NetBSD/sys/dev/usb/uaudio.c

4292 lines
112 KiB
C

/* $NetBSD: uaudio.c,v 1.183 2024/02/04 05:43:06 mrg Exp $ */
/*
* Copyright (c) 1999, 2012 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Lennart Augustsson (lennart@augustsson.net) at
* Carlstedt Research & Technology, and Matthew R. Green (mrg@eterna23.net).
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* USB audio specs: http://www.usb.org/developers/docs/devclass_docs/audio10.pdf
* http://www.usb.org/developers/docs/devclass_docs/frmts10.pdf
* http://www.usb.org/developers/docs/devclass_docs/termt10.pdf
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: uaudio.c,v 1.183 2024/02/04 05:43:06 mrg Exp $");
#ifdef _KERNEL_OPT
#include "opt_usb.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/device.h>
#include <sys/ioctl.h>
#include <sys/file.h>
#include <sys/reboot.h> /* for bootverbose */
#include <sys/select.h>
#include <sys/proc.h>
#include <sys/vnode.h>
#include <sys/poll.h>
#include <sys/module.h>
#include <sys/bus.h>
#include <sys/cpu.h>
#include <sys/atomic.h>
#include <sys/sysctl.h>
#include <sys/audioio.h>
#include <dev/audio/audio_if.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usbdi_util.h>
#include <dev/usb/usb_quirks.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/uaudioreg.h>
/* #define UAUDIO_DEBUG */
#define UAUDIO_MULTIPLE_ENDPOINTS
#ifdef UAUDIO_DEBUG
#define DPRINTF(x,y...) do { \
if (uaudiodebug) { \
struct lwp *l = curlwp; \
printf("%s[%d:%d]: "x, __func__, l->l_proc->p_pid, l->l_lid, y); \
} \
} while (0)
#define DPRINTFN_CLEAN(n,x...) do { \
if (uaudiodebug > (n)) \
printf(x); \
} while (0)
#define DPRINTFN(n,x,y...) do { \
if (uaudiodebug > (n)) { \
struct lwp *l = curlwp; \
printf("%s[%d:%d]: "x, __func__, l->l_proc->p_pid, l->l_lid, y); \
} \
} while (0)
int uaudiodebug = 0;
#else
#define DPRINTF(x,y...)
#define DPRINTFN_CLEAN(n,x...)
#define DPRINTFN(n,x,y...)
#endif
/* number of outstanding requests */
#define UAUDIO_NCHANBUFS 6
/* number of USB frames per request, also the number of ms */
#define UAUDIO_NFRAMES 10
/* number of microframes per requewst (high, super) */
#define UAUDIO_NFRAMES_HI 40
#define MIX_MAX_CHAN 8
struct range {
int minval, maxval, resval;
};
struct mixerctl {
uint16_t wValue[MIX_MAX_CHAN]; /* using nchan */
uint16_t wIndex;
uint8_t nchan;
uint8_t type;
#define MIX_ON_OFF 0x01
#define MIX_SELECTOR 0x02
#define MIX_SIGNED_8 0x10
#define MIX_UNSIGNED_8 0x18
#define MIX_SIGNED_16 0x20
#define MIX_UNSIGNED_16 0x28
#define MIX_SIGNED_32 0x40
#define MIX_UNSIGNED_32 0x48
#define MIX_SIZE(n) ( \
((n) == MIX_UNSIGNED_32 || (n) == MIX_SIGNED_32) ? 4 : \
((n) == MIX_SIGNED_16 || (n) == MIX_UNSIGNED_16) ? 2 : 1 )
#define MIX_UNSIGNED(n) ( \
(n) == MIX_UNSIGNED_8 || \
(n) == MIX_UNSIGNED_16 || \
(n) == MIX_UNSIGNED_32 )
struct range range0;
struct range *ranges;
u_int nranges;
u_int delta;
u_int mul;
uint8_t class;
char ctlname[MAX_AUDIO_DEV_LEN];
const char *ctlunit;
};
#define MAKE(h,l) (((h) << 8) | (l))
struct as_info {
uint8_t alt;
uint8_t encoding;
uint8_t nchan;
uint8_t attributes; /* Copy of bmAttributes of
* usb_audio_streaming_endpoint_descriptor
*/
uint8_t terminal; /* connected Terminal ID */
struct usbd_interface * ifaceh;
const usb_interface_descriptor_t *idesc;
const usb_endpoint_descriptor_audio_t *edesc;
const usb_endpoint_descriptor_audio_t *edesc1;
const union usb_audio_streaming_type1_descriptor *asf1desc;
struct audio_format *aformat;
int sc_busy; /* currently used */
};
struct chan {
void (*intr)(void *); /* DMA completion intr handler */
void *arg; /* arg for intr() */
struct usbd_pipe *pipe;
struct usbd_pipe *sync_pipe;
u_int sample_size;
u_int sample_rate;
u_int bytes_per_frame;
u_int fraction; /* fraction/1000 is the extra samples/frame */
u_int residue; /* accumulates the fractional samples */
u_char *start; /* upper layer buffer start */
u_char *end; /* upper layer buffer end */
u_char *cur; /* current position in upper layer buffer */
int blksize; /* chunk size to report up */
int transferred; /* transferred bytes not reported up */
int altidx; /* currently used altidx */
int curchanbuf;
u_int nframes; /* UAUDIO_NFRAMES or UAUDIO_NFRAMES_HI */
u_int nchanbufs; /* 1..UAUDIO_NCHANBUFS */
struct chanbuf {
struct chan *chan;
struct usbd_xfer *xfer;
u_char *buffer;
uint16_t sizes[UAUDIO_NFRAMES_HI];
uint16_t offsets[UAUDIO_NFRAMES_HI];
uint16_t size;
} chanbufs[UAUDIO_NCHANBUFS];
struct uaudio_softc *sc; /* our softc */
};
/*
* The MI USB audio subsystem is now MP-SAFE and expects sc_intr_lock to be
* held on entry the callbacks passed to uaudio_trigger_{in,out}put
*/
struct uaudio_softc {
device_t sc_dev; /* base device */
kmutex_t sc_lock;
kmutex_t sc_intr_lock;
struct usbd_device *sc_udev; /* USB device */
int sc_version;
int sc_ac_iface; /* Audio Control interface */
struct usbd_interface * sc_ac_ifaceh;
struct chan sc_playchan; /* play channel */
struct chan sc_recchan; /* record channel */
int sc_nullalt;
int sc_audio_rev;
struct as_info *sc_alts; /* alternate settings */
int sc_nalts; /* # of alternate settings */
int sc_altflags;
#define HAS_8 0x01
#define HAS_16 0x02
#define HAS_8U 0x04
#define HAS_ALAW 0x08
#define HAS_MULAW 0x10
#define UA_NOFRAC 0x20 /* don't do sample rate adjustment */
#define HAS_24 0x40
#define HAS_32 0x80
int sc_mode; /* play/record capability */
struct mixerctl *sc_ctls; /* mixer controls */
int sc_nctls; /* # of mixer controls */
device_t sc_audiodev;
int sc_nratectls; /* V2 sample rates */
int sc_ratectls[AUFMT_MAX_FREQUENCIES];
int sc_ratemode[AUFMT_MAX_FREQUENCIES];
int sc_playclock;
int sc_recclock;
struct audio_format *sc_formats;
int sc_nformats;
uint8_t sc_clock[256]; /* map terminals to clocks */
u_int sc_channel_config;
u_int sc_usb_frames_per_second;
char sc_dying;
struct audio_device sc_adev;
};
struct terminal_list {
int size;
uint16_t terminals[1];
};
#define TERMINAL_LIST_SIZE(N) (offsetof(struct terminal_list, terminals) \
+ sizeof(uint16_t) * (N))
struct io_terminal {
union {
const uaudio_cs_descriptor_t *desc;
const union usb_audio_input_terminal *it;
const union usb_audio_output_terminal *ot;
const struct usb_audio_mixer_unit *mu;
const struct usb_audio_selector_unit *su;
const union usb_audio_feature_unit *fu;
const struct usb_audio_processing_unit *pu;
const struct usb_audio_extension_unit *eu;
const struct usb_audio_clksrc_unit *cu;
const struct usb_audio_clksel_unit *lu;
} d;
int inputs_size;
struct terminal_list **inputs; /* list of source input terminals */
struct terminal_list *output; /* list of destination output terminals */
int direct; /* directly connected to an output terminal */
uint8_t clock;
};
#define UAC_OUTPUT 0
#define UAC_INPUT 1
#define UAC_EQUAL 2
#define UAC_RECORD 3
#define UAC_NCLASSES 4
#ifdef UAUDIO_DEBUG
Static const char *uac_names[] = {
AudioCoutputs, AudioCinputs, AudioCequalization, AudioCrecord
};
#endif
#ifdef UAUDIO_DEBUG
Static void uaudio_dump_tml
(struct terminal_list *tml);
#endif
Static usbd_status uaudio_identify_ac
(struct uaudio_softc *, const usb_config_descriptor_t *);
Static usbd_status uaudio_identify_as
(struct uaudio_softc *, const usb_config_descriptor_t *);
Static usbd_status uaudio_process_as
(struct uaudio_softc *, const char *, int *, int,
const usb_interface_descriptor_t *);
Static void uaudio_add_alt(struct uaudio_softc *, const struct as_info *);
Static const usb_interface_descriptor_t *uaudio_find_iface
(const char *, int, int *, int);
Static void uaudio_mixer_add_ctl(struct uaudio_softc *, struct mixerctl *);
Static char *uaudio_id_name
(struct uaudio_softc *, const struct io_terminal *, uint8_t);
#ifdef UAUDIO_DEBUG
Static void uaudio_dump_cluster
(struct uaudio_softc *, const union usb_audio_cluster *);
#endif
Static union usb_audio_cluster uaudio_get_cluster
(struct uaudio_softc *, int, const struct io_terminal *);
Static void uaudio_add_input
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_output
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_mixer
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_selector
(struct uaudio_softc *, const struct io_terminal *, int);
#ifdef UAUDIO_DEBUG
Static const char *uaudio_get_terminal_name(int);
#endif
Static int uaudio_determine_class
(const struct io_terminal *, struct mixerctl *);
Static const char *uaudio_feature_name
(const struct io_terminal *, uint8_t, int);
Static void uaudio_add_feature
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_processing_updown
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_processing
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_effect
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_extension
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_clksrc
(struct uaudio_softc *, const struct io_terminal *, int);
Static void uaudio_add_clksel
(struct uaudio_softc *, const struct io_terminal *, int);
Static struct terminal_list *uaudio_merge_terminal_list
(const struct io_terminal *);
Static struct terminal_list *uaudio_io_terminaltype
(struct uaudio_softc *, int, struct io_terminal *, int);
Static usbd_status uaudio_identify
(struct uaudio_softc *, const usb_config_descriptor_t *);
Static u_int uaudio_get_rates
(struct uaudio_softc *, int, u_int *, u_int);
Static void uaudio_build_formats
(struct uaudio_softc *);
Static int uaudio_signext(int, int);
Static int uaudio_value2bsd(struct mixerctl *, int);
Static int uaudio_bsd2value(struct mixerctl *, int);
Static const char *uaudio_clockname(u_int);
Static int uaudio_makename
(struct uaudio_softc *, uByte, const char *, uByte, char *, size_t);
Static int uaudio_get(struct uaudio_softc *, int, int, int, int, int);
Static int uaudio_getbuf(struct uaudio_softc *, int, int, int, int, int, uint8_t *);
Static int uaudio_ctl_get
(struct uaudio_softc *, int, struct mixerctl *, int);
Static void uaudio_set
(struct uaudio_softc *, int, int, int, int, int, int);
Static void uaudio_ctl_set
(struct uaudio_softc *, int, struct mixerctl *, int, int);
Static usbd_status uaudio_speed(struct uaudio_softc *, int, int, uint8_t *, int);
Static usbd_status uaudio_set_speed(struct uaudio_softc *, int, int, u_int);
Static usbd_status uaudio_chan_open(struct uaudio_softc *, struct chan *);
Static void uaudio_chan_abort(struct uaudio_softc *, struct chan *);
Static void uaudio_chan_close(struct uaudio_softc *, struct chan *);
Static usbd_status uaudio_chan_alloc_buffers
(struct uaudio_softc *, struct chan *);
Static void uaudio_chan_free_buffers(struct uaudio_softc *, struct chan *);
Static void uaudio_chan_init
(struct chan *, int, const struct audio_params *, int, bool);
Static void uaudio_chan_set_param(struct chan *, u_char *, u_char *, int);
Static void uaudio_chan_ptransfer(struct chan *);
Static void uaudio_chan_pintr
(struct usbd_xfer *, void *, usbd_status);
Static void uaudio_chan_rtransfer(struct chan *);
Static void uaudio_chan_rintr
(struct usbd_xfer *, void *, usbd_status);
Static int uaudio_open(void *, int);
Static int uaudio_query_format(void *, audio_format_query_t *);
Static int uaudio_set_format
(void *, int, const audio_params_t *, const audio_params_t *,
audio_filter_reg_t *, audio_filter_reg_t *);
Static int uaudio_round_blocksize(void *, int, int, const audio_params_t *);
Static int uaudio_trigger_output
(void *, void *, void *, int, void (*)(void *), void *,
const audio_params_t *);
Static int uaudio_trigger_input
(void *, void *, void *, int, void (*)(void *), void *,
const audio_params_t *);
Static int uaudio_halt_in_dma(void *);
Static int uaudio_halt_out_dma(void *);
Static void uaudio_halt_in_dma_unlocked(struct uaudio_softc *);
Static void uaudio_halt_out_dma_unlocked(struct uaudio_softc *);
Static int uaudio_getdev(void *, struct audio_device *);
Static int uaudio_mixer_set_port(void *, mixer_ctrl_t *);
Static int uaudio_mixer_get_port(void *, mixer_ctrl_t *);
Static int uaudio_query_devinfo(void *, mixer_devinfo_t *);
Static int uaudio_get_props(void *);
Static void uaudio_get_locks(void *, kmutex_t **, kmutex_t **);
Static const struct audio_hw_if uaudio_hw_if = {
.open = uaudio_open,
.query_format = uaudio_query_format,
.set_format = uaudio_set_format,
.round_blocksize = uaudio_round_blocksize,
.halt_output = uaudio_halt_out_dma,
.halt_input = uaudio_halt_in_dma,
.getdev = uaudio_getdev,
.set_port = uaudio_mixer_set_port,
.get_port = uaudio_mixer_get_port,
.query_devinfo = uaudio_query_devinfo,
.get_props = uaudio_get_props,
.trigger_output = uaudio_trigger_output,
.trigger_input = uaudio_trigger_input,
.get_locks = uaudio_get_locks,
};
static int uaudio_match(device_t, cfdata_t, void *);
static void uaudio_attach(device_t, device_t, void *);
static int uaudio_detach(device_t, int);
static void uaudio_childdet(device_t, device_t);
