACE_MAP_LINEAR,
&fdc->sc_handle) != 0) {
printf("%s: cannot map registers\n", self->dv_xname);
return;
}
establish_chip_type(fdc,
ma->ma_bustag,
ma->ma_paddr,
ma->ma_size,
fdc->sc_handle);
if (fdcattach(fdc, ma->ma_pri) != 0)
bus_space_unmap(ma->ma_bustag, fdc->sc_handle, ma->ma_size);
}
void
fdcattach_obio(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct fdc_softc *fdc = (void *)self;
union obio_attach_args *uoba = aux;
struct sbus_attach_args *sa = &uoba->uoba_sbus;
if (sa->sa_nintr == 0) {
printf(": no interrupt line configured\n");
return;
}
fdc->sc_bustag = sa->sa_bustag;
if (sbus_bus_map(sa->sa_bustag,
sa->sa_slot, sa->sa_offset, sa->sa_size,
BUS_SPACE_MAP_LINEAR, &fdc->sc_handle) != 0) {
printf("%s: cannot map control registers\n",
self->dv_xname);
return;
}
establish_chip_type(fdc,
sa->sa_bustag,
sbus_bus_addr(sa->sa_bustag, sa->sa_slot, sa->sa_offset),
sa->sa_size,
fdc->sc_handle);
if (strcmp(PROM_getpropstring(sa->sa_node, "status"), "disabled") == 0) {
printf(": no drives attached\n");
return;
}
if (fdcattach(fdc, sa->sa_pri) != 0)
bus_space_unmap(sa->sa_bustag, fdc->sc_handle, sa->sa_size);
}
int
fdcattach(fdc, pri)
struct fdc_softc *fdc;
int pri;
{
struct fdc_attach_args fa;
int drive_attached;
char code;
callout_init(&fdc->sc_timo_ch);
callout_init(&fdc->sc_intr_ch);
fdc->sc_state = DEVIDLE;
fdc->sc_itask = FDC_ITASK_NONE;
fdc->sc_istatus = FDC_ISTATUS_NONE;
fdc->sc_flags |= FDC_EIS;
TAILQ_INIT(&fdc->sc_drives);
if ((fdc->sc_flags & FDC_82077) != 0) {
fdc->sc_reg_msr = FDREG77_MSR;
fdc->sc_reg_fifo = FDREG77_FIFO;
fdc->sc_reg_dor = FDREG77_DOR;
code = '7';
fdc->sc_flags |= FDC_NEEDMOTORWAIT;
} else {
fdc->sc_reg_msr = FDREG72_MSR;
fdc->sc_reg_fifo = FDREG72_FIFO;
fdc->sc_reg_dor = 0;
code = '2';
}
printf(" softpri %d: chip 8207%c\n", PIL_FDSOFT, code);
/*
* Configure controller; enable FIFO, Implied seek, no POLL mode?.
* Note: CFG_EFIFO is active-low, initial threshold value: 8
*/
fdc->sc_cfg = CFG_EIS|/*CFG_EFIFO|*/CFG_POLL|(8 & CFG_THRHLD_MASK);
if (fdconf(fdc) != 0) {
printf("%s: no drives attached\n", fdc->sc_dev.dv_xname);
return (-1);
}
fdciop = &fdc->sc_io;
if (bus_intr_establish(fdc->sc_bustag, pri, IPL_BIO,
BUS_INTR_ESTABLISH_FASTTRAP,
(int (*) __P((void *)))fdchwintr, NULL) == NULL) {
printf("%s: notice: no fast trap handler slot available\n",
fdc->sc_dev.dv_xname);
if (bus_intr_establish(fdc->sc_bustag, pri, IPL_BIO, 0,
fdc_c_hwintr, fdc) == NULL) {
printf("%s: cannot register interrupt handler\n",
fdc->sc_dev.dv_xname);
return (-1);
}
}
if (bus_intr_establish(fdc->sc_bustag, PIL_FDSOFT, IPL_BIO,
BUS_INTR_ESTABLISH_SOFTINTR,
fdcswintr, fdc) == NULL) {
printf("%s: cannot register interrupt handler\n",
fdc->sc_dev.dv_xname);
return (-1);
}
evcnt_attach_dynamic(&fdc->sc_intrcnt, EVCNT_TYPE_INTR, NULL,
fdc->sc_dev.dv_xname, "intr");
/* physical limit: four drives per controller. */
drive_attached = 0;
for (fa.fa_drive = 0; fa.fa_drive < 4; fa.fa_drive++) {
fa.fa_deftype = NULL; /* unknown */
fa.fa_deftype = &fd_types[0]; /* XXX */
if (config_found(&fdc->sc_dev, (void *)&fa, fdprint) != NULL)
drive_attached = 1;
}
if (drive_attached == 0) {
/* XXX - dis-establish interrupts here */
/* return (-1); */
}
return (0);
}
int
fdmatch(parent, match, aux)
struct device *parent;
struct cfdata *match;
void *aux;
{
struct fdc_softc *fdc = (void *)parent;
bus_space_tag_t t = fdc->sc_bustag;
bus_space_handle_t h = fdc->sc_handle;
struct fdc_attach_args *fa = aux;
int drive = fa->fa_drive;
int n, ok;
if (drive > 0)
/* XXX - for now, punt on more than one drive */
return (0);
if ((fdc->sc_flags & FDC_82077) != 0) {
/* select drive and turn on motor */
bus_space_write_1(t, h, fdc->sc_reg_dor,
drive | FDO_FRST | FDO_MOEN(drive));
/* wait for motor to spin up */
delay(250000);
} else {
auxregbisc(AUXIO4C_FDS, 0);
}
fdc->sc_nstat = 0;
fdc_wrfifo(fdc, NE7CMD_RECAL);
fdc_wrfifo(fdc, drive);
/* Wait for recalibration to complete */
for (n = 0; n < 10000; n++) {
u_int8_t v;
delay(1000);
v = bus_space_read_1(t, h, fdc->sc_reg_msr);
if ((v & (NE7_RQM|NE7_DIO|NE7_CB)) == NE7_RQM) {
/* wait a bit longer till device *really* is ready */
delay(100000);
if (fdc_wrfifo(fdc, NE7CMD_SENSEI))
break;
if (fdcresult(fdc) == 1 && fdc->sc_status[0] == 0x80)
/*
* Got `invalid command'; we interpret it
* to mean that the re-calibrate hasn't in
* fact finished yet
*/
continue;
break;
}
}
n = fdc->sc_nstat;
#ifdef FD_DEBUG
if (fdc_debug) {
int i;
printf("fdprobe: %d stati:", n);
for (i = 0; i < n; i++)
printf(" 0x%x", fdc->sc_status[i]);
printf("\n");
}
#endif
ok = (n == 2 && (fdc->sc_status[0] & 0xf8) == 0x20) ? 1 : 0;
/* turn off motor */
if ((fdc->sc_flags & FDC_82077) != 0) {
/* deselect drive and turn motor off */
bus_space_write_1(t, h, fdc->sc_reg_dor, FDO_FRST | FDO_DS);
} else {
auxregbisc(0, AUXIO4C_FDS);
}
return (ok);
}
/*
* Controller is working, and drive responded. Attach it.
