NetBSD/gnu/usr.bin/gdb/valarith.c

692 lines
17 KiB
C
Raw Blame History

This file contains invisible Unicode characters

This file contains invisible Unicode characters that are indistinguishable to humans but may be processed differently by a computer. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/*-
* This code is derived from software copyrighted by the Free Software
* Foundation.
*
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
* Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
*/
#ifndef lint
/*static char sccsid[] = "from: @(#)valarith.c 6.3 (Berkeley) 5/8/91";*/
static char rcsid[] = "$Id: valarith.c,v 1.2 1993/08/01 18:47:35 mycroft Exp $";
#endif /* not lint */
/* Perform arithmetic and other operations on values, for GDB.
Copyright (C) 1986, 1989 Free Software Foundation, Inc.
This file is part of GDB.
GDB is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 1, or (at your option)
any later version.
GDB is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GDB; see the file COPYING. If not, write to
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
#include "defs.h"
#include "param.h"
#include "symtab.h"
#include "value.h"
#include "expression.h"
value value_x_binop ();
value value_subscripted_rvalue ();
value
value_add (arg1, arg2)
value arg1, arg2;
{
register value val, valint, valptr;
register int len;
COERCE_ARRAY (arg1);
COERCE_ARRAY (arg2);
if ((TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
|| TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_PTR)
&&
(TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_INT
|| TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT))
/* Exactly one argument is a pointer, and one is an integer. */
{
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR)
{
valptr = arg1;
valint = arg2;
}
else
{
valptr = arg2;
valint = arg1;
}
len = TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (valptr)));
if (len == 0) len = 1; /* For (void *) */
val = value_from_long (builtin_type_long,
value_as_long (valptr)
+ (len * value_as_long (valint)));
VALUE_TYPE (val) = VALUE_TYPE (valptr);
return val;
}
return value_binop (arg1, arg2, BINOP_ADD);
}
value
value_sub (arg1, arg2)
value arg1, arg2;
{
register value val;
COERCE_ARRAY (arg1);
COERCE_ARRAY (arg2);
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
&&
TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_INT)
{
val = value_from_long (builtin_type_long,
value_as_long (arg1)
- TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) * value_as_long (arg2));
VALUE_TYPE (val) = VALUE_TYPE (arg1);
return val;
}
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_PTR
&&
VALUE_TYPE (arg1) == VALUE_TYPE (arg2))
{
val = value_from_long (builtin_type_long,
(value_as_long (arg1) - value_as_long (arg2))
/ TYPE_LENGTH (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))));
return val;
}
return value_binop (arg1, arg2, BINOP_SUB);
}
/* Return the value of ARRAY[IDX]. */
value
value_subscript (array, idx)
value array, idx;
{
if (TYPE_CODE (VALUE_TYPE (array)) == TYPE_CODE_ARRAY
&& VALUE_LVAL (array) != lval_memory)
return value_subscripted_rvalue (array, idx);
else
return value_ind (value_add (array, idx));
}
/* Return the value of EXPR[IDX], expr an aggregate rvalue
(eg, a vector register) */
value
value_subscripted_rvalue (array, idx)
value array, idx;
{
struct type *elt_type = TYPE_TARGET_TYPE (VALUE_TYPE (array));
int elt_size = TYPE_LENGTH (elt_type);
int elt_offs = elt_size * value_as_long (idx);
value v;
if (elt_offs >= TYPE_LENGTH (VALUE_TYPE (array)))
error ("no such vector element");
if (TYPE_CODE (elt_type) == TYPE_CODE_FLT)
{
if (elt_size == sizeof (float))
v = value_from_double (elt_type, (double) *(float *)
(VALUE_CONTENTS (array) + elt_offs));
else
v = value_from_double (elt_type, *(double *)
(VALUE_CONTENTS (array) + elt_offs));
}
else
{
int offs;
union {int i; char c;} test;
test.i = 1;
if (test.c == 1)
offs = 0;
else
offs = sizeof (LONGEST) - elt_size;
v = value_from_long (elt_type, *(LONGEST *)
(VALUE_CONTENTS (array) + elt_offs - offs));
}
if (VALUE_LVAL (array) == lval_internalvar)
VALUE_LVAL (v) = lval_internalvar_component;
else
VALUE_LVAL (v) = not_lval;
VALUE_ADDRESS (v) = VALUE_ADDRESS (array);
VALUE_OFFSET (v) = VALUE_OFFSET (array) + elt_offs;
VALUE_BITSIZE (v) = elt_size * 8;
return v;
}
/* Check to see if either argument is a structure. This is called so
we know whether to go ahead with the normal binop or look for a
user defined function instead.