static int uaudio_activate(device_t, enum devact);
CFATTACH_DECL2_NEW(uaudio, sizeof(struct uaudio_softc),
uaudio_match, uaudio_attach, uaudio_detach, uaudio_activate, NULL,
uaudio_childdet);
static int
uaudio_match(device_t parent, cfdata_t match, void *aux)
{
struct usbif_attach_arg *uiaa = aux;
/* Trigger on the control interface. */
if (uiaa->uiaa_class != UICLASS_AUDIO ||
uiaa->uiaa_subclass != UISUBCLASS_AUDIOCONTROL ||
(usbd_get_quirks(uiaa->uiaa_device)->uq_flags & UQ_BAD_AUDIO))
return UMATCH_NONE;
return UMATCH_IFACECLASS_IFACESUBCLASS;
}
static void
uaudio_attach(device_t parent, device_t self, void *aux)
{
struct uaudio_softc *sc = device_private(self);
struct usbif_attach_arg *uiaa = aux;
usb_interface_descriptor_t *id;
usb_config_descriptor_t *cdesc;
char *devinfop;
usbd_status err;
int i, j, found;
sc->sc_dev = self;
sc->sc_udev = uiaa->uiaa_device;
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_NONE);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
strlcpy(sc->sc_adev.name, "USB audio", sizeof(sc->sc_adev.name));
strlcpy(sc->sc_adev.version, "", sizeof(sc->sc_adev.version));
snprintf(sc->sc_adev.config, sizeof(sc->sc_adev.config), "usb:%08x",
sc->sc_udev->ud_cookie.cookie);
aprint_naive("\n");
aprint_normal("\n");
devinfop = usbd_devinfo_alloc(uiaa->uiaa_device, 0);
aprint_normal_dev(self, "%s\n", devinfop);
usbd_devinfo_free(devinfop);
cdesc = usbd_get_config_descriptor(sc->sc_udev);
if (cdesc == NULL) {
aprint_error_dev(self,
"failed to get configuration descriptor\n");
return;
}
err = uaudio_identify(sc, cdesc);
if (err) {
aprint_error_dev(self,
"audio descriptors make no sense, error=%d\n", err);
return;
}
sc->sc_ac_ifaceh = uiaa->uiaa_iface;
/* Pick up the AS interface. */
for (i = 0; i < uiaa->uiaa_nifaces; i++) {
if (uiaa->uiaa_ifaces[i] == NULL)
continue;
id = usbd_get_interface_descriptor(uiaa->uiaa_ifaces[i]);
if (id == NULL)
continue;
found = 0;
for (j = 0; j < sc->sc_nalts; j++) {
if (id->bInterfaceNumber ==
sc->sc_alts[j].idesc->bInterfaceNumber) {
sc->sc_alts[j].ifaceh = uiaa->uiaa_ifaces[i];
found = 1;
}
}
if (found)
uiaa->uiaa_ifaces[i] = NULL;
}
for (j = 0; j < sc->sc_nalts; j++) {
if (sc->sc_alts[j].ifaceh == NULL) {
aprint_error_dev(self,
"alt %d missing AS interface(s)\n", j);
return;
}
}
aprint_normal_dev(self, "audio rev %d.%02x\n",
sc->sc_audio_rev >> 8, sc->sc_audio_rev & 0xff);
sc->sc_playchan.sc = sc->sc_recchan.sc = sc;
sc->sc_playchan.altidx = -1;
sc->sc_recchan.altidx = -1;
switch (sc->sc_udev->ud_speed) {
case USB_SPEED_LOW:
case USB_SPEED_FULL:
sc->sc_usb_frames_per_second = USB_FRAMES_PER_SECOND;
sc->sc_playchan.nframes =
sc->sc_recchan.nframes = UAUDIO_NFRAMES;
break;
default: /* HIGH, SUPER, SUPER_PLUS, more ? */
sc->sc_usb_frames_per_second = USB_FRAMES_PER_SECOND * USB_UFRAMES_PER_FRAME;
sc->sc_playchan.nframes =
sc->sc_recchan.nframes = UAUDIO_NFRAMES_HI;
break;
}
sc->sc_playchan.nchanbufs =
sc->sc_recchan.nchanbufs = UAUDIO_NCHANBUFS;
DPRINTF("usb fps %u, max channel frames %u, max channel buffers %u\n",
sc->sc_usb_frames_per_second, sc->sc_playchan.nframes, sc->sc_playchan.nchanbufs);
if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_FRAC)
sc->sc_altflags |= UA_NOFRAC;
#ifndef UAUDIO_DEBUG
if (bootverbose)
#endif
aprint_normal_dev(self, "%d mixer controls\n",
sc->sc_nctls);
usbd_add_drv_event(USB_EVENT_DRIVER_ATTACH, sc->sc_udev, sc->sc_dev);
DPRINTF("%s", "doing audio_attach_mi\n");
sc->sc_audiodev = audio_attach_mi(&uaudio_hw_if, sc, sc->sc_dev);
if (!pmf_device_register(self, NULL, NULL))
aprint_error_dev(self, "couldn't establish power handler\n");
return;
}
static int
uaudio_activate(device_t self, enum devact act)
{
struct uaudio_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
sc->sc_dying = 1;
return 0;
default:
return EOPNOTSUPP;
}
}
static void
uaudio_childdet(device_t self, device_t child)
{
struct uaudio_softc *sc = device_private(self);
KASSERT(sc->sc_audiodev == child);
sc->sc_audiodev = NULL;
}
static int
uaudio_detach(device_t self, int flags)
{
struct uaudio_softc *sc = device_private(self);
int rv, i;
sc->sc_dying = 1;
pmf_device_deregister(self);
/* Wait for outstanding requests to complete. */
uaudio_halt_out_dma_unlocked(sc);
uaudio_halt_in_dma_unlocked(sc);
if (sc->sc_audiodev != NULL) {
rv = config_detach(sc->sc_audiodev, flags);
if (rv)
return rv;
}
usbd_add_drv_event(USB_EVENT_DRIVER_DETACH, sc->sc_udev, sc->sc_dev);
if (sc->sc_formats != NULL)
kmem_free(sc->sc_formats,
sizeof(struct audio_format) * sc->sc_nformats);
if (sc->sc_ctls != NULL) {
for (i=0; i<sc->sc_nctls; ++i) {
if (sc->sc_ctls[i].nranges == 0)
continue;
kmem_free( sc->sc_ctls[i].ranges,
sc->sc_ctls[i].nranges * sizeof(struct range));
}
kmem_free(sc->sc_ctls, sizeof(struct mixerctl) * sc->sc_nctls);
}
if (sc->sc_alts != NULL)
kmem_free(sc->sc_alts, sizeof(struct as_info) * sc->sc_nalts);
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
return 0;
}
Static int
uaudio_query_format(void *addr, audio_format_query_t *afp)
{
struct uaudio_softc *sc;
sc = addr;
return audio_query_format(sc->sc_formats, sc->sc_nformats, afp);
}
Static const usb_interface_descriptor_t *
uaudio_find_iface(const char *tbuf, int size, int *offsp, int subtype)
{
const usb_interface_descriptor_t *d;
while (*offsp + sizeof(*d) <= size) {
d = (const void *)(tbuf + *offsp);
DPRINTFN(3, "%d + %d <= %d type %d class %d/%d iface %d\n",
*offsp, d->bLength, size,
d->bDescriptorType,
d->bInterfaceClass,
d->bInterfaceSubClass,
d->bInterfaceNumber);
*offsp += d->bLength;
if (d->bDescriptorType == UDESC_INTERFACE &&
d->bInterfaceClass == UICLASS_AUDIO &&
d->bInterfaceSubClass == subtype)
return d;
}
return NULL;
}
Static void
uaudio_mixer_add_ctl(struct uaudio_softc *sc, struct mixerctl *mc)
{
int res;
size_t len, count, msz;
struct mixerctl *nmc;
struct range *r;
uint8_t *buf, *p;
int i;
if (mc->class < UAC_NCLASSES) {
DPRINTF("adding %s.%s\n", uac_names[mc->class], mc->ctlname);
} else {
DPRINTF("adding %s\n", mc->ctlname);
}
len = sizeof(*mc) * (sc->sc_nctls + 1);
nmc = kmem_alloc(len, KM_SLEEP);
/* Copy old data, if there was any */
if (sc->sc_nctls != 0) {
memcpy(nmc, sc->sc_ctls, sizeof(*mc) * sc->sc_nctls);
for (i = 0; i<sc->sc_nctls; ++i) {
if (sc->sc_ctls[i].ranges == &sc->sc_ctls[i].range0)
nmc[i].ranges = &nmc[i].range0;
}
kmem_free(sc->sc_ctls, sizeof(*mc) * sc->sc_nctls);
}
sc->sc_ctls = nmc;
/*
* preset
* - mc->class
* - mc->ctlname
* - mc->ctlunit
* - mc->wIndex
* - mc->wValue[]
* - mc->type
* - mc->nchan
*
* - mc->range0, mc->mul for MIX_SELECTOR
*/
sc->sc_ctls[sc->sc_nctls] = *mc;
mc = &sc->sc_ctls[sc->sc_nctls++];
msz = MIX_SIZE(mc->type);
mc->delta = 0;
mc->nranges = 0;
mc->ranges = r = &mc->range0;
mc->mul = 0;
if (mc->type == MIX_ON_OFF) {
r->minval = 0;
r->maxval = 1;
r->resval = 1;
res = r->resval;
} else if (mc->type == MIX_SELECTOR) {
/* range0 already set by uaudio_add_selector */
res = r->resval;
} else if (sc->sc_version == UAUDIO_VERSION1) {
/* Determine min and max values. */
r->minval = uaudio_signext(mc->type,
uaudio_get(sc, GET_MIN, UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex, msz));
r->maxval = uaudio_signext(mc->type,
uaudio_get(sc, GET_MAX, UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex, msz));
r->resval = uaudio_get(sc, GET_RES, UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex, msz);
mc->mul = r->maxval - r->minval;
res = r->resval;
} else { /* UAUDIO_VERSION2 */
count = (uint16_t)uaudio_get(sc, V2_RANGES,
UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex, 2);
if (count == 0 || count == (uint16_t)-1) {
DPRINTF("invalid range count %zu\n", count);
return;
}
if (count > 1) {
r = kmem_alloc(sizeof(struct range) * count,
KM_SLEEP);
mc->ranges = r;
mc->nranges = count;
}
mc->ranges[0].minval = 0;
mc->ranges[0].maxval = 0;
mc->ranges[0].resval = 1;
/* again with the required buffer size */
len = 2 + count * 3 * msz;
buf = kmem_alloc(len, KM_SLEEP);
uaudio_getbuf(sc, V2_RANGES, UT_READ_CLASS_INTERFACE,
mc->wValue[0], mc->wIndex, len, buf);
res = 0;
p = &buf[2];
for (i=0, p=buf+2; i<count; ++i) {
uint32_t minval, maxval, resval;
switch (msz) {
case 1:
minval = *p++;
maxval = *p++;
resval = *p++;
break;
case 2:
minval = p[0] | p[1] << 8;
p += 2;
maxval = p[0] | p[1] << 8;
p += 2;
resval = p[0] | p[1] << 8;
p += 2;
break;
case 3:
minval = p[0] | p[1] << 8 | p[2] << 16;
p += 3;
maxval = p[0] | p[1] << 8 | p[2] << 16;
p += 3;
resval = p[0] | p[1] << 8 | p[2] << 16;
p += 3;
break;
case 4:
minval = p[0] | p[1] << 8 \
| p[2] << 16 | p[3] << 24;
p += 4;
maxval = p[0] | p[1] << 8 \
| p[2] << 16 | p[3] << 24;
p += 4;
resval = p[0] | p[1] << 8 \
| p[2] << 16 | p[3] << 24;
p += 4;
break;
default: /* not allowed */
minval = maxval = 0;
resval = 1;
break;
}
mc->ranges[i].minval = uaudio_signext(mc->type, minval);
mc->ranges[i].maxval = uaudio_signext(mc->type, maxval);
mc->ranges[i].resval = uaudio_signext(mc->type, resval);
if (mc->ranges[i].resval > res)
res = mc->ranges[i].resval;
}
kmem_free(buf, len);
mc->mul = mc->ranges[count - 1].maxval - mc->ranges[0].minval;
/*
* use resolution 1 (ideally the lcd) for
* multiple (valid) resolution values.
*/
if (count > 1 && res > 0)
res = 1;
}
if (mc->mul == 0)
mc->mul = 1;
mc->delta = (res * 255 + mc->mul - 1) / mc->mul;
#ifdef UAUDIO_DEBUG
if (uaudiodebug > 2) {
DPRINTFN_CLEAN(2, "wValue=%04x", mc->wValue[0]);
for (i = 1; i < mc->nchan; i++)
DPRINTFN_CLEAN(2, ",%04x", mc->wValue[i]);
DPRINTFN_CLEAN(2, "\n");
count = mc->nranges > 0 ? mc->nranges : 1;
for (i = 0; i < count; i++)
DPRINTFN_CLEAN(2, "%d: wIndex=%04x type=%d name='%s' "
"unit='%s' min=%d max=%d res=%d\n",
i, mc->wIndex, mc->type, mc->ctlname, mc->ctlunit,
mc->ranges[i].minval,
mc->ranges[i].maxval,
mc->ranges[i].resval);
}
#endif
}
Static char *
uaudio_id_name(struct uaudio_softc *sc,
const struct io_terminal *iot, uint8_t id)
{
static char tbuf[32];
snprintf(tbuf, sizeof(tbuf), "i%u", id);
return tbuf;
}
#ifdef UAUDIO_DEBUG
Static void
uaudio_dump_cluster(struct uaudio_softc *sc, const union usb_audio_cluster *cl)
{
static const char *channel_v1_names[16] = {
"LEFT", "RIGHT", "CENTER", "LFE",
"LEFT_SURROUND", "RIGHT_SURROUND", "LEFT_CENTER", "RIGHT_CENTER",
"SURROUND", "LEFT_SIDE", "RIGHT_SIDE", "TOP",
"RESERVED12", "RESERVED13", "RESERVED14", "RESERVED15",
};
static const char *channel_v2_names[32] = {
"LEFT", "RIGHT", "CENTER", "LFE",
"BACK_LEFT", "BACK_RIGHT", "FLC", "FRC",
"BACK_CENTER", "SIDE_LEFT", "SIDE_RIGHT", "TOP CENTER",
"TFL", "TFC", "TFR", "TBL", "TBC", "TBR",
"TFLC", "TFRC", "LLFE", "RLFE", "TSL", "TSR",
"BC", "BLC", "BRC",
"RESERVED27", "RESERVED28", "RESERVED29", "RESERVED30",
"RAW_DATA"
};
const char **channel_names;
uint32_t cc;
int i, first, icn;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
channel_names = channel_v1_names;
cc = UGETW(cl->v1.wChannelConfig);
icn = cl->v1.iChannelNames;
printf("cluster: bNrChannels=%u wChannelConfig=%#.4x",
cl->v1.bNrChannels, cc);
break;
case UAUDIO_VERSION2:
channel_names = channel_v2_names;
cc = UGETDW(cl->v2.bmChannelConfig);
icn = cl->v2.iChannelNames;
printf("cluster: bNrChannels=%u bmChannelConfig=%#.8x",
cl->v2.bNrChannels, cc);
break;
default:
return;
}
first = TRUE;
for (i = 0; cc != 0; i++) {
if (cc & 1) {
printf("%c%s", first ? '<' : ',', channel_names[i]);
first = FALSE;
}
cc = cc >> 1;
}
printf("> iChannelNames=%u", icn);
}
#endif
Static union usb_audio_cluster
uaudio_get_cluster(struct uaudio_softc *sc, int id, const struct io_terminal *iot)
{
union usb_audio_cluster r;
const uaudio_cs_descriptor_t *dp;
u_int pins;
int i;
for (i = 0; i < 25; i++) { /* avoid infinite loops */
dp = iot[id].d.desc;
if (dp == 0)
goto bad;
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
r.v1.bNrChannels = iot[id].d.it->v1.bNrChannels;
USETW(r.v1.wChannelConfig,
UGETW(iot[id].d.it->v1.wChannelConfig));
r.v1.iChannelNames = iot[id].d.it->v1.iChannelNames;
break;
case UAUDIO_VERSION2:
r.v2.bNrChannels = iot[id].d.it->v2.bNrChannels;
USETDW(r.v2.bmChannelConfig,
UGETW(iot[id].d.it->v2.bmChannelConfig));
r.v2.iChannelNames = iot[id].d.it->v2.iChannelNames;
break;
}
return r;
case UDESCSUB_AC_OUTPUT:
/* XXX This is not really right */
id = iot[id].d.ot->v1.bSourceId;
break;
case UDESCSUB_AC_MIXER:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
pins = iot[id].d.mu->bNrInPins;
r.v1 = *(const struct usb_audio_v1_cluster *)
&iot[id].d.mu->baSourceId[pins];
break;
case UAUDIO_VERSION2:
pins = iot[id].d.mu->bNrInPins;
r.v2 = *(const struct usb_audio_v2_cluster *)
&iot[id].d.mu->baSourceId[pins];
break;
}
return r;
case UDESCSUB_AC_SELECTOR:
/* XXX This is not really right */
id = iot[id].d.su->baSourceId[0];
break;
case UDESCSUB_AC_FEATURE:
/* XXX This is not really right */
switch (sc->sc_version) {
case UAUDIO_VERSION1:
id = iot[id].d.fu->v1.bSourceId;