*/
void
fdattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct fdc_softc *fdc = (void *)parent;
struct fd_softc *fd = (void *)self;
struct fdc_attach_args *fa = aux;
struct fd_type *type = fa->fa_deftype;
int drive = fa->fa_drive;
callout_init(&fd->sc_motoron_ch);
callout_init(&fd->sc_motoroff_ch);
/* XXX Allow `flags' to override device type? */
if (type)
printf(": %s %d cyl, %d head, %d sec\n", type->name,
type->cylinders, type->heads, type->sectrac);
else
printf(": density unknown\n");
BUFQ_INIT(&fd->sc_q);
fd->sc_cylin = -1;
fd->sc_drive = drive;
fd->sc_deftype = type;
fdc->sc_fd[drive] = fd;
fdc_wrfifo(fdc, NE7CMD_SPECIFY);
fdc_wrfifo(fdc, type->steprate);
/* XXX head load time == 6ms */
fdc_wrfifo(fdc, 6 | NE7_SPECIFY_NODMA);
/*
* Initialize and attach the disk structure.
*/
fd->sc_dk.dk_name = fd->sc_dv.dv_xname;
fd->sc_dk.dk_driver = &fddkdriver;
disk_attach(&fd->sc_dk);
/*
* Establish a mountroot_hook anyway in case we booted
* with RB_ASKNAME and get selected as the boot device.
*/
mountroothook_establish(fd_mountroot_hook, &fd->sc_dv);
/* Make sure the drive motor gets turned off at shutdown time. */
fd->sc_sdhook = shutdownhook_establish(fd_motor_off, fd);
}
__inline struct fd_type *
fd_dev_to_type(fd, dev)
struct fd_softc *fd;
dev_t dev;
{
int type = FDTYPE(dev);
if (type > (sizeof(fd_types) / sizeof(fd_types[0])))
return (NULL);
return (type ? &fd_types[type - 1] : fd->sc_deftype);
}
void
fdstrategy(bp)
register struct buf *bp; /* IO operation to perform */
{
struct fd_softc *fd;
int unit = FDUNIT(bp->b_dev);
int sz;
int s;
/* Valid unit, controller, and request? */
if (unit >= fd_cd.cd_ndevs ||
(fd = fd_cd.cd_devs[unit]) == 0 ||
bp->b_blkno < 0 ||
(((bp->b_bcount % FD_BSIZE(fd)) != 0 ||
(bp->b_blkno * DEV_BSIZE) % FD_BSIZE(fd) != 0) &&
(bp->b_flags & B_FORMAT) == 0)) {
bp->b_error = EINVAL;
goto bad;
}
/* If it's a null transfer, return immediately. */
if (bp->b_bcount == 0)
goto done;
sz = howmany(bp->b_bcount, DEV_BSIZE);
if (bp->b_blkno + sz > (fd->sc_type->size * DEV_BSIZE) / FD_BSIZE(fd)) {
sz = (fd->sc_type->size * DEV_BSIZE) / FD_BSIZE(fd)
- bp->b_blkno;
if (sz == 0) {
/* If exactly at end of disk, return EOF. */
bp->b_resid = bp->b_bcount;
goto done;
}
if (sz < 0) {
/* If past end of disk, return EINVAL. */
bp->b_error = EINVAL;
goto bad;
}
/* Otherwise, truncate request. */
bp->b_bcount = sz << DEV_BSHIFT;
}
bp->b_rawblkno = bp->b_blkno;
bp->b_cylinder = (bp->b_blkno * DEV_BSIZE) /
(FD_BSIZE(fd) * fd->sc_type->seccyl);
#ifdef FD_DEBUG
if (fdc_debug > 1)
printf("fdstrategy: b_blkno %d b_bcount %ld blkno %d cylin %ld\n",
bp->b_blkno, bp->b_bcount, fd->sc_blkno, bp->b_cylinder);
#endif
/* Queue transfer on drive, activate drive and controller if idle. */
s = splbio();
disksort_cylinder(&fd->sc_q, bp);
callout_stop(&fd->sc_motoroff_ch); /* a good idea */
if (fd->sc_active == 0)
fdstart(fd);
#ifdef DIAGNOSTIC
else {
struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent;
if (fdc->sc_state == DEVIDLE) {
printf("fdstrategy: controller inactive\n");
fdcstart(fdc);
}
}
#endif
splx(s);
return;
bad:
bp->b_flags |= B_ERROR;
done:
/* Toss transfer; we're done early. */
biodone(bp);
}
void
fdstart(fd)
struct fd_softc *fd;
{
struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent;
int active = fdc->sc_drives.tqh_first != 0;
/* Link into controller queue. */
fd->sc_active = 1;
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
/* If controller not already active, start it. */
if (!active)
fdcstart(fdc);
}
void
fdfinish(fd, bp)
struct fd_softc *fd;
struct buf *bp;
{
struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent;
/*
* Move this drive to the end of the queue to give others a `fair'
* chance. We only force a switch if N operations are completed while
* another drive is waiting to be serviced, since there is a long motor
* startup delay whenever we switch.
*/
if (fd->sc_drivechain.tqe_next && ++fd->sc_ops >= 8) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
if (BUFQ_NEXT(bp) != NULL) {
TAILQ_INSERT_TAIL(&fdc->sc_drives, fd, sc_drivechain);
} else
fd->sc_active = 0;
}
bp->b_resid = fd->sc_bcount;
fd->sc_skip = 0;
BUFQ_REMOVE(&fd->sc_q, bp);
biodone(bp);
/* turn off motor 5s from now */
callout_reset(&fd->sc_motoroff_ch, 5 * hz, fd_motor_off, fd);
fdc->sc_state = DEVIDLE;
}
void
fdc_reset(fdc)
struct fdc_softc *fdc;
{
bus_space_tag_t t = fdc->sc_bustag;
bus_space_handle_t h = fdc->sc_handle;
if ((fdc->sc_flags & FDC_82077) != 0) {
bus_space_write_1(t, h, fdc->sc_reg_dor,
FDO_FDMAEN | FDO_MOEN(0));
}
bus_space_write_1(t, h, fdc->sc_reg_drs, DRS_RESET);
delay(10);
bus_space_write_1(t, h, fdc->sc_reg_drs, 0);
if ((fdc->sc_flags & FDC_82077) != 0) {
bus_space_write_1(t, h, fdc->sc_reg_dor,
FDO_FRST | FDO_FDMAEN | FDO_DS);
}
#ifdef FD_DEBUG
if (fdc_debug)
printf("fdc reset\n");
#endif
}
void
fd_set_motor(fdc)
struct fdc_softc *fdc;
{
struct fd_softc *fd;
u_char status;
int n;
if ((fdc->sc_flags & FDC_82077) != 0) {
status = FDO_FRST | FDO_FDMAEN;
if ((fd = fdc->sc_drives.tqh_first) != NULL)
status |= fd->sc_drive;
for (n = 0; n < 4; n++)
if ((fd = fdc->sc_fd[n]) && (fd->sc_flags & FD_MOTOR))
status |= FDO_MOEN(n);
bus_space_write_1(fdc->sc_bustag, fdc->sc_handle,
fdc->sc_reg_dor, status);
} else {
for (n = 0; n < 4; n++) {
if ((fd = fdc->sc_fd[n]) != NULL &&
(fd->sc_flags & FD_MOTOR) != 0) {
auxregbisc(AUXIO4C_FDS, 0);
return;
}
}
auxregbisc(0, AUXIO4C_FDS);
}
}
void
fd_motor_off(arg)
void *arg;
{
struct fd_softc *fd = arg;
int s;
s = splbio();
fd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
fd_set_motor((struct fdc_softc *)fd->sc_dv.dv_parent);
splx(s);
}
void
fd_motor_on(arg)
void *arg;
{
struct fd_softc *fd = arg;
struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent;
int s;
s = splbio();
fd->sc_flags &= ~FD_MOTOR_WAIT;
if ((fdc->sc_drives.tqh_first == fd) && (fdc->sc_state == MOTORWAIT))
(void) fdcstate(fdc);
splx(s);
}
/*
* Get status bytes off the FDC after a command has finished
* Returns the number of status bytes read; -1 on error.
