0abbce59db
Memory allocated in the fast path of uarea_poolpage_alloc() is a page itself. Therefore, it is obviously page-aligned. Pointed out by skrll.
538 lines
13 KiB
C
538 lines
13 KiB
C
/* $NetBSD: uvm_glue.c,v 1.177 2020/03/05 12:21:00 rin Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Charles D. Cranor and Washington University.
|
|
* Copyright (c) 1991, 1993, The Regents of the University of California.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to Berkeley by
|
|
* The Mach Operating System project at Carnegie-Mellon University.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)vm_glue.c 8.6 (Berkeley) 1/5/94
|
|
* from: Id: uvm_glue.c,v 1.1.2.8 1998/02/07 01:16:54 chs Exp
|
|
*
|
|
*
|
|
* Copyright (c) 1987, 1990 Carnegie-Mellon University.
|
|
* All rights reserved.
|
|
*
|
|
* Permission to use, copy, modify and distribute this software and
|
|
* its documentation is hereby granted, provided that both the copyright
|
|
* notice and this permission notice appear in all copies of the
|
|
* software, derivative works or modified versions, and any portions
|
|
* thereof, and that both notices appear in supporting documentation.
|
|
*
|
|
* CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
|
|
* CONDITION. CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
|
|
* FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
|
|
*
|
|
* Carnegie Mellon requests users of this software to return to
|
|
*
|
|
* Software Distribution Coordinator or Software.Distribution@CS.CMU.EDU
|
|
* School of Computer Science
|
|
* Carnegie Mellon University
|
|
* Pittsburgh PA 15213-3890
|
|
*
|
|
* any improvements or extensions that they make and grant Carnegie the
|
|
* rights to redistribute these changes.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: uvm_glue.c,v 1.177 2020/03/05 12:21:00 rin Exp $");
|
|
|
|
#include "opt_kgdb.h"
|
|
#include "opt_kstack.h"
|
|
#include "opt_uvmhist.h"
|
|
|
|
/*
|
|
* uvm_glue.c: glue functions
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/syncobj.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/lwp.h>
|
|
#include <sys/asan.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_pdpolicy.h>
|
|
#include <uvm/uvm_pgflcache.h>
|
|
|
|
/*
|
|
* uvm_kernacc: test if kernel can access a memory region.
|
|
*
|
|
* => Currently used only by /dev/kmem driver (dev/mm.c).
|
|
*/
|
|
bool
|
|
uvm_kernacc(void *addr, size_t len, vm_prot_t prot)
|
|
{
|
|
vaddr_t saddr = trunc_page((vaddr_t)addr);
|
|
vaddr_t eaddr = round_page(saddr + len);
|
|
bool rv;
|
|
|
|
vm_map_lock_read(kernel_map);
|
|
rv = uvm_map_checkprot(kernel_map, saddr, eaddr, prot);
|
|
vm_map_unlock_read(kernel_map);
|
|
|
|
return rv;
|
|
}
|
|
|
|
#ifdef KGDB
|
|
/*
|
|
* Change protections on kernel pages from addr to addr+len
|
|
* (presumably so debugger can plant a breakpoint).
|
|
*
|
|
* We force the protection change at the pmap level. If we were
|
|
* to use vm_map_protect a change to allow writing would be lazily-
|
|
* applied meaning we would still take a protection fault, something
|
|
* we really don't want to do. It would also fragment the kernel
|
|
* map unnecessarily. We cannot use pmap_protect since it also won't
|
|
* enforce a write-enable request. Using pmap_enter is the only way
|
|
* we can ensure the change takes place properly.
|
|
*/
|
|
void
|
|
uvm_chgkprot(void *addr, size_t len, int rw)
|
|
{
|
|
vm_prot_t prot;
|
|
paddr_t pa;
|
|
vaddr_t sva, eva;
|
|
|
|
prot = rw == B_READ ? VM_PROT_READ : VM_PROT_READ|VM_PROT_WRITE;
|
|
eva = round_page((vaddr_t)addr + len);
|
|
for (sva = trunc_page((vaddr_t)addr); sva < eva; sva += PAGE_SIZE) {
|
|
/*
|
|
* Extract physical address for the page.