break;
case UAUDIO_VERSION2:
id = iot[id].d.fu->v2.bSourceId;
break;
}
break;
case UDESCSUB_AC_PROCESSING:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
pins = iot[id].d.pu->bNrInPins;
r.v1 = *(const struct usb_audio_v1_cluster *)
&iot[id].d.pu->baSourceId[pins];
break;
case UAUDIO_VERSION2:
pins = iot[id].d.pu->bNrInPins;
r.v2 = *(const struct usb_audio_v2_cluster *)
&iot[id].d.pu->baSourceId[pins];
break;
}
return r;
case UDESCSUB_AC_EXTENSION:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
pins = iot[id].d.eu->bNrInPins;
r.v1 = *(const struct usb_audio_v1_cluster *)
&iot[id].d.eu->baSourceId[pins];
break;
case UAUDIO_VERSION2:
pins = iot[id].d.eu->bNrInPins;
r.v2 = *(const struct usb_audio_v2_cluster *)
&iot[id].d.eu->baSourceId[pins];
break;
}
return r;
default:
goto bad;
}
}
bad:
aprint_error("uaudio_get_cluster: bad data\n");
memset(&r, 0, sizeof(r));
return r;
}
Static void
uaudio_add_input(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const union usb_audio_input_terminal *d;
d = iot[id].d.it;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
#ifdef UAUDIO_DEBUG
DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x "
"bAssocTerminal=%d bNrChannels=%d wChannelConfig=%d "
"iChannelNames=%d iTerminal=%d\n",
d->v1.bTerminalId, UGETW(d->v1.wTerminalType), d->v1.bAssocTerminal,
d->v1.bNrChannels, UGETW(d->v1.wChannelConfig),
d->v1.iChannelNames, d->v1.iTerminal);
#endif
/* If USB input terminal, record wChannelConfig */
if ((UGETW(d->v1.wTerminalType) & 0xff00) != UAT_UNDEFINED)
return;
sc->sc_channel_config = UGETW(d->v1.wChannelConfig);
sc->sc_clock[id] = 0;
break;
case UAUDIO_VERSION2:
#ifdef UAUDIO_DEBUG
DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x "
"bAssocTerminal=%d bNrChannels=%d bmChannelConfig=%x "
"iChannelNames=%d bCSourceId=%d iTerminal=%d\n",
d->v2.bTerminalId, UGETW(d->v2.wTerminalType), d->v2.bAssocTerminal,
d->v2.bNrChannels, UGETDW(d->v2.bmChannelConfig),
d->v2.iChannelNames, d->v2.bCSourceId, d->v2.iTerminal);
#endif
/* If USB input terminal, record wChannelConfig */
if ((UGETW(d->v2.wTerminalType) & 0xff00) != UAT_UNDEFINED)
return;
sc->sc_channel_config = UGETDW(d->v2.bmChannelConfig);
sc->sc_clock[id] = d->v2.bCSourceId;
break;
}
}
Static void
uaudio_add_output(struct uaudio_softc *sc,
const struct io_terminal *iot, int id)
{
#ifdef UAUDIO_DEBUG
const union usb_audio_output_terminal *d;
d = iot[id].d.ot;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x "
"bAssocTerminal=%d bSourceId=%d iTerminal=%d\n",
d->v1.bTerminalId, UGETW(d->v1.wTerminalType), d->v1.bAssocTerminal,
d->v1.bSourceId, d->v1.iTerminal);
sc->sc_clock[id] = 0;
break;
case UAUDIO_VERSION2:
DPRINTFN(2,"bTerminalId=%d wTerminalType=0x%04x "
"bAssocTerminal=%d bSourceId=%d bCSourceId=%d, iTerminal=%d\n",
d->v2.bTerminalId, UGETW(d->v2.wTerminalType), d->v2.bAssocTerminal,
d->v2.bSourceId, d->v2.bCSourceId, d->v2.iTerminal);
sc->sc_clock[id] = d->v2.bCSourceId;
break;
}
#endif
}
Static void
uaudio_add_mixer(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const struct usb_audio_mixer_unit *d;
const union usb_audio_mixer_unit_1 *d1;
int c, chs, ichs, ochs, nchs, i, o, bno, p, k;
size_t bm_size;
const uByte *bm;
struct mixerctl mix;
d = iot[id].d.mu;
d1 = (const union usb_audio_mixer_unit_1 *)&d->baSourceId[d->bNrInPins];
DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins);
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
uaudio_determine_class(&iot[id], &mix);
mix.type = MIX_SIGNED_16;
mix.ctlunit = AudioNvolume;
/* Compute the number of input channels */
/* and the number of output channels */
ichs = 0;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
for (i = 0; i < d->bNrInPins; i++)
ichs += uaudio_get_cluster(sc, d->baSourceId[i], iot).v1.bNrChannels;
ochs = d1->v1.bNrChannels;
DPRINTFN(2,"ichs=%d ochs=%d\n", ichs, ochs);
bm = d1->v1.bmControls;
break;
case UAUDIO_VERSION2:
for (i = 0; i < d->bNrInPins; i++)
ichs += uaudio_get_cluster(sc, d->baSourceId[i], iot).v2.bNrChannels;
ochs = d1->v2.bNrChannels;
DPRINTFN(2,"ichs=%d ochs=%d\n", ichs, ochs);
bm = d1->v2.bmMixerControls;
bm_size = ichs * ochs / 8 + ((ichs * ochs % 8) ? 1 : 0);
/* bmControls */
if ((bm[bm_size] & UA_MIX_CLUSTER_MASK) != UA_MIX_CLUSTER_RW)
return;
break;
default:
return;
}
for (p = i = 0; i < d->bNrInPins; i++) {
switch (sc->sc_version) {
case UAUDIO_VERSION1:
chs = uaudio_get_cluster(sc, d->baSourceId[i], iot)
.v1.bNrChannels;
break;
case UAUDIO_VERSION2:
chs = uaudio_get_cluster(sc, d->baSourceId[i], iot)
.v2.bNrChannels;
break;
default:
continue;
}
#define _BIT(bno) ((bm[bno / 8] >> (7 - bno % 8)) & 1)
nchs = chs < MIX_MAX_CHAN ? chs : MIX_MAX_CHAN;
k = 0;
for (c = 0; c < nchs; c++) {
for (o = 0; o < ochs; o++) {
bno = (p + c) * ochs + o;
if (_BIT(bno))
mix.wValue[k++] =
MAKE(p+c+1, o+1);
}
}
mix.nchan = nchs;
snprintf(mix.ctlname, sizeof(mix.ctlname),
"mix%d-%s", d->bUnitId,
uaudio_id_name(sc, iot, d->baSourceId[i])
);
uaudio_mixer_add_ctl(sc, &mix);
#undef _BIT
p += chs;
}
}
Static void
uaudio_add_selector(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const struct usb_audio_selector_unit *d;
struct mixerctl mix;
int i, wp;
d = iot[id].d.su;
DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins);
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
if (sc->sc_version == UAUDIO_VERSION2)
mix.wValue[0] = MAKE(V2_CUR_SELECTOR, 0);
else
mix.wValue[0] = MAKE(0, 0);
uaudio_determine_class(&iot[id], &mix);
mix.nchan = 1;
mix.type = MIX_SELECTOR;
mix.ctlunit = "";
mix.range0.minval = 1;
mix.range0.maxval = d->bNrInPins;
mix.range0.resval = 1;
mix.mul = mix.range0.maxval - mix.range0.minval;
wp = snprintf(mix.ctlname, MAX_AUDIO_DEV_LEN, "sel%d-", d->bUnitId);
for (i = 1; i <= d->bNrInPins; i++) {
wp += strlcpy(mix.ctlname + wp,
uaudio_id_name(sc, iot, d->baSourceId[i-1]),
MAX_AUDIO_DEV_LEN - wp);
if (wp > MAX_AUDIO_DEV_LEN - 1)
break;
}
uaudio_mixer_add_ctl(sc, &mix);
}
#ifdef UAUDIO_DEBUG
Static const char *
uaudio_get_terminal_name(int terminal_type)
{
static char tbuf[100];
switch (terminal_type) {
/* USB terminal types */
case UAT_UNDEFINED: return "UAT_UNDEFINED";
case UAT_STREAM: return "UAT_STREAM";
case UAT_VENDOR: return "UAT_VENDOR";
/* input terminal types */
case UATI_UNDEFINED: return "UATI_UNDEFINED";
case UATI_MICROPHONE: return "UATI_MICROPHONE";
case UATI_DESKMICROPHONE: return "UATI_DESKMICROPHONE";
case UATI_PERSONALMICROPHONE: return "UATI_PERSONALMICROPHONE";
case UATI_OMNIMICROPHONE: return "UATI_OMNIMICROPHONE";
case UATI_MICROPHONEARRAY: return "UATI_MICROPHONEARRAY";
case UATI_PROCMICROPHONEARR: return "UATI_PROCMICROPHONEARR";
/* output terminal types */
case UATO_UNDEFINED: return "UATO_UNDEFINED";
case UATO_SPEAKER: return "UATO_SPEAKER";
case UATO_HEADPHONES: return "UATO_HEADPHONES";
case UATO_DISPLAYAUDIO: return "UATO_DISPLAYAUDIO";
case UATO_DESKTOPSPEAKER: return "UATO_DESKTOPSPEAKER";
case UATO_ROOMSPEAKER: return "UATO_ROOMSPEAKER";
case UATO_COMMSPEAKER: return "UATO_COMMSPEAKER";
case UATO_SUBWOOFER: return "UATO_SUBWOOFER";
/* bidir terminal types */
case UATB_UNDEFINED: return "UATB_UNDEFINED";
case UATB_HANDSET: return "UATB_HANDSET";
case UATB_HEADSET: return "UATB_HEADSET";
case UATB_SPEAKERPHONE: return "UATB_SPEAKERPHONE";
case UATB_SPEAKERPHONEESUP: return "UATB_SPEAKERPHONEESUP";
case UATB_SPEAKERPHONEECANC: return "UATB_SPEAKERPHONEECANC";
/* telephony terminal types */
case UATT_UNDEFINED: return "UATT_UNDEFINED";
case UATT_PHONELINE: return "UATT_PHONELINE";
case UATT_TELEPHONE: return "UATT_TELEPHONE";
case UATT_DOWNLINEPHONE: return "UATT_DOWNLINEPHONE";
/* external terminal types */
case UATE_UNDEFINED: return "UATE_UNDEFINED";
case UATE_ANALOGCONN: return "UATE_ANALOGCONN";
case UATE_LINECONN: return "UATE_LINECONN";
case UATE_LEGACYCONN: return "UATE_LEGACYCONN";
case UATE_DIGITALAUIFC: return "UATE_DIGITALAUIFC";
case UATE_SPDIF: return "UATE_SPDIF";
case UATE_1394DA: return "UATE_1394DA";
case UATE_1394DV: return "UATE_1394DV";
/* embedded function terminal types */
case UATF_UNDEFINED: return "UATF_UNDEFINED";
case UATF_CALIBNOISE: return "UATF_CALIBNOISE";
case UATF_EQUNOISE: return "UATF_EQUNOISE";
case UATF_CDPLAYER: return "UATF_CDPLAYER";
case UATF_DAT: return "UATF_DAT";
case UATF_DCC: return "UATF_DCC";
case UATF_MINIDISK: return "UATF_MINIDISK";
case UATF_ANALOGTAPE: return "UATF_ANALOGTAPE";
case UATF_PHONOGRAPH: return "UATF_PHONOGRAPH";
case UATF_VCRAUDIO: return "UATF_VCRAUDIO";
case UATF_VIDEODISCAUDIO: return "UATF_VIDEODISCAUDIO";
case UATF_DVDAUDIO: return "UATF_DVDAUDIO";
case UATF_TVTUNERAUDIO: return "UATF_TVTUNERAUDIO";
case UATF_SATELLITE: return "UATF_SATELLITE";
case UATF_CABLETUNER: return "UATF_CABLETUNER";
case UATF_DSS: return "UATF_DSS";
case UATF_RADIORECV: return "UATF_RADIORECV";
case UATF_RADIOXMIT: return "UATF_RADIOXMIT";
case UATF_MULTITRACK: return "UATF_MULTITRACK";
case UATF_SYNTHESIZER: return "UATF_SYNTHESIZER";
default:
snprintf(tbuf, sizeof(tbuf), "unknown type (%#.4x)", terminal_type);
return tbuf;
}
}
#endif
Static int
uaudio_determine_class(const struct io_terminal *iot, struct mixerctl *mix)
{
int terminal_type;
if (iot == NULL || iot->output == NULL) {
mix->class = UAC_OUTPUT;
return 0;
}
terminal_type = 0;
if (iot->output->size == 1)
terminal_type = iot->output->terminals[0];
/*
* If the only output terminal is USB,
* the class is UAC_RECORD.
*/
if ((terminal_type & 0xff00) == (UAT_UNDEFINED & 0xff00)) {
mix->class = UAC_RECORD;
if (iot->inputs_size == 1
&& iot->inputs[0] != NULL
&& iot->inputs[0]->size == 1)
return iot->inputs[0]->terminals[0];
else
return 0;
}
/*
* If the ultimate destination of the unit is just one output
* terminal and the unit is connected to the output terminal
* directly, the class is UAC_OUTPUT.
*/
if (terminal_type != 0 && iot->direct) {
mix->class = UAC_OUTPUT;
return terminal_type;
}
/*
* If the unit is connected to just one input terminal,
* the class is UAC_INPUT.
*/
if (iot->inputs_size == 1 && iot->inputs[0] != NULL
&& iot->inputs[0]->size == 1) {
mix->class = UAC_INPUT;
return iot->inputs[0]->terminals[0];
}
/*
* Otherwise, the class is UAC_OUTPUT.
*/
mix->class = UAC_OUTPUT;
return terminal_type;
}
Static const char *
uaudio_feature_name(const struct io_terminal *iot,
uint8_t class, int terminal_type)
{
if (class == UAC_RECORD && terminal_type == 0)
return AudioNmixerout;
DPRINTF("terminal_type=%s\n", uaudio_get_terminal_name(terminal_type));
switch (terminal_type) {
case UAT_STREAM:
return AudioNdac;
case UATI_MICROPHONE:
case UATI_DESKMICROPHONE:
case UATI_PERSONALMICROPHONE:
case UATI_OMNIMICROPHONE:
case UATI_MICROPHONEARRAY:
case UATI_PROCMICROPHONEARR:
return AudioNmicrophone;
case UATO_SPEAKER:
case UATO_DESKTOPSPEAKER:
case UATO_ROOMSPEAKER:
case UATO_COMMSPEAKER:
return AudioNspeaker;
case UATO_HEADPHONES:
return AudioNheadphone;
case UATO_SUBWOOFER:
return AudioNlfe;
/* telephony terminal types */
case UATT_UNDEFINED:
case UATT_PHONELINE:
case UATT_TELEPHONE:
case UATT_DOWNLINEPHONE:
return "phone";
case UATE_ANALOGCONN:
case UATE_LINECONN:
case UATE_LEGACYCONN:
return AudioNline;
case UATE_DIGITALAUIFC:
case UATE_SPDIF:
case UATE_1394DA:
case UATE_1394DV:
return AudioNaux;
case UATF_CDPLAYER:
return AudioNcd;
case UATF_SYNTHESIZER:
return AudioNfmsynth;
case UATF_VIDEODISCAUDIO:
case UATF_DVDAUDIO:
case UATF_TVTUNERAUDIO:
return AudioNvideo;
case UAT_UNDEFINED:
case UAT_VENDOR:
case UATI_UNDEFINED:
/* output terminal types */
case UATO_UNDEFINED:
case UATO_DISPLAYAUDIO:
/* bidir terminal types */
case UATB_UNDEFINED:
case UATB_HANDSET:
case UATB_HEADSET:
case UATB_SPEAKERPHONE:
case UATB_SPEAKERPHONEESUP:
case UATB_SPEAKERPHONEECANC:
/* external terminal types */
case UATE_UNDEFINED:
/* embedded function terminal types */
case UATF_UNDEFINED:
case UATF_CALIBNOISE:
case UATF_EQUNOISE:
case UATF_DAT:
case UATF_DCC:
case UATF_MINIDISK:
case UATF_ANALOGTAPE:
case UATF_PHONOGRAPH:
case UATF_VCRAUDIO:
case UATF_SATELLITE:
case UATF_CABLETUNER:
case UATF_DSS:
case UATF_RADIORECV:
case UATF_RADIOXMIT:
case UATF_MULTITRACK:
case 0xffff:
default:
DPRINTF("'master' for %#.4x\n", terminal_type);
return AudioNmaster;
}
return AudioNmaster;
}
static void
uaudio_add_feature_mixer(struct uaudio_softc *sc, const struct io_terminal *iot,
int unit, int ctl, struct mixerctl *mc)
{
const char *mixername, *attr = NULL;
int terminal_type;
mc->wIndex = MAKE(unit, sc->sc_ac_iface);
terminal_type = uaudio_determine_class(iot, mc);
mixername = uaudio_feature_name(iot, mc->class, terminal_type);
switch (ctl) {
case MUTE_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = AudioNmute;
break;
case VOLUME_CONTROL:
mc->type = MIX_SIGNED_16;
mc->ctlunit = AudioNvolume;
attr = NULL;
break;
case BASS_CONTROL:
mc->type = MIX_SIGNED_8;