* The return value is also stored in `sc_nstat'.
*/
int
fdcresult(fdc)
struct fdc_softc *fdc;
{
bus_space_tag_t t = fdc->sc_bustag;
bus_space_handle_t h = fdc->sc_handle;
int j, n = 0;
for (j = 10000; j; j--) {
u_int8_t v = bus_space_read_1(t, h, fdc->sc_reg_msr);
v &= (NE7_DIO | NE7_RQM | NE7_CB);
if (v == NE7_RQM)
return (fdc->sc_nstat = n);
if (v == (NE7_DIO | NE7_RQM | NE7_CB)) {
if (n >= sizeof(fdc->sc_status)) {
log(LOG_ERR, "fdcresult: overrun\n");
return (-1);
}
fdc->sc_status[n++] =
bus_space_read_1(t, h, fdc->sc_reg_fifo);
} else
delay(1);
}
log(LOG_ERR, "fdcresult: timeout\n");
return (fdc->sc_nstat = -1);
}
/*
* Write a command byte to the FDC.
* Returns 0 on success; -1 on failure (i.e. timeout)
*/
int
fdc_wrfifo(fdc, x)
struct fdc_softc *fdc;
u_int8_t x;
{
bus_space_tag_t t = fdc->sc_bustag;
bus_space_handle_t h = fdc->sc_handle;
int i;
for (i = 100000; i-- > 0;) {
u_int8_t v = bus_space_read_1(t, h, fdc->sc_reg_msr);
if ((v & (NE7_DIO|NE7_RQM)) == NE7_RQM) {
/* The chip is ready */
bus_space_write_1(t, h, fdc->sc_reg_fifo, x);
return (0);
}
delay(1);
}
return (-1);
}
int
fdopen(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
int unit, pmask;
struct fd_softc *fd;
struct fd_type *type;
unit = FDUNIT(dev);
if (unit >= fd_cd.cd_ndevs)
return (ENXIO);
fd = fd_cd.cd_devs[unit];
if (fd == NULL)
return (ENXIO);
type = fd_dev_to_type(fd, dev);
if (type == NULL)
return (ENXIO);
if ((fd->sc_flags & FD_OPEN) != 0 &&
fd->sc_type != type)
return (EBUSY);
fd->sc_type = type;
fd->sc_cylin = -1;
fd->sc_flags |= FD_OPEN;
/*
* Only update the disklabel if we're not open anywhere else.
*/
if (fd->sc_dk.dk_openmask == 0)
fdgetdisklabel(dev);
pmask = (1 << DISKPART(dev));
switch (fmt) {
case S_IFCHR:
fd->sc_dk.dk_copenmask |= pmask;
break;
case S_IFBLK:
fd->sc_dk.dk_bopenmask |= pmask;
break;
}
fd->sc_dk.dk_openmask =
fd->sc_dk.dk_copenmask | fd->sc_dk.dk_bopenmask;
return (0);
}
int
fdclose(dev, flags, fmt, p)
dev_t dev;
int flags, fmt;
struct proc *p;
{
struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)];
int pmask = (1 << DISKPART(dev));
fd->sc_flags &= ~FD_OPEN;
fd->sc_opts &= ~(FDOPT_NORETRY|FDOPT_SILENT);
switch (fmt) {
case S_IFCHR:
fd->sc_dk.dk_copenmask &= ~pmask;
break;
case S_IFBLK:
fd->sc_dk.dk_bopenmask &= ~pmask;
break;
}
fd->sc_dk.dk_openmask =
fd->sc_dk.dk_copenmask | fd->sc_dk.dk_bopenmask;
return (0);
}
int
fdread(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
return (physio(fdstrategy, NULL, dev, B_READ, minphys, uio));
}
int
fdwrite(dev, uio, flag)
dev_t dev;
struct uio *uio;
int flag;
{
return (physio(fdstrategy, NULL, dev, B_WRITE, minphys, uio));
}
void
fdcstart(fdc)
struct fdc_softc *fdc;
{
#ifdef DIAGNOSTIC
/* only got here if controller's drive queue was inactive; should
be in idle state */
if (fdc->sc_state != DEVIDLE) {
printf("fdcstart: not idle\n");
return;
}
#endif
(void) fdcstate(fdc);
}
void
fdcstatus(fdc, s)
struct fdc_softc *fdc;
char *s;
{
struct fd_softc *fd = fdc->sc_drives.tqh_first;
int n;
char bits[64];
/* Just print last status */
n = fdc->sc_nstat;
#if 0
/*
* A 82072 seems to return <invalid command> on
* gratuitous Sense Interrupt commands.
*/
if (n == 0 && (fdc->sc_flags & FDC_82077) != 0) {
fdc_wrfifo(fdc, NE7CMD_SENSEI);
(void) fdcresult(fdc);
n = 2;
}
#endif
printf("%s: %s: state %d",
fd ? fd->sc_dv.dv_xname : "fdc", s, fdc->sc_state);
switch (n) {
case 0:
printf("\n");
break;
case 2:
printf(" (st0 %s cyl %d)\n",
bitmask_snprintf(fdc->sc_status[0], NE7_ST0BITS,
bits, sizeof(bits)), fdc->sc_status[1]);
break;
case 7:
printf(" (st0 %s", bitmask_snprintf(fdc->sc_status[0],
NE7_ST0BITS, bits, sizeof(bits)));
printf(" st1 %s", bitmask_snprintf(fdc->sc_status[1],
NE7_ST1BITS, bits, sizeof(bits)));
printf(" st2 %s", bitmask_snprintf(fdc->sc_status[2],
NE7_ST2BITS, bits, sizeof(bits)));
printf(" cyl %d head %d sec %d)\n",
fdc->sc_status[3], fdc->sc_status[4], fdc->sc_status[5]);
break;
#ifdef DIAGNOSTIC
default:
printf(" fdcstatus: weird size: %d\n", n);
break;
#endif
}
}
void
fdctimeout(arg)
void *arg;
{
struct fdc_softc *fdc = arg;
struct fd_softc *fd;
int s;
s = splbio();
fd = fdc->sc_drives.tqh_first;
if (fd == NULL) {
printf("%s: timeout but no I/O pending: state %d, istatus=%d\n",
fdc->sc_dev.dv_xname,
fdc->sc_state, fdc->sc_istatus);
fdc->sc_state = DEVIDLE;
goto out;
}
if (BUFQ_FIRST(&fd->sc_q) != NULL)
fdc->sc_state++;
else
fdc->sc_state = DEVIDLE;
(void) fdcstate(fdc);
out:
splx(s);
}
void
fdcpseudointr(arg)
void *arg;
{
struct fdc_softc *fdc = arg;
int s;
/* Just ensure it has the right spl. */
s = splbio();
(void) fdcstate(fdc);
splx(s);
}
/*
* hardware interrupt entry point: used only if no `fast trap' * (in-window)
* handler is available. Unfortunately, we have no reliable way to
* determine that the interrupt really came from the floppy controller;
* just hope that the other devices that share this interrupt level
* can do better..