For now, we do not overload the `=' operator. */
int
binop_user_defined_p (op, arg1, arg2)
enum exp_opcode op;
value arg1, arg2;
{
if (op == BINOP_ASSIGN)
return 0;
return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
|| TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_STRUCT
|| (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT)
|| (TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_REF
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg2))) == TYPE_CODE_STRUCT));
}
/* Check to see if argument is a structure. This is called so
we know whether to go ahead with the normal unop or look for a
user defined function instead.
For now, we do not overload the `&' operator. */
int unop_user_defined_p (op, arg1)
enum exp_opcode op;
value arg1;
{
if (op == UNOP_ADDR)
return 0;
return (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_STRUCT
|| (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_REF
&& TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (arg1))) == TYPE_CODE_STRUCT));
}
/* We know either arg1 or arg2 is a structure, so try to find the right
user defined function. Create an argument vector that calls
arg1.operator @ (arg1,arg2) and return that value (where '@' is any
binary operator which is legal for GNU C++). */
value
value_x_binop (arg1, arg2, op, otherop)
value arg1, arg2;
int op, otherop;
{
value * argvec;
char *ptr;
char tstr[13];
int static_memfuncp;
COERCE_ENUM (arg1);
COERCE_ENUM (arg2);
/* now we know that what we have to do is construct our
arg vector and find the right function to call it with. */
if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
error ("friend functions not implemented yet");
argvec = (value *) alloca (sizeof (value) * 4);
argvec[1] = value_addr (arg1);
argvec[2] = arg2;
argvec[3] = 0;
/* make the right function name up */
strcpy(tstr, "operator __");
ptr = tstr+9;
switch (op)
{
case BINOP_ADD: strcpy(ptr,"+"); break;
case BINOP_SUB: strcpy(ptr,"-"); break;
case BINOP_MUL: strcpy(ptr,"*"); break;
case BINOP_DIV: strcpy(ptr,"/"); break;
case BINOP_REM: strcpy(ptr,"%"); break;
case BINOP_LSH: strcpy(ptr,"<<"); break;
case BINOP_RSH: strcpy(ptr,">>"); break;
case BINOP_LOGAND: strcpy(ptr,"&"); break;
case BINOP_LOGIOR: strcpy(ptr,"|"); break;
case BINOP_LOGXOR: strcpy(ptr,"^"); break;
case BINOP_AND: strcpy(ptr,"&&"); break;
case BINOP_OR: strcpy(ptr,"||"); break;
case BINOP_MIN: strcpy(ptr,"<?"); break;
case BINOP_MAX: strcpy(ptr,">?"); break;
case BINOP_ASSIGN: strcpy(ptr,"="); break;
case BINOP_ASSIGN_MODIFY:
switch (otherop)
{
case BINOP_ADD: strcpy(ptr,"+="); break;
case BINOP_SUB: strcpy(ptr,"-="); break;
case BINOP_MUL: strcpy(ptr,"*="); break;
case BINOP_DIV: strcpy(ptr,"/="); break;
case BINOP_REM: strcpy(ptr,"%="); break;
case BINOP_LOGAND: strcpy(ptr,"&="); break;
case BINOP_LOGIOR: strcpy(ptr,"|="); break;
case BINOP_LOGXOR: strcpy(ptr,"^="); break;
default:
error ("Invalid binary operation specified.");
}
break;
case BINOP_SUBSCRIPT: strcpy(ptr,"[]"); break;
case BINOP_EQUAL: strcpy(ptr,"=="); break;
case BINOP_NOTEQUAL: strcpy(ptr,"!="); break;
case BINOP_LESS: strcpy(ptr,"<"); break;
case BINOP_GTR: strcpy(ptr,">"); break;
case BINOP_GEQ: strcpy(ptr,">="); break;
case BINOP_LEQ: strcpy(ptr,"<="); break;
default:
error ("Invalid binary operation specified.");
}
argvec[0] = value_struct_elt (arg1, argvec+1, tstr, &static_memfuncp, "structure");
if (argvec[0])
{
if (static_memfuncp)
{
argvec[1] = argvec[0];
argvec++;
}
return call_function (argvec[0], 2 - static_memfuncp, argvec + 1);
}
error ("member function %s not found", tstr);
}
/* We know that arg1 is a structure, so try to find a unary user
defined operator that matches the operator in question.
