NetBSD/sys/arch/sparc/dev/cgfour.c

525 lines
14 KiB
C

/* $NetBSD: cgfour.c,v 1.26 2002/03/11 16:27:01 pk Exp $ */
/*-
* Copyright (c) 1996, 1997 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1995 Theo de Raadt. All rights reserved.
* Copyright (c) 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Theo de Raadt.
*
* This software was developed by the Computer Systems Engineering group
* at Lawrence Berkeley Laboratory under DARPA contract BG 91-66 and
* contributed to Berkeley.
*
* All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* from @(#)cgthree.c 8.2 (Berkeley) 10/30/93
*/
/*
* color display (cgfour) driver.
*
* Does not handle interrupts, even though they can occur.
*
* XXX should defer colormap updates to vertical retrace interrupts
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/tty.h>
#include <sys/conf.h>
#include <machine/autoconf.h>
#include <machine/eeprom.h>
#include <machine/conf.h>
#include <dev/sun/fbio.h>
#include <dev/sun/fbvar.h>
#include <dev/sun/btreg.h>
#include <dev/sun/btvar.h>
#include <dev/sun/pfourreg.h>
/* per-display variables */
struct cgfour_softc {
struct device sc_dev; /* base device */
struct fbdevice sc_fb; /* frame buffer device */
bus_space_tag_t sc_bustag;
bus_addr_t sc_paddr; /* phys address for device mmap() */
volatile struct fbcontrol *sc_fbc; /* Brooktree registers */
union bt_cmap sc_cmap; /* Brooktree color map */
};
/* autoconfiguration driver */
static void cgfourattach __P((struct device *, struct device *, void *));
static int cgfourmatch __P((struct device *, struct cfdata *, void *));
#if defined(SUN4)
static void cgfourunblank __P((struct device *));
#endif
static int cg4_pfour_probe __P((void *, void *));
/* cdevsw prototypes */
cdev_decl(cgfour);
struct cfattach cgfour_ca = {
sizeof(struct cgfour_softc), cgfourmatch, cgfourattach
};
extern struct cfdriver cgfour_cd;
#if defined(SUN4)
/* frame buffer generic driver */
static struct fbdriver cgfourfbdriver = {
cgfourunblank, cgfouropen, cgfourclose, cgfourioctl, cgfourpoll,
cgfourmmap
};
static void cgfourloadcmap __P((struct cgfour_softc *, int, int));
static int cgfour_get_video __P((struct cgfour_softc *));
static void cgfour_set_video __P((struct cgfour_softc *, int));
#endif
/*
* Match a cgfour.
*/
int
cgfourmatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
union obio_attach_args *uoba = aux;
struct obio4_attach_args *oba;
if (uoba->uoba_isobio4 == 0)
return (0);
oba = &uoba->uoba_oba4;
return (bus_space_probe(oba->oba_bustag, oba->oba_paddr,
4, /* probe size */
0, /* offset */
0, /* flags */
cg4_pfour_probe, NULL));
}
int
cg4_pfour_probe(vaddr, arg)
void *vaddr;
void *arg;
{
return (fb_pfour_id(vaddr) == PFOUR_ID_COLOR8P1);
}
/*
* Attach a display. We need to notice if it is the console, too.
*/
void
cgfourattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
#if defined(SUN4)
struct cgfour_softc *sc = (struct cgfour_softc *)self;
union obio_attach_args *uoba = aux;
struct obio4_attach_args *oba = &uoba->uoba_oba4;
bus_space_handle_t bh;
volatile struct bt_regs *bt;
struct fbdevice *fb = &sc->sc_fb;
int ramsize, i, isconsole;
sc->sc_bustag = oba->oba_bustag;
sc->sc_paddr = (bus_addr_t)oba->oba_paddr;
/* Map the pfour register. */
if (bus_space_map(oba->oba_bustag, oba->oba_paddr,
sizeof(u_int32_t),
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
printf("%s: cannot map control registers\n", self->dv_xname);
return;
}
fb->fb_pfour = (volatile u_int32_t *)bh;
fb->fb_driver = &cgfourfbdriver;
fb->fb_device = &sc->sc_dev;
fb->fb_type.fb_type = FBTYPE_SUN4COLOR;
fb->fb_flags = sc->sc_dev.dv_cfdata->cf_flags & FB_USERMASK;
fb->fb_flags |= FB_PFOUR;
ramsize = PFOUR_COLOR_OFF_END - PFOUR_COLOR_OFF_OVERLAY;
fb->fb_type.fb_depth = 8;
fb_setsize_eeprom(fb, fb->fb_type.fb_depth, 1152, 900);
fb->fb_type.fb_cmsize = 256;
fb->fb_type.fb_size = ramsize;
printf(": cgfour/p4, %d x %d",
fb->fb_type.fb_width, fb->fb_type.fb_height);
isconsole = 0;
if (CPU_ISSUN4) {
struct eeprom *eep = (struct eeprom *)eeprom_va;
/*
* Assume this is the console if there's no eeprom info
* to be found.
