NetBSD/sys/dev/ic/sl811hs.c
christos b787afbfb6 - remove unused variables
- move variables inside ifdef sections
- ifdef notdef unused code
- use __USE for debugging variables
2013-10-17 21:24:24 +00:00

3659 lines
98 KiB
C

/* $NetBSD: sl811hs.c,v 1.47 2013/10/17 21:24:24 christos Exp $ */
/*
* Not (c) 2007 Matthew Orgass
* This file is public domain, meaning anyone can make any use of part or all
* of this file including copying into other works without credit. Any use,
* modified or not, is solely the responsibility of the user. If this file is
* part of a collection then use in the collection is governed by the terms of
* the collection.
*/
/*
* Cypress/ScanLogic SL811HS/T USB Host Controller
* Datasheet, Errata, and App Note available at www.cypress.com
*
* Uses: Ratoc CFU1U PCMCIA USB Host Controller, Nereid X68k USB HC, ISA
* HCs. The Ratoc CFU2 uses a different chip.
*
* This chip puts the serial in USB. It implements USB by means of an eight
* bit I/O interface. It can be used for ISA, PCMCIA/CF, parallel port,
* serial port, or any eight bit interface. It has 256 bytes of memory, the
* first 16 of which are used for register access. There are two sets of
* registers for sending individual bus transactions. Because USB is polled,
* this organization means that some amount of card access must often be made
* when devices are attached, even if when they are not directly being used.
* A per-ms frame interrupt is necessary and many devices will poll with a
* per-frame bulk transfer.
*
* It is possible to write a little over two bytes to the chip (auto
* incremented) per full speed byte time on the USB. Unfortunately,
* auto-increment does not work reliably so write and bus speed is
* approximately the same for full speed devices.
*
* In addition to the 240 byte packet size limit for isochronous transfers,
* this chip has no means of determining the current frame number other than
* getting all 1ms SOF interrupts, which is not always possible even on a fast
* system. Isochronous transfers guarantee that transfers will never be
* retried in a later frame, so this can cause problems with devices beyond
* the difficulty in actually performing the transfer most frames. I tried
* implementing isoc transfers and was able to play CD-derrived audio via an
* iMic on a 2GHz PC, however it would still be interrupted at times and
* once interrupted, would stay out of sync. All isoc support has been
* removed.
*
* BUGS: all chip revisions have problems with low speed devices through hubs.
* The chip stops generating SOF with hubs that send SE0 during SOF. See
* comment in dointr(). All performance enhancing features of this chip seem
* not to work properly, most confirmed buggy in errata doc.
*
*/
/*
* The hard interrupt is the main entry point. Start, callbacks, and repeat
* are the only others called frequently.
*
* Since this driver attaches to pcmcia, card removal at any point should be
* expected and not cause panics or infinite loops.
*/
/*
* XXX TODO:
* copy next output packet while transfering
* usb suspend
* could keep track of known values of all buffer space?