Create an argument vector that calls arg1.operator @ (arg1)
and return that value (where '@' is (almost) any unary operator which
is legal for GNU C++). */
value
value_x_unop (arg1, op)
value arg1;
int op;
{
value * argvec;
char *ptr;
char tstr[13];
int static_memfuncp;
COERCE_ENUM (arg1);
/* now we know that what we have to do is construct our
arg vector and find the right function to call it with. */
if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_STRUCT)
error ("friend functions not implemented yet");
argvec = (value *) alloca (sizeof (value) * 3);
argvec[1] = value_addr (arg1);
argvec[2] = 0;
/* make the right function name up */
strcpy(tstr,"operator __");
ptr = tstr+9;
switch (op)
{
case UNOP_PREINCREMENT: strcpy(ptr,"++"); break;
case UNOP_PREDECREMENT: strcpy(ptr,"++"); break;
case UNOP_POSTINCREMENT: strcpy(ptr,"++"); break;
case UNOP_POSTDECREMENT: strcpy(ptr,"++"); break;
case UNOP_ZEROP: strcpy(ptr,"!"); break;
case UNOP_LOGNOT: strcpy(ptr,"~"); break;
case UNOP_NEG: strcpy(ptr,"-"); break;
default:
error ("Invalid binary operation specified.");
}
argvec[0] = value_struct_elt (arg1, argvec+1, tstr, &static_memfuncp, "structure");
if (argvec[0])
{
if (static_memfuncp)
{
argvec[1] = argvec[0];
argvec++;
}
return call_function (argvec[0], 1 - static_memfuncp, argvec + 1);
}
error ("member function %s not found", tstr);
}
/* Perform a binary operation on two integers or two floats.
Does not support addition and subtraction on pointers;
use value_add or value_sub if you want to handle those possibilities. */
value
value_binop (arg1, arg2, op)
value arg1, arg2;
int op;
{
register value val;
COERCE_ENUM (arg1);
COERCE_ENUM (arg2);
if ((TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_FLT
&&
TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
||
(TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_FLT
&&
TYPE_CODE (VALUE_TYPE (arg2)) != TYPE_CODE_INT))
error ("Argument to arithmetic operation not a number.");
if (TYPE_CODE (VALUE_TYPE (arg1)) == TYPE_CODE_FLT
||
TYPE_CODE (VALUE_TYPE (arg2)) == TYPE_CODE_FLT)
{
double v1, v2, v;
v1 = value_as_double (arg1);
v2 = value_as_double (arg2);
switch (op)
{
case BINOP_ADD:
v = v1 + v2;
break;
case BINOP_SUB:
v = v1 - v2;
break;
case BINOP_MUL:
v = v1 * v2;
break;
case BINOP_DIV:
v = v1 / v2;
break;
default:
error ("Integer-only operation on floating point number.");
}
val = allocate_value (builtin_type_double);
*(double *) VALUE_CONTENTS (val) = v;
}
else
/* Integral operations here. */
{
/* Should we promote to unsigned longest? */
if ((TYPE_UNSIGNED (VALUE_TYPE (arg1))
|| TYPE_UNSIGNED (VALUE_TYPE (arg2)))
&& (TYPE_LENGTH (VALUE_TYPE (arg1)) >= sizeof (unsigned LONGEST)
|| TYPE_LENGTH (VALUE_TYPE (arg2)) >= sizeof (unsigned LONGEST)))
{
unsigned LONGEST v1, v2, v;
v1 = (unsigned LONGEST) value_as_long (arg1);
v2 = (unsigned LONGEST) value_as_long (arg2);
switch (op)
{
case BINOP_ADD:
v = v1 + v2;
break;
case BINOP_SUB:
v = v1 - v2;
break;
case BINOP_MUL:
v = v1 * v2;
break;
case BINOP_DIV:
v = v1 / v2;
break;
case BINOP_REM:
v = v1 % v2;
break;
case BINOP_LSH:
v = v1 << v2;
break;
case BINOP_RSH:
v = v1 >> v2;
break;
case BINOP_LOGAND:
v = v1 & v2;
break;
case BINOP_LOGIOR:
v = v1 | v2;
break;
case BINOP_LOGXOR:
v = v1 ^ v2;
break;
case BINOP_AND:
v = v1 && v2;
break;
case BINOP_OR:
v = v1 || v2;
break;
case BINOP_MIN:
v = v1 < v2 ? v1 : v2;
break;
case BINOP_MAX:
v = v1 > v2 ? v1 : v2;
break;
default:
error ("Invalid binary operation on numbers.");
}
val = allocate_value (BUILTIN_TYPE_UNSIGNED_LONGEST);
*(unsigned LONGEST *) VALUE_CONTENTS (val) = v;
}
else
{
LONGEST v1, v2, v;
v1 = value_as_long (arg1);
v2 = value_as_long (arg2);