|
|
*/
|
|
if (pmap_extract(pmap_kernel(), sva, &pa) == false)
|
|
panic("%s: invalid page", __func__);
|
|
pmap_enter(pmap_kernel(), sva, pa, prot, PMAP_WIRED);
|
|
}
|
|
pmap_update(pmap_kernel());
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* uvm_vslock: wire user memory for I/O
|
|
*
|
|
* - called from physio and sys___sysctl
|
|
* - XXXCDC: consider nuking this (or making it a macro?)
|
|
*/
|
|
|
|
int
|
|
uvm_vslock(struct vmspace *vs, void *addr, size_t len, vm_prot_t access_type)
|
|
{
|
|
struct vm_map *map;
|
|
vaddr_t start, end;
|
|
int error;
|
|
|
|
map = &vs->vm_map;
|
|
start = trunc_page((vaddr_t)addr);
|
|
end = round_page((vaddr_t)addr + len);
|
|
error = uvm_fault_wire(map, start, end, access_type, 0);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* uvm_vsunlock: unwire user memory wired by uvm_vslock()
|
|
*
|
|
* - called from physio and sys___sysctl
|
|
* - XXXCDC: consider nuking this (or making it a macro?)
|
|
*/
|
|
|
|
void
|
|
uvm_vsunlock(struct vmspace *vs, void *addr, size_t len)
|
|
{
|
|
uvm_fault_unwire(&vs->vm_map, trunc_page((vaddr_t)addr),
|
|
round_page((vaddr_t)addr + len));
|
|
}
|
|
|
|
/*
|
|
* uvm_proc_fork: fork a virtual address space
|
|
*
|
|
* - the address space is copied as per parent map's inherit values
|
|
*/
|
|
void
|
|
uvm_proc_fork(struct proc *p1, struct proc *p2, bool shared)
|
|
{
|
|
|
|
if (shared == true) {
|
|
p2->p_vmspace = NULL;
|
|
uvmspace_share(p1, p2);
|
|
} else {
|
|
p2->p_vmspace = uvmspace_fork(p1->p_vmspace);
|
|
}
|
|
|
|
cpu_proc_fork(p1, p2);
|
|
}
|
|
|
|
/*
|
|
* uvm_lwp_fork: fork a thread
|
|
*
|
|
* - a new PCB structure is allocated for the child process,
|
|
* and filled in by MD layer
|
|
* - if specified, the child gets a new user stack described by
|
|
* stack and stacksize
|
|
* - NOTE: the kernel stack may be at a different location in the child
|
|
* process, and thus addresses of automatic variables may be invalid
|
|
* after cpu_lwp_fork returns in the child process. We do nothing here
|
|
* after cpu_lwp_fork returns.
|
|
*/
|
|
void
|
|
uvm_lwp_fork(struct lwp *l1, struct lwp *l2, void *stack, size_t stacksize,
|
|
void (*func)(void *), void *arg)
|
|
{
|
|
|
|
/* Fill stack with magic number. */
|
|
kstack_setup_magic(l2);
|
|
|
|
/*
|
|
* cpu_lwp_fork() copy and update the pcb, and make the child ready
|
|
* to run. If this is a normal user fork, the child will exit
|
|
* directly to user mode via child_return() on its first time
|
|
* slice and will not return here. If this is a kernel thread,
|
|
* the specified entry point will be executed.
