NetBSD/sys/dev/ic/tpm.c
christos b787afbfb6 - remove unused variables
- move variables inside ifdef sections
- ifdef notdef unused code
- use __USE for debugging variables
2013-10-17 21:24:24 +00:00

1147 lines
27 KiB
C

/* $NetBSD: tpm.c,v 1.9 2013/10/17 21:24:24 christos Exp $ */
/*
* Copyright (c) 2008, 2009 Michael Shalayeff
* Copyright (c) 2009, 2010 Hans-Jörg Höxer
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF MIND, USE, DATA OR PROFITS, WHETHER IN
* AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT
* OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: tpm.c,v 1.9 2013/10/17 21:24:24 christos Exp $");
#if 0
#define TPM_DEBUG
#define aprint_debug_dev aprint_error_dev
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/conf.h>
#include <sys/bus.h>
#include <sys/pmf.h>
#include <dev/ic/tpmreg.h>
#include <dev/ic/tpmvar.h>
/* Set when enabling legacy interface in host bridge. */
int tpm_enabled;
const struct {
uint32_t devid;
char name[32];
int flags;
#define TPM_DEV_NOINTS 0x0001
} tpm_devs[] = {
{ 0x000615d1, "IFX SLD 9630 TT 1.1", 0 },
{ 0x000b15d1, "IFX SLB 9635 TT 1.2", 0 },
{ 0x100214e4, "Broadcom BCM0102", TPM_DEV_NOINTS },
{ 0x00fe1050, "WEC WPCT200", 0 },
{ 0x687119fa, "SNS SSX35", 0 },
{ 0x2e4d5453, "STM ST19WP18", 0 },
{ 0x32021114, "ATML 97SC3203", TPM_DEV_NOINTS },
{ 0x10408086, "INTEL INTC0102", 0 },
{ 0, "", TPM_DEV_NOINTS },
};
int tpm_tis12_irqinit(struct tpm_softc *, int, int);
int tpm_waitfor_poll(struct tpm_softc *, uint8_t, int, void *);
int tpm_waitfor_int(struct tpm_softc *, uint8_t, int, void *, int);
int tpm_waitfor(struct tpm_softc *, uint8_t, int, void *);
int tpm_request_locality(struct tpm_softc *, int);
int tpm_getburst(struct tpm_softc *);
uint8_t tpm_status(struct tpm_softc *);
int tpm_tmotohz(int);
static dev_type_open(tpmopen);
static dev_type_close(tpmclose);
static dev_type_read(tpmread);
static dev_type_read(tpmwrite);
static dev_type_ioctl(tpmioctl);
extern struct cfdriver tpm_cd;
#define TPMUNIT(a) minor(a)
const struct cdevsw tpm_cdevsw = {
tpmopen, tpmclose, tpmread, tpmwrite, tpmioctl,
nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
};
/* Probe TPM using TIS 1.2 interface. */
int
tpm_tis12_probe(bus_space_tag_t bt, bus_space_handle_t bh)
{
uint32_t r;
uint8_t save, reg;
r = bus_space_read_4(bt, bh, TPM_INTF_CAPABILITIES);
if (r == 0xffffffff)
return 0;
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_CAPBITS, r);
printf("%s: caps=%s\n", __func__, buf);
#endif
if ((r & TPM_CAPSREQ) != TPM_CAPSREQ ||
!(r & (TPM_INTF_INT_EDGE_RISING | TPM_INTF_INT_LEVEL_LOW))) {
#ifdef TPM_DEBUG
printf("%s: caps too low (caps=%s)\n", __func__, buf);
#endif
return 0;
}
save = bus_space_read_1(bt, bh, TPM_ACCESS);
bus_space_write_1(bt, bh, TPM_ACCESS, TPM_ACCESS_REQUEST_USE);
reg = bus_space_read_1(bt, bh, TPM_ACCESS);
if ((reg & TPM_ACCESS_VALID) && (reg & TPM_ACCESS_ACTIVE_LOCALITY) &&
bus_space_read_4(bt, bh, TPM_ID) != 0xffffffff)
return 1;
bus_space_write_1(bt, bh, TPM_ACCESS, save);
return 0;
}
/*
* Setup interrupt vector if one is provided and interrupts are know to
* work on that particular chip.