mc->ctlunit = AudioNbass;
attr = AudioNbass;
break;
case MID_CONTROL:
mc->type = MIX_SIGNED_8;
mc->ctlunit = AudioNmid;
attr = AudioNmid;
break;
case TREBLE_CONTROL:
mc->type = MIX_SIGNED_8;
mc->ctlunit = AudioNtreble;
attr = AudioNtreble;
break;
case GRAPHIC_EQUALIZER_CONTROL:
return; /* XXX don't add anything */
break;
case AGC_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = AudioNagc;
break;
case DELAY_CONTROL:
mc->type = MIX_UNSIGNED_16;
mc->ctlunit = "4 ms";
attr = AudioNdelay;
break;
case BASS_BOOST_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = AudioNbassboost;
break;
case LOUDNESS_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = AudioNloudness;
break;
case GAIN_CONTROL:
mc->type = MIX_SIGNED_16;
mc->ctlunit = "gain";
attr = "gain";;
break;
case GAINPAD_CONTROL:
mc->type = MIX_SIGNED_16;
mc->ctlunit = "gainpad";
attr = "gainpad";;
break;
case PHASEINV_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = "phaseinv";;
break;
case UNDERFLOW_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = "underflow";;
break;
case OVERFLOW_CONTROL:
mc->type = MIX_ON_OFF;
mc->ctlunit = "";
attr = "overflow";;
break;
default:
return; /* XXX don't add anything */
break;
}
if (attr != NULL) {
snprintf(mc->ctlname, sizeof(mc->ctlname),
"%s.%s", mixername, attr);
} else {
snprintf(mc->ctlname, sizeof(mc->ctlname),
"%s", mixername);
}
uaudio_mixer_add_ctl(sc, mc);
}
Static void
uaudio_add_feature(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const union usb_audio_feature_unit *d;
const uByte *ctls;
const uDWord *ctls2;
int ctlsize;
int nchan;
u_int fumask, mmask, cmask;
struct mixerctl mix;
int chan, ctl, i, unit;
d = iot[id].d.fu;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
#define GETV1(i) (ctls[(i)*ctlsize] | \
(ctlsize > 1 ? ctls[(i)*ctlsize+1] << 8 : 0))
ctls = d->v1.bmaControls;
ctlsize = d->v1.bControlSize;
if (ctlsize == 0) {
DPRINTF("ignoring feature %d with controlSize of zero\n", id);
return;
}
/* offsetof bmaControls + sizeof iFeature == 7 */
nchan = (d->v1.bLength - 7) / ctlsize;
mmask = GETV1(0);
/* Figure out what we can control */
for (cmask = 0, chan = 1; chan < nchan; chan++) {
DPRINTFN(9,"chan=%d mask=%x\n",
chan, GETV1(chan));
cmask |= GETV1(chan);
}
DPRINTFN(1,"bUnitId=%d, "
"%d channels, mmask=0x%04x, cmask=0x%04x\n",
d->v1.bUnitId, nchan, mmask, cmask);
if (nchan > MIX_MAX_CHAN)
nchan = MIX_MAX_CHAN;
unit = d->v1.bUnitId;
for (ctl = MUTE_CONTROL; ctl <= LOUDNESS_CONTROL; ctl++) {
fumask = FU_MASK(ctl);
DPRINTFN(4,"ctl=%d fumask=0x%04x\n",
ctl, fumask);
if (mmask & fumask) {
mix.nchan = 1;
mix.wValue[0] = MAKE(ctl, 0);
} else if (cmask & fumask) {
mix.nchan = nchan - 1;
for (i = 1; i < nchan; i++) {
if (GETV1(i) & fumask)
mix.wValue[i-1] = MAKE(ctl, i);
else
mix.wValue[i-1] = -1;
}
} else {
continue;
}
uaudio_add_feature_mixer(sc, &iot[id], unit, ctl, &mix);
}
#undef GETV1
break;
case UAUDIO_VERSION2:
#define GETV2(i) UGETDW(ctls2[(i)])
ctls2 = d->v2.bmaControls;
/* offsetof bmaControls + sizeof iFeature == 6 */
nchan = (d->v2.bLength - 6) / 4;
if (nchan <= 0) {
DPRINTF("ignoring feature %d with no controls\n", id);
return;
}
mmask = GETV2(0);
/* Figure out what we can control */
for (cmask = 0, chan = 1; chan < nchan; chan++) {
DPRINTFN(9,"chan=%d mask=%x\n",
chan, GETV2(chan));
cmask |= GETV2(chan);
}
DPRINTFN(1,"bUnitId=%d, "
"%d channels, mmask=0x%04x, cmask=0x%04x\n",
d->v2.bUnitId, nchan, mmask, cmask);
if (nchan > MIX_MAX_CHAN)
nchan = MIX_MAX_CHAN;
unit = d->v2.bUnitId;
for (ctl = MUTE_CONTROL; ctl <= OVERFLOW_CONTROL; ctl++) {
fumask = V2_FU_MASK(ctl);
DPRINTFN(4,"ctl=%d fumask=0x%08x\n",
ctl, fumask);
if (mmask & fumask) {
mix.nchan = 1;
mix.wValue[0] = MAKE(ctl, 0);
} else if (cmask & fumask) {
mix.nchan = nchan-1;
for (i = 1; i < nchan; ++i) {
if (GETV2(i) & fumask)
mix.wValue[i-1] = MAKE(ctl, i);
else
mix.wValue[i-1] = -1;
}
} else {
continue;
}
uaudio_add_feature_mixer(sc, &iot[id], unit, ctl, &mix);
}
#undef GETV2
break;
}
}
Static void
uaudio_add_processing_updown(struct uaudio_softc *sc,
const struct io_terminal *iot, int id)
{
const struct usb_audio_processing_unit *d;
const struct usb_audio_processing_unit_1 *d1;
const struct usb_audio_processing_unit_updown *ud;
struct mixerctl mix;
int i;
d = iot[id].d.pu;
d1 = (const struct usb_audio_processing_unit_1 *)
&d->baSourceId[d->bNrInPins];
ud = (const struct usb_audio_processing_unit_updown *)
&d1->bmControls[d1->bControlSize];
DPRINTFN(2,"bUnitId=%d bNrModes=%d\n",
d->bUnitId, ud->bNrModes);
if (!(d1->bmControls[0] & UA_PROC_MASK(UD_MODE_SELECT_CONTROL))) {
DPRINTF("%s", "no mode select\n");
return;
}
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.nchan = 1;
mix.wValue[0] = MAKE(UD_MODE_SELECT_CONTROL, 0);
uaudio_determine_class(&iot[id], &mix);
mix.type = MIX_ON_OFF; /* XXX */
mix.ctlunit = "";
snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d-mode", d->bUnitId);
for (i = 0; i < ud->bNrModes; i++) {
DPRINTFN(2,"i=%d bm=%#x\n",
i, UGETW(ud->waModes[i]));
/* XXX */
}
uaudio_mixer_add_ctl(sc, &mix);
}
Static void
uaudio_add_processing(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const struct usb_audio_processing_unit *d;
const struct usb_audio_processing_unit_1 *d1;
int ptype;
struct mixerctl mix;
d = iot[id].d.pu;
d1 = (const struct usb_audio_processing_unit_1 *)
&d->baSourceId[d->bNrInPins];
ptype = UGETW(d->wProcessType);
DPRINTFN(2,"wProcessType=%d bUnitId=%d "
"bNrInPins=%d\n", ptype, d->bUnitId, d->bNrInPins);
if (d1->bmControls[0] & UA_PROC_ENABLE_MASK) {
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.nchan = 1;
mix.wValue[0] = MAKE(XX_ENABLE_CONTROL, 0);
uaudio_determine_class(&iot[id], &mix);
mix.type = MIX_ON_OFF;
mix.ctlunit = "";
snprintf(mix.ctlname, sizeof(mix.ctlname), "pro%d.%d-enable",
d->bUnitId, ptype);
uaudio_mixer_add_ctl(sc, &mix);
}
switch(ptype) {
case UPDOWNMIX_PROCESS:
uaudio_add_processing_updown(sc, iot, id);
break;
case DOLBY_PROLOGIC_PROCESS:
case P3D_STEREO_EXTENDER_PROCESS:
case REVERBATION_PROCESS:
case CHORUS_PROCESS:
case DYN_RANGE_COMP_PROCESS:
default:
#ifdef UAUDIO_DEBUG
aprint_debug(
"uaudio_add_processing: unit %d, type=%d not impl.\n",
d->bUnitId, ptype);
#endif
break;
}
}
Static void
uaudio_add_effect(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
#ifdef UAUDIO_DEBUG
aprint_debug("uaudio_add_effect: not impl.\n");
#endif
}
Static void
uaudio_add_extension(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const struct usb_audio_extension_unit *d;
const struct usb_audio_extension_unit_1 *d1;
struct mixerctl mix;
d = iot[id].d.eu;
d1 = (const struct usb_audio_extension_unit_1 *)
&d->baSourceId[d->bNrInPins];
DPRINTFN(2,"bUnitId=%d bNrInPins=%d\n",
d->bUnitId, d->bNrInPins);
if (usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_NO_XU)
return;
if (d1->bmControls[0] & UA_EXT_ENABLE_MASK) {
mix.wIndex = MAKE(d->bUnitId, sc->sc_ac_iface);
mix.nchan = 1;
mix.wValue[0] = MAKE(UA_EXT_ENABLE, 0);
uaudio_determine_class(&iot[id], &mix);
mix.type = MIX_ON_OFF;
mix.ctlunit = "";
snprintf(mix.ctlname, sizeof(mix.ctlname), "ext%d-enable",
d->bUnitId);
uaudio_mixer_add_ctl(sc, &mix);
}
}
Static void
uaudio_add_clksrc(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const struct usb_audio_clksrc_unit *d;
struct mixerctl mix;
d = iot[id].d.cu;
DPRINTFN(2,"bClockId=%d bmAttributes=%d bmControls=%d bAssocTerminal=%d iClockSource=%d\n",
d->bClockId, d->bmAttributes, d->bmControls, d->bAssocTerminal, d->iClockSource);
mix.wIndex = MAKE(d->bClockId, sc->sc_ac_iface);
uaudio_determine_class(&iot[id], &mix);
mix.nchan = 1;
mix.wValue[0] = MAKE(V2_CUR_CLKFREQ, 0);
mix.type = MIX_UNSIGNED_32;
mix.ctlunit = "";
uaudio_makename(sc, d->iClockSource, uaudio_clockname(d->bmAttributes),
d->bClockId, mix.ctlname, sizeof(mix.ctlname));
uaudio_mixer_add_ctl(sc, &mix);
}
Static void
uaudio_add_clksel(struct uaudio_softc *sc, const struct io_terminal *iot, int id)
{
const struct usb_audio_clksel_unit *d;
struct mixerctl mix;
int i, wp;
uByte sel;
d = iot[id].d.lu;
sel = ((const uByte *)&d->baCSourceId[d->bNrInPins])[2]; /* iClockSelector */
DPRINTFN(2,"bClockId=%d bNrInPins=%d iClockSelector=%d\n",
d->bClockId, d->bNrInPins, sel);
mix.wIndex = MAKE(d->bClockId, sc->sc_ac_iface);
uaudio_determine_class(&iot[id], &mix);
mix.nchan = 1;
mix.wValue[0] = MAKE(V2_CUR_CLKSEL, 0);
mix.type = MIX_SELECTOR;
mix.ctlunit = "";
mix.range0.minval = 1;
mix.range0.maxval = d->bNrInPins;
mix.range0.resval = 1;
mix.mul = mix.range0.maxval - mix.range0.minval;
wp = uaudio_makename(sc, sel, "clksel", d->bClockId, mix.ctlname, MAX_AUDIO_DEV_LEN);
for (i = 1; i <= d->bNrInPins; i++) {
wp += snprintf(mix.ctlname + wp, MAX_AUDIO_DEV_LEN - wp,
"%si%d", i == 1 ? "-" : "", d->baCSourceId[i - 1]);
if (wp > MAX_AUDIO_DEV_LEN - 1)
break;
}
uaudio_mixer_add_ctl(sc, &mix);
}
Static struct terminal_list*
uaudio_merge_terminal_list(const struct io_terminal *iot)
{
struct terminal_list *tml;
uint16_t *ptm;
int i, len;
len = 0;
if (iot->inputs == NULL)
return NULL;
for (i = 0; i < iot->inputs_size; i++) {
if (iot->inputs[i] != NULL)
len += iot->inputs[i]->size;
}
tml = malloc(TERMINAL_LIST_SIZE(len), M_TEMP, M_NOWAIT);
if (tml == NULL) {
aprint_error("uaudio_merge_terminal_list: no memory\n");
return NULL;
}
tml->size = 0;
ptm = tml->terminals;
for (i = 0; i < iot->inputs_size; i++) {
if (iot->inputs[i] == NULL)
continue;
if (iot->inputs[i]->size > len)
break;
memcpy(ptm, iot->inputs[i]->terminals,
iot->inputs[i]->size * sizeof(uint16_t));
tml->size += iot->inputs[i]->size;
ptm += iot->inputs[i]->size;
len -= iot->inputs[i]->size;
}
return tml;
}
Static struct terminal_list *
uaudio_io_terminaltype(struct uaudio_softc *sc, int outtype, struct io_terminal *iot, int id)
{
struct terminal_list *tml;
struct io_terminal *it;
int src_id, i;
it = &iot[id];
if (it->output != NULL) {
/* already has outtype? */
for (i = 0; i < it->output->size; i++)
if (it->output->terminals[i] == outtype)
return uaudio_merge_terminal_list(it);
tml = malloc(TERMINAL_LIST_SIZE(it->output->size + 1),
M_TEMP, M_NOWAIT);
if (tml == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return uaudio_merge_terminal_list(it);
}
memcpy(tml, it->output, TERMINAL_LIST_SIZE(it->output->size));
tml->terminals[it->output->size] = outtype;
tml->size++;
free(it->output, M_TEMP);
it->output = tml;
if (it->inputs != NULL) {
for (i = 0; i < it->inputs_size; i++)
if (it->inputs[i] != NULL)
free(it->inputs[i], M_TEMP);
free(it->inputs, M_TEMP);
}
it->inputs_size = 0;
it->inputs = NULL;
} else { /* end `iot[id] != NULL' */
it->inputs_size = 0;
it->inputs = NULL;
it->output = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT);
if (it->output == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
it->output->terminals[0] = outtype;
it->output->size = 1;
it->direct = FALSE;
}
switch (it->d.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
tml = malloc(TERMINAL_LIST_SIZE(1), M_TEMP, M_NOWAIT);
if (tml == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
free(it->inputs, M_TEMP);
it->inputs = NULL;
return NULL;
}
it->inputs[0] = tml;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
tml->terminals[0] = UGETW(it->d.it->v1.wTerminalType);
break;
case UAUDIO_VERSION2:
tml->terminals[0] = UGETW(it->d.it->v2.wTerminalType);
break;
default:
free(tml, M_TEMP);
free(it->inputs, M_TEMP);
it->inputs = NULL;
return NULL;
}
tml->size = 1;
it->inputs_size = 1;
return uaudio_merge_terminal_list(it);
case UDESCSUB_AC_FEATURE:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
src_id = it->d.fu->v1.bSourceId;
break;
case UAUDIO_VERSION2:
src_id = it->d.fu->v2.bSourceId;
break;
default:
/* cannot happen */
return NULL;
}
it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return uaudio_io_terminaltype(sc, outtype, iot, src_id);
}
it->inputs[0] = uaudio_io_terminaltype(sc, outtype, iot, src_id);
it->inputs_size = 1;
return uaudio_merge_terminal_list(it);
case UDESCSUB_AC_OUTPUT:
it->inputs = malloc(sizeof(struct terminal_list *), M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
switch (sc->sc_version) {
case UAUDIO_VERSION1:
src_id = it->d.ot->v1.bSourceId;
break;
case UAUDIO_VERSION2:
src_id = it->d.ot->v2.bSourceId;
break;
default:
free(it->inputs, M_TEMP);
it->inputs = NULL;
return NULL;
}
it->inputs[0] = uaudio_io_terminaltype(sc, outtype, iot, src_id);
it->inputs_size = 1;
iot[src_id].direct = TRUE;
return NULL;
case UDESCSUB_AC_MIXER:
it->inputs_size = 0;
it->inputs = malloc(sizeof(struct terminal_list *)
* it->d.mu->bNrInPins, M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
for (i = 0; i < it->d.mu->bNrInPins; i++) {
src_id = it->d.mu->baSourceId[i];
it->inputs[i] = uaudio_io_terminaltype(sc, outtype, iot,
src_id);
it->inputs_size++;
}
return uaudio_merge_terminal_list(it);
