NetBSD/sys/dev/nand/nand.c

1546 lines
36 KiB
C

/* $NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $ */
/*-
* Copyright (c) 2010 Department of Software Engineering,
* University of Szeged, Hungary
* Copyright (c) 2010 Adam Hoka <ahoka@NetBSD.org>
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by the Department of Software Engineering, University of Szeged, Hungary
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
* AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/* Common driver for NAND chips implementing the ONFI 2.2 specification */
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: nand.c,v 1.29 2021/08/07 16:19:13 thorpej Exp $");
#include "locators.h"
#include <sys/param.h>
#include <sys/types.h>
#include <sys/device.h>
#include <sys/kmem.h>
#include <sys/atomic.h>
#include <dev/flash/flash.h>
#include <dev/flash/flash_io.h>
#include <dev/nand/nand.h>
#include <dev/nand/onfi.h>
#include <dev/nand/hamming.h>
#include <dev/nand/nand_bbt.h>
#include <dev/nand/nand_crc.h>
#include "opt_nand.h"
int nand_match(device_t, cfdata_t, void *);
void nand_attach(device_t, device_t, void *);
int nand_detach(device_t, int);
bool nand_shutdown(device_t, int);
int nand_print(void *, const char *);
static int nand_search(device_t, cfdata_t, const int *, void *);
static void nand_address_row(device_t, size_t);
static inline uint8_t nand_get_status(device_t);
static void nand_address_column(device_t, size_t, size_t);
static int nand_fill_chip_structure(device_t, struct nand_chip *);
static int nand_scan_media(device_t, struct nand_chip *);
static bool nand_check_wp(device_t);
CFATTACH_DECL_NEW(nand, sizeof(struct nand_softc),
nand_match, nand_attach, nand_detach, NULL);
#ifdef NAND_DEBUG
int nanddebug = NAND_DEBUG;
#endif
struct flash_interface nand_flash_if = {
.type = FLASH_TYPE_NAND,
.read = nand_flash_read,
.write = nand_flash_write,
.erase = nand_flash_erase,
.block_isbad = nand_flash_isbad,
.block_markbad = nand_flash_markbad,
.submit = nand_flash_submit
};
const struct nand_manufacturer nand_mfrs[] = {
{ NAND_MFR_AMD, "AMD" },
{ NAND_MFR_FUJITSU, "Fujitsu" },
{ NAND_MFR_RENESAS, "Renesas" },
{ NAND_MFR_STMICRO, "ST Micro" },
{ NAND_MFR_MICRON, "Micron" },
{ NAND_MFR_NATIONAL, "National" },
{ NAND_MFR_TOSHIBA, "Toshiba" },
{ NAND_MFR_HYNIX, "Hynix" },
{ NAND_MFR_SAMSUNG, "Samsung" },
{ NAND_MFR_UNKNOWN, "Unknown" }
};
static const char *
nand_midtoname(int id)
{
int i;
for (i = 0; nand_mfrs[i].id != 0; i++) {
if (nand_mfrs[i].id == id)
return nand_mfrs[i].name;
}
KASSERT(nand_mfrs[i].id == 0);
return nand_mfrs[i].name;
}
/* ARGSUSED */
int
nand_match(device_t parent, cfdata_t match, void *aux)
{
/* pseudo device, always attaches */
return 1;
}
void
nand_attach(device_t parent, device_t self, void *aux)
{
struct nand_softc *sc = device_private(self);
struct nand_attach_args *naa = aux;
struct nand_chip *chip = &sc->sc_chip;
sc->sc_dev = self;
sc->controller_dev = parent;
sc->nand_if = naa->naa_nand_if;
aprint_naive("\n");
if (nand_check_wp(self)) {
aprint_error("NAND chip is write protected!\n");
return;
}
if (nand_scan_media(self, chip)) {
return;
}
nand_flash_if.erasesize = chip->nc_block_size;
nand_flash_if.page_size = chip->nc_page_size;
nand_flash_if.writesize = chip->nc_page_size;
/* allocate cache */
chip->nc_oob_cache = kmem_alloc(chip->nc_spare_size, KM_SLEEP);
chip->nc_page_cache = kmem_alloc(chip->nc_page_size, KM_SLEEP);
mutex_init(&sc->sc_device_lock, MUTEX_DEFAULT, IPL_NONE);
if (flash_sync_thread_init(&sc->sc_flash_io, self, &nand_flash_if)) {
goto error;
}
if (!pmf_device_register1(sc->sc_dev, NULL, NULL, nand_shutdown))
aprint_error_dev(sc->sc_dev,
"couldn't establish power handler\n");
#ifdef NAND_BBT
nand_bbt_init(self);
nand_bbt_scan(self);
#endif
/*
* Attach all our devices
*/
config_search(self, NULL,
CFARGS(.search = nand_search));
return;
error:
kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
kmem_free(chip->nc_page_cache, chip->nc_page_size);
mutex_destroy(&sc->sc_device_lock);
}
static int
nand_search(device_t parent, cfdata_t cf, const int *ldesc, void *aux)
{
struct nand_softc *sc = device_private(parent);
struct nand_chip *chip = &sc->sc_chip;