*/
int
tpm_tis12_irqinit(struct tpm_softc *sc, int irq, int idx)
{
uint32_t r;
if ((irq == -1) || (tpm_devs[idx].flags & TPM_DEV_NOINTS)) {
sc->sc_vector = -1;
return 0;
}
/* Ack and disable all interrupts. */
r = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
r & ~TPM_GLOBAL_INT_ENABLE);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS));
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_INTERRUPT_ENABLE_BITS, r);
aprint_debug_dev(sc->sc_dev, "%s: before ien %s\n", __func__, buf);
#endif
/* Program interrupt vector. */
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_INT_VECTOR, irq);
sc->sc_vector = irq;
/* Program interrupt type. */
r &= ~(TPM_INT_EDGE_RISING|TPM_INT_EDGE_FALLING|TPM_INT_LEVEL_HIGH|
TPM_INT_LEVEL_LOW);
r |= TPM_GLOBAL_INT_ENABLE|TPM_CMD_READY_INT|TPM_LOCALITY_CHANGE_INT|
TPM_STS_VALID_INT|TPM_DATA_AVAIL_INT;
if (sc->sc_capabilities & TPM_INTF_INT_EDGE_RISING)
r |= TPM_INT_EDGE_RISING;
else if (sc->sc_capabilities & TPM_INTF_INT_EDGE_FALLING)
r |= TPM_INT_EDGE_FALLING;
else if (sc->sc_capabilities & TPM_INTF_INT_LEVEL_HIGH)
r |= TPM_INT_LEVEL_HIGH;
else
r |= TPM_INT_LEVEL_LOW;
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE, r);
#ifdef TPM_DEBUG
snprintb(buf, sizeof(buf), TPM_INTERRUPT_ENABLE_BITS, r);
aprint_debug_dev(sc->sc_dev, "%s: after ien %s\n", __func__, buf);
#endif
return 0;
}
/* Setup TPM using TIS 1.2 interface. */
int
tpm_tis12_init(struct tpm_softc *sc, int irq, const char *name)
{
uint32_t r;
int i;
r = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTF_CAPABILITIES);
#ifdef TPM_DEBUG
char cbuf[128];
snprintb(cbuf, sizeof(cbuf), TPM_CAPBITS, r);
aprint_debug_dev(sc->sc_dev, "%s: caps=%s ", __func__, cbuf);
#endif
if ((r & TPM_CAPSREQ) != TPM_CAPSREQ ||
!(r & (TPM_INTF_INT_EDGE_RISING | TPM_INTF_INT_LEVEL_LOW))) {
char buf[128];
snprintb(buf, sizeof(buf), TPM_CAPBITS, r);
aprint_error_dev(sc->sc_dev, "capabilities too low (caps=%s)\n",
buf);
return 1;
}
sc->sc_capabilities = r;
sc->sc_devid = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_ID);
sc->sc_rev = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_REV);
for (i = 0; tpm_devs[i].devid; i++)
if (tpm_devs[i].devid == sc->sc_devid)
break;
if (tpm_devs[i].devid)
aprint_normal(": %s rev 0x%x\n",
tpm_devs[i].name, sc->sc_rev);
else
aprint_normal(": device 0x%08x rev 0x%x\n",
sc->sc_devid, sc->sc_rev);
if (tpm_tis12_irqinit(sc, irq, i))
return 1;
if (tpm_request_locality(sc, 0))
return 1;
/* Abort whatever it thought it was doing. */
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS, TPM_STS_CMD_READY);
return 0;
}
int
tpm_request_locality(struct tpm_softc *sc, int l)
{
uint32_t r;
int to, rv;
if (l != 0)
return EINVAL;
if ((bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_ACCESS) &
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) ==
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY))
return 0;
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_ACCESS,
TPM_ACCESS_REQUEST_USE);
to = tpm_tmotohz(TPM_ACCESS_TMO);
while ((r = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_ACCESS) &
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) !=
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY) && to--) {
rv = tsleep(sc->sc_init, PRIBIO | PCATCH, "tpm_locality", 1);
if (rv && rv != EWOULDBLOCK) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: interrupted %d\n",
__func__, rv);
#endif
return rv;
}
}
if ((r & (TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) !=
(TPM_ACCESS_VALID | TPM_ACCESS_ACTIVE_LOCALITY)) {
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_ACCESS_BITS, r);
aprint_debug_dev(sc->sc_dev, "%s: access %s\n", __func__, buf);
#endif
return EBUSY;
}
return 0;
}
int
tpm_getburst(struct tpm_softc *sc)
{
int burst, to, rv;
to = tpm_tmotohz(TPM_BURST_TMO);
burst = 0;
while (burst == 0 && to--) {
/*
* Burst count has to be read from bits 8 to 23 without
* touching any other bits, eg. the actual status bits 0
* to 7.