case UDESCSUB_AC_SELECTOR:
it->inputs_size = 0;
it->inputs = malloc(sizeof(struct terminal_list *)
* it->d.su->bNrInPins, M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
for (i = 0; i < it->d.su->bNrInPins; i++) {
src_id = it->d.su->baSourceId[i];
it->inputs[i] = uaudio_io_terminaltype(sc, outtype, iot,
src_id);
it->inputs_size++;
}
return uaudio_merge_terminal_list(it);
case UDESCSUB_AC_PROCESSING:
it->inputs_size = 0;
it->inputs = malloc(sizeof(struct terminal_list *)
* it->d.pu->bNrInPins, M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
for (i = 0; i < it->d.pu->bNrInPins; i++) {
src_id = it->d.pu->baSourceId[i];
it->inputs[i] = uaudio_io_terminaltype(sc, outtype, iot,
src_id);
it->inputs_size++;
}
return uaudio_merge_terminal_list(it);
case UDESCSUB_AC_EXTENSION:
it->inputs_size = 0;
it->inputs = malloc(sizeof(struct terminal_list *)
* it->d.eu->bNrInPins, M_TEMP, M_NOWAIT);
if (it->inputs == NULL) {
aprint_error("uaudio_io_terminaltype: no memory\n");
return NULL;
}
for (i = 0; i < it->d.eu->bNrInPins; i++) {
src_id = it->d.eu->baSourceId[i];
it->inputs[i] = uaudio_io_terminaltype(sc, outtype, iot,
src_id);
it->inputs_size++;
}
return uaudio_merge_terminal_list(it);
case UDESCSUB_AC_HEADER:
default:
return NULL;
}
}
Static usbd_status
uaudio_identify(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc)
{
usbd_status err;
err = uaudio_identify_ac(sc, cdesc);
if (err)
return err;
err = uaudio_identify_as(sc, cdesc);
if (err)
return err;
uaudio_build_formats(sc);
return 0;
}
Static void
uaudio_add_alt(struct uaudio_softc *sc, const struct as_info *ai)
{
size_t len;
struct as_info *nai;
len = sizeof(*ai) * (sc->sc_nalts + 1);
nai = kmem_alloc(len, KM_SLEEP);
/* Copy old data, if there was any */
if (sc->sc_nalts != 0) {
memcpy(nai, sc->sc_alts, sizeof(*ai) * (sc->sc_nalts));
kmem_free(sc->sc_alts, sizeof(*ai) * sc->sc_nalts);
}
sc->sc_alts = nai;
DPRINTFN(2,"adding alt=%d, enc=%d\n",
ai->alt, ai->encoding);
sc->sc_alts[sc->sc_nalts++] = *ai;
}
Static usbd_status
uaudio_process_as(struct uaudio_softc *sc, const char *tbuf, int *offsp,
int size, const usb_interface_descriptor_t *id)
{
const union usb_audio_streaming_interface_descriptor *asid;
const union usb_audio_streaming_type1_descriptor *asf1d;
const usb_endpoint_descriptor_audio_t *ed;
const usb_endpoint_descriptor_audio_t *epdesc1;
const struct usb_audio_streaming_endpoint_descriptor *sed;
int format, chan __unused, prec, bps, enc, terminal;
int dir, type, sync, epcount;
struct as_info ai;
const char *format_str __unused;
const uaudio_cs_descriptor_t *desc;
DPRINTF("offset = %d < %d\n", *offsp, size);
epcount = 0;
asid = NULL;
asf1d = NULL;
ed = NULL;
epdesc1 = NULL;
sed = NULL;
while (*offsp < size) {
desc = (const uaudio_cs_descriptor_t *)(tbuf + *offsp);
if (*offsp + desc->bLength > size)
return USBD_INVAL;
switch (desc->bDescriptorType) {
case UDESC_CS_INTERFACE:
switch (desc->bDescriptorSubtype) {
case AS_GENERAL:
if (asid != NULL)
goto ignore;
asid = (const union usb_audio_streaming_interface_descriptor *) desc;
DPRINTF("asid: bTerminalLink=%d wFormatTag=%d bmFormats=0x%x bLength=%d\n",
asid->v1.bTerminalLink, UGETW(asid->v1.wFormatTag),
UGETDW(asid->v2.bmFormats), asid->v1.bLength);
break;
case FORMAT_TYPE:
if (asf1d != NULL)
goto ignore;
asf1d = (const union usb_audio_streaming_type1_descriptor *) desc;
DPRINTF("asf1d: bDescriptorType=%d bDescriptorSubtype=%d\n",
asf1d->v1.bDescriptorType, asf1d->v1.bDescriptorSubtype);
if (asf1d->v1.bFormatType != FORMAT_TYPE_I) {
aprint_normal_dev(sc->sc_dev,
"ignored setting with type %d format\n", asf1d->v1.bFormatType);
return USBD_NORMAL_COMPLETION;
}
break;
default:
goto ignore;
}
break;
case UDESC_ENDPOINT:
epcount++;
if (epcount > id->bNumEndpoints)
goto ignore;
switch (epcount) {
case 1:
ed = (const usb_endpoint_descriptor_audio_t *) desc;
DPRINTF("endpoint[0] bLength=%d bDescriptorType=%d "
"bEndpointAddress=%d bmAttributes=%#x wMaxPacketSize=%d "
"bInterval=%d bRefresh=%d bSynchAddress=%d\n",
ed->bLength, ed->bDescriptorType, ed->bEndpointAddress,
ed->bmAttributes, UGETW(ed->wMaxPacketSize),
ed->bInterval,
ed->bLength > 7 ? ed->bRefresh : 0,
ed->bLength > 8 ? ed->bSynchAddress : 0);
if (UE_GET_XFERTYPE(ed->bmAttributes) != UE_ISOCHRONOUS)
return USBD_INVAL;
break;
case 2:
epdesc1 = (const usb_endpoint_descriptor_audio_t *) desc;
DPRINTF("endpoint[1] bLength=%d "
"bDescriptorType=%d bEndpointAddress=%d "
"bmAttributes=%#x wMaxPacketSize=%d bInterval=%d "
"bRefresh=%d bSynchAddress=%d\n",
epdesc1->bLength, epdesc1->bDescriptorType,
epdesc1->bEndpointAddress, epdesc1->bmAttributes,
UGETW(epdesc1->wMaxPacketSize), epdesc1->bInterval,
epdesc1->bLength > 7 ? epdesc1->bRefresh : 0,
epdesc1->bLength > 8 ? epdesc1->bSynchAddress : 0);
#if 0
if (epdesc1->bLength > 8 && epdesc1->bSynchAddress != 0) {
aprint_error_dev(sc->sc_dev,
"invalid endpoint: bSynchAddress=0\n");
return USBD_INVAL;
}
#endif
if (UE_GET_XFERTYPE(epdesc1->bmAttributes) != UE_ISOCHRONOUS) {
aprint_error_dev(sc->sc_dev,
"invalid endpoint: bmAttributes=%#x\n",
epdesc1->bmAttributes);
return USBD_INVAL;
}
#if 0
if (ed->bLength > 8 && epdesc1->bEndpointAddress != ed->bSynchAddress) {
aprint_error_dev(sc->sc_dev,
"invalid endpoint addresses: "
"ep[0]->bSynchAddress=%#x "
"ep[1]->bEndpointAddress=%#x\n",
ed->bSynchAddress, epdesc1->bEndpointAddress);
return USBD_INVAL;
}
#endif
/* UE_GET_ADDR(epdesc1->bEndpointAddress), and epdesc1->bRefresh */
break;
default:
goto ignore;
}
break;
case UDESC_CS_ENDPOINT:
switch (desc->bDescriptorSubtype) {
case AS_GENERAL:
if (sed != NULL)
goto ignore;
sed = (const struct usb_audio_streaming_endpoint_descriptor *) desc;
DPRINTF(" streaming_endpoint: offset=%d bLength=%d\n", *offsp, sed->bLength);
break;
default:
goto ignore;
}
break;
case UDESC_INTERFACE:
case UDESC_DEVICE:
goto leave;
default:
ignore:
aprint_normal_dev(sc->sc_dev,
"ignored descriptor type %d subtype %d\n",
desc->bDescriptorType, desc->bDescriptorSubtype);
break;
}
*offsp += desc->bLength;
}
leave:
if (asid == NULL) {
DPRINTF("%s", "No streaming interface descriptor found\n");
return USBD_INVAL;
}
if (asf1d == NULL) {
DPRINTF("%s", "No format type descriptor found\n");
return USBD_INVAL;
}
if (ed == NULL) {
DPRINTF("%s", "No endpoint descriptor found\n");
return USBD_INVAL;
}
if (sed == NULL) {
DPRINTF("%s", "No streaming endpoint descriptor found\n");
return USBD_INVAL;
}
dir = UE_GET_DIR(ed->bEndpointAddress);
type = UE_GET_ISO_TYPE(ed->bmAttributes);
if ((usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_AU_INP_ASYNC) &&
dir == UE_DIR_IN && type == UE_ISO_ADAPT)
type = UE_ISO_ASYNC;
/* We can't handle endpoints that need a sync pipe yet. */
sync = FALSE;
if (dir == UE_DIR_IN && type == UE_ISO_ADAPT) {
sync = TRUE;
#ifndef UAUDIO_MULTIPLE_ENDPOINTS
aprint_normal_dev(sc->sc_dev,
"ignored input endpoint of type adaptive\n");
return USBD_NORMAL_COMPLETION;
#endif
}
if (dir != UE_DIR_IN && type == UE_ISO_ASYNC) {
sync = TRUE;
#ifndef UAUDIO_MULTIPLE_ENDPOINTS
aprint_normal_dev(sc->sc_dev,
"ignored output endpoint of type async\n");
return USBD_NORMAL_COMPLETION;
#endif
}
#ifdef UAUDIO_MULTIPLE_ENDPOINTS
if (sync && id->bNumEndpoints <= 1) {
aprint_error_dev(sc->sc_dev,
"a sync-pipe endpoint but no other endpoint\n");
return USBD_INVAL;
}
#endif
if (!sync && id->bNumEndpoints > 1) {
aprint_error_dev(sc->sc_dev,
"non sync-pipe endpoint but multiple endpoints\n");
return USBD_INVAL;
}
switch (sc->sc_version) {
case UAUDIO_VERSION1:
format = UGETW(asid->v1.wFormatTag);
chan = asf1d->v1.bNrChannels;
prec = asf1d->v1.bBitResolution;
bps = asf1d->v1.bSubFrameSize;
break;
case UAUDIO_VERSION2:
format = UGETDW(asid->v2.bmFormats);
chan = asid->v2.bNrChannels;
prec = asf1d->v2.bBitResolution;
bps = asf1d->v2.bSubslotSize;
break;
default:
aprint_error_dev(sc->sc_dev,
"Unknown audio class %d\n", sc->sc_version);
return USBD_INVAL;
}
if ((prec != 8 && prec != 16 && prec != 24 && prec != 32) || (bps < 1 || bps > 4)) {
aprint_normal_dev(sc->sc_dev,
"ignored setting with precision %d bps %d\n", prec, bps);
return USBD_NORMAL_COMPLETION;
}
enc = AUDIO_ENCODING_NONE;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
terminal = 0;
switch (format) {
case UA_FMT_PCM:
if (prec == 8) {
sc->sc_altflags |= HAS_8;
} else if (prec == 16) {
sc->sc_altflags |= HAS_16;
} else if (prec == 24) {
sc->sc_altflags |= HAS_24;
} else if (prec == 32) {
sc->sc_altflags |= HAS_32;
}
enc = AUDIO_ENCODING_SLINEAR_LE;
format_str = "pcm";
break;
case UA_FMT_PCM8:
enc = AUDIO_ENCODING_ULINEAR_LE;
sc->sc_altflags |= HAS_8U;
format_str = "pcm8";
break;
case UA_FMT_ALAW:
enc = AUDIO_ENCODING_ALAW;
sc->sc_altflags |= HAS_ALAW;
format_str = "alaw";
break;
case UA_FMT_MULAW:
enc = AUDIO_ENCODING_ULAW;
sc->sc_altflags |= HAS_MULAW;
format_str = "mulaw";
break;
#ifdef notyet
case UA_FMT_IEEE_FLOAT:
break;
#endif
}
break;
case UAUDIO_VERSION2:
terminal = asid->v2.bTerminalLink;
if (format & UA_V2_FMT_PCM) {
if (prec == 8) {
sc->sc_altflags |= HAS_8;
} else if (prec == 16) {
sc->sc_altflags |= HAS_16;
} else if (prec == 24) {
sc->sc_altflags |= HAS_24;
} else if (prec == 32) {
sc->sc_altflags |= HAS_32;
}
enc = AUDIO_ENCODING_SLINEAR_LE;
format_str = "pcm";
} else if (format & UA_V2_FMT_PCM8) {
enc = AUDIO_ENCODING_ULINEAR_LE;
sc->sc_altflags |= HAS_8U;
format_str = "pcm8";
} else if (format & UA_V2_FMT_ALAW) {
enc = AUDIO_ENCODING_ALAW;
sc->sc_altflags |= HAS_ALAW;
format_str = "alaw";
} else if (format & UA_V2_FMT_MULAW) {
enc = AUDIO_ENCODING_ULAW;
sc->sc_altflags |= HAS_MULAW;
format_str = "mulaw";
#ifdef notyet
} else if (format & UA_V2_FMT_IEEE_FLOAT) {
#endif
}
break;
}
if (enc == AUDIO_ENCODING_NONE) {
aprint_normal_dev(sc->sc_dev,
"ignored setting with format 0x%08x\n", format);
return USBD_NORMAL_COMPLETION;
}
#ifdef UAUDIO_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: %dch, %d/%dbit, %s,",
dir == UE_DIR_IN ? "recording" : "playback",
chan, prec, bps * 8, format_str);
switch (sc->sc_version) {
case UAUDIO_VERSION1:
if (asf1d->v1.bSamFreqType == UA_SAMP_CONTINUOUS) {
aprint_debug(" %d-%dHz\n", UA_SAMP_LO(&asf1d->v1),
UA_SAMP_HI(&asf1d->v1));
} else {
int r;
aprint_debug(" %d", UA_GETSAMP(&asf1d->v1, 0));
for (r = 1; r < asf1d->v1.bSamFreqType; r++)
aprint_debug(",%d", UA_GETSAMP(&asf1d->v1, r));
aprint_debug("Hz\n");
}
break;
/* UAUDIO_VERSION2 has no frequency information in the format */
}
#endif
ai.alt = id->bAlternateSetting;
ai.encoding = enc;
ai.attributes = sed->bmAttributes;
ai.idesc = id;
ai.edesc = ed;
ai.edesc1 = epdesc1;
ai.asf1desc = asf1d;
ai.sc_busy = 0;
ai.nchan = chan;
ai.aformat = NULL;
ai.ifaceh = NULL;
ai.terminal = terminal;
uaudio_add_alt(sc, &ai);
#ifdef UAUDIO_DEBUG
if (ai.attributes & UA_SED_FREQ_CONTROL)
DPRINTFN(1, "%s", "FREQ_CONTROL\n");
if (ai.attributes & UA_SED_PITCH_CONTROL)
DPRINTFN(1, "%s", "PITCH_CONTROL\n");
#endif
sc->sc_mode |= (dir == UE_DIR_OUT) ? AUMODE_PLAY : AUMODE_RECORD;
return USBD_NORMAL_COMPLETION;
}
Static usbd_status
uaudio_identify_as(struct uaudio_softc *sc,
const usb_config_descriptor_t *cdesc)
{
const usb_interface_descriptor_t *id;
const char *tbuf;
int size, offs;
size = UGETW(cdesc->wTotalLength);
tbuf = (const char *)cdesc;
/* Locate the AudioStreaming interface descriptor. */
offs = 0;
id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOSTREAM);
if (id == NULL)
return USBD_INVAL;
/* Loop through all the alternate settings. */
while (offs <= size) {
DPRINTFN(2, "interface=%d offset=%d\n",
id->bInterfaceNumber, offs);
switch (id->bNumEndpoints) {
case 0:
DPRINTFN(2, "AS null alt=%d\n",
id->bAlternateSetting);
sc->sc_nullalt = id->bAlternateSetting;
break;
case 1:
#ifdef UAUDIO_MULTIPLE_ENDPOINTS
case 2:
#endif
uaudio_process_as(sc, tbuf, &offs, size, id);
break;
default:
aprint_error_dev(sc->sc_dev,
"ignored audio interface with %d endpoints\n",
id->bNumEndpoints);
break;
}
id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOSTREAM);
if (id == NULL)
break;
}
if (offs > size)
return USBD_INVAL;
DPRINTF("%d alts available\n", sc->sc_nalts);
if (sc->sc_mode == 0) {
aprint_error_dev(sc->sc_dev, "no usable endpoint found\n");
return USBD_INVAL;
}
if (sc->sc_nalts == 0) {
aprint_error_dev(sc->sc_dev, "no audio formats found\n");
return USBD_INVAL;
}
return USBD_NORMAL_COMPLETION;
}
Static u_int
uaudio_get_rates(struct uaudio_softc *sc, int mode, u_int *freqs, u_int len)
{
struct mixerctl *mc;
u_int freq, start, end, step;
u_int i, n;
u_int k, count;
int j;
/*
* With UAC2 the sample rate isn't part of the data format,
* instead, you have separate clock sources that may be
* assigned to individual terminals (inputs, outputs).
*
* For audio(4) we only distinguish between input and output
* formats and collect the unique rates from all possible clock
* sources.