*/
int
fdc_c_hwintr(arg)
void *arg;
{
struct fdc_softc *fdc = arg;
bus_space_tag_t t = fdc->sc_bustag;
bus_space_handle_t h = fdc->sc_handle;
switch (fdc->sc_itask) {
case FDC_ITASK_NONE:
return (0);
case FDC_ITASK_SENSEI:
if (fdc_wrfifo(fdc, NE7CMD_SENSEI) != 0 || fdcresult(fdc) == -1)
fdc->sc_istatus = FDC_ISTATUS_ERROR;
else
fdc->sc_istatus = FDC_ISTATUS_DONE;
FD_SET_SWINTR;
return (1);
case FDC_ITASK_DMA:
/* Proceed with pseudo-dma below */
break;
default:
printf("fdc: stray hard interrupt: itask=%d\n", fdc->sc_itask);
fdc->sc_istatus = FDC_ISTATUS_SPURIOUS;
FD_SET_SWINTR;
return (1);
}
/*
* Pseudo DMA in progress
*/
for (;;) {
u_int8_t msr;
msr = bus_space_read_1(t, h, fdc->sc_reg_msr);
if ((msr & NE7_RQM) == 0)
/* That's all this round */
break;
if ((msr & NE7_NDM) == 0) {
fdcresult(fdc);
fdc->sc_istatus = FDC_ISTATUS_DONE;
FD_SET_SWINTR;
#ifdef FD_DEBUG
if (fdc_debug > 1)
printf("fdc: overrun: tc = %d\n", fdc->sc_tc);
#endif
break;
}
/* Another byte can be transferred */
if ((msr & NE7_DIO) != 0)
*fdc->sc_data =
bus_space_read_1(t, h, fdc->sc_reg_fifo);
else
bus_space_write_1(t, h, fdc->sc_reg_fifo,
*fdc->sc_data);
fdc->sc_data++;
if (--fdc->sc_tc == 0) {
fdc->sc_istatus = FDC_ISTATUS_DONE;
FTC_FLIP;
fdcresult(fdc);
FD_SET_SWINTR;
break;
}
}
return (1);
}
int
fdcswintr(arg)
void *arg;
{
struct fdc_softc *fdc = arg;
int s;
if (fdc->sc_istatus == FDC_ISTATUS_NONE)
/* This (software) interrupt is not for us */
return (0);
switch (fdc->sc_istatus) {
case FDC_ISTATUS_ERROR:
printf("fdc: ierror status: state %d\n", fdc->sc_state);
break;
case FDC_ISTATUS_SPURIOUS:
printf("fdc: spurious interrupt: state %d\n", fdc->sc_state);
break;
}
s = splbio();
fdcstate(fdc);
splx(s);
return (1);
}
int
fdcstate(fdc)
struct fdc_softc *fdc;
{
#define st0 fdc->sc_status[0]
#define st1 fdc->sc_status[1]
#define cyl fdc->sc_status[1]
#define FDC_WRFIFO(fdc, c) do { \
if (fdc_wrfifo(fdc, (c))) { \
goto xxx; \
} \
} while(0)
struct fd_softc *fd;
struct buf *bp;
int read, head, sec, nblks;
struct fd_type *type;
struct ne7_fd_formb *finfo = NULL;
if (fdc->sc_istatus == FDC_ISTATUS_ERROR) {
/* Prevent loop if the reset sequence produces errors */
if (fdc->sc_state != RESETCOMPLETE &&
fdc->sc_state != RECALWAIT &&
fdc->sc_state != RECALCOMPLETE)
fdc->sc_state = DORESET;
}
/* Clear I task/status field */
fdc->sc_istatus = FDC_ISTATUS_NONE;
fdc->sc_itask = FDC_ITASK_NONE;
loop:
/* Is there a drive for the controller to do a transfer with? */
fd = fdc->sc_drives.tqh_first;
if (fd == NULL) {
fdc->sc_state = DEVIDLE;
return (0);
}
/* Is there a transfer to this drive? If not, deactivate drive. */
bp = BUFQ_FIRST(&fd->sc_q);
if (bp == NULL) {
fd->sc_ops = 0;
TAILQ_REMOVE(&fdc->sc_drives, fd, sc_drivechain);
fd->sc_active = 0;
goto loop;
}
if (bp->b_flags & B_FORMAT)
finfo = (struct ne7_fd_formb *)bp->b_data;
switch (fdc->sc_state) {
case DEVIDLE:
fdc->sc_errors = 0;
fd->sc_skip = 0;
fd->sc_bcount = bp->b_bcount;
fd->sc_blkno = (bp->b_blkno * DEV_BSIZE) / FD_BSIZE(fd);
callout_stop(&fd->sc_motoroff_ch);
if ((fd->sc_flags & FD_MOTOR_WAIT) != 0) {
fdc->sc_state = MOTORWAIT;
return (1);
}
if ((fd->sc_flags & FD_MOTOR) == 0) {
/* Turn on the motor, being careful about pairing. */
struct fd_softc *ofd = fdc->sc_fd[fd->sc_drive ^ 1];
if (ofd && ofd->sc_flags & FD_MOTOR) {
callout_stop(&ofd->sc_motoroff_ch);
ofd->sc_flags &= ~(FD_MOTOR | FD_MOTOR_WAIT);
}
fd->sc_flags |= FD_MOTOR | FD_MOTOR_WAIT;
fd_set_motor(fdc);
fdc->sc_state = MOTORWAIT;
if ((fdc->sc_flags & FDC_NEEDMOTORWAIT) != 0) { /*XXX*/
/* Allow .25s for motor to stabilize. */
callout_reset(&fd->sc_motoron_ch, hz / 4,
fd_motor_on, fd);
} else {
fd->sc_flags &= ~FD_MOTOR_WAIT;
goto loop;
}
return (1);
}
/* Make sure the right drive is selected. */
fd_set_motor(fdc);
/*FALLTHROUGH*/
case DOSEEK:
doseek:
if ((fdc->sc_flags & FDC_EIS) &&
(bp->b_flags & B_FORMAT) == 0) {
fd->sc_cylin = bp->b_cylinder;
/* We use implied seek */
goto doio;
}
if (fd->sc_cylin == bp->b_cylinder)
goto doio;
fd->sc_cylin = -1;
fdc->sc_state = SEEKWAIT;
fdc->sc_nstat = 0;
fd->sc_dk.dk_seek++;
disk_busy(&fd->sc_dk);
callout_reset(&fdc->sc_timo_ch, 4 * hz, fdctimeout, fdc);
/* specify command */
FDC_WRFIFO(fdc, NE7CMD_SPECIFY);
FDC_WRFIFO(fdc, fd->sc_type->steprate);
/* XXX head load time == 6ms */
