1869 lines
45 KiB
C
1869 lines
45 KiB
C
/*-
|
|
* This code is derived from software copyrighted by the Free Software
|
|
* Foundation.
|
|
*
|
|
* Modified 1991 by Donn Seeley at UUNET Technologies, Inc.
|
|
* Modified 1990 by Van Jacobson at Lawrence Berkeley Laboratory.
|
|
*/
|
|
|
|
#ifndef lint
|
|
/*static char sccsid[] = "from: @(#)i386bsd-dep.c 6.10 (Berkeley) 6/26/91";*/
|
|
static char rcsid[] = "$Id: i386bsd-dep.c,v 1.6 1994/01/28 02:12:24 mycroft Exp $";
|
|
#endif /* not lint */
|
|
|
|
/* Low level interface to ptrace, for GDB when running on the Intel 386.
|
|
Copyright (C) 1988, 1989 Free Software Foundation, Inc.
|
|
|
|
This file is part of GDB.
|
|
|
|
GDB is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation; either version 1, or (at your option)
|
|
any later version.
|
|
|
|
GDB is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with GDB; see the file COPYING. If not, write to
|
|
the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
|
|
|
|
#include <stdio.h>
|
|
#include "defs.h"
|
|
#include "param.h"
|
|
#include "frame.h"
|
|
#include "inferior.h"
|
|
#include "value.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/dir.h>
|
|
#include <signal.h>
|
|
#include <sys/ioctl.h>
|
|
#include <fcntl.h>
|
|
|
|
#include <a.out.h>
|
|
|
|
#ifndef N_SET_MAGIC
|
|
#define N_SET_MAGIC(exec, val) ((exec).a_magic = (val))
|
|
#endif
|
|
|
|
#include <sys/time.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/uio.h>
|
|
#define curpcb Xcurpcb /* XXX avoid leaking declaration from pcb.h */
|
|
#include <sys/user.h>
|
|
#undef curpcb
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/ptrace.h>
|
|
|
|
#include <machine/reg.h>
|
|
|
|
#ifdef KERNELDEBUG
|
|
#ifndef NEWVM
|
|
#include <sys/vmmac.h>
|
|
#include <machine/pte.h>
|
|
#else
|
|
#include <sys/proc.h> /* for curproc */
|
|
#endif
|
|
#include <machine/vmparam.h>
|
|
#include <machine/cpu.h>
|
|
#include <ctype.h>
|
|
#include "symtab.h" /* XXX */
|
|
|
|
#undef vtophys /* XXX */
|
|
|
|
extern int kernel_debugging;
|
|
|
|
#define KERNOFF ((unsigned)KERNBASE)
|
|
#ifndef NEWVM
|
|
#define INKERNEL(x) ((x) >= KERNOFF && (x) < KERNOFF + ctob(slr))
|
|
#define INUPAGE(x) \
|
|
((x) >= KERNEL_U_ADDR && (x) < KERNEL_U_ADDR + NBPG)
|
|
#else
|
|
#define INKERNEL(x) ((x) >= KERNOFF)
|
|
#endif
|
|
|
|
#define PT_ADDR_ANY ((caddr_t) 1)
|
|
|
|
/*
|
|
* Convert from sysmap pte index to system virtual address & vice-versa.
|
|
* (why aren't these in one of the system vm macro files???)
|
|
*/
|
|
#define smxtob(a) (sbr + (a) * sizeof(pte))
|
|
#define btosmx(b) (((b) - sbr) / sizeof(pte))
|
|
|
|
static int ok_to_cache();
|
|
static int found_pcb;
|
|
#ifdef NEWVM
|
|
static CORE_ADDR curpcb;
|
|
static CORE_ADDR kstack;
|
|
#endif
|
|
|
|
static void setregmap();
|
|
|
|
extern int errno;
|
|
|
|
/*
|
|
* This function simply calls ptrace with the given arguments. It exists so
|
|
* that all calls to ptrace are isolated in this machine-dependent file.
|
|
*/
|
|
int
|
|
call_ptrace(request, pid, arg3, arg4)
|
|
int request;
|
|
pid_t pid;
|
|
caddr_t arg3;
|
|
int arg4;
|
|
{
|
|
return(ptrace(request, pid, arg3, arg4));
|
|
}
|
|
|
|
kill_inferior()
|
|
{
|
|
if (remote_debugging) {
|
|
#ifdef KERNELDEBUG
|
|
if (kernel_debugging)
|
|
/*
|
|
* It's a very, very bad idea to go away leaving
|
|
* breakpoints in a remote kernel or to leave it
|
|
* stopped at a breakpoint.
|
|
*/
|
|
clear_breakpoints();
|
|
#endif
|
|
remote_close(0);
|
|
inferior_died();
|
|
} else if (inferior_pid != 0) {
|
|
ptrace(PT_KILL, inferior_pid, 0, 0);
|
|
wait(0);
|
|
inferior_died();
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This is used when GDB is exiting. It gives less chance of error.
|
|
*/
|
|
kill_inferior_fast()
|
|
{
|
|
if (remote_debugging) {
|
|
#ifdef KERNELDEBUG
|
|
if (kernel_debugging)
|
|
clear_breakpoints();
|
|
#endif
|
|
remote_close(0);
|
|
return;
|
|
}
|
|
if (inferior_pid == 0)
|
|
return;
|
|
|
|
ptrace(PT_KILL, inferior_pid, 0, 0);
|
|
wait(0);
|
|
}
|
|
|
|
/*
|
|
* Resume execution of the inferior process. If STEP is nonzero, single-step
|
|
* it. If SIGNAL is nonzero, give it that signal.
|
|
*/
|
|
void
|
|
resume(step, signal)
|
|
int step;
|
|
int signal;
|
|
{
|
|
errno = 0;
|
|
if (remote_debugging)
|
|
remote_resume(step, signal);
|
|
else {
|
|
ptrace(step ? PT_STEP : PT_CONTINUE, inferior_pid,
|
|
PT_ADDR_ANY, signal);
|
|
if (errno)
|
|
perror_with_name("ptrace");
|
|
}
|
|
}
|
|
|
|
#ifdef ATTACH_DETACH
|
|
extern int attach_flag;
|
|
|
|
/*
|
|
* Start debugging the process whose number is PID.
|
|
*/
|
|
attach(pid)
|
|
int pid;
|
|
{
|
|
errno = 0;
|
|
ptrace(PT_ATTACH, pid, 0, 0);
|
|
if (errno)
|
|
perror_with_name("ptrace");
|
|
attach_flag = 1;
|
|
return pid;
|
|
}
|
|
|
|
/*
|
|
* Stop debugging the process whose number is PID and continue it
|
|
* with signal number SIGNAL. SIGNAL = 0 means just continue it.
|
|
*/
|
|
void
|
|
detach(signal)
|
|
int signal;
|
|
{
|
|
errno = 0;
|
|
ptrace(PT_DETACH, inferior_pid, PT_ADDR_ANY, signal);
|
|
if (errno)
|
|
perror_with_name("ptrace");
|
|
attach_flag = 0;
|
|
}
|
|
#endif /* ATTACH_DETACH */
|
|
|
|
static unsigned int
|
|
get_register_offset()
|
|
{
|
|
unsigned int offset;
|
|
struct user u; /* XXX */
|
|
unsigned int flags = (char *) &u.u_pcb.pcb_flags - (char *) &u;
|
|
|
|
setregmap(ptrace(PT_READ_U, inferior_pid, (caddr_t)flags, 0));
|
|
|
|
#ifdef NEWVM
|
|
offset = (char *) &u.u_kproc.kp_proc.p_regs - (char *) &u;
|
|
offset = ptrace(PT_READ_U, inferior_pid, (caddr_t)offset, 0) -
|
|
USRSTACK;
|
|
#else
|
|
offset = (char *) &u.u_ar0 - (char *) &u;
|
|
offset = ptrace(PT_READ_U, inferior_pid, (caddr_t)offset, 0) -
|
|
KERNEL_U_ADDR;
|
|
#endif
|
|
|
|
return offset;
|
|
}
|
|
|
|
void
|
|
fetch_inferior_registers()
|
|
{
|
|
register int regno;
|
|
register unsigned int regaddr;
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|
register int i;
|
|
unsigned int offset;
|
|
|
|
if (remote_debugging) {
|
|
extern char registers[];
|
|
|
|
remote_fetch_registers(registers);
|
|
return;
|
|
}
|
|
|
|
offset = get_register_offset();
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
regaddr = register_addr(regno, offset);
|
|
for (i = 0; i < REGISTER_RAW_SIZE(regno); i += sizeof(int)) {
|
|
*(int *)&buf[i] = ptrace(PT_READ_U, inferior_pid,
|
|
(caddr_t)regaddr, 0);
|
|
regaddr += sizeof(int);
|
|
}
|
|
supply_register(regno, buf);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Store our register values back into the inferior. If REGNO is -1, do this
|
|
* for all registers. Otherwise, REGNO specifies which register (so we can
|
|
* save time).