|
|
*/
|
|
cpu_lwp_fork(l1, l2, stack, stacksize, func, arg);
|
|
}
|
|
|
|
#ifndef USPACE_ALIGN
|
|
#define USPACE_ALIGN 0
|
|
#endif
|
|
|
|
static pool_cache_t uvm_uarea_cache;
|
|
#if defined(__HAVE_CPU_UAREA_ROUTINES)
|
|
static pool_cache_t uvm_uarea_system_cache;
|
|
#else
|
|
#define uvm_uarea_system_cache uvm_uarea_cache
|
|
#endif
|
|
|
|
static void *
|
|
uarea_poolpage_alloc(struct pool *pp, int flags)
|
|
{
|
|
|
|
KASSERT((flags & PR_WAITOK) != 0);
|
|
|
|
#if defined(PMAP_MAP_POOLPAGE)
|
|
while (USPACE == PAGE_SIZE &&
|
|
(USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
|
|
struct vm_page *pg;
|
|
vaddr_t va;
|
|
#if defined(PMAP_ALLOC_POOLPAGE)
|
|
pg = PMAP_ALLOC_POOLPAGE(0);
|
|
#else
|
|
pg = uvm_pagealloc(NULL, 0, NULL, 0);
|
|
#endif
|
|
if (pg == NULL) {
|
|
uvm_wait("uarea");
|
|
continue;
|
|
}
|
|
va = PMAP_MAP_POOLPAGE(VM_PAGE_TO_PHYS(pg));
|
|
KASSERT(va != 0);
|
|
return (void *)va;
|
|
}
|
|
#endif
|
|
#if defined(__HAVE_CPU_UAREA_ROUTINES)
|
|
void *va = cpu_uarea_alloc(false);
|
|
if (va)
|
|
return (void *)va;
|
|
#endif
|
|
return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
|
|
USPACE_ALIGN, UVM_KMF_WIRED | UVM_KMF_WAITVA);
|
|
}
|
|
|
|
static void
|
|
uarea_poolpage_free(struct pool *pp, void *addr)
|
|
{
|
|
#if defined(PMAP_MAP_POOLPAGE)
|
|
if (USPACE == PAGE_SIZE &&
|
|
(USPACE_ALIGN == 0 || USPACE_ALIGN == PAGE_SIZE)) {
|
|
paddr_t pa;
|
|
|
|
pa = PMAP_UNMAP_POOLPAGE((vaddr_t) addr);
|
|
KASSERT(pa != 0);
|
|
uvm_pagefree(PHYS_TO_VM_PAGE(pa));
|
|
return;
|
|
}
|
|
#endif
|
|
#if defined(__HAVE_CPU_UAREA_ROUTINES)
|
|
if (cpu_uarea_free(addr))
|
|
return;
|
|
#endif
|
|
uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
|
|
UVM_KMF_WIRED);
|
|
}
|
|
|
|
static struct pool_allocator uvm_uarea_allocator = {
|
|
.pa_alloc = uarea_poolpage_alloc,
|
|
.pa_free = uarea_poolpage_free,
|
|
.pa_pagesz = USPACE,
|
|
};
|
|
|
|
#if defined(__HAVE_CPU_UAREA_ROUTINES)
|
|
static void *
|
|
uarea_system_poolpage_alloc(struct pool *pp, int flags)
|
|
{
|
|
void * const va = cpu_uarea_alloc(true);
|
|
if (va != NULL)
|
|
return va;
|
|
|
|
return (void *)uvm_km_alloc(kernel_map, pp->pr_alloc->pa_pagesz,
|
|
USPACE_ALIGN, UVM_KMF_WIRED |
|
|
((flags & PR_WAITOK) ? UVM_KMF_WAITVA :
|
|
(UVM_KMF_NOWAIT | UVM_KMF_TRYLOCK)));
|
|
}
|
|
|
|
static void
|
|
uarea_system_poolpage_free(struct pool *pp, void *addr)
|
|
{
|
|
if (cpu_uarea_free(addr))
|
|
return;
|
|
|
|
uvm_km_free(kernel_map, (vaddr_t)addr, pp->pr_alloc->pa_pagesz,
|
|
UVM_KMF_WIRED);
|
|
}
|
|
|
|
static struct pool_allocator uvm_uarea_system_allocator = {
|
|
.pa_alloc = uarea_system_poolpage_alloc,
|
|
.pa_free = uarea_system_poolpage_free,
|
|
.pa_pagesz = USPACE,
|
|
};
|
|
#endif /* __HAVE_CPU_UAREA_ROUTINES */
|
|
|
|
void
|
|
uvm_uarea_init(void)
|
|
{
|
|
int flags = PR_NOTOUCH;
|
|
|
|
/*
|
|
* specify PR_NOALIGN unless the alignment provided by
|
|
* the backend (USPACE_ALIGN) is sufficient to provide
|
|
* pool page size (UPSACE) alignment.