* combined print/log function for errors
*
* use_polling support is untested and may not work
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: sl811hs.c,v 1.47 2013/10/17 21:24:24 christos Exp $");
#include "opt_slhci.h"
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/proc.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <sys/queue.h>
#include <sys/gcq.h>
#include <sys/intr.h>
#include <sys/cpu.h>
#include <sys/bus.h>
#include <dev/usb/usb.h>
#include <dev/usb/usbdi.h>
#include <dev/usb/usbdivar.h>
#include <dev/usb/usb_mem.h>
#include <dev/usb/usbdevs.h>
#include <dev/usb/usbroothub_subr.h>
#include <dev/ic/sl811hsreg.h>
#include <dev/ic/sl811hsvar.h>
#define Q_CB 0 /* Control/Bulk */
#define Q_NEXT_CB 1
#define Q_MAX_XFER Q_CB
#define Q_CALLBACKS 2
#define Q_MAX Q_CALLBACKS
#define F_AREADY (0x00000001)
#define F_BREADY (0x00000002)
#define F_AINPROG (0x00000004)
#define F_BINPROG (0x00000008)
#define F_LOWSPEED (0x00000010)
#define F_UDISABLED (0x00000020) /* Consider disabled for USB */
#define F_NODEV (0x00000040)
#define F_ROOTINTR (0x00000080)
#define F_REALPOWER (0x00000100) /* Actual power state */
#define F_POWER (0x00000200) /* USB reported power state */
#define F_ACTIVE (0x00000400)
#define F_CALLBACK (0x00000800) /* Callback scheduled */
#define F_SOFCHECK1 (0x00001000)
#define F_SOFCHECK2 (0x00002000)
#define F_CRESET (0x00004000) /* Reset done not reported */
#define F_CCONNECT (0x00008000) /* Connect change not reported */
#define F_RESET (0x00010000)
#define F_ISOC_WARNED (0x00020000)
#define F_LSVH_WARNED (0x00040000)
#define F_DISABLED (F_NODEV|F_UDISABLED)
#define F_CHANGE (F_CRESET|F_CCONNECT)
#ifdef SLHCI_TRY_LSVH
unsigned int slhci_try_lsvh = 1;
#else
unsigned int slhci_try_lsvh = 0;
#endif
#define ADR 0
#define LEN 1
#define PID 2
#define DEV 3
#define STAT 2
#define CONT 3
#define A 0
#define B 1
static const uint8_t slhci_tregs[2][4] =
{{SL11_E0ADDR, SL11_E0LEN, SL11_E0PID, SL11_E0DEV },
{SL11_E1ADDR, SL11_E1LEN, SL11_E1PID, SL11_E1DEV }};
#define PT_ROOT_CTRL 0
#define PT_ROOT_INTR 1
#define PT_CTRL_SETUP 2
#define PT_CTRL_DATA 3
#define PT_CTRL_STATUS 4
#define PT_INTR 5
#define PT_BULK 6
#define PT_MAX 6
#ifdef SLHCI_DEBUG
#define SLHCI_MEM_ACCOUNTING
static const char *
pnames(int ptype)
{
static const char * const names[] = { "ROOT Ctrl", "ROOT Intr",
"Control (setup)", "Control (data)", "Control (status)",
"Interrupt", "Bulk", "BAD PTYPE" };
KASSERT(sizeof(names) / sizeof(names[0]) == PT_MAX + 2);
if (ptype > PT_MAX)
ptype = PT_MAX + 1;
return names[ptype];
}
#endif
#define SLHCI_XFER_TYPE(x) (((struct slhci_pipe *)((x)->pipe))->ptype)
/*
* Maximum allowable reserved bus time. Since intr/isoc transfers have
* unconditional priority, this is all that ensures control and bulk transfers
* get a chance. It is a single value for all frames since all transfers can
* use multiple consecutive frames if an error is encountered. Note that it
* is not really possible to fill the bus with transfers, so this value should
* be on the low side. Defaults to giving a warning unless SLHCI_NO_OVERTIME
* is defined. Full time is 12000 - END_BUSTIME.
*/
#ifndef SLHCI_RESERVED_BUSTIME
#define SLHCI_RESERVED_BUSTIME 5000
#endif
/*
* Rate for "exceeds reserved bus time" warnings (default) or errors.
* Warnings only happen when an endpoint open causes the time to go above
* SLHCI_RESERVED_BUSTIME, not if it is already above.
*/
#ifndef SLHCI_OVERTIME_WARNING_RATE
#define SLHCI_OVERTIME_WARNING_RATE { 60, 0 } /* 60 seconds */
#endif
static const struct timeval reserved_warn_rate = SLHCI_OVERTIME_WARNING_RATE;
/* Rate for overflow warnings */
#ifndef SLHCI_OVERFLOW_WARNING_RATE
#define SLHCI_OVERFLOW_WARNING_RATE { 60, 0 } /* 60 seconds */
#endif
static const struct timeval overflow_warn_rate = SLHCI_OVERFLOW_WARNING_RATE;
/*
* For EOF, the spec says 42 bit times, plus (I think) a possible hub skew of
* 20 bit times. By default leave 66 bit times to start the transfer beyond
* the required time. Units are full-speed bit times (a bit over 5us per 64).