|
|
*/
|
|
store_inferior_registers(regno)
|
|
int regno;
|
|
{
|
|
register unsigned int regaddr;
|
|
char buf[80];
|
|
extern char registers[];
|
|
register int i;
|
|
unsigned int offset;
|
|
|
|
if (remote_debugging) {
|
|
extern char registers[];
|
|
|
|
remote_store_registers(registers);
|
|
return;
|
|
}
|
|
|
|
offset = get_register_offset();
|
|
|
|
if (regno >= 0) {
|
|
regaddr = register_addr(regno, offset);
|
|
for (i = 0; i < REGISTER_RAW_SIZE(regno); i += sizeof(int)) {
|
|
errno = 0;
|
|
ptrace(PT_WRITE_U, inferior_pid, (caddr_t)regaddr,
|
|
*(int *) ®isters[REGISTER_BYTE(regno) + i]);
|
|
if (errno != 0) {
|
|
sprintf(buf, "writing register number %d(%d)",
|
|
regno, i);
|
|
perror_with_name(buf);
|
|
}
|
|
regaddr += sizeof(int);
|
|
}
|
|
} else
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
regaddr = register_addr(regno, offset);
|
|
for (i = 0; i < REGISTER_RAW_SIZE(regno);
|
|
i += sizeof(int)) {
|
|
errno = 0;
|
|
ptrace(PT_WRITE_U, inferior_pid,
|
|
(caddr_t)regaddr,
|
|
*(int *) ®isters[REGISTER_BYTE(regno) + i]);
|
|
if (errno != 0) {
|
|
sprintf(buf,
|
|
"writing register number %d(%d)",
|
|
regno, i);
|
|
perror_with_name(buf);
|
|
}
|
|
regaddr += sizeof(int);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Copy LEN bytes from inferior's memory starting at MEMADDR to debugger
|
|
* memory starting at MYADDR. On failure (cannot read from inferior, usually
|
|
* because address is out of bounds) returns the value of errno.
|
|
*/
|
|
int
|
|
read_inferior_memory(memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
register int i;
|
|
/* Round starting address down to longword boundary. */
|
|
register CORE_ADDR addr = memaddr & -sizeof(int);
|
|
/* Round ending address up; get number of longwords that makes. */
|
|
register int count = (((memaddr + len) - addr) + sizeof(int) - 1) /
|
|
sizeof(int);
|
|
/* Allocate buffer of that many longwords. */
|
|
register int *buffer = (int *) alloca(count * sizeof(int));
|
|
extern int errno;
|
|
|
|
if (remote_debugging)
|
|
return (remote_read_inferior_memory(memaddr, myaddr, len));
|
|
|
|
/* Read all the longwords */
|
|
errno = 0;
|
|
for (i = 0; i < count && errno == 0; i++, addr += sizeof(int))
|
|
buffer[i] = ptrace(PT_READ_I, inferior_pid, (caddr_t)addr, 0);
|
|
|
|
/* Copy appropriate bytes out of the buffer. */
|
|
bcopy((char *) buffer + (memaddr & (sizeof(int) - 1)), myaddr, len);
|
|
return(errno);
|
|
}
|
|
|
|
/*
|
|
* Copy LEN bytes of data from debugger memory at MYADDR to inferior's memory
|
|
* at MEMADDR. On failure (cannot write the inferior) returns the value of
|
|
* errno.
|
|
*/
|
|
|
|
int
|
|
write_inferior_memory(memaddr, myaddr, len)
|
|
CORE_ADDR memaddr;
|
|
char *myaddr;
|
|
int len;
|
|
{
|
|
register int i;
|
|
/* Round starting address down to longword boundary. */
|
|
register CORE_ADDR addr = memaddr & -sizeof(int);
|
|
/* Round ending address up; get number of longwords that makes. */
|
|
register int count = (((memaddr + len) - addr) + sizeof(int) - 1) /
|
|
sizeof(int);
|
|
/* Allocate buffer of that many longwords. */
|
|
register int *buffer = (int *) alloca(count * sizeof(int));
|
|
extern int errno;
|
|
|
|
/*
|
|
* Fill start and end extra bytes of buffer with existing memory
|
|
* data.
|
|
*/
|
|
if (remote_debugging)
|
|
return (remote_write_inferior_memory(memaddr, myaddr, len));
|
|
|
|
/*
|
|
* Fill start and end extra bytes of buffer with existing memory
|
|
* data.
|
|
*/
|
|
buffer[0] = ptrace(PT_READ_I, inferior_pid, (caddr_t)addr, 0);
|
|
|
|
if (count > 1)
|
|
buffer[count - 1] = ptrace(PT_READ_I, inferior_pid,
|
|
(caddr_t)addr + (count - 1) * sizeof(int), 0);
|
|
|
|
/* Copy data to be written over corresponding part of buffer */
|
|
|
|
bcopy(myaddr, (char *) buffer + (memaddr & (sizeof(int) - 1)), len);
|
|
|
|
/* Write the entire buffer. */
|
|
|
|
errno = 0;
|
|
for (i = 0; i < count && errno == 0; i++, addr += sizeof(int))
|
|
ptrace(PT_WRITE_I, inferior_pid, (caddr_t)addr, buffer[i]);
|
|
|
|
return(errno);
|
|
}
|
|
|
|
|
|
/*
|
|
* Work with core dump and executable files, for GDB.
|
|
* This code would be in core.c if it weren't machine-dependent.
|
|
*/
|
|
|
|
#ifndef N_TXTADDR
|
|
#define N_TXTADDR(hdr) 0
|
|
#endif /* no N_TXTADDR */
|
|
|
|
#ifndef N_DATADDR
|
|
#define N_DATADDR(hdr) hdr.a_text
|
|
#endif /* no N_DATADDR */
|
|
|
|
/*
|
|
* Make COFF and non-COFF names for things a little more compatible to reduce
|
|
* conditionals later.
|
|
*/
|
|
|
|
#ifndef AOUTHDR
|
|
#define AOUTHDR struct exec
|
|
#endif
|
|
|
|
|
|
/* Hook for `exec_file_command' command to call. */
|
|
|
|
extern void (*exec_file_display_hook) ();
|
|
|
|
/* File names of core file and executable file. */
|
|
|
|
extern char *corefile;
|
|
extern char *execfile;
|
|
|
|
/* Descriptors on which core file and executable file are open.
|
|
Note that the execchan is closed when an inferior is created
|
|
and reopened if the inferior dies or is killed. */
|
|
|
|
extern int corechan;
|
|
extern int execchan;
|
|
|
|
/* Last modification time of executable file.
|
|
Also used in source.c to compare against mtime of a source file. */
|
|
|
|
extern int exec_mtime;
|
|
|
|
/* Virtual addresses of bounds of the two areas of memory in the core file. */
|
|
|
|
extern CORE_ADDR data_start;
|
|
extern CORE_ADDR data_end;
|
|
extern CORE_ADDR stack_start;
|
|
extern CORE_ADDR stack_end;
|
|
|
|
/* Virtual addresses of bounds of two areas of memory in the exec file.
|
|
Note that the data area in the exec file is used only when there is no core file. */
|
|
|
|
extern CORE_ADDR text_start;
|
|
extern CORE_ADDR text_end;
|
|
|
|
extern CORE_ADDR exec_data_start;
|
|
extern CORE_ADDR exec_data_end;
|
|
|
|
/* Address in executable file of start of text area data. */
|
|
|
|
extern int text_offset;
|
|
|
|
/* Address in executable file of start of data area data. */
|
|
|
|
extern int exec_data_offset;
|
|
|
|
/* Address in core file of start of data area data. */
|
|
|
|
extern int data_offset;
|
|
|
|
/* Address in core file of start of stack area data. */
|
|
|
|
extern int stack_offset;
|
|
|
|
/* a.out header saved in core file. */
|
|
|
|
extern AOUTHDR core_aouthdr;
|
|
|
|
/* a.out header of exec file. */
|
|
|
|
extern AOUTHDR exec_aouthdr;
|
|
|
|
extern void validate_files ();
|
|
|
|
extern int (*core_file_hook)();
|
|
|
|
#ifdef KERNELDEBUG
|
|
/*
|
|
* Kernel debugging routines.