|
|
*/
|
|
|
|
if ((USPACE_ALIGN == 0 && USPACE != PAGE_SIZE) ||
|
|
(USPACE_ALIGN % USPACE) != 0) {
|
|
flags |= PR_NOALIGN;
|
|
}
|
|
|
|
uvm_uarea_cache = pool_cache_init(USPACE, USPACE_ALIGN, 0, flags,
|
|
"uarea", &uvm_uarea_allocator, IPL_NONE, NULL, NULL, NULL);
|
|
#if defined(__HAVE_CPU_UAREA_ROUTINES)
|
|
uvm_uarea_system_cache = pool_cache_init(USPACE, USPACE_ALIGN,
|
|
0, flags, "uareasys", &uvm_uarea_system_allocator,
|
|
IPL_NONE, NULL, NULL, NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* uvm_uarea_alloc: allocate a u-area
|
|
*/
|
|
|
|
vaddr_t
|
|
uvm_uarea_alloc(void)
|
|
{
|
|
|
|
return (vaddr_t)pool_cache_get(uvm_uarea_cache, PR_WAITOK);
|
|
}
|
|
|
|
vaddr_t
|
|
uvm_uarea_system_alloc(struct cpu_info *ci)
|
|
{
|
|
#ifdef __HAVE_CPU_UAREA_ALLOC_IDLELWP
|
|
if (__predict_false(ci != NULL))
|
|
return cpu_uarea_alloc_idlelwp(ci);
|
|
#endif
|
|
|
|
return (vaddr_t)pool_cache_get(uvm_uarea_system_cache, PR_WAITOK);
|
|
}
|
|
|
|
/*
|
|
* uvm_uarea_free: free a u-area
|
|
*/
|
|
|
|
void
|
|
uvm_uarea_free(vaddr_t uaddr)
|
|
{
|
|
|
|
kasan_mark((void *)uaddr, USPACE, USPACE, 0);
|
|
pool_cache_put(uvm_uarea_cache, (void *)uaddr);
|
|
}
|
|
|
|
void
|
|
uvm_uarea_system_free(vaddr_t uaddr)
|
|
{
|
|
|
|
kasan_mark((void *)uaddr, USPACE, USPACE, 0);
|
|
pool_cache_put(uvm_uarea_system_cache, (void *)uaddr);
|
|
}
|
|
|
|
vaddr_t
|
|
uvm_lwp_getuarea(lwp_t *l)
|
|
{
|
|
|
|
return (vaddr_t)l->l_addr - UAREA_PCB_OFFSET;
|
|
}
|
|
|
|
void
|
|
uvm_lwp_setuarea(lwp_t *l, vaddr_t addr)
|
|
{
|
|
|
|
l->l_addr = (void *)(addr + UAREA_PCB_OFFSET);
|
|
}
|
|
|
|
/*
|
|
* uvm_proc_exit: exit a virtual address space
|
|
*
|
|
* - borrow proc0's address space because freeing the vmspace
|
|
* of the dead process may block.
|
|
*/
|
|
|
|
void
|
|
uvm_proc_exit(struct proc *p)
|
|
{
|
|
struct lwp *l = curlwp; /* XXX */
|
|
struct vmspace *ovm;
|
|
|
|
KASSERT(p == l->l_proc);
|
|
ovm = p->p_vmspace;
|
|
KASSERT(ovm != NULL);
|
|
|
|
if (__predict_false(ovm == proc0.p_vmspace))
|
|
return;
|
|
|
|
/*
|
|
* borrow proc0's address space.