struct flash_attach_args faa;
if (cf->cf_loc[FLASHBUSCF_DYNAMIC] != 0)
return 0;
faa.flash_if = &nand_flash_if;
faa.partinfo.part_name = NULL;
faa.partinfo.part_offset = cf->cf_loc[FLASHBUSCF_OFFSET];
if (cf->cf_loc[FLASHBUSCF_SIZE] == 0) {
faa.partinfo.part_size = chip->nc_size -
faa.partinfo.part_offset;
} else {
faa.partinfo.part_size = cf->cf_loc[FLASHBUSCF_SIZE];
}
if (cf->cf_loc[FLASHBUSCF_READONLY])
faa.partinfo.part_flags = FLASH_PART_READONLY;
else
faa.partinfo.part_flags = 0;
if (config_probe(parent, cf, &faa)) {
if (config_attach(parent, cf, &faa, nand_print,
CFARGS_NONE) != NULL) {
return 0;
} else {
return 1;
}
}
return 1;
}
void
nand_attach_mtdparts(device_t parent, const char *mtd_id, const char *cmdline)
{
struct nand_softc *sc = device_private(parent);
struct nand_chip *chip = &sc->sc_chip;
flash_attach_mtdparts(&nand_flash_if, parent, chip->nc_size,
mtd_id, cmdline);
}
int
nand_detach(device_t self, int flags)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
int error = 0;
error = config_detach_children(self, flags);
if (error) {
return error;
}
flash_sync_thread_destroy(&sc->sc_flash_io);
#ifdef NAND_BBT
nand_bbt_detach(self);
#endif
/* free oob cache */
kmem_free(chip->nc_oob_cache, chip->nc_spare_size);
kmem_free(chip->nc_page_cache, chip->nc_page_size);
kmem_free(chip->nc_ecc_cache, chip->nc_ecc->necc_size);
mutex_destroy(&sc->sc_device_lock);
pmf_device_deregister(sc->sc_dev);
return error;
}
int
nand_print(void *aux, const char *pnp)
{
if (pnp != NULL)
aprint_normal("nand at %s\n", pnp);
return UNCONF;
}
/* ask for a nand driver to attach to the controller */
device_t
nand_attach_mi(struct nand_interface *nand_if, device_t parent)
{
struct nand_attach_args arg;
KASSERT(nand_if != NULL);
/* fill the defaults if we have null pointers */
if (nand_if->program_page == NULL) {
nand_if->program_page = &nand_default_program_page;
}
if (nand_if->read_page == NULL) {
nand_if->read_page = &nand_default_read_page;
}
arg.naa_nand_if = nand_if;
return config_found(parent, &arg, nand_print,
CFARGS(.iattr = "nandbus"));
}
/* default everything to reasonable values, to ease future api changes */
void
nand_init_interface(struct nand_interface *interface)
{
interface->select = &nand_default_select;
interface->command = NULL;
interface->address = NULL;
interface->read_buf_1 = NULL;
interface->read_buf_2 = NULL;
interface->read_1 = NULL;
interface->read_2 = NULL;
interface->write_buf_1 = NULL;
interface->write_buf_2 = NULL;
interface->write_1 = NULL;
interface->write_2 = NULL;
interface->busy = NULL;
/*-
* most drivers dont want to change this, but some implement
* read/program in one step
*/
interface->program_page = &nand_default_program_page;
interface->read_page = &nand_default_read_page;
/* default to soft ecc, that should work everywhere */
interface->ecc_compute = &nand_default_ecc_compute;
interface->ecc_correct = &nand_default_ecc_correct;
interface->ecc_prepare = NULL;
interface->ecc.necc_code_size = 3;
interface->ecc.necc_block_size = 256;
interface->ecc.necc_type = NAND_ECC_TYPE_SW;
}
#if 0
/* handle quirks here */
static void
nand_quirks(device_t self, struct nand_chip *chip)
{
/* this is an example only! */
switch (chip->nc_manf_id) {
case NAND_MFR_SAMSUNG:
if (chip->nc_dev_id == 0x00) {
/* do something only samsung chips need */
/* or */
/* chip->nc_quirks |= NC_QUIRK_NO_READ_START */
}
}
return;
}
#endif
static int
nand_fill_chip_structure_legacy(device_t self, struct nand_chip *chip)
{
switch (chip->nc_manf_id) {
case NAND_MFR_MICRON:
return nand_read_parameters_micron(self, chip);
case NAND_MFR_SAMSUNG:
return nand_read_parameters_samsung(self, chip);
case NAND_MFR_TOSHIBA:
return nand_read_parameters_toshiba(self, chip);
default:
return 1;
}
return 0;
}
/**
* scan media to determine the chip's properties
* this function resets the device
*/
static int
nand_scan_media(device_t self, struct nand_chip *chip)
{
struct nand_softc *sc = device_private(self);
struct nand_ecc *ecc;
uint8_t onfi_signature[4];
nand_select(self, true);
nand_command(self, ONFI_RESET);
KASSERT(nand_get_status(self) & ONFI_STATUS_RDY);
nand_select(self, false);