|
|
*/
|
|
|
|
#define IOTOP 0x100000 /* XXX should get this from include file */
|
|
#define IOBASE 0xa0000 /* XXX should get this from include file */
|
|
|
|
static CORE_ADDR file_offset;
|
|
static CORE_ADDR lowram;
|
|
static CORE_ADDR sbr;
|
|
static CORE_ADDR slr;
|
|
static struct pcb pcb;
|
|
|
|
static CORE_ADDR
|
|
ksym_lookup(name)
|
|
char *name;
|
|
{
|
|
struct symbol *sym;
|
|
int i;
|
|
|
|
if ((i = lookup_misc_func(name)) < 0)
|
|
error("kernel symbol `%s' not found.", name);
|
|
|
|
return (misc_function_vector[i].address);
|
|
}
|
|
|
|
/*
|
|
* return true if 'len' bytes starting at 'addr' can be read out as
|
|
* longwords and/or locally cached (this is mostly for memory mapped
|
|
* i/o register access when debugging remote kernels).
|
|
*
|
|
* XXX the HP code does this differently with NEWVM
|
|
*/
|
|
static int
|
|
ok_to_cache(addr, len)
|
|
{
|
|
static CORE_ADDR atdevbase;
|
|
|
|
if (! atdevbase)
|
|
atdevbase = ksym_lookup("atdevbase");
|
|
|
|
if (addr >= atdevbase && addr < atdevbase + (IOTOP - IOBASE))
|
|
return (0);
|
|
|
|
return (1);
|
|
}
|
|
|
|
static
|
|
physrd(addr, dat, len)
|
|
u_int addr;
|
|
char *dat;
|
|
{
|
|
if (lseek(corechan, addr - file_offset, L_SET) == -1)
|
|
return (-1);
|
|
if (read(corechan, dat, len) != len)
|
|
return (-1);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* When looking at kernel data space through /dev/mem or with a core file, do
|
|
* virtual memory mapping.
|
|
*/
|
|
#ifdef NEWVM
|
|
static CORE_ADDR
|
|
vtophys(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
CORE_ADDR v;
|
|
struct pte pte;
|
|
static CORE_ADDR PTD = -1;
|
|
CORE_ADDR current_ptd;
|
|
|
|
/*
|
|
* If we're looking at the kernel stack,
|
|
* munge the address to refer to the user space mapping instead;
|
|
* that way we get the requested process's kstack, not the running one.
|
|
*/
|
|
if (addr >= kstack && addr < kstack + ctob(UPAGES))
|
|
addr = (addr - kstack) + curpcb;
|
|
|
|
/*
|
|
* We may no longer have a linear system page table...
|
|
*
|
|
* Here's the scoop. IdlePTD contains the physical address
|
|
* of a page table directory that always maps the kernel.
|
|
* IdlePTD is in memory that is mapped 1-to-1, so we can
|
|
* find it easily given its 'virtual' address from ksym_lookup().
|
|
* For hysterical reasons, the value of IdlePTD is stored in sbr.
|
|
*
|
|
* To look up a kernel address, we first convert it to a 1st-level
|
|
* address and look it up in IdlePTD. This gives us the physical
|
|
* address of a page table page; we extract the 2nd-level part of
|
|
* VA and read the 2nd-level pte. Finally, we add the offset part
|
|
* of the VA into the physical address from the pte and return it.
|
|
*
|
|
* User addresses are a little more complicated. If we don't have
|
|
* a current PCB from read_pcb(), we use PTD, which is the (fixed)
|
|
* virtual address of the current ptd. Since it's NOT in 1-to-1
|
|
* kernel space, we must look it up using IdlePTD. If we do have
|
|
* a pcb, we get the ptd from pcb_ptd.
|
|
*/
|
|
|
|
if (INKERNEL(addr))
|
|
current_ptd = sbr;
|
|
else if (found_pcb == 0) {
|
|
if (PTD == -1)
|
|
PTD = vtophys(ksym_lookup("PTD"));
|
|
current_ptd = PTD;
|
|
} else
|
|
current_ptd = pcb.pcb_ptd;
|
|
|
|
/*
|
|
* Read the first-level page table (ptd).
|
|
*/
|
|
v = current_ptd + ((unsigned)addr >> PDSHIFT) * sizeof pte;
|
|
if (physrd(v, (char *)&pte, sizeof pte) || pte.pg_v == 0)
|
|
return (~0);
|
|
|
|
/*
|
|
* Read the second-level page table.
|
|
*/
|
|
v = i386_ptob(pte.pg_pfnum) + ((addr&PT_MASK) >> PGSHIFT) * sizeof pte;
|
|
if (physrd(v, (char *) &pte, sizeof(pte)) || pte.pg_v == 0)
|
|
return (~0);
|
|
|
|
addr = i386_ptob(pte.pg_pfnum) + (addr & PGOFSET);
|
|
#if 0
|
|
printf("vtophys(%x) -> %x\n", oldaddr, addr);
|
|
#endif
|
|
return (addr);
|
|
}
|
|
#else
|
|
static CORE_ADDR
|
|
vtophys(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
CORE_ADDR v;
|
|
struct pte pte;
|
|
CORE_ADDR oldaddr = addr;
|
|
|
|
if (found_pcb == 0 && INUPAGE(addr)) {
|
|
static CORE_ADDR pSwtchmap;
|
|
|
|
if (pSwtchmap == 0)
|
|
pSwtchmap = vtophys(ksym_lookup("Swtchmap"));
|
|
addr = pSwtchmap;
|
|
} else if (INKERNEL(addr)) {
|
|
/*
|
|
* In system space get system pte. If valid or reclaimable
|
|
* then physical address is combination of its page number
|
|
* and the page offset of the original address.
|
|
*/
|
|
addr = smxtob(btop(addr - KERNOFF)) - KERNOFF;
|
|
} else {
|
|
v = btop(addr);
|
|
if (v < pcb.pcb_p0lr)
|
|
addr = (CORE_ADDR) pcb.pcb_p0br +
|
|
v * sizeof (struct pte);
|
|
else if (v >= pcb.pcb_p1lr && v < P1PAGES)
|
|
addr = (CORE_ADDR) pcb.pcb_p0br +
|
|
((pcb.pcb_szpt * NPTEPG - HIGHPAGES) -
|
|
(BTOPUSRSTACK - v)) * sizeof (struct pte);
|
|
else
|
|
return (~0);
|
|
|
|
/*
|
|
* For p0/p1 address, user-level page table should be in
|
|
* kernel vm. Do second-level indirect by recursing.
|
|
*/
|
|
if (!INKERNEL(addr))
|
|
return (~0);
|
|
|
|
addr = vtophys(addr);
|
|
}
|
|
/*
|
|
* Addr is now address of the pte of the page we are interested in;
|
|
* get the pte and paste up the physical address.
|
|
*/
|
|
if (physrd(addr, (char *) &pte, sizeof(pte)))
|
|
return (~0);
|
|
|
|
if (pte.pg_v == 0 && (pte.pg_fod || pte.pg_pfnum == 0))
|
|
return (~0);
|
|
|
|
addr = (CORE_ADDR)ptob(pte.pg_pfnum) + (oldaddr & PGOFSET);
|
|
#if 0
|
|
printf("vtophys(%x) -> %x\n", oldaddr, addr);
|
|
#endif
|
|
return (addr);
|
|
}
|
|
|
|
#endif
|
|
|
|
static
|
|
kvread(addr)
|
|
CORE_ADDR addr;
|
|
{
|
|
CORE_ADDR paddr = vtophys(addr);
|
|
|
|
if (paddr != ~0)
|
|
if (physrd(paddr, (char *)&addr, sizeof(addr)) == 0);
|
|
return (addr);
|
|
|
|
return (~0);
|
|
}
|
|
|
|
static void
|
|
read_pcb(uaddr)
|
|
u_int uaddr;
|
|
{
|
|
int i;
|
|
int *pcb_regs = (int *)&pcb;
|
|
|
|
#ifdef NEWVM
|
|
if (physrd(uaddr, (char *)&pcb, sizeof pcb))
|
|
error("cannot read pcb at %x\n", uaddr);
|
|
printf("current pcb at %x\n", uaddr);
|
|
#else
|
|
if (physrd(uaddr, (char *)&pcb, sizeof pcb))
|
|
error("cannot read pcb at %x\n", uaddr);
|
|
printf("p0br %x p0lr %x p1br %x p1lr %x\n",
|
|
pcb.pcb_p0br, pcb.pcb_p0lr, pcb.pcb_p1br, pcb.pcb_p1lr);
|
|
#endif
|
|
|
|
/*
|
|
* get the register values out of the sys pcb and
|
|
* store them where `read_register' will find them.