*/
burst = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_STS + 1);
burst |= bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_STS + 2)
<< 8;
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: read %d\n", __func__, burst);
#endif
if (burst)
return burst;
rv = tsleep(sc, PRIBIO | PCATCH, "tpm_getburst", 1);
if (rv && rv != EWOULDBLOCK) {
return 0;
}
}
return 0;
}
uint8_t
tpm_status(struct tpm_softc *sc)
{
return bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_STS) & TPM_STS_MASK;
}
int
tpm_tmotohz(int tmo)
{
struct timeval tv;
tv.tv_sec = tmo / 1000;
tv.tv_usec = 1000 * (tmo % 1000);
return tvtohz(&tv);
}
/* Save TPM state on suspend. */
bool
tpm_suspend(device_t dev, const pmf_qual_t *qual)
{
struct tpm_softc *sc = device_private(dev);
static const uint8_t command[] = {
0, 193, /* TPM_TAG_RQU_COMMAND */
0, 0, 0, 10, /* Length in bytes */
0, 0, 0, 156 /* TPM_ORD_SaveStates */
};
uint8_t scratch[sizeof(command)];
/*
* Power down: We have to issue the SaveStates command.
*/
(*sc->sc_write)(sc, &command, sizeof(command));
(*sc->sc_read)(sc, &scratch, sizeof(scratch), NULL, TPM_HDRSIZE);
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: power down\n", __func__);
#endif
return true;
}
/*
* Handle resume event. Actually nothing to do as the BIOS is supposed
* to restore the previously saved state.
*/
bool
tpm_resume(device_t dev, const pmf_qual_t *qual)
{
#ifdef TPM_DEBUG
struct tpm_softc *sc = device_private(dev);
aprint_debug_dev(sc->sc_dev, "%s: resume\n", __func__);
#endif
return true;
}
/* Wait for given status bits using polling. */
int
tpm_waitfor_poll(struct tpm_softc *sc, uint8_t mask, int tmo, void *c)
{
int rv;
/*
* Poll until either the requested condition or a time out is
* met.
*/
while (((sc->sc_stat = tpm_status(sc)) & mask) != mask && tmo--) {
rv = tsleep(c, PRIBIO | PCATCH, "tpm_poll", 1);
if (rv && rv != EWOULDBLOCK) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: interrupted %d\n", __func__, rv);
#endif
return rv;
}
}
return 0;
}
/* Wait for given status bits using interrupts. */
int
tpm_waitfor_int(struct tpm_softc *sc, uint8_t mask, int tmo, void *c,
int inttype)
{
int rv, to;
/* Poll and return when condition is already met. */
sc->sc_stat = tpm_status(sc);
if ((sc->sc_stat & mask) == mask)
return 0;
/*
* Enable interrupt on tpm chip. Note that interrupts on our
* level (SPL_TTY) are disabled (see tpm{read,write} et al) and
* will not be delivered to the cpu until we call tsleep(9) below.
*/
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) |
inttype);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) |
TPM_GLOBAL_INT_ENABLE);
/*
* Poll once more to remedy the race between previous polling
* and enabling interrupts on the tpm chip.