FDC_WRFIFO(fdc, 6 | NE7_SPECIFY_NODMA);
fdc->sc_itask = FDC_ITASK_SENSEI;
/* seek function */
FDC_WRFIFO(fdc, NE7CMD_SEEK);
FDC_WRFIFO(fdc, fd->sc_drive); /* drive number */
FDC_WRFIFO(fdc, bp->b_cylinder * fd->sc_type->step);
return (1);
case DOIO:
doio:
if (finfo != NULL)
fd->sc_skip = (char *)&(finfo->fd_formb_cylno(0)) -
(char *)finfo;
type = fd->sc_type;
sec = fd->sc_blkno % type->seccyl;
nblks = type->seccyl - sec;
nblks = min(nblks, fd->sc_bcount / FD_BSIZE(fd));
nblks = min(nblks, FDC_MAXIOSIZE / FD_BSIZE(fd));
fd->sc_nblks = nblks;
fd->sc_nbytes = finfo ? bp->b_bcount : nblks * FD_BSIZE(fd);
head = sec / type->sectrac;
sec -= head * type->sectrac;
#ifdef DIAGNOSTIC
{int block;
block = (fd->sc_cylin * type->heads + head) * type->sectrac + sec;
if (block != fd->sc_blkno) {
printf("fdcintr: block %d != blkno %d\n", block, fd->sc_blkno);
#ifdef DDB
Debugger();
#endif
}}
#endif
read = bp->b_flags & B_READ;
/* Setup for pseudo DMA */
fdc->sc_data = bp->b_data + fd->sc_skip;
fdc->sc_tc = fd->sc_nbytes;
bus_space_write_1(fdc->sc_bustag, fdc->sc_handle,
fdc->sc_reg_drs, type->rate);
#ifdef FD_DEBUG
if (fdc_debug > 1)
printf("fdcstate: doio: %s drive %d "
"track %d head %d sec %d nblks %d\n",
finfo ? "format" :
(read ? "read" : "write"),
fd->sc_drive, fd->sc_cylin, head, sec, nblks);
#endif
fdc->sc_state = IOCOMPLETE;
fdc->sc_itask = FDC_ITASK_DMA;
fdc->sc_nstat = 0;
disk_busy(&fd->sc_dk);
/* allow 3 seconds for operation */
callout_reset(&fdc->sc_timo_ch, 3 * hz, fdctimeout, fdc);
if (finfo != NULL) {
/* formatting */
FDC_WRFIFO(fdc, NE7CMD_FORMAT);
FDC_WRFIFO(fdc, (head << 2) | fd->sc_drive);
FDC_WRFIFO(fdc, finfo->fd_formb_secshift);
FDC_WRFIFO(fdc, finfo->fd_formb_nsecs);
FDC_WRFIFO(fdc, finfo->fd_formb_gaplen);
FDC_WRFIFO(fdc, finfo->fd_formb_fillbyte);
} else {
if (read)
FDC_WRFIFO(fdc, NE7CMD_READ);
else
FDC_WRFIFO(fdc, NE7CMD_WRITE);
FDC_WRFIFO(fdc, (head << 2) | fd->sc_drive);
FDC_WRFIFO(fdc, fd->sc_cylin); /*track*/
FDC_WRFIFO(fdc, head);
FDC_WRFIFO(fdc, sec + 1); /*sector+1*/
FDC_WRFIFO(fdc, type->secsize);/*sector size*/
FDC_WRFIFO(fdc, type->sectrac);/*secs/track*/
FDC_WRFIFO(fdc, type->gap1); /*gap1 size*/
FDC_WRFIFO(fdc, type->datalen);/*data length*/
}
return (1); /* will return later */
case SEEKWAIT:
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = SEEKCOMPLETE;
if (fdc->sc_flags & FDC_NEEDHEADSETTLE) {
/* allow 1/50 second for heads to settle */
callout_reset(&fdc->sc_intr_ch, hz / 50,
fdcpseudointr, fdc);
return (1); /* will return later */
}
/*FALLTHROUGH*/
case SEEKCOMPLETE:
disk_unbusy(&fd->sc_dk, 0); /* no data on seek */
/* Make sure seek really happened. */
if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 ||
cyl != bp->b_cylinder * fd->sc_type->step) {
#ifdef FD_DEBUG
if (fdc_debug)
fdcstatus(fdc, "seek failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = bp->b_cylinder;
goto doio;
case IOTIMEDOUT:
/*
* Try to abort the I/O operation without resetting
* the chip first. Poke TC and arrange to pick up
* the timed out I/O command's status.
*/
fdc->sc_itask = FDC_ITASK_RESULT;
fdc->sc_state = IOCLEANUPWAIT;
fdc->sc_nstat = 0;
/* 1/10 second should be enough */
callout_reset(&fdc->sc_timo_ch, hz / 10, fdctimeout, fdc);
FTC_FLIP;
return (1);
case IOCLEANUPTIMEDOUT:
case SEEKTIMEDOUT:
case RECALTIMEDOUT:
case RESETTIMEDOUT:
fdcstatus(fdc, "timeout");
/* All other timeouts always roll through to a chip reset */
fdcretry(fdc);
/* Force reset, no matter what fdcretry() says */
fdc->sc_state = DORESET;
goto loop;
case IOCLEANUPWAIT: /* IO FAILED, cleanup succeeded */
callout_stop(&fdc->sc_timo_ch);
disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid));
fdcretry(fdc);
goto loop;
case IOCOMPLETE: /* IO DONE, post-analyze */
callout_stop(&fdc->sc_timo_ch);
disk_unbusy(&fd->sc_dk, (bp->b_bcount - bp->b_resid));
if (fdc->sc_nstat != 7 || st1 != 0 ||
((st0 & 0xf8) != 0 &&
((st0 & 0xf8) != 0x20 || (fdc->sc_cfg & CFG_EIS) == 0))) {
#ifdef FD_DEBUG
if (fdc_debug) {
fdcstatus(fdc,
bp->b_flags & B_READ
? "read failed" : "write failed");
printf("blkno %d nblks %d nstat %d tc %d\n",
fd->sc_blkno, fd->sc_nblks,
fdc->sc_nstat, fdc->sc_tc);
}
#endif
if (fdc->sc_nstat == 7 &&
(st1 & ST1_OVERRUN) == ST1_OVERRUN) {
/*
* Silently retry overruns if no other
* error bit is set. Adjust threshold.