|
|
*/
|
|
for (i = 0; i < 8; ++i)
|
|
supply_register(i, &pcb_regs[i+10]);
|
|
supply_register(8, &pcb_regs[8]); /* eip */
|
|
supply_register(9, &pcb_regs[9]); /* eflags */
|
|
for (i = 10; i < 13; ++i) /* cs, ss, ds */
|
|
supply_register(i, &pcb_regs[i+9]);
|
|
supply_register(13, &pcb_regs[18]); /* es */
|
|
for (i = 14; i < 16; ++i) /* fs, gs */
|
|
supply_register(i, &pcb_regs[i+8]);
|
|
|
|
/* XXX 80387 registers? */
|
|
}
|
|
|
|
static void
|
|
setup_kernel_debugging()
|
|
{
|
|
struct stat stb;
|
|
int devmem = 0;
|
|
CORE_ADDR addr;
|
|
|
|
fstat(corechan, &stb);
|
|
if ((stb.st_mode & S_IFMT) == S_IFCHR && stb.st_rdev == makedev(2, 0))
|
|
devmem = 1;
|
|
|
|
#ifdef NEWVM
|
|
physrd(ksym_lookup("IdlePTD") - KERNOFF, &sbr, sizeof sbr);
|
|
slr = 2 * NPTEPG; /* XXX temporary */
|
|
printf("IdlePTD %x\n", sbr);
|
|
curpcb = ksym_lookup("curpcb") - KERNOFF;
|
|
physrd(curpcb, &curpcb, sizeof curpcb);
|
|
kstack = ksym_lookup("kstack");
|
|
#else
|
|
sbr = ksym_lookup("Sysmap");
|
|
slr = ksym_lookup("Syssize");
|
|
printf("sbr %x slr %x\n", sbr, slr);
|
|
#endif
|
|
|
|
/*
|
|
* pcb where "panic" saved registers in first thing in current
|
|
* u area.
|
|
*/
|
|
#ifndef NEWVM
|
|
read_pcb(vtophys(ksym_lookup("u")));
|
|
#endif
|
|
found_pcb = 1;
|
|
if (!devmem) {
|
|
/* find stack frame */
|
|
CORE_ADDR panicstr;
|
|
char buf[256];
|
|
register char *cp;
|
|
|
|
panicstr = kvread(ksym_lookup("panicstr"));
|
|
if (panicstr == ~0)
|
|
return;
|
|
(void) kernel_core_file_hook(panicstr, buf, sizeof(buf));
|
|
for (cp = buf; cp < &buf[sizeof(buf)] && *cp; cp++)
|
|
if (!isascii(*cp) || (!isprint(*cp) && !isspace(*cp)))
|
|
*cp = '?';
|
|
if (*cp)
|
|
*cp = '\0';
|
|
printf("panic: %s\n", buf);
|
|
read_pcb(ksym_lookup("dumppcb") - KERNOFF);
|
|
}
|
|
#ifdef NEWVM
|
|
else
|
|
read_pcb(vtophys(kstack));
|
|
#endif
|
|
|
|
stack_start = USRSTACK;
|
|
stack_end = USRSTACK + ctob(UPAGES);
|
|
}
|
|
|
|
set_paddr_command(arg)
|
|
char *arg;
|
|
{
|
|
u_int uaddr;
|
|
|
|
if (!arg)
|
|
error_no_arg("ps-style address for new current process");
|
|
if (!kernel_debugging)
|
|
error("not debugging kernel");
|
|
uaddr = (u_int) parse_and_eval_address(arg);
|
|
#ifndef NEWVM
|
|
read_pcb(ctob(uaddr));
|
|
#else
|
|
/* p_addr is now a pcb virtual address */
|
|
read_pcb(vtophys(uaddr));
|
|
curpcb = uaddr;
|
|
#endif
|
|
|
|
flush_cached_frames();
|
|
set_current_frame(create_new_frame(read_register(FP_REGNUM), read_pc()));
|
|
select_frame(get_current_frame(), 0);
|
|
}
|
|
|
|
/*
|
|
* read len bytes from kernel virtual address 'addr' into local
|
|
* buffer 'buf'. Return 0 if read ok, 1 otherwise. On read
|
|
* errors, portion of buffer not read is zeroed.
|
|
*/
|
|
kernel_core_file_hook(addr, buf, len)
|
|
CORE_ADDR addr;
|
|
char *buf;
|
|
int len;
|
|
{
|
|
int i;
|
|
CORE_ADDR paddr;
|
|
|
|
while (len > 0) {
|
|
paddr = vtophys(addr);
|
|
if (paddr == ~0) {
|
|
bzero(buf, len);
|
|
return (1);
|
|
}
|
|
/* we can't read across a page boundary */
|
|
i = min(len, NBPG - (addr & PGOFSET));
|
|
if (physrd(paddr, buf, i)) {
|
|
bzero(buf, len);
|
|
return (1);
|
|
}
|
|
buf += i;
|
|
addr += i;
|
|
len -= i;
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
core_file_command(filename, from_tty)
|
|
char *filename;
|
|
int from_tty;
|
|
{
|
|
int val;
|
|
extern char registers[];
|
|
#ifdef KERNELDEBUG
|
|
struct stat stb;
|
|
#endif
|
|
|
|
/*
|
|
* Discard all vestiges of any previous core file and mark data and
|
|
* stack spaces as empty.
|
|
*/
|
|
if (corefile)
|
|
free(corefile);
|
|
corefile = 0;
|
|
core_file_hook = 0;
|
|
|
|
if (corechan >= 0)
|
|
close(corechan);
|
|
corechan = -1;
|
|
|
|
/* Now, if a new core file was specified, open it and digest it. */
|
|
|
|
if (filename == 0) {
|
|
if (from_tty)
|
|
printf("No core file now.\n");
|
|
return;
|
|
}
|
|
filename = tilde_expand(filename);
|
|
make_cleanup(free, filename);
|
|
if (have_inferior_p())
|
|
error("To look at a core file, you must kill the inferior with \"kill\".");
|
|
corechan = open(filename, O_RDONLY, 0);
|
|
if (corechan < 0)
|
|
perror_with_name(filename);
|
|
|
|
#ifdef KERNELDEBUG
|
|
fstat(corechan, &stb);
|
|
|
|
if (kernel_debugging) {
|
|
setup_kernel_debugging();
|
|
core_file_hook = kernel_core_file_hook;
|
|
} else if ((stb.st_mode & S_IFMT) == S_IFCHR &&
|
|
stb.st_rdev == makedev(2, 1)) {
|
|
/* looking at /dev/kmem */
|
|
data_offset = data_start = KERNOFF;
|
|
data_end = ~0; /* XXX */
|
|
stack_end = stack_start = data_end;
|
|
} else
|
|
#endif
|
|
{
|
|
/*
|
|
* 4.2-style core dump file.
|
|
*/
|
|
struct user u;
|
|
unsigned int reg_offset;
|
|
|
|
val = myread(corechan, &u, sizeof u);
|
|
if (val < 0)
|
|
perror_with_name("Not a core file: reading upage");
|
|
if (val != sizeof u)
|
|
error("Not a core file: could only read %d bytes", val);
|
|
|
|
/*
|
|
* We are depending on exec_file_command having been
|
|
* called previously to set exec_data_start. Since
|
|
* the executable and the core file share the same
|
|
* text segment, the address of the data segment will
|
|
* be the same in both.
|
|
*/
|
|
data_start = exec_data_start;
|
|
|
|
#ifndef NEWVM
|
|
data_end = data_start + NBPG * u.u_dsize;
|
|
stack_start = stack_end - NBPG * u.u_ssize;
|
|
data_offset = NBPG * UPAGES;
|
|
stack_offset = NBPG * (UPAGES + u.u_dsize);
|
|
|
|
/*
|
|
* Some machines put an absolute address in here and
|
|
* some put the offset in the upage of the regs.