*/
sc->sc_stat = tpm_status(sc);
if ((sc->sc_stat & mask) == mask) {
rv = 0;
goto out;
}
to = tpm_tmotohz(tmo);
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: sleeping for %d ticks on %p\n", __func__, to, c);
#endif
/*
* tsleep(9) enables interrupts on the cpu and returns after
* wake up with interrupts disabled again. Note that interrupts
* generated by the tpm chip while being at SPL_TTY are not lost
* but held and delivered as soon as the cpu goes below SPL_TTY.
*/
rv = tsleep(c, PRIBIO | PCATCH, "tpm_wait", to);
sc->sc_stat = tpm_status(sc);
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev,
"%s: woke up with rv %d stat %s\n", __func__, rv, buf);
#endif
if ((sc->sc_stat & mask) == mask)
rv = 0;
/* Disable interrupts on tpm chip again. */
out: bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) &
~TPM_GLOBAL_INT_ENABLE);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE,
bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INTERRUPT_ENABLE) &
~inttype);
return rv;
}
/*
* Wait on given status bits, uses interrupts where possible, otherwise polls.
*/
int
tpm_waitfor(struct tpm_softc *sc, uint8_t b0, int tmo, void *c)
{
uint8_t b;
int re, to, rv;
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev, "%s: b0 %s\n", __func__, buf);
#endif
/*
* If possible, use interrupts, otherwise poll.
*
* We use interrupts for TPM_STS_VALID and TPM_STS_DATA_AVAIL (if
* the tpm chips supports them) as waiting for those can take
* really long. The other TPM_STS* are not needed very often
* so we do not support them.
*/
if (sc->sc_vector != -1) {
b = b0;
/*
* Wait for data ready. This interrupt only occures
* when both TPM_STS_VALID and TPM_STS_DATA_AVAIL are asserted.
* Thus we don't have to bother with TPM_STS_VALID
* separately and can just return.
*
* This only holds for interrupts! When using polling
* both flags have to be waited for, see below.
*/
if ((b & TPM_STS_DATA_AVAIL) && (sc->sc_capabilities &
TPM_INTF_DATA_AVAIL_INT))
return tpm_waitfor_int(sc, b, tmo, c,
TPM_DATA_AVAIL_INT);
/* Wait for status valid bit. */
if ((b & TPM_STS_VALID) && (sc->sc_capabilities &
TPM_INTF_STS_VALID_INT)) {
rv = tpm_waitfor_int(sc, b, tmo, c, TPM_STS_VALID_INT);
if (rv != 0)
return rv;
else
b = b0 & ~TPM_STS_VALID;
}
/*
* When all flags are taken care of, return. Otherwise
* use polling for eg. TPM_STS_CMD_READY.
*/
if (b == 0)
return 0;
}
re = 3;
restart:
/*
* If requested wait for TPM_STS_VALID before dealing with
* any other flag. Eg. when both TPM_STS_DATA_AVAIL and TPM_STS_VALID
* are requested, wait for the latter first.
*/
b = b0;
if (b0 & TPM_STS_VALID)
b = TPM_STS_VALID;
to = tpm_tmotohz(tmo);
again:
if ((rv = tpm_waitfor_poll(sc, b, to, c)) != 0)
return rv;
if ((b & sc->sc_stat) == TPM_STS_VALID) {
/* Now wait for other flags. */
b = b0 & ~TPM_STS_VALID;
to++;
goto again;
}
if ((sc->sc_stat & b) != b) {
#ifdef TPM_DEBUG
char bbuf[128], cbuf[128];
snprintb(bbuf, sizeof(bbuf), TPM_STS_BITS, b);
snprintb(cbuf, sizeof(cbuf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev,
"%s: timeout: stat=%s b=%s\n", __func__, cbuf, bbuf);
#endif