*/
int thr = fdc->sc_cfg & CFG_THRHLD_MASK;
if (thr < 15) {
thr++;
fdc->sc_cfg &= ~CFG_THRHLD_MASK;
fdc->sc_cfg |= (thr & CFG_THRHLD_MASK);
#ifdef FD_DEBUG
if (fdc_debug)
printf("fdc: %d -> threshold\n", thr);
#endif
fdconf(fdc);
fdc->sc_overruns = 0;
}
if (++fdc->sc_overruns < 3) {
fdc->sc_state = DOIO;
goto loop;
}
}
fdcretry(fdc);
goto loop;
}
if (fdc->sc_errors) {
diskerr(bp, "fd", "soft error", LOG_PRINTF,
fd->sc_skip / FD_BSIZE(fd),
(struct disklabel *)NULL);
printf("\n");
fdc->sc_errors = 0;
} else {
if (--fdc->sc_overruns < -20) {
int thr = fdc->sc_cfg & CFG_THRHLD_MASK;
if (thr > 0) {
thr--;
fdc->sc_cfg &= ~CFG_THRHLD_MASK;
fdc->sc_cfg |= (thr & CFG_THRHLD_MASK);
#ifdef FD_DEBUG
if (fdc_debug)
printf("fdc: %d -> threshold\n", thr);
#endif
fdconf(fdc);
}
fdc->sc_overruns = 0;
}
}
fd->sc_blkno += fd->sc_nblks;
fd->sc_skip += fd->sc_nbytes;
fd->sc_bcount -= fd->sc_nbytes;
if (finfo == NULL && fd->sc_bcount > 0) {
bp->b_cylinder = fd->sc_blkno / fd->sc_type->seccyl;
goto doseek;
}
fdfinish(fd, bp);
goto loop;
case DORESET:
/* try a reset, keep motor on */
fd_set_motor(fdc);
delay(100);
fdc->sc_nstat = 0;
fdc->sc_itask = FDC_ITASK_SENSEI;
fdc->sc_state = RESETCOMPLETE;
callout_reset(&fdc->sc_timo_ch, hz / 2, fdctimeout, fdc);
fdc_reset(fdc);
return (1); /* will return later */
case RESETCOMPLETE:
callout_stop(&fdc->sc_timo_ch);
fdconf(fdc);
/* FALLTHROUGH */
case DORECAL:
fdc->sc_state = RECALWAIT;
fdc->sc_itask = FDC_ITASK_SENSEI;
fdc->sc_nstat = 0;
callout_reset(&fdc->sc_timo_ch, 5 * hz, fdctimeout, fdc);
/* recalibrate function */
FDC_WRFIFO(fdc, NE7CMD_RECAL);
FDC_WRFIFO(fdc, fd->sc_drive);
return (1); /* will return later */
case RECALWAIT:
callout_stop(&fdc->sc_timo_ch);
fdc->sc_state = RECALCOMPLETE;
if (fdc->sc_flags & FDC_NEEDHEADSETTLE) {
/* allow 1/30 second for heads to settle */
callout_reset(&fdc->sc_intr_ch, hz / 30,
fdcpseudointr, fdc);
return (1); /* will return later */
}
case RECALCOMPLETE:
if (fdc->sc_nstat != 2 || (st0 & 0xf8) != 0x20 || cyl != 0) {
#ifdef FD_DEBUG
if (fdc_debug)
fdcstatus(fdc, "recalibrate failed");
#endif
fdcretry(fdc);
goto loop;
}
fd->sc_cylin = 0;
goto doseek;
case MOTORWAIT:
if (fd->sc_flags & FD_MOTOR_WAIT)
return (1); /* time's not up yet */
goto doseek;
default:
fdcstatus(fdc, "stray interrupt");
return (1);
}
#ifdef DIAGNOSTIC
panic("fdcintr: impossible");
#endif
xxx:
/*
* We get here if the chip locks up in FDC_WRFIFO()
* Cancel any operation and schedule a reset
*/
callout_stop(&fdc->sc_timo_ch);
fdcretry(fdc);
(fdc)->sc_state = DORESET;
goto loop;
#undef st0
#undef st1
#undef cyl
}
void
fdcretry(fdc)
struct fdc_softc *fdc;
{
struct fd_softc *fd;
struct buf *bp;
int error = EIO;
fd = fdc->sc_drives.tqh_first;
bp = BUFQ_FIRST(&fd->sc_q);
fdc->sc_overruns = 0;
if (fd->sc_opts & FDOPT_NORETRY)
goto fail;
switch (fdc->sc_errors) {
case 0:
if (fdc->sc_nstat == 7 &&
(fdc->sc_status[0] & 0xd8) == 0x40 &&
(fdc->sc_status[1] & 0x2) == 0x2) {
printf("%s: read-only medium\n", fd->sc_dv.dv_xname);
error = EROFS;
goto failsilent;
}
/* try again */
fdc->sc_state =
(fdc->sc_flags & FDC_EIS) ? DOIO : DOSEEK;
break;
case 1: case 2: case 3:
/* didn't work; try recalibrating */
fdc->sc_state = DORECAL;
break;
case 4:
if (fdc->sc_nstat == 7 &&
fdc->sc_status[0] == 0 &&
fdc->sc_status[1] == 0 &&
fdc->sc_status[2] == 0) {
/*
* We've retried a few times and we've got
* valid status and all three status bytes
* are zero. Assume this condition is the
* result of no disk loaded into the drive.
*/
printf("%s: no medium?\n", fd->sc_dv.dv_xname);
error = ENODEV;
goto failsilent;
}
/* still no go; reset the bastard */
fdc->sc_state = DORESET;
break;
default:
fail:
if ((fd->sc_opts & FDOPT_SILENT) == 0) {
diskerr(bp, "fd", "hard error", LOG_PRINTF,
fd->sc_skip / FD_BSIZE(fd),
(struct disklabel *)NULL);
printf("\n");
fdcstatus(fdc, "controller status");
}
failsilent:
bp->b_flags |= B_ERROR;
bp->b_error = error;
fdfinish(fd, bp);
}
fdc->sc_errors++;
}
int
fdsize(dev)
dev_t dev;
{
/* Swapping to floppies would not make sense. */
return (-1);
}
int
fddump(dev, blkno, va, size)
dev_t dev;
daddr_t blkno;
caddr_t va;
size_t size;
{
/* Not implemented. */
return (EINVAL);
}
int
fdioctl(dev, cmd, addr, flag, p)
dev_t dev;
u_long cmd;
caddr_t addr;
int flag;
struct proc *p;
{
struct fd_softc *fd;
struct fdc_softc *fdc;
struct fdformat_parms *form_parms;
struct fdformat_cmd *form_cmd;
struct ne7_fd_formb *fd_formb;
int il[FD_MAX_NSEC + 1];
int unit;
int i, j;
int error;
unit = FDUNIT(dev);
if (unit >= fd_cd.cd_ndevs)
return (ENXIO);
fd = fd_cd.cd_devs[FDUNIT(dev)];
fdc = (struct fdc_softc *)fd->sc_dv.dv_parent;
switch (cmd) {
case DIOCGDINFO:
*(struct disklabel *)addr = *(fd->sc_dk.dk_label);
return 0;
case DIOCWLABEL:
if ((flag & FWRITE) == 0)
return EBADF;
/* XXX do something */
return (0);
case DIOCWDINFO:
if ((flag & FWRITE) == 0)
return (EBADF);
error = setdisklabel(fd->sc_dk.dk_label,
(struct disklabel *)addr, 0,
fd->sc_dk.dk_cpulabel);
if (error)
return (error);
error = writedisklabel(dev, fdstrategy,
fd->sc_dk.dk_label,
fd->sc_dk.dk_cpulabel);
return (error);
case DIOCLOCK:
/*
* Nothing to do here, really.
*/
return (0);
case DIOCEJECT:
if (*(int *)addr == 0) {
int part = DISKPART(dev);
/*
* Don't force eject: check that we are the only
* partition open. If so, unlock it.