*/
if (eep == NULL || eep->eeConsole == EE_CONS_P4OPT)
isconsole = fb_is_console(0);
}
#if 0
/*
* We don't do any of the console handling here. Instead,
* we let the bwtwo driver pick up the overlay plane and
* use it instead. Rconsole should have better performance
* with the 1-bit depth.
* -- Jason R. Thorpe <thorpej@NetBSD.ORG>
*/
/*
* When the ROM has mapped in a cgfour display, the address
* maps only the video RAM, so in any case we have to map the
* registers ourselves. We only need the video RAM if we are
* going to print characters via rconsole.
*/
if (isconsole) {
/* XXX this is kind of a waste */
fb->fb_pixels = mapiodev(ca->ca_ra.ra_reg,
PFOUR_COLOR_OFF_OVERLAY, ramsize);
}
#endif
/* Map the Brooktree. */
if (bus_space_map(oba->oba_bustag,
oba->oba_paddr + PFOUR_COLOR_OFF_CMAP,
sizeof(struct fbcontrol),
BUS_SPACE_MAP_LINEAR,
&bh) != 0) {
printf("%s: cannot map control registers\n", self->dv_xname);
return;
}
sc->sc_fbc = (volatile struct fbcontrol *)bh;
/* grab initial (current) color map */
bt = &sc->sc_fbc->fbc_dac;
bt->bt_addr = 0;
for (i = 0; i < 256 * 3 / 4; i++)
((char *)&sc->sc_cmap)[i] = bt->bt_cmap >> 24;
BT_INIT(bt, 24);
#if 0 /* See above. */
if (isconsole) {
printf(" (console)\n");
#if defined(RASTERCONSOLE) && 0 /* XXX been told it doesn't work well. */
fbrcons_init(fb);
#endif
} else
#endif /* 0 */
printf("\n");
/*
* Even though we're not using rconsole, we'd still like
* to notice if we're the console framebuffer.
*/
fb_attach(fb, isconsole);
#endif
}
int
cgfouropen(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
int unit = minor(dev);
if (unit >= cgfour_cd.cd_ndevs || cgfour_cd.cd_devs[unit] == NULL)
return (ENXIO);
return (0);
}
int
cgfourclose(dev, flags, mode, p)
dev_t dev;
int flags, mode;
struct proc *p;
{
return (0);
}
int
cgfourioctl(dev, cmd, data, flags, p)
dev_t dev;
u_long cmd;
caddr_t data;
int flags;
struct proc *p;
{
#if defined(SUN4)
struct cgfour_softc *sc = cgfour_cd.cd_devs[minor(dev)];
struct fbgattr *fba;
int error;
switch (cmd) {
case FBIOGTYPE:
*(struct fbtype *)data = sc->sc_fb.fb_type;
break;
case FBIOGATTR:
fba = (struct fbgattr *)data;
fba->real_type = sc->sc_fb.fb_type.fb_type;
fba->owner = 0; /* XXX ??? */
fba->fbtype = sc->sc_fb.fb_type;
fba->sattr.flags = 0;
fba->sattr.emu_type = sc->sc_fb.fb_type.fb_type;
fba->sattr.dev_specific[0] = -1;
fba->emu_types[0] = sc->sc_fb.fb_type.fb_type;
fba->emu_types[1] = -1;
break;
case FBIOGETCMAP:
#define p ((struct fbcmap *)data)
return (bt_getcmap(p, &sc->sc_cmap, 256, 1));
case FBIOPUTCMAP:
/* copy to software map */
error = bt_putcmap(p, &sc->sc_cmap, 256, 1);
if (error)
return (error);
/* now blast them into the chip */
/* XXX should use retrace interrupt */
cgfourloadcmap(sc, p->index, p->count);
#undef p
break;
case FBIOGVIDEO:
*(int *)data = cgfour_get_video(sc);
break;
case FBIOSVIDEO:
cgfour_set_video(sc, *(int *)data);
break;
default:
return (ENOTTY);
}
#endif
return (0);
}
int
cgfourpoll(dev, events, p)
dev_t dev;
int events;
struct proc *p;
{
return (seltrue(dev, events, p));
}
/*
* Return the address that would map the given device at the given
* offset, allowing for the given protection, or return -1 for error.