|
|
*/
|
|
reg_offset = (int) u.u_ar0 - KERNEL_U_ADDR;
|
|
#else
|
|
data_end = data_start +
|
|
NBPG * u.u_kproc.kp_eproc.e_vm.vm_dsize;
|
|
stack_start = stack_end -
|
|
NBPG * u.u_kproc.kp_eproc.e_vm.vm_ssize;
|
|
data_offset = NBPG * UPAGES;
|
|
stack_offset = NBPG *
|
|
(UPAGES + u.u_kproc.kp_eproc.e_vm.vm_dsize);
|
|
|
|
reg_offset = (int) u.u_kproc.kp_proc.p_regs - USRSTACK;
|
|
#endif
|
|
|
|
setregmap(u.u_pcb.pcb_flags);
|
|
|
|
/*
|
|
* I don't know where to find this info. So, for now,
|
|
* mark it as not available.
|
|
*/
|
|
/* N_SET_MAGIC (core_aouthdr, 0); */
|
|
bzero ((char *) &core_aouthdr, sizeof core_aouthdr);
|
|
|
|
/*
|
|
* Read the register values out of the core file and
|
|
* store them where `read_register' will find them.
|
|
*/
|
|
{
|
|
register int regno;
|
|
|
|
for (regno = 0; regno < NUM_REGS; regno++) {
|
|
char buf[MAX_REGISTER_RAW_SIZE];
|
|
|
|
val = lseek(corechan, register_addr(regno, reg_offset), 0);
|
|
if (val < 0
|
|
|| (val = myread(corechan, buf, sizeof buf)) < 0) {
|
|
char *buffer = (char *) alloca(strlen(reg_names[regno]) + 30);
|
|
strcpy(buffer, "Reading register ");
|
|
strcat(buffer, reg_names[regno]);
|
|
perror_with_name(buffer);
|
|
}
|
|
supply_register(regno, buf);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
if (filename[0] == '/')
|
|
corefile = savestring(filename, strlen(filename));
|
|
else
|
|
corefile = concat(current_directory, "/", filename);
|
|
|
|
set_current_frame(create_new_frame(read_register(FP_REGNUM),
|
|
read_pc()));
|
|
select_frame(get_current_frame(), 0);
|
|
validate_files();
|
|
}
|
|
|
|
exec_file_command(filename, from_tty)
|
|
char *filename;
|
|
int from_tty;
|
|
{
|
|
int val;
|
|
|
|
/*
|
|
* Eliminate all traces of old exec file. Mark text segment as empty.
|
|
*/
|
|
|
|
if (execfile)
|
|
free(execfile);
|
|
execfile = 0;
|
|
data_start = 0;
|
|
data_end = 0;
|
|
stack_start = 0;
|
|
stack_end = 0;
|
|
text_start = 0;
|
|
text_end = 0;
|
|
exec_data_start = 0;
|
|
exec_data_end = 0;
|
|
if (execchan >= 0)
|
|
close(execchan);
|
|
execchan = -1;
|
|
|
|
/* Now open and digest the file the user requested, if any. */
|
|
|
|
if (filename) {
|
|
filename = tilde_expand(filename);
|
|
make_cleanup(free, filename);
|
|
|
|
execchan = openp(getenv("PATH"), 1, filename, O_RDONLY, 0,
|
|
&execfile);
|
|
if (execchan < 0)
|
|
perror_with_name(filename);
|
|
|
|
{
|
|
struct stat st_exec;
|
|
|
|
#ifdef HEADER_SEEK_FD
|
|
HEADER_SEEK_FD(execchan);
|
|
#endif
|
|
|
|
val = myread(execchan, &exec_aouthdr, sizeof(AOUTHDR));
|
|
|
|
if (val < 0)
|
|
perror_with_name(filename);
|
|
|
|
#ifdef KERNELDEBUG
|
|
if (kernel_debugging) {
|
|
/* Gross and disgusting XXX */
|
|
text_start = KERNTEXT_BASE;
|
|
exec_data_start = KERNTEXT_BASE +
|
|
(exec_aouthdr.a_text + 4095) & ~ 4095;
|
|
} else {
|
|
#endif
|
|
text_start = N_TXTADDR(exec_aouthdr);
|
|
exec_data_start = N_DATADDR(exec_aouthdr);
|
|
#ifdef KERNELDEBUG
|
|
}
|
|
#endif
|
|
|
|
text_offset = N_TXTOFF(exec_aouthdr);
|
|
exec_data_offset = N_TXTOFF(exec_aouthdr) + exec_aouthdr.a_text;
|
|
|
|
text_end = text_start + exec_aouthdr.a_text;
|
|
exec_data_end = exec_data_start + exec_aouthdr.a_data;
|
|
|
|
fstat(execchan, &st_exec);
|
|
exec_mtime = st_exec.st_mtime;
|
|
}
|
|
|
|
validate_files();
|
|
} else if (from_tty)
|
|
printf("No exec file now.\n");
|
|
|
|
/* Tell display code (if any) about the changed file name. */
|
|
if (exec_file_display_hook)
|
|
(*exec_file_display_hook) (filename);
|
|
}
|
|
|
|
int dummy_code[] = {
|
|
0xb8909090, /* nop; nop; nop; movl $0x32323232,%eax */
|
|
0x32323232,
|
|
#define DUMMY_CALL_INDEX 1
|
|
0x90ccd0ff, /* call %eax; int3; nop */
|
|
};
|
|
|
|
/*
|
|
* Build `dummy' call instructions on inferior's stack to cause
|
|
* it to call a subroutine.
|
|
*
|
|
* N.B. - code in wait_for_inferior requires that sp < pc < fp when
|
|
* we take the trap 2 above so it will recognize that we stopped
|
|
* at a `dummy' call. So, after the call sp is *not* decremented
|
|
* to clean the arguments, code & other stuff we lay on the stack.
|
|
* Since the regs are restored to saved values at the breakpoint,
|
|
* sp will get reset correctly. Also, this restore means we don't
|
|
* have to construct frame linkage info to save pc & fp. The lack
|
|
* of frame linkage means we can't do a backtrace, etc., if the
|
|
* called function gets a fault or hits a breakpoint but code in
|
|
* run_stack_dummy makes this impossible anyway.