*/
n = 0;
for (j = 0; j < sc->sc_nratectls; ++j) {
/*
* skip rates not associated with a terminal
* of the required mode (record/play)
*/
if ((sc->sc_ratemode[j] & mode) == 0)
continue;
mc = &sc->sc_ctls[sc->sc_ratectls[j]];
count = mc->nranges ? mc->nranges : 1;
for (k = 0; k < count; ++k) {
start = (u_int) mc->ranges[k].minval;
end = (u_int) mc->ranges[k].maxval;
step = (u_int) mc->ranges[k].resval;
for (freq = start; freq <= end; freq += step) {
/* remove duplicates */
for (i = 0; i < n; ++i) {
if (freqs[i] == freq)
break;
}
if (i < n) {
if (step == 0)
break;
continue;
}
/* store or count */
if (len != 0) {
if (n >= len)
goto done;
freqs[n] = freq;
}
++n;
if (step == 0)
break;
}
}
}
done:
return n;
}
Static void
uaudio_build_formats(struct uaudio_softc *sc)
{
struct audio_format *auf;
const struct as_info *as;
const union usb_audio_streaming_type1_descriptor *t1desc;
int i, j;
/* build audio_format array */
sc->sc_formats = kmem_zalloc(sizeof(struct audio_format) * sc->sc_nalts,
KM_SLEEP);
sc->sc_nformats = sc->sc_nalts;
for (i = 0; i < sc->sc_nalts; i++) {
auf = &sc->sc_formats[i];
as = &sc->sc_alts[i];
t1desc = as->asf1desc;
if (UE_GET_DIR(as->edesc->bEndpointAddress) == UE_DIR_OUT)
auf->mode = AUMODE_PLAY;
else
auf->mode = AUMODE_RECORD;
auf->encoding = as->encoding;
auf->channel_mask = sc->sc_channel_config;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
auf->validbits = t1desc->v1.bBitResolution;
auf->precision = t1desc->v1.bSubFrameSize * 8;
auf->channels = t1desc->v1.bNrChannels;
auf->frequency_type = t1desc->v1.bSamFreqType;
if (t1desc->v1.bSamFreqType == UA_SAMP_CONTINUOUS) {
auf->frequency[0] = UA_SAMP_LO(&t1desc->v1);
auf->frequency[1] = UA_SAMP_HI(&t1desc->v1);
} else {
for (j = 0; j < t1desc->v1.bSamFreqType; j++) {
if (j >= AUFMT_MAX_FREQUENCIES) {
aprint_error("%s: please increase "
"AUFMT_MAX_FREQUENCIES to %d\n",
__func__, t1desc->v1.bSamFreqType);
auf->frequency_type =
AUFMT_MAX_FREQUENCIES;
break;
}
auf->frequency[j] = UA_GETSAMP(&t1desc->v1, j);
}
}
break;
case UAUDIO_VERSION2:
auf->validbits = t1desc->v2.bBitResolution;
auf->precision = t1desc->v2.bSubslotSize * 8;
auf->channels = as->nchan;
#if 0
auf->frequency_type = uaudio_get_rates(sc, auf->mode, NULL, 0);
if (auf->frequency_type >= AUFMT_MAX_FREQUENCIES) {
aprint_error("%s: please increase "
"AUFMT_MAX_FREQUENCIES to %d\n",
__func__, auf->frequency_type);
}
#endif
auf->frequency_type = uaudio_get_rates(sc,
auf->mode, auf->frequency, AUFMT_MAX_FREQUENCIES);
/*
* if rate query failed, guess a rate
*/
if (auf->frequency_type == UA_SAMP_CONTINUOUS) {
auf->frequency[0] = 48000;
auf->frequency[1] = 48000;
}
break;
}
DPRINTF("alt[%d] = %d/%d %dch %u[%u,%u,...] alt %u\n", i,
auf->validbits, auf->precision, auf->channels, auf->frequency_type,
auf->frequency[0], auf->frequency[1],
as->idesc->bAlternateSetting);
sc->sc_alts[i].aformat = auf;
}
}
#ifdef UAUDIO_DEBUG
Static void
uaudio_dump_tml(struct terminal_list *tml) {
if (tml == NULL) {
printf("NULL");
} else {
int i;
for (i = 0; i < tml->size; i++)
printf("%s ", uaudio_get_terminal_name
(tml->terminals[i]));
}
printf("\n");
}
#endif
Static usbd_status
uaudio_identify_ac(struct uaudio_softc *sc, const usb_config_descriptor_t *cdesc)
{
struct io_terminal* iot;
const usb_interface_descriptor_t *id;
const struct usb_audio_control_descriptor *acdp;
const uaudio_cs_descriptor_t *dp;
const union usb_audio_output_terminal *pot;
struct terminal_list *tml;
const char *tbuf, *ibuf, *ibufend;
int size, offs, ndps, i, j;
size = UGETW(cdesc->wTotalLength);
tbuf = (const char *)cdesc;
/* Locate the AudioControl interface descriptor. */
offs = 0;
id = uaudio_find_iface(tbuf, size, &offs, UISUBCLASS_AUDIOCONTROL);
if (id == NULL)
return USBD_INVAL;
if (offs + sizeof(*acdp) > size)
return USBD_INVAL;
sc->sc_ac_iface = id->bInterfaceNumber;
DPRINTFN(2,"AC interface is %d\n", sc->sc_ac_iface);
/* A class-specific AC interface header should follow. */
ibuf = tbuf + offs;
ibufend = tbuf + size;
acdp = (const struct usb_audio_control_descriptor *)ibuf;
if (acdp->bDescriptorType != UDESC_CS_INTERFACE ||
acdp->bDescriptorSubtype != UDESCSUB_AC_HEADER)
return USBD_INVAL;
if (!(usbd_get_quirks(sc->sc_udev)->uq_flags & UQ_BAD_ADC)) {
sc->sc_version = UGETW(acdp->bcdADC);
} else {
sc->sc_version = UAUDIO_VERSION1;
}
switch (sc->sc_version) {
case UAUDIO_VERSION1:
case UAUDIO_VERSION2:
break;
default:
return USBD_INVAL;
}
sc->sc_audio_rev = UGETW(acdp->bcdADC);
DPRINTFN(2, "found AC header, vers=%03x\n", sc->sc_audio_rev);
sc->sc_nullalt = -1;
/* Scan through all the AC specific descriptors */
dp = (const uaudio_cs_descriptor_t *)ibuf;
ndps = 0;
iot = malloc(sizeof(struct io_terminal) * 256, M_TEMP, M_NOWAIT | M_ZERO);
if (iot == NULL) {
aprint_error("%s: no memory\n", __func__);
return USBD_NOMEM;
}
for (;;) {
ibuf += dp->bLength;
if (ibuf >= ibufend)
break;
dp = (const uaudio_cs_descriptor_t *)ibuf;
if (ibuf + dp->bLength > ibufend) {
free(iot, M_TEMP);
return USBD_INVAL;
}
if (dp->bDescriptorType != UDESC_CS_INTERFACE)
break;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
i = ((const union usb_audio_input_terminal *)dp)->v1.bTerminalId;
break;
case UAUDIO_VERSION2:
i = ((const union usb_audio_input_terminal *)dp)->v2.bTerminalId;
break;
default:
free(iot, M_TEMP);
return USBD_INVAL;
}
iot[i].d.desc = dp;
if (i > ndps)
ndps = i;
}
ndps++;
/* construct io_terminal */
for (i = 0; i < ndps; i++) {
dp = iot[i].d.desc;
if (dp == NULL)
continue;
if (dp->bDescriptorSubtype != UDESCSUB_AC_OUTPUT)
continue;
pot = iot[i].d.ot;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
tml = uaudio_io_terminaltype(sc, UGETW(pot->v1.wTerminalType), iot, i);
break;
case UAUDIO_VERSION2:
tml = uaudio_io_terminaltype(sc, UGETW(pot->v2.wTerminalType), iot, i);
break;
default:
tml = NULL;
break;
}
if (tml != NULL)
free(tml, M_TEMP);
}
#ifdef UAUDIO_DEBUG
for (i = 0; i < 256; i++) {
union usb_audio_cluster cluster;
if (iot[i].d.desc == NULL)
continue;
printf("id %d:\t", i);
switch (iot[i].d.desc->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
printf("AC_INPUT type=%s\n", uaudio_get_terminal_name
(UGETW(iot[i].d.it->v1.wTerminalType)));
printf("\t");
cluster = uaudio_get_cluster(sc, i, iot);
uaudio_dump_cluster(sc, &cluster);
printf("\n");
break;
case UDESCSUB_AC_OUTPUT:
printf("AC_OUTPUT type=%s ", uaudio_get_terminal_name
(UGETW(iot[i].d.ot->v1.wTerminalType)));
printf("src=%d\n", iot[i].d.ot->v1.bSourceId);
break;
case UDESCSUB_AC_MIXER:
printf("AC_MIXER src=");
for (j = 0; j < iot[i].d.mu->bNrInPins; j++)
printf("%d ", iot[i].d.mu->baSourceId[j]);
printf("\n\t");
cluster = uaudio_get_cluster(sc, i, iot);
uaudio_dump_cluster(sc, &cluster);
printf("\n");
break;
case UDESCSUB_AC_SELECTOR:
printf("AC_SELECTOR src=");
for (j = 0; j < iot[i].d.su->bNrInPins; j++)
printf("%d ", iot[i].d.su->baSourceId[j]);
printf("\n");
break;
case UDESCSUB_AC_FEATURE:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
printf("AC_FEATURE src=%d\n", iot[i].d.fu->v1.bSourceId);
break;
case UAUDIO_VERSION2:
printf("AC_FEATURE src=%d\n", iot[i].d.fu->v2.bSourceId);
break;
}
break;
case UDESCSUB_AC_EFFECT:
switch (sc->sc_version) {
case UAUDIO_VERSION1:
printf("AC_EFFECT src=%d\n", iot[i].d.fu->v1.bSourceId);
break;
case UAUDIO_VERSION2:
printf("AC_EFFECT src=%d\n", iot[i].d.fu->v2.bSourceId);
break;
}
break;
case UDESCSUB_AC_PROCESSING:
printf("AC_PROCESSING src=");
for (j = 0; j < iot[i].d.pu->bNrInPins; j++)
printf("%d ", iot[i].d.pu->baSourceId[j]);
printf("\n\t");
cluster = uaudio_get_cluster(sc, i, iot);
uaudio_dump_cluster(sc, &cluster);
printf("\n");
break;
case UDESCSUB_AC_EXTENSION:
printf("AC_EXTENSION src=");
for (j = 0; j < iot[i].d.eu->bNrInPins; j++)
printf("%d ", iot[i].d.eu->baSourceId[j]);
printf("\n\t");
cluster = uaudio_get_cluster(sc, i, iot);
uaudio_dump_cluster(sc, &cluster);
printf("\n");
break;
case UDESCSUB_AC_CLKSRC:
printf("AC_CLKSRC src=%d\n", iot[i].d.cu->iClockSource);
break;
case UDESCSUB_AC_CLKSEL:
printf("AC_CLKSEL src=");
for (j = 0; j < iot[i].d.su->bNrInPins; j++)
printf("%d ", iot[i].d.su->baSourceId[j]);
printf("\n");
break;
case UDESCSUB_AC_CLKMULT:
printf("AC_CLKMULT not supported\n");
break;
case UDESCSUB_AC_RATECONV:
printf("AC_RATEVONC not supported\n");
break;
default:
printf("unknown audio control (subtype=%d)\n",
iot[i].d.desc->bDescriptorSubtype);
}
for (j = 0; j < iot[i].inputs_size; j++) {
printf("\tinput%d: ", j);
uaudio_dump_tml(iot[i].inputs[j]);
}
printf("\toutput: ");
uaudio_dump_tml(iot[i].output);
}
#endif
sc->sc_nratectls = 0;
for (i = 0; i < ndps; i++) {
dp = iot[i].d.desc;
if (dp == NULL)
continue;
DPRINTF("id=%d subtype=%d\n", i, dp->bDescriptorSubtype);
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_HEADER:
aprint_error("uaudio_identify_ac: unexpected AC header\n");
break;
case UDESCSUB_AC_INPUT:
uaudio_add_input(sc, iot, i);
break;
case UDESCSUB_AC_OUTPUT:
uaudio_add_output(sc, iot, i);
break;
case UDESCSUB_AC_MIXER:
uaudio_add_mixer(sc, iot, i);
break;
case UDESCSUB_AC_SELECTOR:
uaudio_add_selector(sc, iot, i);
break;
case UDESCSUB_AC_FEATURE:
uaudio_add_feature(sc, iot, i);
break;
case UDESCSUB_AC_EFFECT:
uaudio_add_effect(sc, iot, i);
break;
case UDESCSUB_AC_PROCESSING:
uaudio_add_processing(sc, iot, i);
break;
case UDESCSUB_AC_EXTENSION:
uaudio_add_extension(sc, iot, i);
break;
case UDESCSUB_AC_CLKSRC:
uaudio_add_clksrc(sc, iot, i);
/* record ids of clock sources */
if (sc->sc_nratectls < AUFMT_MAX_FREQUENCIES)
sc->sc_ratectls[sc->sc_nratectls++] = sc->sc_nctls - 1;
break;
case UDESCSUB_AC_CLKSEL:
uaudio_add_clksel(sc, iot, i);
break;
case UDESCSUB_AC_CLKMULT:
/* not yet */
break;
case UDESCSUB_AC_RATECONV:
/* not yet */
break;
default:
aprint_error(
"uaudio_identify_ac: bad AC desc subtype=0x%02x\n",
dp->bDescriptorSubtype);
break;
}
}
switch (sc->sc_version) {
case UAUDIO_VERSION2:
/*
* UAC2 has separate rate controls which effectively creates
* a set of audio_formats per input and output and their
* associated clock sources.
*
* audio(4) can only handle audio_formats per direction.
* - ignore stream terminals
* - mark rates for record or play if associated with an input
* or output terminal respectively.
*/
for (j = 0; j < sc->sc_nratectls; ++j) {
uint16_t wi = sc->sc_ctls[sc->sc_ratectls[j]].wIndex;
sc->sc_ratemode[j] = 0;
for (i = 0; i < ndps; i++) {
dp = iot[i].d.desc;
if (dp == NULL)
continue;
switch (dp->bDescriptorSubtype) {
case UDESCSUB_AC_INPUT:
if (UGETW(iot[i].d.it->v2.wTerminalType) != UAT_STREAM &&
wi == MAKE(iot[i].d.it->v2.bCSourceId, sc->sc_ac_iface)) {
sc->sc_ratemode[j] |= AUMODE_RECORD;
}
break;
case UDESCSUB_AC_OUTPUT:
if (UGETW(iot[i].d.it->v2.wTerminalType) != UAT_STREAM &&
wi == MAKE(iot[i].d.ot->v2.bCSourceId, sc->sc_ac_iface)) {
sc->sc_ratemode[j] |= AUMODE_PLAY;
}
break;
}
}
}
break;
}
/* delete io_terminal */
for (i = 0; i < 256; i++) {
if (iot[i].d.desc == NULL)
continue;
if (iot[i].inputs != NULL) {
for (j = 0; j < iot[i].inputs_size; j++) {
if (iot[i].inputs[j] != NULL)
free(iot[i].inputs[j], M_TEMP);
}
free(iot[i].inputs, M_TEMP);
}
if (iot[i].output != NULL)
free(iot[i].output, M_TEMP);
iot[i].d.desc = NULL;
}
free(iot, M_TEMP);
return USBD_NORMAL_COMPLETION;
}
Static int
uaudio_query_devinfo(void *addr, mixer_devinfo_t *mi)
{
struct uaudio_softc *sc;
struct mixerctl *mc;
int n, nctls, i;
DPRINTFN(7, "index=%d\n", mi->index);
sc = addr;
if (sc->sc_dying)
return EIO;
n = mi->index;
nctls = sc->sc_nctls;
switch (n) {
case UAC_OUTPUT:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = UAC_OUTPUT;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strlcpy(mi->label.name, AudioCoutputs, sizeof(mi->label.name));
return 0;
case UAC_INPUT:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = UAC_INPUT;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strlcpy(mi->label.name, AudioCinputs, sizeof(mi->label.name));
return 0;
case UAC_EQUAL:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = UAC_EQUAL;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strlcpy(mi->label.name, AudioCequalization,
sizeof(mi->label.name));
return 0;
case UAC_RECORD:
mi->type = AUDIO_MIXER_CLASS;
mi->mixer_class = UAC_RECORD;
mi->next = mi->prev = AUDIO_MIXER_LAST;
strlcpy(mi->label.name, AudioCrecord, sizeof(mi->label.name));
return 0;
default:
break;
}
n -= UAC_NCLASSES;
if (n < 0 || n >= nctls)
return ENXIO;
mc = &sc->sc_ctls[n];
strlcpy(mi->label.name, mc->ctlname, sizeof(mi->label.name));
mi->mixer_class = mc->class;
mi->next = mi->prev = AUDIO_MIXER_LAST; /* XXX */
switch (mc->type) {
case MIX_ON_OFF:
mi->type = AUDIO_MIXER_ENUM;
mi->un.e.num_mem = 2;
strlcpy(mi->un.e.member[0].label.name, AudioNoff,
sizeof(mi->un.e.member[0].label.name));
mi->un.e.member[0].ord = 0;
strlcpy(mi->un.e.member[1].label.name, AudioNon,
sizeof(mi->un.e.member[1].label.name));
mi->un.e.member[1].ord = 1;
break;
case MIX_SELECTOR:
n = uimin(mc->ranges[0].maxval - mc->ranges[0].minval + 1,
__arraycount(mi->un.e.member));
mi->type = AUDIO_MIXER_ENUM;
mi->un.e.num_mem = n;
for (i = 0; i < n; i++) {
snprintf(mi->un.e.member[i].label.name,
sizeof(mi->un.e.member[i].label.name),
"%d", i + mc->ranges[0].minval);
mi->un.e.member[i].ord = i + mc->ranges[0].minval;
}
break;
default:
mi->type = AUDIO_MIXER_VALUE;
strncpy(mi->un.v.units.name, mc->ctlunit, MAX_AUDIO_DEV_LEN);
mi->un.v.num_channels = mc->nchan;
mi->un.v.delta = mc->delta;
break;
}
return 0;
}
Static int
uaudio_open(void *addr, int flags)
{
struct uaudio_softc *sc;
sc = addr;
DPRINTF("sc=%p\n", sc);
if (sc->sc_dying)
return EIO;
if ((flags & FWRITE) && !(sc->sc_mode & AUMODE_PLAY))
return EACCES;
if ((flags & FREAD) && !(sc->sc_mode & AUMODE_RECORD))
return EACCES;
return 0;
}
Static int
uaudio_halt_out_dma(void *addr)
{
struct uaudio_softc *sc = addr;
DPRINTF("%s", "enter\n");
mutex_exit(&sc->sc_intr_lock);
uaudio_halt_out_dma_unlocked(sc);
mutex_enter(&sc->sc_intr_lock);
return 0;
}
Static void
uaudio_halt_out_dma_unlocked(struct uaudio_softc *sc)
{
if (sc->sc_playchan.pipe != NULL) {
uaudio_chan_abort(sc, &sc->sc_playchan);
uaudio_chan_free_buffers(sc, &sc->sc_playchan);
uaudio_chan_close(sc, &sc->sc_playchan);
sc->sc_playchan.intr = NULL;
}
}
Static int
uaudio_halt_in_dma(void *addr)
{
struct uaudio_softc *sc = addr;
DPRINTF("%s", "enter\n");
mutex_exit(&sc->sc_intr_lock);
uaudio_halt_in_dma_unlocked(sc);
mutex_enter(&sc->sc_intr_lock);
return 0;
}
Static void
uaudio_halt_in_dma_unlocked(struct uaudio_softc *sc)
{
if (sc->sc_recchan.pipe != NULL) {
uaudio_chan_abort(sc, &sc->sc_recchan);
uaudio_chan_free_buffers(sc, &sc->sc_recchan);
uaudio_chan_close(sc, &sc->sc_recchan);
sc->sc_recchan.intr = NULL;
}
}
Static int
uaudio_getdev(void *addr, struct audio_device *retp)
{
struct uaudio_softc *sc;
DPRINTF("%s", "\n");
sc = addr;
if (sc->sc_dying)
return EIO;
*retp = sc->sc_adev;
return 0;
}
/*
* Make sure the block size is large enough to hold all outstanding transfers.