/* check if the device implements the ONFI standard */
nand_select(self, true);
nand_command(self, ONFI_READ_ID);
nand_address(self, 0x20);
nand_read_1(self, &onfi_signature[0]);
nand_read_1(self, &onfi_signature[1]);
nand_read_1(self, &onfi_signature[2]);
nand_read_1(self, &onfi_signature[3]);
nand_select(self, false);
#ifdef NAND_DEBUG
device_printf(self, "signature: %02x %02x %02x %02x\n",
onfi_signature[0], onfi_signature[1],
onfi_signature[2], onfi_signature[3]);
#endif
if (onfi_signature[0] != 'O' || onfi_signature[1] != 'N' ||
onfi_signature[2] != 'F' || onfi_signature[3] != 'I') {
chip->nc_isonfi = false;
aprint_normal(": Legacy NAND Flash\n");
nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
if (nand_fill_chip_structure_legacy(self, chip)) {
aprint_error_dev(self,
"can't read device parameters for legacy chip\n");
return 1;
}
} else {
chip->nc_isonfi = true;
aprint_normal(": ONFI NAND Flash\n");
nand_read_id(self, &chip->nc_manf_id, &chip->nc_dev_id);
if (nand_fill_chip_structure(self, chip)) {
aprint_error_dev(self,
"can't read device parameters\n");
return 1;
}
}
aprint_normal_dev(self,
"manufacturer id: 0x%.2x (%s), device id: 0x%.2x\n",
chip->nc_manf_id,
nand_midtoname(chip->nc_manf_id),
chip->nc_dev_id);
aprint_normal_dev(self,
"page size: %" PRIu32 " bytes, spare size: %" PRIu32 " bytes, "
"block size: %" PRIu32 " bytes\n",
chip->nc_page_size, chip->nc_spare_size, chip->nc_block_size);
aprint_normal_dev(self,
"LUN size: %" PRIu32 " blocks, LUNs: %" PRIu8
", total storage size: %" PRIu64 " MB\n",
chip->nc_lun_blocks, chip->nc_num_luns,
chip->nc_size / 1024 / 1024);
aprint_normal_dev(self, "column cycles: %" PRIu8 ", row cycles: %"
PRIu8 ", width: %s\n",
chip->nc_addr_cycles_column, chip->nc_addr_cycles_row,
(chip->nc_flags & NC_BUSWIDTH_16) ? "x16" : "x8");
ecc = chip->nc_ecc = &sc->nand_if->ecc;
/*
* calculate the place of ecc data in oob
* we try to be compatible with Linux here
*/
switch (chip->nc_spare_size) {
case 8:
ecc->necc_offset = 0;
break;
case 16:
ecc->necc_offset = 0;
break;
case 32:
ecc->necc_offset = 0;
break;
case 64:
ecc->necc_offset = 40;
break;
case 128:
ecc->necc_offset = 80;
break;
default:
panic("OOB size %" PRIu32 " is unexpected", chip->nc_spare_size);
}
ecc->necc_steps = chip->nc_page_size / ecc->necc_block_size;
ecc->necc_size = ecc->necc_steps * ecc->necc_code_size;
/* check if we fit in oob */
if (ecc->necc_offset + ecc->necc_size > chip->nc_spare_size) {
panic("NAND ECC bits dont fit in OOB");
}
/* TODO: mark free oob area available for file systems */
chip->nc_ecc_cache = kmem_zalloc(ecc->necc_size, KM_SLEEP);
/*
* calculate badblock marker offset in oob
* we try to be compatible with linux here
*/
if (chip->nc_page_size > 512)
chip->nc_badmarker_offs = 0;
else
chip->nc_badmarker_offs = 5;
/* Calculate page shift and mask */
chip->nc_page_shift = ffs(chip->nc_page_size) - 1;
chip->nc_page_mask = ~(chip->nc_page_size - 1);
/* same for block */
chip->nc_block_shift = ffs(chip->nc_block_size) - 1;
chip->nc_block_mask = ~(chip->nc_block_size - 1);
/* look for quirks here if needed in future */
/* nand_quirks(self, chip); */
return 0;
}
void
nand_read_id(device_t self, uint8_t *manf, uint8_t *dev)
{
nand_select(self, true);
nand_command(self, ONFI_READ_ID);
nand_address(self, 0x00);
nand_read_1(self, manf);
nand_read_1(self, dev);
nand_select(self, false);
}
int
nand_read_parameter_page(device_t self, struct onfi_parameter_page *params)
{
uint8_t *bufp;
uint16_t crc;
int i;//, tries = 0;
KASSERT(sizeof(*params) == 256);
//read_params:
// tries++;
nand_select(self, true);
nand_command(self, ONFI_READ_PARAMETER_PAGE);
nand_address(self, 0x00);
nand_busy(self);
/* TODO check the signature if it contains at least 2 letters */
bufp = (uint8_t *)params;
/* XXX why i am not using read_buf? */
for (i = 0; i < 256; i++) {
nand_read_1(self, &bufp[i]);
}
nand_select(self, false);
/* validate the parameter page with the crc */
crc = nand_crc16(bufp, 254);
if (crc != params->param_integrity_crc) {
aprint_error_dev(self, "parameter page crc check failed\n");
/* TODO: we should read the next parameter page copy */
return 1;
}
return 0;
}
static int