|
|
*/
|
|
CORE_ADDR
|
|
setup_dummy(sp, funaddr, nargs, args, struct_return_bytes, pushfn)
|
|
CORE_ADDR sp;
|
|
CORE_ADDR funaddr;
|
|
int nargs;
|
|
value *args;
|
|
int struct_return_bytes;
|
|
CORE_ADDR (*pushfn)();
|
|
{
|
|
int padding, i;
|
|
CORE_ADDR top = sp, struct_addr, pc;
|
|
|
|
i = arg_stacklen(nargs, args) + struct_return_bytes
|
|
+ sizeof(dummy_code);
|
|
if (i & 3)
|
|
padding = 4 - (i & 3);
|
|
else
|
|
padding = 0;
|
|
pc = sp - sizeof(dummy_code);
|
|
sp = pc - padding - struct_return_bytes;
|
|
struct_addr = sp;
|
|
while (--nargs >= 0)
|
|
sp = (*pushfn)(sp, *args++);
|
|
if (struct_return_bytes)
|
|
STORE_STRUCT_RETURN(struct_addr, sp);
|
|
write_register(SP_REGNUM, sp);
|
|
|
|
dummy_code[DUMMY_CALL_INDEX] = (int)funaddr;
|
|
write_memory(pc, (char *)dummy_code, sizeof(dummy_code));
|
|
|
|
return pc;
|
|
}
|
|
|
|
/* helper functions for m-i386.h */
|
|
|
|
/* stdio style buffering to minimize calls to ptrace */
|
|
static CORE_ADDR codestream_next_addr;
|
|
static CORE_ADDR codestream_addr;
|
|
static unsigned char codestream_buf[sizeof (int)];
|
|
static int codestream_off;
|
|
static int codestream_cnt;
|
|
|
|
#define codestream_tell() (codestream_addr + codestream_off)
|
|
#define codestream_peek() (codestream_cnt == 0 ? \
|
|
codestream_fill(1): codestream_buf[codestream_off])
|
|
#define codestream_get() (codestream_cnt-- == 0 ? \
|
|
codestream_fill(0) : codestream_buf[codestream_off++])
|
|
|
|
static unsigned char
|
|
codestream_fill (peek_flag)
|
|
{
|
|
codestream_addr = codestream_next_addr;
|
|
codestream_next_addr += sizeof (int);
|
|
codestream_off = 0;
|
|
codestream_cnt = sizeof (int);
|
|
read_memory (codestream_addr,
|
|
(unsigned char *)codestream_buf,
|
|
sizeof (int));
|
|
|
|
if (peek_flag)
|
|
return (codestream_peek());
|
|
else
|
|
return (codestream_get());
|
|
}
|
|
|
|
static void
|
|
codestream_seek (place)
|
|
{
|
|
codestream_next_addr = place & -sizeof (int);
|
|
codestream_cnt = 0;
|
|
codestream_fill (1);
|
|
while (codestream_tell() != place)
|
|
codestream_get ();
|
|
}
|
|
|
|
static void
|
|
codestream_read (buf, count)
|
|
unsigned char *buf;
|
|
{
|
|
unsigned char *p;
|
|
int i;
|
|
p = buf;
|
|
for (i = 0; i < count; i++)
|
|
*p++ = codestream_get ();
|
|
}
|
|
|
|
/* next instruction is a jump, move to target */
|
|
static
|
|
i386_follow_jump ()
|
|
{
|
|
int long_delta;
|
|
short short_delta;
|
|
char byte_delta;
|
|
int data16;
|
|
int pos;
|
|
|
|
pos = codestream_tell ();
|
|
|
|
data16 = 0;
|
|
if (codestream_peek () == 0x66)
|
|
{
|
|
codestream_get ();
|
|
data16 = 1;
|
|
}
|
|
|
|
switch (codestream_get ())
|
|
{
|
|
case 0xe9:
|
|
/* relative jump: if data16 == 0, disp32, else disp16 */
|
|
if (data16)
|
|
{
|
|
codestream_read ((unsigned char *)&short_delta, 2);
|
|
pos += short_delta + 3; /* include size of jmp inst */
|
|
}
|
|
else
|
|
{
|
|
codestream_read ((unsigned char *)&long_delta, 4);
|
|
pos += long_delta + 5;
|
|
}
|
|
break;
|
|
case 0xeb:
|
|
/* relative jump, disp8 (ignore data16) */
|
|
codestream_read ((unsigned char *)&byte_delta, 1);
|
|
pos += byte_delta + 2;
|
|
break;
|
|
}
|
|
codestream_seek (pos + data16);
|
|
}
|
|
|
|
/*
|
|
* find & return amound a local space allocated, and advance codestream to
|
|
* first register push (if any)
|
|
*
|
|
* if entry sequence doesn't make sense, return -1, and leave
|
|
* codestream pointer random
|
|
*/
|
|
static long
|
|
i386_get_frame_setup (pc)
|
|
{
|
|
unsigned char op;
|
|
|
|
codestream_seek (pc);
|
|
|
|
i386_follow_jump ();
|
|
|
|
op = codestream_get ();
|
|
|
|
if (op == 0x58) /* popl %eax */
|
|
{
|
|
/*
|
|
* this function must start with
|
|
*
|
|
* popl %eax 0x58
|
|
* xchgl %eax, (%esp) 0x87 0x04 0x24
|
|
* or xchgl %eax, 0(%esp) 0x87 0x44 0x24 0x00
|
|
*
|
|
* (the system 5 compiler puts out the second xchg
|
|
* inst, and the assembler doesn't try to optimize it,
|
|
* so the 'sib' form gets generated)
|
|
*
|
|
* this sequence is used to get the address of the return
|
|
* buffer for a function that returns a structure
|
|
*/
|
|
int pos;
|
|
unsigned char buf[4];
|
|
static unsigned char proto1[3] = { 0x87,0x04,0x24 };
|
|
static unsigned char proto2[4] = { 0x87,0x44,0x24,0x00 };
|
|
pos = codestream_tell ();
|
|
codestream_read (buf, 4);
|
|
if (bcmp (buf, proto1, 3) == 0)
|
|
pos += 3;
|
|
else if (bcmp (buf, proto2, 4) == 0)
|
|
pos += 4;
|
|
|
|
codestream_seek (pos);
|
|
op = codestream_get (); /* update next opcode */
|
|
}
|
|
|
|
if (op == 0x55) /* pushl %esp */
|
|
{
|
|
/* check for movl %esp, %ebp - can be written two ways */
|
|
switch (codestream_get ())
|
|
{
|
|
case 0x8b:
|
|
if (codestream_get () != 0xec)
|
|
return (-1);
|
|
break;
|
|
case 0x89:
|
|
if (codestream_get () != 0xe5)
|
|
return (-1);
|
|
break;
|
|
default:
|
|
return (-1);
|
|
}
|
|
/* check for stack adjustment
|
|
*
|
|
* subl $XXX, %esp
|
|
*
|
|
* note: you can't subtract a 16 bit immediate
|
|
* from a 32 bit reg, so we don't have to worry
|
|
* about a data16 prefix
|
|
*/
|
|
op = codestream_peek ();
|
|
if (op == 0x83)
|
|
{
|
|
/* subl with 8 bit immed */
|
|
codestream_get ();
|
|
if (codestream_get () != 0xec)
|
|
return (-1);
|
|
/* subl with signed byte immediate
|
|
* (though it wouldn't make sense to be negative)
|
|
*/
|
|
return (codestream_get());
|
|
}
|
|
else if (op == 0x81)
|
|
{
|
|
/* subl with 32 bit immed */
|
|
int locals;
|
|
codestream_get();
|
|
if (codestream_get () != 0xec)
|
|
return (-1);
|
|
/* subl with 32 bit immediate */
|
|
codestream_read ((unsigned char *)&locals, 4);
|
|
return (locals);
|
|
}
|
|
else
|
|
{
|
|
return (0);
|
|
}
|
|
}
|
|
else if (op == 0xc8)
|
|
{
|
|
/* enter instruction: arg is 16 bit unsigned immed */
|
|
unsigned short slocals;
|
|
codestream_read ((unsigned char *)&slocals, 2);
|
|
codestream_get (); /* flush final byte of enter instruction */
|
|
return (slocals);
|
|
}
|
|
return (-1);
|
|
}
|
|
|
|
/* Return number of args passed to a frame.
|
|
Can return -1, meaning no way to tell. */
|
|
|
|
/* on the 386, the instruction following the call could be:
|
|
* popl %ecx - one arg
|
|
* addl $imm, %esp - imm/4 args; imm may be 8 or 32 bits
|
|
* anything else - zero args
|
|
*/
|
|
|
|
int
|
|
i386_frame_num_args (fi)
|
|
struct frame_info fi;
|
|
{
|
|
int retpc;
|
|
unsigned char op;
|
|
struct frame_info *pfi;
|
|
|
|
pfi = get_prev_frame_info ((fi));
|
|
if (pfi == 0)
|
|
{
|
|
/* Note: this can happen if we are looking at the frame for
|
|
main, because FRAME_CHAIN_VALID won't let us go into
|
|
start. If we have debugging symbols, that's not really
|
|
a big deal; it just means it will only show as many arguments
|
|
to main as are declared. */
|
|
return -1;
|
|
}
|
|
else
|
|
{
|
|
retpc = pfi->pc;
|
|
op = read_memory_integer (retpc, 1);
|
|
if (op == 0x59)
|
|
/* pop %ecx */
|
|
return 1;
|
|
else if (op == 0x83)
|
|
{
|
|
op = read_memory_integer (retpc+1, 1);
|
|
if (op == 0xc4)
|
|
/* addl $<signed imm 8 bits>, %esp */
|
|
return (read_memory_integer (retpc+2,1)&0xff)/4;
|
|
else
|
|
return 0;
|
|
}
|
|
else if (op == 0x81)
|
|
{ /* add with 32 bit immediate */
|
|
op = read_memory_integer (retpc+1, 1);
|
|
if (op == 0xc4)
|
|
/* addl $<imm 32>, %esp */
|
|
return read_memory_integer (retpc+2, 4) / 4;
|
|
else
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* parse the first few instructions of the function to see
|
|
* what registers were stored.
|
|
*
|
|
* We handle these cases:
|
|
*
|
|
* The startup sequence can be at the start of the function,
|
|
* or the function can start with a branch to startup code at the end.
|
|
*
|
|
* %ebp can be set up with either the 'enter' instruction, or
|
|
* 'pushl %ebp, movl %esp, %ebp' (enter is too slow to be useful,
|
|
* but was once used in the sys5 compiler)
|
|
*
|
|
* Local space is allocated just below the saved %ebp by either the
|
|
* 'enter' instruction, or by 'subl $<size>, %esp'. 'enter' has
|
|
* a 16 bit unsigned argument for space to allocate, and the
|
|
* 'addl' instruction could have either a signed byte, or
|
|
* 32 bit immediate.