*/
Static int
uaudio_round_blocksize(void *addr, int blk,
int mode, const audio_params_t *param)
{
struct uaudio_softc *sc;
int b;
sc = addr;
DPRINTF("blk=%d mode=%s\n", blk,
mode == AUMODE_PLAY ? "AUMODE_PLAY" : "AUMODE_RECORD");
/* chan.bytes_per_frame can be 0. */
if (mode == AUMODE_PLAY || sc->sc_recchan.bytes_per_frame <= 0) {
b = param->sample_rate * sc->sc_recchan.nframes
* sc->sc_recchan.nchanbufs;
/*
* This does not make accurate value in the case
* of b % usb_frames_per_second != 0
*/
b /= sc->sc_usb_frames_per_second;
b *= param->precision / 8 * param->channels;
} else {
/*
* use wMaxPacketSize in bytes_per_frame.
* See uaudio_set_format() and uaudio_chan_init()
*/
b = sc->sc_recchan.bytes_per_frame
* sc->sc_recchan.nframes * sc->sc_recchan.nchanbufs;
}
if (b <= 0)
b = 1;
blk = blk <= b ? b : blk / b * b;
#ifdef DIAGNOSTIC
if (blk <= 0) {
aprint_debug("uaudio_round_blocksize: blk=%d\n", blk);
blk = 512;
}
#endif
DPRINTF("resultant blk=%d\n", blk);
return blk;
}
Static int
uaudio_get_props(void *addr)
{
struct uaudio_softc *sc;
int props;
sc = addr;
props = 0;
if ((sc->sc_mode & AUMODE_PLAY))
props |= AUDIO_PROP_PLAYBACK;
if ((sc->sc_mode & AUMODE_RECORD))
props |= AUDIO_PROP_CAPTURE;
/* XXX I'm not sure all bidirectional devices support FULLDUP&INDEP */
if (props == (AUDIO_PROP_PLAYBACK | AUDIO_PROP_CAPTURE))
props |= AUDIO_PROP_FULLDUPLEX | AUDIO_PROP_INDEPENDENT;
return props;
}
Static void
uaudio_get_locks(void *addr, kmutex_t **intr, kmutex_t **thread)
{
struct uaudio_softc *sc;
sc = addr;
*intr = &sc->sc_intr_lock;
*thread = &sc->sc_lock;
}
Static int
uaudio_get(struct uaudio_softc *sc, int which, int type, int wValue,
int wIndex, int len)
{
usb_device_request_t req;
uint8_t data[4];
usbd_status err;
int val;
if (wValue == -1)
return 0;
req.bmRequestType = type;
req.bRequest = which;
USETW(req.wValue, wValue);
USETW(req.wIndex, wIndex);
USETW(req.wLength, len);
DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x "
"wIndex=0x%04x len=%d\n",
type, which, wValue, wIndex, len);
err = usbd_do_request(sc->sc_udev, &req, data);
if (err) {
DPRINTF("err=%s\n", usbd_errstr(err));
return -1;
}
switch (len) {
case 1:
val = data[0];
break;
case 2:
val = data[0];
val |= data[1] << 8;
break;
case 3:
val = data[0];
val |= data[1] << 8;
val |= data[2] << 16;
break;
case 4:
val = data[0];
val |= data[1] << 8;
val |= data[2] << 16;
val |= data[3] << 24;
break;
default:
DPRINTF("bad length=%d\n", len);
return -1;
}
DPRINTFN(2,"val=%d\n", val);
return val;
}
Static int
uaudio_getbuf(struct uaudio_softc *sc, int which, int type, int wValue,
int wIndex, int len, uint8_t *data)
{
usb_device_request_t req;
usbd_status err;
req.bmRequestType = type;
req.bRequest = which;
USETW(req.wValue, wValue);
USETW(req.wIndex, wIndex);
USETW(req.wLength, len);
DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x "
"wIndex=0x%04x len=%d\n",
type, which, wValue, wIndex, len);
err = usbd_do_request(sc->sc_udev, &req, data);
if (err) {
DPRINTF("err=%s\n", usbd_errstr(err));
return -1;
}
DPRINTFN(2,"val@%p\n", data);
return 0;
}
Static void
uaudio_set(struct uaudio_softc *sc, int which, int type, int wValue,
int wIndex, int len, int val)
{
usb_device_request_t req;
uint8_t data[4];
int err __unused;
if (wValue == -1)
return;
req.bmRequestType = type;
req.bRequest = which;
USETW(req.wValue, wValue);
USETW(req.wIndex, wIndex);
USETW(req.wLength, len);
data[0] = val;
data[1] = val >> 8;
data[2] = val >> 16;
data[3] = val >> 24;
DPRINTFN(2,"type=0x%02x req=0x%02x wValue=0x%04x "
"wIndex=0x%04x len=%d, val=%d\n",
type, which, wValue, wIndex, len, val);
err = usbd_do_request(sc->sc_udev, &req, data);
#ifdef UAUDIO_DEBUG
if (err)
DPRINTF("err=%s\n", usbd_errstr(err));
#endif
}
Static int
uaudio_signext(int type, int val)
{
if (MIX_UNSIGNED(type)) {
switch (MIX_SIZE(type)) {
case 1:
val = (uint8_t)val;
break;
case 2:
val = (uint16_t)val;
break;
case 3:
val = ((uint32_t)val << 8) >> 8;
break;
case 4:
val = (uint32_t)val;
break;
}
} else {
switch (MIX_SIZE(type)) {
case 1:
val = (int8_t)val;
break;
case 2:
val = (int16_t)val;
break;
case 3:
val = ((int32_t)val << 8) >> 8;
break;
case 4:
val = (int32_t)val;
break;
}
}
return val;
}
Static int
uaudio_value2bsd(struct mixerctl *mc, int val)
{
DPRINTFN(5, "type=%03x val=%d min=%d max=%d ",
mc->type, val, mc->ranges[0].minval, mc->ranges[0].maxval);
if (mc->type == MIX_ON_OFF) {
val = (val != 0);
} else if (mc->type == MIX_SELECTOR) {
if (val < mc->ranges[0].minval)
val = mc->ranges[0].minval;
if (val > mc->ranges[0].maxval)
val = mc->ranges[0].maxval;
} else if (mc->mul > 0) {
val = ((uaudio_signext(mc->type, val) - mc->ranges[0].minval)
* 255 + mc->mul - 1) / mc->mul;
} else
val = 0;
DPRINTFN_CLEAN(5, "val'=%d\n", val);
return val;
}
Static int
uaudio_bsd2value(struct mixerctl *mc, int val)
{
int i;
DPRINTFN(5,"type=%03x val=%d min=%d max=%d ",
mc->type, val, mc->ranges[0].minval, mc->ranges[0].maxval);
if (mc->type == MIX_ON_OFF) {
val = (val != 0);
} else if (mc->type == MIX_SELECTOR) {
if (val < mc->ranges[0].minval)
val = mc->ranges[0].minval;
if (val > mc->ranges[0].maxval)
val = mc->ranges[0].maxval;
} else {
if (val < 0)
val = 0;
else if (val > 255)
val = 255;
val = val * (mc->mul + 1) / 256 + mc->ranges[0].minval;
for (i=0; i<mc->nranges; ++i) {
struct range *r = &mc->ranges[i];
if (r->resval == 0)
continue;
if (val > r->maxval)
continue;
if (val < r->minval)
val = r->minval;
val = (val - r->minval + r->resval/2)
/ r->resval * r->resval
+ r->minval;
break;
}
}
DPRINTFN_CLEAN(5, "val'=%d\n", val);
return val;
}
Static const char *
uaudio_clockname(u_int attr)
{
static const char *names[] = {
"clkext",
"clkfixed",
"clkvar",
"clkprog"
};
return names[attr & 3];
}
Static int
uaudio_makename(struct uaudio_softc *sc, uByte idx, const char *defname, uByte id, char *buf, size_t len)
{
char *tmp;
int err, count;
tmp = kmem_alloc(USB_MAX_ENCODED_STRING_LEN, KM_SLEEP);
err = usbd_get_string0(sc->sc_udev, idx, tmp, true);
if (id != 0 || err)
count = snprintf(buf, len, "%s%d", err ? defname : tmp, id);
else
count = snprintf(buf, len, "%s", err ? defname : tmp);
kmem_free(tmp, USB_MAX_ENCODED_STRING_LEN);
return count;
}
Static int
uaudio_ctl_get(struct uaudio_softc *sc, int which, struct mixerctl *mc,
int chan)
{
int val;
DPRINTFN(5,"which=%d chan=%d ctl=%s type=%d\n", which, chan, mc->ctlname, mc->type);
mutex_exit(&sc->sc_lock);
val = uaudio_get(sc, which, UT_READ_CLASS_INTERFACE, mc->wValue[chan],
mc->wIndex, MIX_SIZE(mc->type));
mutex_enter(&sc->sc_lock);
return uaudio_value2bsd(mc, val);
}
Static void
uaudio_ctl_set(struct uaudio_softc *sc, int which, struct mixerctl *mc,
int chan, int val)
{
DPRINTFN(5,"which=%d chan=%d ctl=%s type=%d\n", which, chan, mc->ctlname, mc->type);
val = uaudio_bsd2value(mc, val);
mutex_exit(&sc->sc_lock);
uaudio_set(sc, which, UT_WRITE_CLASS_INTERFACE, mc->wValue[chan],
mc->wIndex, MIX_SIZE(mc->type), val);
mutex_enter(&sc->sc_lock);
}
Static int
uaudio_mixer_get_port(void *addr, mixer_ctrl_t *cp)
{
struct uaudio_softc *sc;
struct mixerctl *mc;
int i, n, vals[MIX_MAX_CHAN], val;
int req;
DPRINTFN(2, "index=%d\n", cp->dev);
sc = addr;
if (sc->sc_dying)
return EIO;
req = sc->sc_version == UAUDIO_VERSION2 ? V2_CUR : GET_CUR;
n = cp->dev - UAC_NCLASSES;
if (n < 0 || n >= sc->sc_nctls)
return ENXIO;
mc = &sc->sc_ctls[n];
if (mc->type == MIX_ON_OFF) {
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
cp->un.ord = uaudio_ctl_get(sc, req, mc, 0);
} else if (mc->type == MIX_SELECTOR) {
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
cp->un.ord = uaudio_ctl_get(sc, req, mc, 0);
} else {
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
if (cp->un.value.num_channels != 1 &&
cp->un.value.num_channels != mc->nchan)
return EINVAL;
for (i = 0; i < mc->nchan; i++)
vals[i] = uaudio_ctl_get(sc, req, mc, i);
if (cp->un.value.num_channels == 1 && mc->nchan != 1) {
for (val = 0, i = 0; i < mc->nchan; i++)
val += vals[i];
vals[0] = val / mc->nchan;
}
for (i = 0; i < cp->un.value.num_channels; i++)
cp->un.value.level[i] = vals[i];
}
return 0;
}
Static int
uaudio_mixer_set_port(void *addr, mixer_ctrl_t *cp)
{
struct uaudio_softc *sc;
struct mixerctl *mc;
int i, n, vals[MIX_MAX_CHAN];
int req;
DPRINTFN(2, "index = %d\n", cp->dev);
sc = addr;
if (sc->sc_dying)
return EIO;
req = sc->sc_version == UAUDIO_VERSION2 ? V2_CUR : SET_CUR;
n = cp->dev - UAC_NCLASSES;
if (n < 0 || n >= sc->sc_nctls)
return ENXIO;
mc = &sc->sc_ctls[n];
if (mc->type == MIX_ON_OFF) {
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
uaudio_ctl_set(sc, req, mc, 0, cp->un.ord);
} else if (mc->type == MIX_SELECTOR) {
if (cp->type != AUDIO_MIXER_ENUM)
return EINVAL;
uaudio_ctl_set(sc, req, mc, 0, cp->un.ord);
} else {
if (cp->type != AUDIO_MIXER_VALUE)
return EINVAL;
if (cp->un.value.num_channels == 1)
for (i = 0; i < mc->nchan; i++)
vals[i] = cp->un.value.level[0];
else if (cp->un.value.num_channels == mc->nchan)
for (i = 0; i < mc->nchan; i++)
vals[i] = cp->un.value.level[i];
else
return EINVAL;
for (i = 0; i < mc->nchan; i++)
uaudio_ctl_set(sc, req, mc, i, vals[i]);
}
return 0;
}
Static int
uaudio_trigger_input(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg,
const audio_params_t *param)
{
struct uaudio_softc *sc;
struct chan *ch;
usbd_status err;
int i;
sc = addr;
if (sc->sc_dying)
return EIO;
mutex_exit(&sc->sc_intr_lock);
DPRINTFN(3, "sc=%p start=%p end=%p "
"blksize=%d\n", sc, start, end, blksize);
ch = &sc->sc_recchan;
uaudio_chan_set_param(ch, start, end, blksize);
DPRINTFN(3, "sample_size=%d bytes/frame=%d "
"fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame,
ch->fraction);
err = uaudio_chan_open(sc, ch);
if (err) {
mutex_enter(&sc->sc_intr_lock);
device_printf(sc->sc_dev,"%s open channel err=%s\n",__func__, usbd_errstr(err));
return EIO;
}
err = uaudio_chan_alloc_buffers(sc, ch);
if (err) {
uaudio_chan_close(sc, ch);
device_printf(sc->sc_dev,"%s alloc buffers err=%s\n",__func__, usbd_errstr(err));
mutex_enter(&sc->sc_intr_lock);
return EIO;
}
ch->intr = intr;
ch->arg = arg;
/*
* Start as half as many channels for recording as for playback.
* This stops playback from stuttering in full-duplex operation.
*/
for (i = 0; i < ch->nchanbufs / 2; i++) {
uaudio_chan_rtransfer(ch);
}
mutex_enter(&sc->sc_intr_lock);
return 0;
}
Static int
uaudio_trigger_output(void *addr, void *start, void *end, int blksize,
void (*intr)(void *), void *arg,
const audio_params_t *param)
{
struct uaudio_softc *sc;
struct chan *ch;
usbd_status err;
int i;
sc = addr;
if (sc->sc_dying)
return EIO;
mutex_exit(&sc->sc_intr_lock);
DPRINTFN(3, "sc=%p start=%p end=%p "
"blksize=%d\n", sc, start, end, blksize);
ch = &sc->sc_playchan;
uaudio_chan_set_param(ch, start, end, blksize);
DPRINTFN(3, "sample_size=%d bytes/frame=%d "
"fraction=0.%03d\n", ch->sample_size, ch->bytes_per_frame,
ch->fraction);
err = uaudio_chan_open(sc, ch);
if (err) {
mutex_enter(&sc->sc_intr_lock);
device_printf(sc->sc_dev,"%s open channel err=%s\n",__func__, usbd_errstr(err));
return EIO;
}
err = uaudio_chan_alloc_buffers(sc, ch);
if (err) {
uaudio_chan_close(sc, ch);
device_printf(sc->sc_dev,"%s alloc buffers err=%s\n",__func__, usbd_errstr(err));
mutex_enter(&sc->sc_intr_lock);
return EIO;
}
ch->intr = intr;
ch->arg = arg;
for (i = 0; i < ch->nchanbufs; i++)
uaudio_chan_ptransfer(ch);
mutex_enter(&sc->sc_intr_lock);
return 0;
}
/* Set up a pipe for a channel. */
Static usbd_status
uaudio_chan_open(struct uaudio_softc *sc, struct chan *ch)
{
struct as_info *as;
usb_device_descriptor_t *ddesc;
int endpt, clkid;
usbd_status err;
as = &sc->sc_alts[ch->altidx];
endpt = as->edesc->bEndpointAddress;
clkid = sc->sc_clock[as->terminal];
DPRINTF("endpt=0x%02x, clkid=%d, speed=%d, alt=%d\n",
endpt, clkid, ch->sample_rate, as->alt);
/* Set alternate interface corresponding to the mode. */
err = usbd_set_interface(as->ifaceh, as->alt);
if (err)
return err;
/*
* Roland SD-90 freezes by a SAMPLING_FREQ_CONTROL request.