*
* the cg4 maps it's overlay plane for 128K, followed by the enable
* plane for 128K, followed by the colour plane (for as much colour
* as their is.)
*
* As well, mapping at an offset of 0x04000000 causes the cg4 to map
* only it's colour plane, at 0.
*/
paddr_t
cgfourmmap(dev, off, prot)
dev_t dev;
off_t off;
int prot;
{
struct cgfour_softc *sc = cgfour_cd.cd_devs[minor(dev)];
off_t poff;
#define START_ENABLE (128*1024)
#define START_COLOR ((128*1024) + (128*1024))
#define COLOR_SIZE (sc->sc_fb.fb_type.fb_width * \
sc->sc_fb.fb_type.fb_height)
#define END_COLOR (START_COLOR + COLOR_SIZE)
#define NOOVERLAY (0x04000000)
if (off & PGOFSET)
panic("cgfourmap");
if (off < 0)
return (-1);
else if ((u_int)off >= NOOVERLAY) {
off -= NOOVERLAY;
/*
* X11 maps a huge chunk of the frame buffer; far more than
* there really is. We compensate by double-mapping the
* first page for as many other pages as it wants
*/
while ((u_int)off >= COLOR_SIZE)
off -= COLOR_SIZE; /* XXX thorpej ??? */
poff = off + PFOUR_COLOR_OFF_COLOR;
} else if ((u_int)off < START_ENABLE) {
/*
* in overlay plane
*/
poff = PFOUR_COLOR_OFF_OVERLAY + off;
} else if ((u_int)off < START_COLOR) {
/*
* in enable plane
*/
poff = (off - START_ENABLE) + PFOUR_COLOR_OFF_ENABLE;
} else if ((u_int)off < sc->sc_fb.fb_type.fb_size) {
/*
* in colour plane
*/
poff = (off - START_COLOR) + PFOUR_COLOR_OFF_COLOR;
} else
return (-1);
return (bus_space_mmap(sc->sc_bustag,
sc->sc_paddr, poff,
prot, BUS_SPACE_MAP_LINEAR));
}
#if defined(SUN4)
/*
* Undo the effect of an FBIOSVIDEO that turns the video off.
*/
static void
cgfourunblank(dev)
struct device *dev;
{
cgfour_set_video((struct cgfour_softc *)dev, 1);
}
static int
cgfour_get_video(sc)
struct cgfour_softc *sc;
{
return (fb_pfour_get_video(&sc->sc_fb));
}
static void
cgfour_set_video(sc, enable)
struct cgfour_softc *sc;
int enable;
{
fb_pfour_set_video(&sc->sc_fb, enable);
}
/*
* Load a subset of the current (new) colormap into the Brooktree DAC.
*/
static void
cgfourloadcmap(sc, start, ncolors)
struct cgfour_softc *sc;
int start, ncolors;
{
volatile struct bt_regs *bt;
u_int *ip, i;
int count;
ip = &sc->sc_cmap.cm_chip[BT_D4M3(start)]; /* start/4 * 3 */
count = BT_D4M3(start + ncolors - 1) - BT_D4M3(start) + 3;
bt = &sc->sc_fbc->fbc_dac;
bt->bt_addr = BT_D4M4(start) << 24;
while (--count >= 0) {
i = *ip++;
/* hardware that makes one want to pound boards with hammers */
bt->bt_cmap = i;
bt->bt_cmap = i << 8;
bt->bt_cmap = i << 16;
bt->bt_cmap = i << 24;
}
}
#endif