|
|
*
|
|
* Next, the registers used by this function are pushed. In
|
|
* the sys5 compiler they will always be in the order: %edi, %esi, %ebx
|
|
* (and sometimes a harmless bug causes it to also save but not restore %eax);
|
|
* however, the code below is willing to see the pushes in any order,
|
|
* and will handle up to 8 of them.
|
|
*
|
|
* If the setup sequence is at the end of the function, then the
|
|
* next instruction will be a branch back to the start.
|
|
*/
|
|
|
|
i386_frame_find_saved_regs (fip, fsrp)
|
|
struct frame_info *fip;
|
|
struct frame_saved_regs *fsrp;
|
|
{
|
|
unsigned long locals;
|
|
unsigned char *p;
|
|
unsigned char op;
|
|
CORE_ADDR dummy_bottom;
|
|
CORE_ADDR adr;
|
|
int i;
|
|
|
|
bzero (fsrp, sizeof *fsrp);
|
|
|
|
#if 0
|
|
/* if frame is the end of a dummy, compute where the
|
|
* beginning would be
|
|
*/
|
|
dummy_bottom = fip->frame - 4 - NUM_REGS*4 - CALL_DUMMY_LENGTH;
|
|
|
|
/* check if the PC is in the stack, in a dummy frame */
|
|
if (dummy_bottom <= fip->pc && fip->pc <= fip->frame)
|
|
{
|
|
/* all regs were saved by push_call_dummy () */
|
|
adr = fip->frame - 4;
|
|
for (i = 0; i < NUM_REGS; i++)
|
|
{
|
|
fsrp->regs[i] = adr;
|
|
adr -= 4;
|
|
}
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
locals = i386_get_frame_setup (get_pc_function_start (fip->pc));
|
|
|
|
if (locals >= 0)
|
|
{
|
|
adr = fip->frame - 4 - locals;
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
op = codestream_get ();
|
|
if (op < 0x50 || op > 0x57)
|
|
break;
|
|
fsrp->regs[op - 0x50] = adr;
|
|
adr -= 4;
|
|
}
|
|
}
|
|
|
|
fsrp->regs[PC_REGNUM] = fip->frame + 4;
|
|
fsrp->regs[FP_REGNUM] = fip->frame;
|
|
}
|
|
|
|
/* return pc of first real instruction */
|
|
i386_skip_prologue (pc)
|
|
{
|
|
unsigned char op;
|
|
int i;
|
|
|
|
if (i386_get_frame_setup (pc) < 0)
|
|
return (pc);
|
|
|
|
/* found valid frame setup - codestream now points to
|
|
* start of push instructions for saving registers
|
|
*/
|
|
|
|
/* skip over register saves */
|
|
for (i = 0; i < 8; i++)
|
|
{
|
|
op = codestream_peek ();
|
|
/* break if not pushl inst */
|
|
if (op < 0x50 || op > 0x57)
|
|
break;
|
|
codestream_get ();
|
|
}
|
|
|
|
i386_follow_jump ();
|
|
|
|
return (codestream_tell ());
|
|
}
|
|
|
|
i386_pop_frame ()
|
|
{
|
|
FRAME frame = get_current_frame ();
|
|
CORE_ADDR fp;
|
|
int regnum;
|
|
struct frame_saved_regs fsr;
|
|
struct frame_info *fi;
|
|
|
|
fi = get_frame_info (frame);
|
|
fp = fi->frame;
|
|
get_frame_saved_regs (fi, &fsr);
|
|
for (regnum = 0; regnum < NUM_REGS; regnum++)
|
|
{
|
|
CORE_ADDR adr;
|
|
adr = fsr.regs[regnum];
|
|
if (adr)
|
|
write_register (regnum, read_memory_integer (adr, 4));
|
|
}
|
|
write_register (FP_REGNUM, read_memory_integer (fp, 4));
|
|
write_register (PC_REGNUM, read_memory_integer (fp + 4, 4));
|
|
write_register (SP_REGNUM, fp + 8);
|
|
flush_cached_frames ();
|
|
set_current_frame ( create_new_frame (read_register (FP_REGNUM),
|
|
read_pc ()));
|
|
}
|
|
|
|
/* this table must line up with REGISTER_NAMES in m-i386.h */
|
|
/* symbols like 'EAX' come from <sys/reg.h> */
|
|
static int trapmap[] =
|
|
{
|
|
tEAX, tECX, tEDX, tEBX,
|
|
tESP, tEBP, tESI, tEDI,
|
|
tEIP, tEFLAGS, tCS, tSS,
|
|
tDS, tES, tES, tES /* lies: no fs or gs */
|
|
};
|
|
#ifdef FM_TRAP
|
|
static int syscallmap[] =
|
|
{
|
|
sEAX, sECX, sEDX, sEBX,
|
|
sESP, sEBP, sESI, sEDI,
|
|
sEIP, sEFLAGS, sCS, sSS,
|
|
sCS, sCS, sCS, sCS /* lies: no ds, es, fs or gs */
|
|
};
|
|
#endif
|
|
static int *regmap;
|
|
|
|
static void
|
|
setregmap(flags)
|
|
int flags;
|
|
{
|
|
#ifdef FM_TRAP
|
|
regmap = flags & FM_TRAP ? trapmap: syscallmap;
|
|
#elif EX_TRAPSTK
|
|
regmap = flags & EX_TRAPSTK ? trapmap : syscallmap;
|
|
#else
|
|
regmap = trapmap; /* the lesser evil */
|
|
#endif
|
|
}
|
|
|
|
/* blockend is the value of u.u_ar0, and points to the
|
|
* place where GS is stored
|
|
*/
|
|
i386_register_u_addr (blockend, regnum)
|
|
{
|
|
#if 0
|
|
/* this will be needed if fp registers are reinstated */
|
|
/* for now, you can look at them with 'info float'
|
|
* sys5 wont let you change them with ptrace anyway
|
|
*/
|
|
if (regnum >= FP0_REGNUM && regnum <= FP7_REGNUM)
|
|
{
|
|
int ubase, fpstate;
|
|
struct user u;
|
|
ubase = blockend + 4 * (SS + 1) - KSTKSZ;
|
|
fpstate = ubase + ((char *)&u.u_fpstate - (char *)&u);
|
|
return (fpstate + 0x1c + 10 * (regnum - FP0_REGNUM));
|
|
}
|
|
else
|
|
#endif
|
|
return (blockend + 4 * regmap[regnum]);
|
|
}
|
|
|
|
i387_to_double (from, to)
|
|
char *from;
|
|
char *to;
|
|
{
|
|
long *lp;
|
|
/* push extended mode on 387 stack, then pop in double mode
|
|
*
|
|
* first, set exception masks so no error is generated -
|
|
* number will be rounded to inf or 0, if necessary
|
|
*/
|
|
asm ("pushl %eax"); /* grab a stack slot */
|
|
asm ("fstcw (%esp)"); /* get 387 control word */
|
|
asm ("movl (%esp),%eax"); /* save old value */
|
|
asm ("orl $0x3f,%eax"); /* mask all exceptions */
|
|
asm ("pushl %eax");
|
|
asm ("fldcw (%esp)"); /* load new value into 387 */
|
|
|
|
asm ("movl 8(%ebp),%eax");
|
|
asm ("fldt (%eax)"); /* push extended number on 387 stack */
|
|
asm ("fwait");
|
|
asm ("movl 12(%ebp),%eax");
|
|
asm ("fstpl (%eax)"); /* pop double */
|
|
asm ("fwait");
|
|
|
|
asm ("popl %eax"); /* flush modified control word */
|
|
asm ("fnclex"); /* clear exceptions */
|
|
asm ("fldcw (%esp)"); /* restore original control word */
|
|
asm ("popl %eax"); /* flush saved copy */
|
|
}
|
|
|
|
double_to_i387 (from, to)
|
|
char *from;
|
|
char *to;
|
|
{
|
|
/* push double mode on 387 stack, then pop in extended mode
|
|
* no errors are possible because every 64-bit pattern
|
|
* can be converted to an extended
|
|
*/
|
|
asm ("movl 8(%ebp),%eax");
|
|
asm ("fldl (%eax)");
|
|
asm ("fwait");
|
|
asm ("movl 12(%ebp),%eax");
|
|
asm ("fstpt (%eax)");
|
|
asm ("fwait");
|
|
}
|
|
|
|
struct env387
|
|
{
|
|
unsigned short control;