nand_fill_chip_structure(device_t self, struct nand_chip *chip)
{
struct onfi_parameter_page params;
uint8_t vendor[13], model[21];
int i;
if (nand_read_parameter_page(self, &params)) {
return 1;
}
/* strip manufacturer and model string */
strlcpy(vendor, params.param_manufacturer, sizeof(vendor));
for (i = 11; i > 0 && vendor[i] == ' '; i--)
vendor[i] = 0;
strlcpy(model, params.param_model, sizeof(model));
for (i = 19; i > 0 && model[i] == ' '; i--)
model[i] = 0;
aprint_normal_dev(self, "vendor: %s, model: %s\n", vendor, model);
chip->nc_page_size = le32toh(params.param_pagesize);
chip->nc_block_size =
le32toh(params.param_blocksize) * chip->nc_page_size;
chip->nc_spare_size = le16toh(params.param_sparesize);
chip->nc_lun_blocks = le32toh(params.param_lunsize);
chip->nc_num_luns = params.param_numluns;
chip->nc_size =
chip->nc_block_size * chip->nc_lun_blocks * chip->nc_num_luns;
/* the lower 4 bits contain the row address cycles */
chip->nc_addr_cycles_row = params.param_addr_cycles & 0x07;
/* the upper 4 bits contain the column address cycles */
chip->nc_addr_cycles_column = (params.param_addr_cycles & ~0x07) >> 4;
uint16_t features = le16toh(params.param_features);
if (features & ONFI_FEATURE_16BIT) {
chip->nc_flags |= NC_BUSWIDTH_16;
}
if (features & ONFI_FEATURE_EXTENDED_PARAM) {
chip->nc_flags |= NC_EXTENDED_PARAM;
}
return 0;
}
/* ARGSUSED */
bool
nand_shutdown(device_t self, int howto)
{
return true;
}
static void
nand_address_column(device_t self, size_t row, size_t column)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
uint8_t i;
DPRINTF(("addressing row: 0x%jx column: %" PRIu32 "\n",
(uintmax_t )row, column));
/* XXX TODO */
row >>= chip->nc_page_shift;
/* Write the column (subpage) address */
if (chip->nc_flags & NC_BUSWIDTH_16)
column >>= 1;
for (i = 0; i < chip->nc_addr_cycles_column; i++, column >>= 8)
nand_address(self, column & 0xff);
/* Write the row (page) address */
for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
nand_address(self, row & 0xff);
}
static void
nand_address_row(device_t self, size_t row)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
int i;
/* XXX TODO */
row >>= chip->nc_page_shift;
/* Write the row (page) address */
for (i = 0; i < chip->nc_addr_cycles_row; i++, row >>= 8)
nand_address(self, row & 0xff);
}
static inline uint8_t
nand_get_status(device_t self)
{
uint8_t status;
nand_command(self, ONFI_READ_STATUS);
nand_busy(self);
nand_read_1(self, &status);
return status;
}
static bool
nand_check_wp(device_t self)
{
if (nand_get_status(self) & ONFI_STATUS_WP)
return false;
else
return true;
}
static void
nand_prepare_read(device_t self, flash_off_t row, flash_off_t column)
{
nand_command(self, ONFI_READ);
nand_address_column(self, row, column);
nand_command(self, ONFI_READ_START);
nand_busy(self);
}
/* read a page with ecc correction, default implementation */
int
nand_default_read_page(device_t self, size_t offset, uint8_t *data)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
size_t b, bs, e, cs;
uint8_t *ecc;
int result;
nand_prepare_read(self, offset, 0);
bs = chip->nc_ecc->necc_block_size;
cs = chip->nc_ecc->necc_code_size;
/* decide if we access by 8 or 16 bits */
if (chip->nc_flags & NC_BUSWIDTH_16) {
for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
nand_ecc_prepare(self, NAND_ECC_READ);
nand_read_buf_2(self, data + b, bs);
nand_ecc_compute(self, data + b,
chip->nc_ecc_cache + e);
}
} else {
for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
nand_ecc_prepare(self, NAND_ECC_READ);
nand_read_buf_1(self, data + b, bs);
nand_ecc_compute(self, data + b,
chip->nc_ecc_cache + e);
}
}
/* for debugging new drivers */
#if 0
nand_dump_data("page", data, chip->nc_page_size);
#endif
nand_read_oob(self, offset, chip->nc_oob_cache);
ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
/* useful for debugging new ecc drivers */
#if 0
printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
printf("0x");
for (b = 0; b < cs; b++) {
printf("%.2hhx", ecc[e+b]);
}
printf(" 0x");
for (b = 0; b < cs; b++) {
printf("%.2hhx", chip->nc_ecc_cache[e+b]);
}
printf("\n");
}
printf("--------------\n");
#endif