if (re-- && (b0 & TPM_STS_VALID)) {
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS,
TPM_STS_RESP_RETRY);
goto restart;
}
return EIO;
}
return 0;
}
/* Start transaction. */
int
tpm_tis12_start(struct tpm_softc *sc, int flag)
{
int rv;
if (flag == UIO_READ) {
rv = tpm_waitfor(sc, TPM_STS_DATA_AVAIL | TPM_STS_VALID,
TPM_READ_TMO, sc->sc_read);
return rv;
}
/* Own our (0th) locality. */
if ((rv = tpm_request_locality(sc, 0)) != 0)
return rv;
sc->sc_stat = tpm_status(sc);
if (sc->sc_stat & TPM_STS_CMD_READY) {
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev, "%s: UIO_WRITE status %s\n",
__func__, buf);
#endif
return 0;
}
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: UIO_WRITE readying chip\n", __func__);
#endif
/* Abort previous and restart. */
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS, TPM_STS_CMD_READY);
if ((rv = tpm_waitfor(sc, TPM_STS_CMD_READY, TPM_READY_TMO,
sc->sc_write))) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: UIO_WRITE readying failed %d\n", __func__, rv);
#endif
return rv;
}
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: UIO_WRITE readying done\n", __func__);
#endif
return 0;
}
int
tpm_tis12_read(struct tpm_softc *sc, void *buf, size_t len, size_t *count,
int flags)
{
uint8_t *p = buf;
size_t cnt;
int rv, n, bcnt;
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: len %zu\n", __func__, len);
#endif
cnt = 0;
while (len > 0) {
if ((rv = tpm_waitfor(sc, TPM_STS_DATA_AVAIL | TPM_STS_VALID,
TPM_READ_TMO, sc->sc_read)))
return rv;
bcnt = tpm_getburst(sc);
n = MIN(len, bcnt);
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: fetching %d, burst is %d\n", __func__, n, bcnt);
#endif
for (; n--; len--) {
*p++ = bus_space_read_1(sc->sc_bt, sc->sc_bh, TPM_DATA);
cnt++;
}
if ((flags & TPM_PARAM_SIZE) == 0 && cnt >= 6)
break;
}
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: read %zu bytes, len %zu\n", __func__, cnt, len);
#endif
if (count)
*count = cnt;
return 0;
}
int
tpm_tis12_write(struct tpm_softc *sc, const void *buf, size_t len)
{
const uint8_t *p = buf;
size_t cnt;
int rv, r;
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: sc %p buf %p len %zu\n", __func__, sc, buf, len);
#endif
if (len == 0)
return 0;
if ((rv = tpm_request_locality(sc, 0)) != 0)
return rv;
cnt = 0;
while (cnt < len - 1) {
for (r = tpm_getburst(sc); r > 0 && cnt < len - 1; r--) {
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_DATA, *p++);
cnt++;
}
if ((rv = tpm_waitfor(sc, TPM_STS_VALID, TPM_READ_TMO, sc))) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: failed burst rv %d\n", __func__, rv);
#endif
return rv;
}
sc->sc_stat = tpm_status(sc);
if (!(sc->sc_stat & TPM_STS_DATA_EXPECT)) {
#ifdef TPM_DEBUG
char sbuf[128];
snprintb(sbuf, sizeof(sbuf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev,
"%s: failed rv %d stat=%s\n", __func__, rv, sbuf);
#endif
return EIO;
}
}
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_DATA, *p++);
cnt++;
if ((rv = tpm_waitfor(sc, TPM_STS_VALID, TPM_READ_TMO, sc))) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: failed last byte rv %d\n",
__func__, rv);
#endif