|
|
unsigned short r0;
|
|
unsigned short status;
|
|
unsigned short r1;
|
|
unsigned short tag;
|
|
unsigned short r2;
|
|
unsigned long eip;
|
|
unsigned short code_seg;
|
|
unsigned short opcode;
|
|
unsigned long operand;
|
|
unsigned short operand_seg;
|
|
unsigned short r3;
|
|
unsigned char regs[8][10];
|
|
};
|
|
|
|
static
|
|
print_387_control_word (control)
|
|
unsigned short control;
|
|
{
|
|
printf ("control 0x%04x: ", control);
|
|
printf ("compute to ");
|
|
switch ((control >> 8) & 3)
|
|
{
|
|
case 0: printf ("24 bits; "); break;
|
|
case 1: printf ("(bad); "); break;
|
|
case 2: printf ("53 bits; "); break;
|
|
case 3: printf ("64 bits; "); break;
|
|
}
|
|
printf ("round ");
|
|
switch ((control >> 10) & 3)
|
|
{
|
|
case 0: printf ("NEAREST; "); break;
|
|
case 1: printf ("DOWN; "); break;
|
|
case 2: printf ("UP; "); break;
|
|
case 3: printf ("CHOP; "); break;
|
|
}
|
|
if (control & 0x3f)
|
|
{
|
|
printf ("mask:");
|
|
if (control & 0x0001) printf (" INVALID");
|
|
if (control & 0x0002) printf (" DENORM");
|
|
if (control & 0x0004) printf (" DIVZ");
|
|
if (control & 0x0008) printf (" OVERF");
|
|
if (control & 0x0010) printf (" UNDERF");
|
|
if (control & 0x0020) printf (" LOS");
|
|
printf (";");
|
|
}
|
|
printf ("\n");
|
|
if (control & 0xe080) printf ("warning: reserved bits on 0x%x\n",
|
|
control & 0xe080);
|
|
}
|
|
|
|
static
|
|
print_387_status_word (status)
|
|
unsigned short status;
|
|
{
|
|
printf ("status 0x%04x: ", status);
|
|
if (status & 0xff)
|
|
{
|
|
printf ("exceptions:");
|
|
if (status & 0x0001) printf (" INVALID");
|
|
if (status & 0x0002) printf (" DENORM");
|
|
if (status & 0x0004) printf (" DIVZ");
|
|
if (status & 0x0008) printf (" OVERF");
|
|
if (status & 0x0010) printf (" UNDERF");
|
|
if (status & 0x0020) printf (" LOS");
|
|
if (status & 0x0040) printf (" FPSTACK");
|
|
printf ("; ");
|
|
}
|
|
printf ("flags: %d%d%d%d; ",
|
|
(status & 0x4000) != 0,
|
|
(status & 0x0400) != 0,
|
|
(status & 0x0200) != 0,
|
|
(status & 0x0100) != 0);
|
|
|
|
printf ("top %d\n", (status >> 11) & 7);
|
|
}
|
|
|
|
static
|
|
print_387_status (status, ep)
|
|
unsigned short status;
|
|
struct env387 *ep;
|
|
{
|
|
int i;
|
|
int bothstatus;
|
|
int top;
|
|
int fpreg;
|
|
unsigned char *p;
|
|
|
|
bothstatus = ((status != 0) && (ep->status != 0));
|
|
if (status != 0)
|
|
{
|
|
if (bothstatus)
|
|
printf ("u: ");
|
|
print_387_status_word (status);
|
|
}
|
|
|
|
if (ep->status != 0)
|
|
{
|
|
if (bothstatus)
|
|
printf ("e: ");
|
|
print_387_status_word (ep->status);
|
|
}
|
|
|
|
print_387_control_word (ep->control);
|
|
printf ("last exception: ");
|
|
printf ("opcode 0x%x; ", ep->opcode);
|
|
printf ("pc 0x%x:0x%x; ", ep->code_seg, ep->eip);
|
|
printf ("operand 0x%x:0x%x\n", ep->operand_seg, ep->operand);
|
|
|
|
top = (ep->status >> 11) & 7;
|
|
|
|
printf ("regno tag msb lsb value\n");
|
|
for (fpreg = 7; fpreg >= 0; fpreg--)
|
|
{
|
|
double val;
|
|
|
|
printf ("%s %d: ", fpreg == top ? "=>" : " ", fpreg);
|
|
|
|
switch ((ep->tag >> (fpreg * 2)) & 3)
|
|
{
|
|
case 0: printf ("valid "); break;
|
|
case 1: printf ("zero "); break;
|
|
case 2: printf ("trap "); break;
|
|
case 3: printf ("empty "); break;
|
|
}
|
|
for (i = 9; i >= 0; i--)
|
|
printf ("%02x", ep->regs[fpreg][i]);
|
|
|
|
i387_to_double (ep->regs[fpreg], (char *)&val);
|
|
printf (" %g\n", val);
|
|
}
|
|
if (ep->r0)
|
|
printf ("warning: reserved0 is 0x%x\n", ep->r0);
|
|
if (ep->r1)
|
|
printf ("warning: reserved1 is 0x%x\n", ep->r1);
|
|
if (ep->r2)
|
|
printf ("warning: reserved2 is 0x%x\n", ep->r2);
|
|
if (ep->r3)
|
|
printf ("warning: reserved3 is 0x%x\n", ep->r3);
|
|
}
|
|
|
|
#ifndef U_FPSTATE
|
|
#define U_FPSTATE(u) u.u_fpstate
|
|
#endif
|
|
|
|
i386_float_info ()
|
|
{
|
|
struct user u; /* just for address computations */
|
|
int i;
|
|
#ifndef __NetBSD__
|
|
/* fpstate defined in <sys/user.h> */
|
|
struct fpstate *fpstatep;
|
|
char buf[sizeof (struct fpstate) + 2 * sizeof (int)];
|
|
unsigned int uaddr;
|
|
char fpvalid;
|
|
unsigned int rounded_addr;
|
|
unsigned int rounded_size;
|
|
extern int corechan;
|
|
int skip;
|
|
|
|
uaddr = (char *)&u.u_fpvalid - (char *)&u;
|
|
if (have_inferior_p())
|
|
{
|
|
unsigned int data;
|
|
unsigned int mask;
|
|
|
|
rounded_addr = uaddr & -sizeof (int);
|
|
data = ptrace (3, inferior_pid, rounded_addr, 0);
|
|
mask = 0xff << ((uaddr - rounded_addr) * 8);
|
|
|
|
fpvalid = ((data & mask) != 0);
|
|
}
|
|
else
|
|
{
|
|
if (lseek (corechan, uaddr, 0) < 0)
|
|
perror ("seek on core file");
|
|
if (myread (corechan, &fpvalid, 1) < 0)
|
|
perror ("read on core file");
|
|
|
|
}
|
|
|
|
if (fpvalid == 0)
|
|
{
|
|
printf ("no floating point status saved\n");
|
|
return;
|
|
}
|
|
|
|
uaddr = (char *)&U_FPSTATE(u) - (char *)&u;
|
|
if (have_inferior_p ())
|
|
{
|
|
int *ip;
|
|
|
|
rounded_addr = uaddr & -sizeof (int);
|
|
rounded_size = (((uaddr + sizeof (struct fpstate)) - uaddr) +
|
|
sizeof (int) - 1) / sizeof (int);
|
|
skip = uaddr - rounded_addr;
|
|
|
|
ip = (int *)buf;
|
|
for (i = 0; i < rounded_size; i++)
|
|
{
|
|
*ip++ = ptrace (3, inferior_pid, rounded_addr, 0);
|
|
rounded_addr += sizeof (int);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (lseek (corechan, uaddr, 0) < 0)
|
|
perror_with_name ("seek on core file");
|
|
if (myread (corechan, buf, sizeof (struct fpstate)) < 0)
|
|
perror_with_name ("read from core file");
|
|
skip = 0;
|
|
}
|
|
|
|
fpstatep = (struct fpstate *)(buf + skip);
|
|
print_387_status (fpstatep->status, (struct env387 *)fpstatep->state);
|
|
#endif
|
|
}
|
|
|
|
void
|
|
_initialize_i386bsd_dep()
|
|
{
|
|
#ifdef KERNELDEBUG
|
|
add_com ("process-address", class_obscure, set_paddr_command,
|
|
"The process identified by (ps-style) ADDR becomes the\n\
|
|
\"current\" process context for kernel debugging.");
|
|
add_com_alias ("paddr", "process-address", class_obscure, 0);
|
|
#endif
|
|
}
|