for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
result = nand_ecc_correct(self, data + b, ecc + e,
chip->nc_ecc_cache + e);
switch (result) {
case NAND_ECC_OK:
break;
case NAND_ECC_CORRECTED:
aprint_error_dev(self,
"data corrected with ECC at page offset 0x%jx "
"block %zu\n", (uintmax_t)offset, b);
break;
case NAND_ECC_TWOBIT:
aprint_error_dev(self,
"uncorrectable ECC error at page offset 0x%jx "
"block %zu\n", (uintmax_t)offset, b);
return EIO;
break;
case NAND_ECC_INVALID:
aprint_error_dev(self,
"invalid ECC in oob at page offset 0x%jx "
"block %zu\n", (uintmax_t)offset, b);
return EIO;
break;
default:
panic("invalid ECC correction errno");
}
}
return 0;
}
int
nand_default_program_page(device_t self, size_t page, const uint8_t *data)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
size_t bs, cs, e, b;
uint8_t status;
uint8_t *ecc;
nand_command(self, ONFI_PAGE_PROGRAM);
nand_address_column(self, page, 0);
nand_busy(self);
bs = chip->nc_ecc->necc_block_size;
cs = chip->nc_ecc->necc_code_size;
ecc = chip->nc_oob_cache + chip->nc_ecc->necc_offset;
/* XXX code duplication */
/* decide if we access by 8 or 16 bits */
if (chip->nc_flags & NC_BUSWIDTH_16) {
for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
nand_ecc_prepare(self, NAND_ECC_WRITE);
nand_write_buf_2(self, data + b, bs);
nand_ecc_compute(self, data + b, ecc + e);
}
/* write oob with ecc correction code */
nand_write_buf_2(self, chip->nc_oob_cache,
chip->nc_spare_size);
} else {
for (b = 0, e = 0; b < chip->nc_page_size; b += bs, e += cs) {
nand_ecc_prepare(self, NAND_ECC_WRITE);
nand_write_buf_1(self, data + b, bs);
nand_ecc_compute(self, data + b, ecc + e);
}
/* write oob with ecc correction code */
nand_write_buf_1(self, chip->nc_oob_cache,
chip->nc_spare_size);
}
nand_command(self, ONFI_PAGE_PROGRAM_START);
nand_busy(self);
/* for debugging ecc */
#if 0
printf("dumping ecc %d\n--------------\n", chip->nc_ecc->necc_steps);
for (e = 0; e < chip->nc_ecc->necc_steps; e++) {
printf("0x");
for (b = 0; b < cs; b++) {
printf("%.2hhx", ecc[e+b]);
}
printf("\n");
}
printf("--------------\n");
#endif
status = nand_get_status(self);
KASSERT(status & ONFI_STATUS_RDY);
if (status & ONFI_STATUS_FAIL) {
aprint_error_dev(self, "page program failed!\n");
return EIO;
}
return 0;
}
/* read the OOB of a page */
int
nand_read_oob(device_t self, size_t page, uint8_t *oob)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
nand_prepare_read(self, page, chip->nc_page_size);
if (chip->nc_flags & NC_BUSWIDTH_16)
nand_read_buf_2(self, oob, chip->nc_spare_size);
else
nand_read_buf_1(self, oob, chip->nc_spare_size);
/* for debugging drivers */
#if 0
nand_dump_data("oob", oob, chip->nc_spare_size);
#endif
return 0;
}
static int
nand_write_oob(device_t self, size_t offset, const void *oob)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
uint8_t status;
nand_command(self, ONFI_PAGE_PROGRAM);
nand_address_column(self, offset, chip->nc_page_size);
nand_command(self, ONFI_PAGE_PROGRAM_START);
nand_busy(self);
if (chip->nc_flags & NC_BUSWIDTH_16)
nand_write_buf_2(self, oob, chip->nc_spare_size);
else
nand_write_buf_1(self, oob, chip->nc_spare_size);
status = nand_get_status(self);
KASSERT(status & ONFI_STATUS_RDY);
if (status & ONFI_STATUS_FAIL)
return EIO;
else
return 0;
}
void
nand_markbad(device_t self, size_t offset)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
flash_off_t blockoffset;
#ifdef NAND_BBT
flash_off_t block;
block = offset / chip->nc_block_size;
nand_bbt_block_markbad(self, block);
#endif
blockoffset = offset & chip->nc_block_mask;
/* check if it is already marked bad */
if (nand_isbad(self, blockoffset))
return;
nand_read_oob(self, blockoffset, chip->nc_oob_cache);
chip->nc_oob_cache[chip->nc_badmarker_offs] = 0x00;
chip->nc_oob_cache[chip->nc_badmarker_offs + 1] = 0x00;
nand_write_oob(self, blockoffset, chip->nc_oob_cache);
}
bool
nand_isfactorybad(device_t self, flash_off_t offset)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
flash_off_t block, first_page, last_page, page;
int i;
/* Check for factory bad blocks first
* Factory bad blocks are marked in the first or last
* page of the blocks, see: ONFI 2.2, 3.2.2.