*/
if ((fd->sc_dk.dk_openmask & ~(1 << part)) != 0 ||
fd->sc_dk.dk_bopenmask + fd->sc_dk.dk_copenmask !=
fd->sc_dk.dk_openmask) {
return (EBUSY);
}
}
/* FALLTHROUGH */
case ODIOCEJECT:
fd_do_eject(fd);
return (0);
case FDIOCGETFORMAT:
form_parms = (struct fdformat_parms *)addr;
form_parms->fdformat_version = FDFORMAT_VERSION;
form_parms->nbps = 128 * (1 << fd->sc_type->secsize);
form_parms->ncyl = fd->sc_type->cylinders;
form_parms->nspt = fd->sc_type->sectrac;
form_parms->ntrk = fd->sc_type->heads;
form_parms->stepspercyl = fd->sc_type->step;
form_parms->gaplen = fd->sc_type->gap2;
form_parms->fillbyte = fd->sc_type->fillbyte;
form_parms->interleave = fd->sc_type->interleave;
switch (fd->sc_type->rate) {
case FDC_500KBPS:
form_parms->xfer_rate = 500 * 1024;
break;
case FDC_300KBPS:
form_parms->xfer_rate = 300 * 1024;
break;
case FDC_250KBPS:
form_parms->xfer_rate = 250 * 1024;
break;
default:
return (EINVAL);
}
return (0);
case FDIOCSETFORMAT:
if ((flag & FWRITE) == 0)
return (EBADF); /* must be opened for writing */
form_parms = (struct fdformat_parms *)addr;
if (form_parms->fdformat_version != FDFORMAT_VERSION)
return (EINVAL);/* wrong version of formatting prog */
i = form_parms->nbps >> 7;
if ((form_parms->nbps & 0x7f) || ffs(i) == 0 ||
i & ~(1 << (ffs(i)-1)))
/* not a power-of-two multiple of 128 */
return (EINVAL);
switch (form_parms->xfer_rate) {
case 500 * 1024:
fd->sc_type->rate = FDC_500KBPS;
break;
case 300 * 1024:
fd->sc_type->rate = FDC_300KBPS;
break;
case 250 * 1024:
fd->sc_type->rate = FDC_250KBPS;
break;
default:
return (EINVAL);
}
if (form_parms->nspt > FD_MAX_NSEC ||
form_parms->fillbyte > 0xff ||
form_parms->interleave > 0xff)
return EINVAL;
fd->sc_type->sectrac = form_parms->nspt;
if (form_parms->ntrk != 2 && form_parms->ntrk != 1)
return EINVAL;
fd->sc_type->heads = form_parms->ntrk;
fd->sc_type->seccyl = form_parms->nspt * form_parms->ntrk;
fd->sc_type->secsize = ffs(i)-1;
fd->sc_type->gap2 = form_parms->gaplen;
fd->sc_type->cylinders = form_parms->ncyl;
fd->sc_type->size = fd->sc_type->seccyl * form_parms->ncyl *
form_parms->nbps / DEV_BSIZE;
fd->sc_type->step = form_parms->stepspercyl;
fd->sc_type->fillbyte = form_parms->fillbyte;
fd->sc_type->interleave = form_parms->interleave;
return (0);
case FDIOCFORMAT_TRACK:
if((flag & FWRITE) == 0)
/* must be opened for writing */
return (EBADF);
form_cmd = (struct fdformat_cmd *)addr;
if (form_cmd->formatcmd_version != FDFORMAT_VERSION)
/* wrong version of formatting prog */
return (EINVAL);
if (form_cmd->head >= fd->sc_type->heads ||
form_cmd->cylinder >= fd->sc_type->cylinders) {
return (EINVAL);
}
fd_formb = malloc(sizeof(struct ne7_fd_formb),
M_TEMP, M_NOWAIT);
if (fd_formb == 0)
return (ENOMEM);
fd_formb->head = form_cmd->head;
fd_formb->cyl = form_cmd->cylinder;
fd_formb->transfer_rate = fd->sc_type->rate;
fd_formb->fd_formb_secshift = fd->sc_type->secsize;
fd_formb->fd_formb_nsecs = fd->sc_type->sectrac;
fd_formb->fd_formb_gaplen = fd->sc_type->gap2;
fd_formb->fd_formb_fillbyte = fd->sc_type->fillbyte;
bzero(il, sizeof il);
for (j = 0, i = 1; i <= fd_formb->fd_formb_nsecs; i++) {
while (il[(j%fd_formb->fd_formb_nsecs) + 1])
j++;
il[(j%fd_formb->fd_formb_nsecs) + 1] = i;
j += fd->sc_type->interleave;
}
for (i = 0; i < fd_formb->fd_formb_nsecs; i++) {
fd_formb->fd_formb_cylno(i) = form_cmd->cylinder;
fd_formb->fd_formb_headno(i) = form_cmd->head;
fd_formb->fd_formb_secno(i) = il[i+1];
fd_formb->fd_formb_secsize(i) = fd->sc_type->secsize;
}
error = fdformat(dev, fd_formb, p);
free(fd_formb, M_TEMP);
return error;
case FDIOCGETOPTS: /* get drive options */
*(int *)addr = fd->sc_opts;
return (0);
case FDIOCSETOPTS: /* set drive options */
fd->sc_opts = *(int *)addr;
return (0);
#ifdef FD_DEBUG
case _IO('f', 100):
fdc_wrfifo(fdc, NE7CMD_DUMPREG);
fdcresult(fdc);
printf("fdc: dumpreg(%d regs): <", fdc->sc_nstat);
for (i = 0; i < fdc->sc_nstat; i++)
printf(" 0x%x", fdc->sc_status[i]);
printf(">\n");
return (0);
case _IOW('f', 101, int):
fdc->sc_cfg &= ~CFG_THRHLD_MASK;
fdc->sc_cfg |= (*(int *)addr & CFG_THRHLD_MASK);
fdconf(fdc);
return (0);
case _IO('f', 102):
fdc_wrfifo(fdc, NE7CMD_SENSEI);
fdcresult(fdc);
printf("fdc: sensei(%d regs): <", fdc->sc_nstat);
for (i=0; i< fdc->sc_nstat; i++)
printf(" 0x%x", fdc->sc_status[i]);
printf(">\n");
return (0);
#endif
default:
return (ENOTTY);
}
#ifdef DIAGNOSTIC
panic("fdioctl: impossible");
#endif
}
int
fdformat(dev, finfo, p)
dev_t dev;
struct ne7_fd_formb *finfo;
struct proc *p;
{
int rv = 0, s;
struct fd_softc *fd = fd_cd.cd_devs[FDUNIT(dev)];
struct fd_type *type = fd->sc_type;
struct buf *bp;
/* set up a buffer header for fdstrategy() */
bp = (struct buf *)malloc(sizeof(struct buf), M_TEMP, M_NOWAIT);
if (bp == 0)
return (ENOBUFS);
memset((void *)bp, 0, sizeof(struct buf));
bp->b_flags = B_BUSY | B_PHYS | B_FORMAT;
bp->b_proc = p;
bp->b_dev = dev;
/*
* Calculate a fake blkno, so fdstrategy() would initiate a
* seek to the requested cylinder.