|
|
*/
|
|
kpreempt_disable();
|
|
pmap_deactivate(l);
|
|
p->p_vmspace = proc0.p_vmspace;
|
|
pmap_activate(l);
|
|
kpreempt_enable();
|
|
|
|
uvmspace_free(ovm);
|
|
}
|
|
|
|
void
|
|
uvm_lwp_exit(struct lwp *l)
|
|
{
|
|
vaddr_t va = uvm_lwp_getuarea(l);
|
|
bool system = (l->l_flag & LW_SYSTEM) != 0;
|
|
|
|
if (system)
|
|
uvm_uarea_system_free(va);
|
|
else
|
|
uvm_uarea_free(va);
|
|
#ifdef DIAGNOSTIC
|
|
uvm_lwp_setuarea(l, (vaddr_t)NULL);
|
|
#endif
|
|
}
|
|
|
|
/*
|
|
* uvm_init_limit: init per-process VM limits
|
|
*
|
|
* - called for process 0 and then inherited by all others.
|
|
*/
|
|
|
|
void
|
|
uvm_init_limits(struct proc *p)
|
|
{
|
|
|
|
/*
|
|
* Set up the initial limits on process VM. Set the maximum
|
|
* resident set size to be all of (reasonably) available memory.
|
|
* This causes any single, large process to start random page
|
|
* replacement once it fills memory.
|
|
*/
|
|
|
|
p->p_rlimit[RLIMIT_STACK].rlim_cur = DFLSSIZ;
|
|
p->p_rlimit[RLIMIT_STACK].rlim_max = maxsmap;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_cur = DFLDSIZ;
|
|
p->p_rlimit[RLIMIT_DATA].rlim_max = maxdmap;
|
|
p->p_rlimit[RLIMIT_AS].rlim_cur = RLIM_INFINITY;
|
|
p->p_rlimit[RLIMIT_AS].rlim_max = RLIM_INFINITY;
|
|
p->p_rlimit[RLIMIT_RSS].rlim_cur = MIN(VM_MAXUSER_ADDRESS,
|
|
ctob((rlim_t)uvm_availmem()));
|
|
}
|
|
|
|
/*
|
|
* uvm_scheduler: process zero main loop.
|
|
*/
|
|
|
|
extern struct loadavg averunnable;
|
|
|
|
void
|
|
uvm_scheduler(void)
|
|
{
|
|
lwp_t *l = curlwp;
|
|
|
|
lwp_lock(l);
|
|
l->l_class = SCHED_FIFO;
|
|
lwp_changepri(l, PRI_VM);
|
|
lwp_unlock(l);
|
|
|
|
/* Start the freelist cache. */
|
|
uvm_pgflcache_start();
|
|
|
|
for (;;) {
|
|
/* Update legacy stats for post-mortem debugging. */
|
|
uvm_update_uvmexp();
|
|
|
|
/* See if the pagedaemon needs to generate some free pages. */
|
|
uvm_kick_pdaemon();
|
|
|
|
/* Calculate process statistics. */
|
|
sched_pstats();
|
|
(void)kpause("uvm", false, hz, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* uvm_idle: called from the idle loop.
|
|
*/
|
|
|
|
void
|
|
uvm_idle(void)
|
|
{
|
|
struct cpu_info *ci = curcpu();
|
|
struct uvm_cpu *ucpu = ci->ci_data.cpu_uvm;
|
|
|
|
KASSERT(kpreempt_disabled());
|
|
|
|
if (!ci->ci_want_resched)
|
|
uvmpdpol_idle(ucpu);
|
|
if (!ci->ci_want_resched)
|
|
uvm_pageidlezero();
|
|
|
|
}
|