*/
block = offset / chip->nc_block_size;
first_page = block * chip->nc_block_size;
last_page = (block + 1) * chip->nc_block_size
- chip->nc_page_size;
for (i = 0, page = first_page; i < 2; i++, page = last_page) {
/* address OOB */
nand_prepare_read(self, page, chip->nc_page_size);
if (chip->nc_flags & NC_BUSWIDTH_16) {
uint16_t word;
nand_read_2(self, &word);
if (word == 0x0000)
return true;
} else {
uint8_t byte;
nand_read_1(self, &byte);
if (byte == 0x00)
return true;
}
}
return false;
}
bool
nand_iswornoutbad(device_t self, flash_off_t offset)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
flash_off_t block;
/* we inspect the first page of the block */
block = offset & chip->nc_block_mask;
/* Linux/u-boot compatible badblock handling */
if (chip->nc_flags & NC_BUSWIDTH_16) {
uint16_t word, mark;
nand_prepare_read(self, block,
chip->nc_page_size + (chip->nc_badmarker_offs & 0xfe));
nand_read_2(self, &word);
mark = htole16(word);
if (chip->nc_badmarker_offs & 0x01)
mark >>= 8;
if ((mark & 0xff) != 0xff)
return true;
} else {
uint8_t byte;
nand_prepare_read(self, block,
chip->nc_page_size + chip->nc_badmarker_offs);
nand_read_1(self, &byte);
if (byte != 0xff)
return true;
}
return false;
}
bool
nand_isbad(device_t self, flash_off_t offset)
{
#ifdef NAND_BBT
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
flash_off_t block;
block = offset / chip->nc_block_size;
return nand_bbt_block_isbad(self, block);
#else
/* ONFI host requirement */
if (nand_isfactorybad(self, offset))
return true;
/* Look for Linux/U-Boot compatible bad marker */
if (nand_iswornoutbad(self, offset))
return true;
return false;
#endif
}
int
nand_erase_block(device_t self, size_t offset)
{
uint8_t status;
/* xxx calculate first page of block for address? */
nand_command(self, ONFI_BLOCK_ERASE);
nand_address_row(self, offset);
nand_command(self, ONFI_BLOCK_ERASE_START);
nand_busy(self);
status = nand_get_status(self);
KASSERT(status & ONFI_STATUS_RDY);
if (status & ONFI_STATUS_FAIL) {
aprint_error_dev(self, "block erase failed!\n");
nand_markbad(self, offset);
return EIO;
} else {
return 0;
}
}
/* default functions for driver development */
/* default ECC using hamming code of 256 byte chunks */
int
nand_default_ecc_compute(device_t self, const uint8_t *data, uint8_t *code)
{
hamming_compute_256(data, code);
return 0;
}
int
nand_default_ecc_correct(device_t self, uint8_t *data, const uint8_t *origcode,
const uint8_t *compcode)
{
return hamming_correct_256(data, origcode, compcode);
}
void
nand_default_select(device_t self, bool enable)
{
/* do nothing */
return;
}
/* implementation of the block device API */
int
nand_flash_submit(device_t self, struct buf * const bp)
{
struct nand_softc *sc = device_private(self);
return flash_io_submit(&sc->sc_flash_io, bp);
}
/*
* handle (page) unaligned write to nand
*/
static int
nand_flash_write_unaligned(device_t self, flash_off_t offset, size_t len,
size_t *retlen, const uint8_t *buf)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
flash_off_t first, last, firstoff;
const uint8_t *bufp;
flash_off_t addr;
size_t left, count;
int error = 0, i;
first = offset & chip->nc_page_mask;
firstoff = offset & ~chip->nc_page_mask;
/* XXX check if this should be len - 1 */
last = (offset + len) & chip->nc_page_mask;
count = last - first + 1;
addr = first;
*retlen = 0;
mutex_enter(&sc->sc_device_lock);
if (count == 1) {
if (nand_isbad(self, addr)) {
aprint_error_dev(self,
"nand_flash_write_unaligned: "
"bad block encountered\n");
error = EIO;
goto out;
}
error = nand_read_page(self, addr, chip->nc_page_cache);
if (error) {
goto out;
}
memcpy(chip->nc_page_cache + firstoff, buf, len);
error = nand_program_page(self, addr, chip->nc_page_cache);
if (error) {
goto out;
}
*retlen = len;
goto out;
}
bufp = buf;
left = len;
for (i = 0; i < count && left != 0; i++) {
if (nand_isbad(self, addr)) {
aprint_error_dev(self,
"nand_flash_write_unaligned: "
"bad block encountered\n");
error = EIO;
goto out;
}
if (i == 0) {
error = nand_read_page(self,
addr, chip->nc_page_cache);
if (error) {
goto out;