return rv;
}
if ((sc->sc_stat & TPM_STS_DATA_EXPECT) != 0) {
#ifdef TPM_DEBUG
char sbuf[128];
snprintb(sbuf, sizeof(sbuf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev,
"%s: failed rv %d stat=%s\n", __func__, rv, sbuf);
#endif
return EIO;
}
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: wrote %zu byte\n", __func__, cnt);
#endif
return 0;
}
/* Finish transaction. */
int
tpm_tis12_end(struct tpm_softc *sc, int flag, int err)
{
int rv = 0;
if (flag == UIO_READ) {
if ((rv = tpm_waitfor(sc, TPM_STS_VALID, TPM_READ_TMO,
sc->sc_read)))
return rv;
/* Still more data? */
sc->sc_stat = tpm_status(sc);
if (!err && ((sc->sc_stat & TPM_STS_DATA_AVAIL)
== TPM_STS_DATA_AVAIL)) {
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev,
"%s: read failed stat=%s\n", __func__, buf);
#endif
rv = EIO;
}
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS,
TPM_STS_CMD_READY);
/* Release our (0th) locality. */
bus_space_write_1(sc->sc_bt, sc->sc_bh,TPM_ACCESS,
TPM_ACCESS_ACTIVE_LOCALITY);
} else {
/* Hungry for more? */
sc->sc_stat = tpm_status(sc);
if (!err && (sc->sc_stat & TPM_STS_DATA_EXPECT)) {
#ifdef TPM_DEBUG
char buf[128];
snprintb(buf, sizeof(buf), TPM_STS_BITS, sc->sc_stat);
aprint_debug_dev(sc->sc_dev,
"%s: write failed stat=%s\n", __func__, buf);
#endif
rv = EIO;
}
bus_space_write_1(sc->sc_bt, sc->sc_bh, TPM_STS,
err ? TPM_STS_CMD_READY : TPM_STS_GO);
}
return rv;
}
int
tpm_intr(void *v)
{
struct tpm_softc *sc = v;
uint32_t r;
#ifdef TPM_DEBUG
static int cnt = 0;
#endif
r = bus_space_read_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS);
#ifdef TPM_DEBUG
if (r != 0) {
char buf[128];
snprintb(buf, sizeof(buf), TPM_INTERRUPT_ENABLE_BITS, r);
aprint_debug_dev(sc->sc_dev, "%s: int=%s (%d)\n", __func__,
buf, cnt);
} else
cnt++;
#endif
if (!(r & (TPM_CMD_READY_INT | TPM_LOCALITY_CHANGE_INT |
TPM_STS_VALID_INT | TPM_DATA_AVAIL_INT)))
#ifdef __FreeBSD__
return;
#else
return 0;
#endif
if (r & TPM_STS_VALID_INT)
wakeup(sc);
if (r & TPM_CMD_READY_INT)
wakeup(sc->sc_write);
if (r & TPM_DATA_AVAIL_INT)
wakeup(sc->sc_read);
if (r & TPM_LOCALITY_CHANGE_INT)
wakeup(sc->sc_init);
bus_space_write_4(sc->sc_bt, sc->sc_bh, TPM_INT_STATUS, r);
return 1;
}
/* Read single byte using legacy interface. */
static inline uint8_t
tpm_legacy_in(bus_space_tag_t iot, bus_space_handle_t ioh, int reg)
{
bus_space_write_1(iot, ioh, 0, reg);
return bus_space_read_1(iot, ioh, 1);
}
/* Probe for TPM using legacy interface. */
int
tpm_legacy_probe(bus_space_tag_t iot, bus_addr_t iobase)
{
bus_space_handle_t ioh;
uint8_t r, v;
int i, rv = 0;
char id[8];
if (!tpm_enabled || iobase == -1)
return 0;
if (bus_space_map(iot, iobase, 2, 0, &ioh))
return 0;
v = bus_space_read_1(iot, ioh, 0);
if (v == 0xff) {
bus_space_unmap(iot, ioh, 2);
return 0;
}
r = bus_space_read_1(iot, ioh, 1);
for (i = sizeof(id); i--; )
id[i] = tpm_legacy_in(iot, ioh, TPM_ID + i);
#ifdef TPM_DEBUG
printf("tpm_legacy_probe %.4s %d.%d.%d.%d\n",
&id[4], id[0], id[1], id[2], id[3]);
#endif
/*
* The only chips using the legacy interface we are aware of are
* by Atmel. For other chips more signature would have to be added.