switch (op)
{
case BINOP_ADD:
v = v1 + v2;
break;
case BINOP_SUB:
v = v1 - v2;
break;
case BINOP_MUL:
v = v1 * v2;
break;
case BINOP_DIV:
v = v1 / v2;
break;
case BINOP_REM:
v = v1 % v2;
break;
case BINOP_LSH:
v = v1 << v2;
break;
case BINOP_RSH:
v = v1 >> v2;
break;
case BINOP_LOGAND:
v = v1 & v2;
break;
case BINOP_LOGIOR:
v = v1 | v2;
break;
case BINOP_LOGXOR:
v = v1 ^ v2;
break;
case BINOP_AND:
v = v1 && v2;
break;
case BINOP_OR:
v = v1 || v2;
break;
case BINOP_MIN:
v = v1 < v2 ? v1 : v2;
break;
case BINOP_MAX:
v = v1 > v2 ? v1 : v2;
break;
default:
error ("Invalid binary operation on numbers.");
}
val = allocate_value (BUILTIN_TYPE_LONGEST);
*(LONGEST *) VALUE_CONTENTS (val) = v;
}
}
return val;
}
/* Simulate the C operator ! -- return 1 if ARG1 contains zeros. */
int
value_zerop (arg1)
value arg1;
{
register int len;
register char *p;
COERCE_ARRAY (arg1);
len = TYPE_LENGTH (VALUE_TYPE (arg1));
p = VALUE_CONTENTS (arg1);
while (--len >= 0)
{
if (*p++)
break;
}
return len < 0;
}
/* Simulate the C operator == by returning a 1
iff ARG1 and ARG2 have equal contents. */
int
value_equal (arg1, arg2)
register value arg1, arg2;
{
register int len;
register char *p1, *p2;
enum type_code code1;
enum type_code code2;
COERCE_ARRAY (arg1);
COERCE_ARRAY (arg2);
code1 = TYPE_CODE (VALUE_TYPE (arg1));
code2 = TYPE_CODE (VALUE_TYPE (arg2));
if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
return value_as_long (arg1) == value_as_long (arg2);
else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
&& (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
return value_as_double (arg1) == value_as_double (arg2);
else if ((code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_INT)
|| (code2 == TYPE_CODE_PTR && code1 == TYPE_CODE_INT))
return (char *) value_as_long (arg1) == (char *) value_as_long (arg2);
else if (code1 == code2
&& ((len = TYPE_LENGTH (VALUE_TYPE (arg1)))
== TYPE_LENGTH (VALUE_TYPE (arg2))))
{
p1 = VALUE_CONTENTS (arg1);
p2 = VALUE_CONTENTS (arg2);
while (--len >= 0)
{
if (*p1++ != *p2++)
break;
}
return len < 0;
}
else
error ("Invalid type combination in equality test.");
}
/* Simulate the C operator < by returning 1
iff ARG1's contents are less than ARG2's. */
int
value_less (arg1, arg2)
register value arg1, arg2;
{
register enum type_code code1;
register enum type_code code2;
COERCE_ARRAY (arg1);
COERCE_ARRAY (arg2);
code1 = TYPE_CODE (VALUE_TYPE (arg1));
code2 = TYPE_CODE (VALUE_TYPE (arg2));
if (code1 == TYPE_CODE_INT && code2 == TYPE_CODE_INT)
return value_as_long (arg1) < value_as_long (arg2);
else if ((code1 == TYPE_CODE_FLT || code1 == TYPE_CODE_INT)
&& (code2 == TYPE_CODE_FLT || code2 == TYPE_CODE_INT))
return value_as_double (arg1) < value_as_double (arg2);
else if ((code1 == TYPE_CODE_PTR || code1 == TYPE_CODE_INT)
&& (code2 == TYPE_CODE_PTR || code2 == TYPE_CODE_INT))
return (char *) value_as_long (arg1) < (char *) value_as_long (arg2);
else
error ("Invalid type combination in ordering comparison.");
}
/* The unary operators - and ~. Both free the argument ARG1. */
value
value_neg (arg1)
register value arg1;
{
register struct type *type;
COERCE_ENUM (arg1);
type = VALUE_TYPE (arg1);
if (TYPE_CODE (type) == TYPE_CODE_FLT)
return value_from_double (type, - value_as_double (arg1));
else if (TYPE_CODE (type) == TYPE_CODE_INT)
return value_from_long (type, - value_as_long (arg1));
else
error ("Argument to negate operation not a number.");
}
value
value_lognot (arg1)
register value arg1;
{
COERCE_ENUM (arg1);
if (TYPE_CODE (VALUE_TYPE (arg1)) != TYPE_CODE_INT)
error ("Argument to complement operation not an integer.");
return value_from_long (VALUE_TYPE (arg1), ~ value_as_long (arg1));
}