}
memcpy(chip->nc_page_cache + firstoff,
bufp, chip->nc_page_size - firstoff);
printf("program page: %s: %d\n", __FILE__, __LINE__);
error = nand_program_page(self,
addr, chip->nc_page_cache);
if (error) {
goto out;
}
bufp += chip->nc_page_size - firstoff;
left -= chip->nc_page_size - firstoff;
*retlen += chip->nc_page_size - firstoff;
} else if (i == count - 1) {
error = nand_read_page(self,
addr, chip->nc_page_cache);
if (error) {
goto out;
}
memcpy(chip->nc_page_cache, bufp, left);
error = nand_program_page(self,
addr, chip->nc_page_cache);
if (error) {
goto out;
}
*retlen += left;
KASSERT(left < chip->nc_page_size);
} else {
/* XXX debug */
if (left > chip->nc_page_size) {
printf("left: %zu, i: %d, count: %zu\n",
left, i, count);
}
KASSERT(left > chip->nc_page_size);
error = nand_program_page(self, addr, bufp);
if (error) {
goto out;
}
bufp += chip->nc_page_size;
left -= chip->nc_page_size;
*retlen += chip->nc_page_size;
}
addr += chip->nc_page_size;
}
KASSERT(*retlen == len);
out:
mutex_exit(&sc->sc_device_lock);
return error;
}
int
nand_flash_write(device_t self, flash_off_t offset, size_t len, size_t *retlen,
const uint8_t *buf)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
const uint8_t *bufp;
size_t pages, page;
daddr_t addr;
int error = 0;
if ((offset + len) > chip->nc_size) {
DPRINTF(("nand_flash_write: write (off: 0x%jx, len: %ju),"
" is over device size (0x%jx)\n",
(uintmax_t)offset, (uintmax_t)len,
(uintmax_t)chip->nc_size));
return EINVAL;
}
if (len % chip->nc_page_size != 0 ||
offset % chip->nc_page_size != 0) {
return nand_flash_write_unaligned(self,
offset, len, retlen, buf);
}
pages = len / chip->nc_page_size;
KASSERT(pages != 0);
*retlen = 0;
addr = offset;
bufp = buf;
mutex_enter(&sc->sc_device_lock);
for (page = 0; page < pages; page++) {
/* do we need this check here? */
if (nand_isbad(self, addr)) {
aprint_error_dev(self,
"nand_flash_write: bad block encountered\n");
error = EIO;
goto out;
}
error = nand_program_page(self, addr, bufp);
if (error) {
goto out;
}
addr += chip->nc_page_size;
bufp += chip->nc_page_size;
*retlen += chip->nc_page_size;
}
out:
mutex_exit(&sc->sc_device_lock);
DPRINTF(("page programming: retlen: %" PRIu32 ", len: %" PRIu32 "\n", *retlen, len));
return error;
}
/*
* handle (page) unaligned read from nand
*/
static int
nand_flash_read_unaligned(device_t self, size_t offset,
size_t len, size_t *retlen, uint8_t *buf)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
daddr_t first, last, count, firstoff;
uint8_t *bufp;
daddr_t addr;
size_t left;
int error = 0, i;
first = offset & chip->nc_page_mask;
firstoff = offset & ~chip->nc_page_mask;
last = (offset + len) & chip->nc_page_mask;
count = (last - first) / chip->nc_page_size + 1;
addr = first;
bufp = buf;
left = len;
*retlen = 0;
mutex_enter(&sc->sc_device_lock);
if (count == 1) {
error = nand_read_page(self, addr, chip->nc_page_cache);
if (error) {
goto out;
}
memcpy(bufp, chip->nc_page_cache + firstoff, len);
*retlen = len;
goto out;
}
for (i = 0; i < count && left != 0; i++) {
error = nand_read_page(self, addr, chip->nc_page_cache);
if (error) {
goto out;
}
if (i == 0) {
memcpy(bufp, chip->nc_page_cache + firstoff,
chip->nc_page_size - firstoff);
bufp += chip->nc_page_size - firstoff;
left -= chip->nc_page_size - firstoff;
*retlen += chip->nc_page_size - firstoff;
} else if (i == count - 1) {
memcpy(bufp, chip->nc_page_cache, left);
*retlen += left;
KASSERT(left < chip->nc_page_size);
} else {
memcpy(bufp, chip->nc_page_cache, chip->nc_page_size);
bufp += chip->nc_page_size;
left -= chip->nc_page_size;
*retlen += chip->nc_page_size;
}
addr += chip->nc_page_size;
}
KASSERT(*retlen == len);
out:
mutex_exit(&sc->sc_device_lock);
return error;
}
int
nand_flash_read(device_t self, flash_off_t offset, size_t len, size_t *retlen,
uint8_t *buf)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
uint8_t *bufp;
size_t addr;
size_t i, pages;
int error = 0;
*retlen = 0;
DPRINTF(("nand_flash_read: off: 0x%jx, len: %" PRIu32 "\n",
(uintmax_t)offset, len));
if (__predict_false((offset + len) > chip->nc_size)) {