*/
ddesc = usbd_get_device_descriptor(sc->sc_udev);
if ((UGETW(ddesc->idVendor) != USB_VENDOR_ROLAND) &&
(UGETW(ddesc->idProduct) != USB_PRODUCT_ROLAND_SD90)) {
err = uaudio_set_speed(sc, endpt, clkid, ch->sample_rate);
if (err) {
DPRINTF("set_speed failed err=%s\n", usbd_errstr(err));
}
}
DPRINTF("create pipe to 0x%02x\n", endpt);
err = usbd_open_pipe(as->ifaceh, endpt, USBD_MPSAFE, &ch->pipe);
if (err)
return err;
if (as->edesc1 != NULL) {
endpt = as->edesc1->bEndpointAddress;
if (endpt != 0) {
DPRINTF("create sync-pipe to 0x%02x\n", endpt);
err = usbd_open_pipe(as->ifaceh, endpt, USBD_MPSAFE,
&ch->sync_pipe);
}
}
return err;
}
Static void
uaudio_chan_abort(struct uaudio_softc *sc, struct chan *ch)
{
struct usbd_pipe *pipe;
struct as_info *as;
as = &sc->sc_alts[ch->altidx];
as->sc_busy = 0;
if (sc->sc_nullalt >= 0) {
DPRINTF("set null alt=%d\n", sc->sc_nullalt);
usbd_set_interface(as->ifaceh, sc->sc_nullalt);
}
pipe = ch->pipe;
if (pipe) {
usbd_abort_pipe(pipe);
}
pipe = ch->sync_pipe;
if (pipe) {
usbd_abort_pipe(pipe);
}
}
Static void
uaudio_chan_close(struct uaudio_softc *sc, struct chan *ch)
{
struct usbd_pipe *pipe;
pipe = atomic_swap_ptr(&ch->pipe, NULL);
if (pipe) {
usbd_close_pipe(pipe);
}
pipe = atomic_swap_ptr(&ch->sync_pipe, NULL);
if (pipe) {
usbd_close_pipe(pipe);
}
}
Static usbd_status
uaudio_chan_alloc_buffers(struct uaudio_softc *sc, struct chan *ch)
{
int i, size;
size = (ch->bytes_per_frame + ch->sample_size) * ch->nframes;
for (i = 0; i < ch->nchanbufs; i++) {
struct usbd_xfer *xfer;
int err = usbd_create_xfer(ch->pipe, size, 0, ch->nframes,
&xfer);
if (err)
goto bad;
ch->chanbufs[i].xfer = xfer;
ch->chanbufs[i].buffer = usbd_get_buffer(xfer);
ch->chanbufs[i].chan = ch;
}
return USBD_NORMAL_COMPLETION;
bad:
while (--i >= 0)
/* implicit buffer free */
usbd_destroy_xfer(ch->chanbufs[i].xfer);
return USBD_NOMEM;
}
Static void
uaudio_chan_free_buffers(struct uaudio_softc *sc, struct chan *ch)
{
int i;
for (i = 0; i < ch->nchanbufs; i++)
usbd_destroy_xfer(ch->chanbufs[i].xfer);
}
Static void
uaudio_chan_ptransfer(struct chan *ch)
{
struct uaudio_softc *sc = ch->sc;
struct chanbuf *cb;
int i, n, size, residue, total;
if (sc->sc_dying)
return;
/* Pick the next channel buffer. */
cb = &ch->chanbufs[ch->curchanbuf];
if (++ch->curchanbuf >= ch->nchanbufs)
ch->curchanbuf = 0;
/* Compute the size of each frame in the next transfer. */
residue = ch->residue;
total = 0;
for (i = 0; i < ch->nframes; i++) {
size = ch->bytes_per_frame;
residue += ch->fraction;
if (residue >= sc->sc_usb_frames_per_second) {
if ((sc->sc_altflags & UA_NOFRAC) == 0)
size += ch->sample_size;
residue -= sc->sc_usb_frames_per_second;
}
cb->sizes[i] = size;
total += size;
}
ch->residue = residue;
cb->size = total;
/*
* Transfer data from upper layer buffer to channel buffer, taking
* care of wrapping the upper layer buffer.
*/
n = uimin(total, ch->end - ch->cur);
memcpy(cb->buffer, ch->cur, n);
ch->cur += n;
if (ch->cur >= ch->end)
ch->cur = ch->start;
if (total > n) {
total -= n;
memcpy(cb->buffer + n, ch->cur, total);
ch->cur += total;
}
#ifdef UAUDIO_DEBUG
if (uaudiodebug > 8) {
DPRINTF("buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue);
for (i = 0; i < ch->nframes; i++) {
DPRINTF(" [%d] length %d\n", i, cb->sizes[i]);
}
}
#endif
//DPRINTFN(5, "ptransfer xfer=%p\n", cb->xfer);
/* Fill the request */
usbd_setup_isoc_xfer(cb->xfer, cb, cb->sizes, ch->nframes, 0,
uaudio_chan_pintr);
usbd_status err = usbd_transfer(cb->xfer);
if (err != USBD_IN_PROGRESS && err != USBD_NORMAL_COMPLETION)
device_printf(sc->sc_dev, "ptransfer error %d\n", err);
}
Static void
uaudio_chan_pintr(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct uaudio_softc *sc;
struct chanbuf *cb;
struct chan *ch;
uint32_t count;
cb = priv;
ch = cb->chan;
sc = ch->sc;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
if (status != USBD_NORMAL_COMPLETION)
device_printf(sc->sc_dev, "pintr error: %s\n",
usbd_errstr(status));
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
DPRINTFN(5, "count=%d, transferred=%d\n",
count, ch->transferred);
#ifdef DIAGNOSTIC
if (count != cb->size) {
device_printf(sc->sc_dev,
"uaudio_chan_pintr: count(%d) != size(%d), status(%d)\n",
count, cb->size, status);
}
#endif
mutex_enter(&sc->sc_intr_lock);
ch->transferred += cb->size;
/* Call back to upper layer */
while (ch->transferred >= ch->blksize) {
ch->transferred -= ch->blksize;
DPRINTFN(5, "call %p(%p)\n", ch->intr, ch->arg);
ch->intr(ch->arg);
}
mutex_exit(&sc->sc_intr_lock);
/* start next transfer */
uaudio_chan_ptransfer(ch);
}
Static void
uaudio_chan_rtransfer(struct chan *ch)
{
struct uaudio_softc *sc = ch->sc;
struct chanbuf *cb;
int i, size, residue, total;
if (sc->sc_dying)
return;
/* Pick the next channel buffer. */
cb = &ch->chanbufs[ch->curchanbuf];
if (++ch->curchanbuf >= ch->nchanbufs)
ch->curchanbuf = 0;
/* Compute the size of each frame in the next transfer. */
residue = ch->residue;
total = 0;
for (i = 0; i < ch->nframes; i++) {
size = ch->bytes_per_frame;
#if 0
residue += ch->fraction;
if (residue >= sc->sc_usb_frames_per_second) {
if ((sc->sc_altflags & UA_NOFRAC) == 0)
size += ch->sample_size;
residue -= sc->sc_usb_frames_per_second;
}
#endif
cb->sizes[i] = size;
cb->offsets[i] = total;
total += size;
}
ch->residue = residue;
cb->size = total;
#ifdef UAUDIO_DEBUG
if (uaudiodebug > 8) {
DPRINTF("buffer=%p, residue=0.%03d\n", cb->buffer, ch->residue);
for (i = 0; i < ch->nframes; i++) {
DPRINTF(" [%d] length %d\n", i, cb->sizes[i]);
}
}
#endif
DPRINTFN(5, "transfer xfer=%p\n", cb->xfer);
/* Fill the request */
usbd_setup_isoc_xfer(cb->xfer, cb, cb->sizes, ch->nframes, 0,
uaudio_chan_rintr);
usbd_status err = usbd_transfer(cb->xfer);
if (err != USBD_IN_PROGRESS && err != USBD_NORMAL_COMPLETION)
device_printf(sc->sc_dev, "rtransfer error %d\n", err);
}
Static void
uaudio_chan_rintr(struct usbd_xfer *xfer, void *priv,
usbd_status status)
{
struct uaudio_softc *sc;
struct chanbuf *cb;
struct chan *ch;
uint32_t count;
int i, n, frsize;
cb = priv;
ch = cb->chan;
sc = ch->sc;
/* Return if we are aborting. */
if (status == USBD_CANCELLED)
return;
if (status != USBD_NORMAL_COMPLETION && status != USBD_SHORT_XFER)
device_printf(sc->sc_dev, "rintr error: %s\n",
usbd_errstr(status));
usbd_get_xfer_status(xfer, NULL, NULL, &count, NULL);
DPRINTFN(5, "count=%d, transferred=%d\n", count, ch->transferred);
/* count < cb->size is normal for asynchronous source */
#ifdef DIAGNOSTIC
if (count > cb->size) {
device_printf(sc->sc_dev,
"uaudio_chan_rintr: count(%d) > size(%d) status(%d)\n",
count, cb->size, status);
}
#endif
/*
* Transfer data from channel buffer to upper layer buffer, taking
* care of wrapping the upper layer buffer.
*/
for (i = 0; i < ch->nframes; i++) {
frsize = cb->sizes[i];
n = uimin(frsize, ch->end - ch->cur);
memcpy(ch->cur, cb->buffer + cb->offsets[i], n);
ch->cur += n;
if (ch->cur >= ch->end)
ch->cur = ch->start;
if (frsize > n) {
memcpy(ch->cur, cb->buffer + cb->offsets[i] + n,
frsize - n);
ch->cur += frsize - n;
}
}
/* Call back to upper layer */
mutex_enter(&sc->sc_intr_lock);
ch->transferred += count;
while (ch->transferred >= ch->blksize) {
ch->transferred -= ch->blksize;
DPRINTFN(5, "call %p(%p)\n", ch->intr, ch->arg);
ch->intr(ch->arg);
}
mutex_exit(&sc->sc_intr_lock);
/* start next transfer */
uaudio_chan_rtransfer(ch);
}
Static void
uaudio_chan_init(struct chan *ch, int altidx,
const struct audio_params *param, int maxpktsize, bool isrecord)
{
struct uaudio_softc *sc = ch->sc;
int samples_per_frame, sample_size;
DPRINTFN(5, "altidx=%d, %d/%d %dch %dHz ufps %u max %d\n",
altidx, param->validbits, param->precision, param->channels,
param->sample_rate, sc->sc_usb_frames_per_second, maxpktsize);
ch->altidx = altidx;
sample_size = param->precision * param->channels / 8;
if (isrecord) {
if (maxpktsize >= sample_size)
samples_per_frame = maxpktsize / sample_size;
else
samples_per_frame = param->sample_rate / sc->sc_usb_frames_per_second
+ param->channels;
ch->fraction = 0;
} else {
samples_per_frame = param->sample_rate / sc->sc_usb_frames_per_second;
ch->fraction = param->sample_rate % sc->sc_usb_frames_per_second;
}
ch->sample_size = sample_size;
ch->sample_rate = param->sample_rate;
ch->bytes_per_frame = samples_per_frame * sample_size;
if (maxpktsize > 0 && ch->bytes_per_frame > maxpktsize) {
samples_per_frame = maxpktsize / sample_size;
ch->bytes_per_frame = samples_per_frame * sample_size;
}
ch->residue = 0;
}
Static void
uaudio_chan_set_param(struct chan *ch, u_char *start, u_char *end, int blksize)
{
ch->start = start;
ch->end = end;
ch->cur = start;
ch->blksize = blksize;
ch->transferred = 0;
ch->curchanbuf = 0;
}
Static int
uaudio_set_format(void *addr, int setmode,
const audio_params_t *play, const audio_params_t *rec,
audio_filter_reg_t *pfil, audio_filter_reg_t *rfil)
{
struct uaudio_softc *sc;
int paltidx, raltidx;
sc = addr;
paltidx = -1;
raltidx = -1;
if (sc->sc_dying)
return EIO;
if ((setmode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) {
sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 0;
}
if ((setmode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) {
sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 0;
}
/* Some uaudio devices are unidirectional. Don't try to find a
matching mode for the unsupported direction. */
setmode &= sc->sc_mode;
if ((setmode & AUMODE_PLAY)) {
paltidx = audio_indexof_format(sc->sc_formats, sc->sc_nformats,
AUMODE_PLAY, play);
/* Transfer should have halted */
uaudio_chan_init(&sc->sc_playchan, paltidx, play,
UGETW(sc->sc_alts[paltidx].edesc->wMaxPacketSize), false);
}
if ((setmode & AUMODE_RECORD)) {
raltidx = audio_indexof_format(sc->sc_formats, sc->sc_nformats,
AUMODE_RECORD, rec);
/* Transfer should have halted */
uaudio_chan_init(&sc->sc_recchan, raltidx, rec,
UGETW(sc->sc_alts[raltidx].edesc->wMaxPacketSize), true);
}
if ((setmode & AUMODE_PLAY) && sc->sc_playchan.altidx != -1) {
sc->sc_alts[sc->sc_playchan.altidx].sc_busy = 1;
}
if ((setmode & AUMODE_RECORD) && sc->sc_recchan.altidx != -1) {
sc->sc_alts[sc->sc_recchan.altidx].sc_busy = 1;
}
DPRINTF("use altidx=p%d/r%d, altno=p%d/r%d\n",
sc->sc_playchan.altidx, sc->sc_recchan.altidx,
(sc->sc_playchan.altidx >= 0)
?sc->sc_alts[sc->sc_playchan.altidx].idesc->bAlternateSetting
: -1,
(sc->sc_recchan.altidx >= 0)
? sc->sc_alts[sc->sc_recchan.altidx].idesc->bAlternateSetting
: -1);
return 0;
}
Static usbd_status
uaudio_speed(struct uaudio_softc *sc, int endpt, int clkid,
uint8_t *data, int set)
{
usb_device_request_t req;
switch (sc->sc_version) {
case UAUDIO_VERSION1:
req.bmRequestType = set ?
UT_WRITE_CLASS_ENDPOINT
: UT_READ_CLASS_ENDPOINT;
req.bRequest = set ?
SET_CUR
: GET_CUR;
USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0);
USETW(req.wIndex, endpt);
USETW(req.wLength, 3);
break;
case UAUDIO_VERSION2:
req.bmRequestType = set ?
UT_WRITE_CLASS_INTERFACE
: UT_READ_CLASS_INTERFACE;
req.bRequest = V2_CUR;
USETW2(req.wValue, SAMPLING_FREQ_CONTROL, 0);
USETW2(req.wIndex, clkid, sc->sc_ac_iface);
USETW(req.wLength, 4);
break;
}
return usbd_do_request(sc->sc_udev, &req, data);
}
Static usbd_status
uaudio_set_speed(struct uaudio_softc *sc, int endpt, int clkid, u_int speed)
{
uint8_t data[4];
DPRINTFN(5, "endpt=%d clkid=%u speed=%u\n", endpt, clkid, speed);
data[0] = speed;
data[1] = speed >> 8;
data[2] = speed >> 16;
data[3] = speed >> 24;
return uaudio_speed(sc, endpt, clkid, data, 1);
}
#ifdef UAUDIO_DEBUG
SYSCTL_SETUP(sysctl_hw_uaudio_setup, "sysctl hw.uaudio setup")
{
int err;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
err = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "uaudio",
SYSCTL_DESCR("uaudio global controls"),
NULL, 0, NULL, 0, CTL_HW, CTL_CREATE, CTL_EOL);
if (err)
goto fail;
/* control debugging printfs */
err = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &uaudiodebug, sizeof(uaudiodebug), CTL_CREATE, CTL_EOL);
if (err)
goto fail;
return;
fail:
aprint_error("%s: sysctl_createv failed (err = %d)\n", __func__, err);
}
#endif
#ifdef _MODULE
MODULE(MODULE_CLASS_DRIVER, uaudio, NULL);
static const struct cfiattrdata audiobuscf_iattrdata = {
"audiobus", 0, { { NULL, NULL, 0 }, }
};
static const struct cfiattrdata * const uaudio_attrs[] = {
&audiobuscf_iattrdata, NULL
};
CFDRIVER_DECL(uaudio, DV_DULL, uaudio_attrs);
extern struct cfattach uaudio_ca;
static int uaudioloc[6/*USBIFIFCF_NLOCS*/] = {
-1/*USBIFIFCF_PORT_DEFAULT*/,
-1/*USBIFIFCF_CONFIGURATION_DEFAULT*/,
-1/*USBIFIFCF_INTERFACE_DEFAULT*/,
-1/*USBIFIFCF_VENDOR_DEFAULT*/,
-1/*USBIFIFCF_PRODUCT_DEFAULT*/,
-1/*USBIFIFCF_RELEASE_DEFAULT*/};
static struct cfparent uhubparent = {
"usbifif", NULL, DVUNIT_ANY
};
static struct cfdata uaudio_cfdata[] = {
{
.cf_name = "uaudio",
.cf_atname = "uaudio",
.cf_unit = 0,
.cf_fstate = FSTATE_STAR,
.cf_loc = uaudioloc,
.cf_flags = 0,
.cf_pspec = &uhubparent,
},
{ NULL }
};
static int
uaudio_modcmd(modcmd_t cmd, void *arg)
{
int err;
switch (cmd) {
case MODULE_CMD_INIT:
err = config_cfdriver_attach(&uaudio_cd);
if (err) {
return err;
}
err = config_cfattach_attach("uaudio", &uaudio_ca);
if (err) {
config_cfdriver_detach(&uaudio_cd);
return err;
}
err = config_cfdata_attach(uaudio_cfdata, 1);
if (err) {
config_cfattach_detach("uaudio", &uaudio_ca);
config_cfdriver_detach(&uaudio_cd);
return err;
}
return 0;
case MODULE_CMD_FINI:
err = config_cfdata_detach(uaudio_cfdata);
if (err)
return err;
config_cfattach_detach("uaudio", &uaudio_ca);
config_cfdriver_detach(&uaudio_cd);
return 0;
default:
return ENOTTY;
}
}
#endif