*/
if (!bcmp(&id[4], "ATML", 4))
rv = 1;
if (!rv) {
bus_space_write_1(iot, ioh, r, 1);
bus_space_write_1(iot, ioh, v, 0);
}
bus_space_unmap(iot, ioh, 2);
return rv;
}
/* Setup TPM using legacy interface. */
int
tpm_legacy_init(struct tpm_softc *sc, int irq, const char *name)
{
char id[8];
int i;
if ((i = bus_space_map(sc->sc_batm, tpm_enabled, 2, 0, &sc->sc_bahm))) {
aprint_debug_dev(sc->sc_dev, "cannot map tpm registers (%d)\n",
i);
tpm_enabled = 0;
return 1;
}
for (i = sizeof(id); i--; )
id[i] = tpm_legacy_in(sc->sc_bt, sc->sc_bh, TPM_ID + i);
aprint_debug_dev(sc->sc_dev, "%.4s %d.%d @0x%x\n", &id[4], id[0],
id[1], tpm_enabled);
tpm_enabled = 0;
return 0;
}
/* Start transaction. */
int
tpm_legacy_start(struct tpm_softc *sc, int flag)
{
struct timeval tv;
uint8_t bits, r;
int to, rv;
bits = flag == UIO_READ ? TPM_LEGACY_DA : 0;
tv.tv_sec = TPM_LEGACY_TMO;
tv.tv_usec = 0;
to = tvtohz(&tv) / TPM_LEGACY_SLEEP;
while (((r = bus_space_read_1(sc->sc_batm, sc->sc_bahm, 1)) &
(TPM_LEGACY_BUSY|bits)) != bits && to--) {
rv = tsleep(sc, PRIBIO | PCATCH, "legacy_tpm_start",
TPM_LEGACY_SLEEP);
if (rv && rv != EWOULDBLOCK)
return rv;
}
#if defined(TPM_DEBUG) && !defined(__FreeBSD__)
char buf[128];
snprintb(buf, sizeof(buf), TPM_LEGACY_BITS, r);
aprint_debug_dev(sc->sc_dev, "%s: bits %s\n", device_xname(sc->sc_dev),
buf);
#endif
if ((r & (TPM_LEGACY_BUSY|bits)) != bits)
return EIO;
return 0;
}
int
tpm_legacy_read(struct tpm_softc *sc, void *buf, size_t len, size_t *count,
int flags)
{
uint8_t *p;
size_t cnt;
int to, rv;
cnt = rv = 0;
for (p = buf; !rv && len > 0; len--) {
for (to = 1000;
!(bus_space_read_1(sc->sc_batm, sc->sc_bahm, 1) &
TPM_LEGACY_DA); DELAY(1))
if (!to--)
return EIO;
DELAY(TPM_LEGACY_DELAY);
*p++ = bus_space_read_1(sc->sc_batm, sc->sc_bahm, 0);
cnt++;
}
*count = cnt;
return 0;
}
int
tpm_legacy_write(struct tpm_softc *sc, const void *buf, size_t len)
{
const uint8_t *p;
size_t n;
for (p = buf, n = len; n--; DELAY(TPM_LEGACY_DELAY)) {
if (!n && len != TPM_BUFSIZ) {
bus_space_write_1(sc->sc_batm, sc->sc_bahm, 1,
TPM_LEGACY_LAST);
DELAY(TPM_LEGACY_DELAY);
}
bus_space_write_1(sc->sc_batm, sc->sc_bahm, 0, *p++);
}
return 0;
}
/* Finish transaction. */
int
tpm_legacy_end(struct tpm_softc *sc, int flag, int rv)
{
struct timeval tv;
uint8_t r;
int to;
if (rv || flag == UIO_READ)
bus_space_write_1(sc->sc_batm, sc->sc_bahm, 1, TPM_LEGACY_ABRT);
else {
tv.tv_sec = TPM_LEGACY_TMO;
tv.tv_usec = 0;
to = tvtohz(&tv) / TPM_LEGACY_SLEEP;
while(((r = bus_space_read_1(sc->sc_batm, sc->sc_bahm, 1)) &
TPM_LEGACY_BUSY) && to--) {
rv = tsleep(sc, PRIBIO | PCATCH, "legacy_tpm_end",
TPM_LEGACY_SLEEP);
if (rv && rv != EWOULDBLOCK)
return rv;
}
#if defined(TPM_DEBUG) && !defined(__FreeBSD__)
char buf[128];
snprintb(buf, sizeof(buf), TPM_LEGACY_BITS, r);
aprint_debug_dev(sc->sc_dev, "%s: bits %s\n",
device_xname(sc->sc_dev), buf);
#endif
if (r & TPM_LEGACY_BUSY)
return EIO;
if (r & TPM_LEGACY_RE)
return EIO; /* XXX Retry the loop? */