*/
bp->b_blkno = ((finfo->cyl * (type->sectrac * type->heads)
+ finfo->head * type->sectrac) * FD_BSIZE(fd))
/ DEV_BSIZE;
bp->b_bcount = sizeof(struct fd_idfield_data) * finfo->fd_formb_nsecs;
bp->b_data = (caddr_t)finfo;
#ifdef FD_DEBUG
if (fdc_debug) {
int i;
printf("fdformat: blkno 0x%x count %ld\n",
bp->b_blkno, bp->b_bcount);
printf("\tcyl:\t%d\n", finfo->cyl);
printf("\thead:\t%d\n", finfo->head);
printf("\tnsecs:\t%d\n", finfo->fd_formb_nsecs);
printf("\tsshft:\t%d\n", finfo->fd_formb_secshift);
printf("\tgaplen:\t%d\n", finfo->fd_formb_gaplen);
printf("\ttrack data:");
for (i = 0; i < finfo->fd_formb_nsecs; i++) {
printf(" [c%d h%d s%d]",
finfo->fd_formb_cylno(i),
finfo->fd_formb_headno(i),
finfo->fd_formb_secno(i) );
if (finfo->fd_formb_secsize(i) != 2)
printf("<sz:%d>", finfo->fd_formb_secsize(i));
}
printf("\n");
}
#endif
/* now do the format */
fdstrategy(bp);
/* ...and wait for it to complete */
s = splbio();
while (!(bp->b_flags & B_DONE)) {
rv = tsleep((caddr_t)bp, PRIBIO, "fdform", 20 * hz);
if (rv == EWOULDBLOCK)
break;
}
splx(s);
if (rv == EWOULDBLOCK) {
/* timed out */
rv = EIO;
biodone(bp);
}
if (bp->b_flags & B_ERROR) {
rv = bp->b_error;
}
free(bp, M_TEMP);
return (rv);
}
void
fdgetdisklabel(dev)
dev_t dev;
{
int unit = FDUNIT(dev), i;
struct fd_softc *fd = fd_cd.cd_devs[unit];
struct disklabel *lp = fd->sc_dk.dk_label;
struct cpu_disklabel *clp = fd->sc_dk.dk_cpulabel;
bzero(lp, sizeof(struct disklabel));
bzero(lp, sizeof(struct cpu_disklabel));
lp->d_type = DTYPE_FLOPPY;
lp->d_secsize = FD_BSIZE(fd);
lp->d_secpercyl = fd->sc_type->seccyl;
lp->d_nsectors = fd->sc_type->sectrac;
lp->d_ncylinders = fd->sc_type->cylinders;
lp->d_ntracks = fd->sc_type->heads; /* Go figure... */
lp->d_secperunit = lp->d_secpercyl * lp->d_ncylinders;
lp->d_rpm = 3600; /* XXX like it matters... */
strncpy(lp->d_typename, "floppy", sizeof(lp->d_typename));
strncpy(lp->d_packname, "fictitious", sizeof(lp->d_packname));
lp->d_interleave = 1;
lp->d_partitions[RAW_PART].p_offset = 0;
lp->d_partitions[RAW_PART].p_size = lp->d_secpercyl * lp->d_ncylinders;
lp->d_partitions[RAW_PART].p_fstype = FS_UNUSED;
lp->d_npartitions = RAW_PART + 1;
lp->d_magic = DISKMAGIC;
lp->d_magic2 = DISKMAGIC;
lp->d_checksum = dkcksum(lp);
/*
* Call the generic disklabel extraction routine. If there's
* not a label there, fake it.
*/
if (readdisklabel(dev, fdstrategy, lp, clp) != NULL) {
strncpy(lp->d_packname, "default label",
sizeof(lp->d_packname));
/*
* Reset the partition info; it might have gotten
* trashed in readdisklabel().
*
* XXX Why do we have to do this? readdisklabel()
* should be safe...
*/
for (i = 0; i < MAXPARTITIONS; ++i) {
lp->d_partitions[i].p_offset = 0;
if (i == RAW_PART) {
lp->d_partitions[i].p_size =
lp->d_secpercyl * lp->d_ncylinders;
lp->d_partitions[i].p_fstype = FS_BSDFFS;
} else {
lp->d_partitions[i].p_size = 0;
lp->d_partitions[i].p_fstype = FS_UNUSED;
}
}
lp->d_npartitions = RAW_PART + 1;
}
}
void
fd_do_eject(fd)
struct fd_softc *fd;
{
struct fdc_softc *fdc = (void *)fd->sc_dv.dv_parent;
if (CPU_ISSUN4C) {
auxregbisc(AUXIO4C_FDS, AUXIO4C_FEJ);
delay(10);
auxregbisc(AUXIO4C_FEJ, AUXIO4C_FDS);
return;
}
if (CPU_ISSUN4M && (fdc->sc_flags & FDC_82077) != 0) {
bus_space_tag_t t = fdc->sc_bustag;
bus_space_handle_t h = fdc->sc_handle;
u_int8_t dor = FDO_FRST | FDO_FDMAEN | FDO_MOEN(0);
bus_space_write_1(t, h, fdc->sc_reg_dor, dor | FDO_EJ);
delay(10);
bus_space_write_1(t, h, fdc->sc_reg_dor, FDO_FRST | FDO_DS);
return;
}
}
#ifdef MEMORY_DISK_HOOKS
int fd_read_md_image __P((size_t *, caddr_t *));
#endif
/* ARGSUSED */
void
fd_mountroot_hook(dev)
struct device *dev;
{
int c;
fd_do_eject((struct fd_softc *)dev);
printf("Insert filesystem floppy and press return.");
for (;;) {
c = cngetc();
if ((c == '\r') || (c == '\n')) {
printf("\n");
break;
}
}
}
#ifdef MEMORY_DISK_HOOKS
#define FDMICROROOTSIZE ((2*18*80) << DEV_BSHIFT)
int
fd_read_md_image(sizep, addrp)
size_t *sizep;
caddr_t *addrp;
{
struct buf buf, *bp = &buf;
dev_t dev;
off_t offset;
caddr_t addr;
dev = makedev(54,0); /* XXX */
MALLOC(addr, caddr_t, FDMICROROOTSIZE, M_DEVBUF, M_WAITOK);
*addrp = addr;
if (fdopen(dev, 0, S_IFCHR, NULL))
panic("fd: mountroot: fdopen");
offset = 0;
for (;;) {
bp->b_dev = dev;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_proc = NULL;
bp->b_flags = B_BUSY | B_PHYS | B_RAW | B_READ;
bp->b_blkno = btodb(offset);
bp->b_bcount = DEV_BSIZE;
bp->b_data = addr;
fdstrategy(bp);
while ((bp->b_flags & B_DONE) == 0) {
tsleep((caddr_t)bp, PRIBIO + 1, "physio", 0);
}
if (bp->b_error)
panic("fd: mountroot: fdread error %d", bp->b_error);
if (bp->b_resid != 0)
break;
addr += DEV_BSIZE;
offset += DEV_BSIZE;
if (offset + DEV_BSIZE > FDMICROROOTSIZE)
break;
}
(void)fdclose(dev, 0, S_IFCHR, NULL);
*sizep = offset;
fd_do_eject(fd_cd.cd_devs[FDUNIT(dev)]);
return (0);
}
#endif