DPRINTF(("nand_flash_read: read (off: 0x%jx, len: %" PRIu32 "),"
" is over device size (%ju)\n", (uintmax_t)offset,
len, (uintmax_t)chip->nc_size));
return EINVAL;
}
/* Handle unaligned access, shouldnt be needed when using the
* block device, as strategy handles it, so only low level
* accesses will use this path
*/
/* XXX^2 */
#if 0
if (len < chip->nc_page_size)
panic("TODO page size is larger than read size");
#endif
if (len % chip->nc_page_size != 0 ||
offset % chip->nc_page_size != 0) {
return nand_flash_read_unaligned(self,
offset, len, retlen, buf);
}
bufp = buf;
addr = offset;
pages = len / chip->nc_page_size;
mutex_enter(&sc->sc_device_lock);
for (i = 0; i < pages; i++) {
/* XXX do we need this check here? */
if (nand_isbad(self, addr)) {
aprint_error_dev(self, "bad block encountered\n");
error = EIO;
goto out;
}
error = nand_read_page(self, addr, bufp);
if (error)
goto out;
bufp += chip->nc_page_size;
addr += chip->nc_page_size;
*retlen += chip->nc_page_size;
}
out:
mutex_exit(&sc->sc_device_lock);
return error;
}
int
nand_flash_isbad(device_t self, flash_off_t ofs, bool *is_bad)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
bool result;
if (ofs > chip->nc_size) {
DPRINTF(("nand_flash_isbad: offset 0x%jx is larger than"
" device size (0x%jx)\n", (uintmax_t)ofs,
(uintmax_t)chip->nc_size));
return EINVAL;
}
if (ofs % chip->nc_block_size != 0) {
DPRINTF(("offset (0x%jx) is not a multiple of block size "
"(%ju)",
(uintmax_t)ofs, (uintmax_t)chip->nc_block_size));
return EINVAL;
}
mutex_enter(&sc->sc_device_lock);
result = nand_isbad(self, ofs);
mutex_exit(&sc->sc_device_lock);
*is_bad = result;
return 0;
}
int
nand_flash_markbad(device_t self, flash_off_t ofs)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
if (ofs > chip->nc_size) {
DPRINTF(("nand_flash_markbad: offset 0x%jx is larger than"
" device size (0x%jx)\n", ofs,
(uintmax_t)chip->nc_size));
return EINVAL;
}
if (ofs % chip->nc_block_size != 0) {
panic("offset (%ju) is not a multiple of block size (%ju)",
(uintmax_t)ofs, (uintmax_t)chip->nc_block_size);
}
mutex_enter(&sc->sc_device_lock);
nand_markbad(self, ofs);
mutex_exit(&sc->sc_device_lock);
return 0;
}
int
nand_flash_erase(device_t self,
struct flash_erase_instruction *ei)
{
struct nand_softc *sc = device_private(self);
struct nand_chip *chip = &sc->sc_chip;
flash_off_t addr;
int error = 0;
if (ei->ei_addr < 0 || ei->ei_len < chip->nc_block_size)
return EINVAL;
if (ei->ei_addr + ei->ei_len > chip->nc_size) {
DPRINTF(("nand_flash_erase: erase address is over the end"
" of the device\n"));
return EINVAL;
}
if (ei->ei_addr % chip->nc_block_size != 0) {
aprint_error_dev(self,
"nand_flash_erase: ei_addr (%ju) is not"
" a multiple of block size (%ju)",
(uintmax_t)ei->ei_addr,
(uintmax_t)chip->nc_block_size);
return EINVAL;
}
if (ei->ei_len % chip->nc_block_size != 0) {
aprint_error_dev(self,
"nand_flash_erase: ei_len (%ju) is not"
" a multiple of block size (%ju)",
(uintmax_t)ei->ei_len,
(uintmax_t)chip->nc_block_size);
return EINVAL;
}
mutex_enter(&sc->sc_device_lock);
addr = ei->ei_addr;
while (addr < ei->ei_addr + ei->ei_len) {
if (nand_isbad(self, addr)) {
aprint_error_dev(self, "bad block encountered\n");
ei->ei_state = FLASH_ERASE_FAILED;
error = EIO;
goto out;
}
error = nand_erase_block(self, addr);
if (error) {
ei->ei_state = FLASH_ERASE_FAILED;
goto out;
}
addr += chip->nc_block_size;
}
mutex_exit(&sc->sc_device_lock);
ei->ei_state = FLASH_ERASE_DONE;
if (ei->ei_callback != NULL) {
ei->ei_callback(ei);
}
return 0;
out:
mutex_exit(&sc->sc_device_lock);
return error;
}
MODULE(MODULE_CLASS_DRIVER, nand, "flash");
#ifdef _MODULE
#include "ioconf.c"
#endif
static int
nand_modcmd(modcmd_t cmd, void *opaque)
{
switch (cmd) {
case MODULE_CMD_INIT:
#ifdef _MODULE
return config_init_component(cfdriver_ioconf_nand,
cfattach_ioconf_nand, cfdata_ioconf_nand);
#else
return 0;
#endif
case MODULE_CMD_FINI:
#ifdef _MODULE
return config_fini_component(cfdriver_ioconf_nand,
cfattach_ioconf_nand, cfdata_ioconf_nand);
#else
return 0;
#endif
default:
return ENOTTY;
}
}