}
return rv;
}
int
tpmopen(dev_t dev, int flag, int mode, struct lwp *l)
{
struct tpm_softc *sc = device_lookup_private(&tpm_cd, TPMUNIT(dev));
if (!sc)
return ENXIO;
if (sc->sc_flags & TPM_OPEN)
return EBUSY;
sc->sc_flags |= TPM_OPEN;
return 0;
}
int
tpmclose(dev_t dev, int flag, int mode, struct lwp *l)
{
struct tpm_softc *sc = device_lookup_private(&tpm_cd, TPMUNIT(dev));
if (!sc)
return ENXIO;
if (!(sc->sc_flags & TPM_OPEN))
return EINVAL;
sc->sc_flags &= ~TPM_OPEN;
return 0;
}
int
tpmread(dev_t dev, struct uio *uio, int flags)
{
struct tpm_softc *sc = device_lookup_private(&tpm_cd, TPMUNIT(dev));
uint8_t buf[TPM_BUFSIZ], *p;
size_t cnt, len, n;
int rv, s;
if (!sc)
return ENXIO;
s = spltty();
if ((rv = (*sc->sc_start)(sc, UIO_READ)))
goto out;
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: getting header\n", __func__);
#endif
if ((rv = (*sc->sc_read)(sc, buf, TPM_HDRSIZE, &cnt, 0))) {
(*sc->sc_end)(sc, UIO_READ, rv);
goto out;
}
len = (buf[2] << 24) | (buf[3] << 16) | (buf[4] << 8) | buf[5];
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: len %zu, io count %zu\n", __func__,
len, uio->uio_resid);
#endif
if (len > uio->uio_resid) {
rv = EIO;
(*sc->sc_end)(sc, UIO_READ, rv);
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: bad residual io count 0x%zx\n", __func__,
uio->uio_resid);
#endif
goto out;
}
/* Copy out header. */
if ((rv = uiomove(buf, cnt, uio))) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: uiomove failed %d\n", __func__, rv);
#endif
(*sc->sc_end)(sc, UIO_READ, rv);
goto out;
}
/* Get remaining part of the answer (if anything is left). */
for (len -= cnt, p = buf, n = sizeof(buf); len > 0; p = buf, len -= n,
n = sizeof(buf)) {
n = MIN(n, len);
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: n %zu len %zu\n", __func__,
n, len);
#endif
if ((rv = (*sc->sc_read)(sc, p, n, NULL, TPM_PARAM_SIZE))) {
(*sc->sc_end)(sc, UIO_READ, rv);
goto out;
}
p += n;
if ((rv = uiomove(buf, p - buf, uio))) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: uiomove failed %d\n", __func__, rv);
#endif
(*sc->sc_end)(sc, UIO_READ, rv);
goto out;
}
}
rv = (*sc->sc_end)(sc, UIO_READ, rv);
out:
splx(s);
return rv;
}
int
tpmwrite(dev_t dev, struct uio *uio, int flags)
{
struct tpm_softc *sc = device_lookup_private(&tpm_cd, TPMUNIT(dev));
uint8_t buf[TPM_BUFSIZ];
int n, rv, s;
if (!sc)
return ENXIO;
s = spltty();
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev, "%s: io count %zu\n", __func__,
uio->uio_resid);
#endif
n = MIN(sizeof(buf), uio->uio_resid);
if ((rv = uiomove(buf, n, uio))) {
#ifdef TPM_DEBUG
aprint_debug_dev(sc->sc_dev,
"%s: uiomove failed %d\n", __func__, rv);
#endif
splx(s);
return rv;
}
if ((rv = (*sc->sc_start)(sc, UIO_WRITE))) {
splx(s);
return rv;
}
if ((rv = (*sc->sc_write)(sc, buf, n))) {
splx(s);
return rv;
}
rv = (*sc->sc_end)(sc, UIO_WRITE, rv);
splx(s);
return rv;
}
int
tpmioctl(dev_t dev, u_long cmd, void *data, int flags, struct lwp *l)
{
return ENOTTY;
}