* Only multiples of 64 are significant.
*/
#define SLHCI_STANDARD_END_BUSTIME 128
#ifndef SLHCI_EXTRA_END_BUSTIME
#define SLHCI_EXTRA_END_BUSTIME 0
#endif
#define SLHCI_END_BUSTIME (SLHCI_STANDARD_END_BUSTIME+SLHCI_EXTRA_END_BUSTIME)
/*
* This is an approximation of the USB worst-case timings presented on p. 54 of
* the USB 1.1 spec translated to full speed bit times.
* FS = full speed with handshake, FSII = isoc in, FSIO = isoc out,
* FSI = isoc (worst case), LS = low speed
*/
#define SLHCI_FS_CONST 114
#define SLHCI_FSII_CONST 92
#define SLHCI_FSIO_CONST 80
#define SLHCI_FSI_CONST 92
#define SLHCI_LS_CONST 804
#ifndef SLHCI_PRECICE_BUSTIME
/*
* These values are < 3% too high (compared to the multiply and divide) for
* max sized packets.
*/
#define SLHCI_FS_DATA_TIME(len) (((u_int)(len)<<3)+(len)+((len)>>1))
#define SLHCI_LS_DATA_TIME(len) (((u_int)(len)<<6)+((u_int)(len)<<4))
#else
#define SLHCI_FS_DATA_TIME(len) (56*(len)/6)
#define SLHCI_LS_DATA_TIME(len) (449*(len)/6)
#endif
/*
* Set SLHCI_WAIT_SIZE to the desired maximum size of single FS transfer
* to poll for after starting a transfer. 64 gets all full speed transfers.
* Note that even if 0 polling will occur if data equal or greater than the
* transfer size is copied to the chip while the transfer is in progress.
* Setting SLHCI_WAIT_TIME to -12000 will disable polling.
*/
#ifndef SLHCI_WAIT_SIZE
#define SLHCI_WAIT_SIZE 8
#endif
#ifndef SLHCI_WAIT_TIME
#define SLHCI_WAIT_TIME (SLHCI_FS_CONST + \
SLHCI_FS_DATA_TIME(SLHCI_WAIT_SIZE))
#endif
const int slhci_wait_time = SLHCI_WAIT_TIME;
/* Root hub intr endpoint */
#define ROOT_INTR_ENDPT 1
#ifndef SLHCI_MAX_RETRIES
#define SLHCI_MAX_RETRIES 3
#endif
/* Check IER values for corruption after this many unrecognized interrupts. */
#ifndef SLHCI_IER_CHECK_FREQUENCY
#ifdef SLHCI_DEBUG
#define SLHCI_IER_CHECK_FREQUENCY 1
#else
#define SLHCI_IER_CHECK_FREQUENCY 100
#endif
#endif
/* Note that buffer points to the start of the buffer for this transfer. */
struct slhci_pipe {
struct usbd_pipe pipe;
struct usbd_xfer *xfer; /* xfer in progress */
uint8_t *buffer; /* I/O buffer (if needed) */
struct gcq ap; /* All pipes */
struct gcq to; /* Timeout list */
struct gcq xq; /* Xfer queues */
unsigned int pflags; /* Pipe flags */
#define PF_GONE (0x01) /* Pipe is on disabled device */
#define PF_TOGGLE (0x02) /* Data toggle status */
#define PF_LS (0x04) /* Pipe is low speed */
#define PF_PREAMBLE (0x08) /* Needs preamble */
Frame to_frame; /* Frame number for timeout */
Frame frame; /* Frame number for intr xfer */
Frame lastframe; /* Previous frame number for intr */
uint16_t bustime; /* Worst case bus time usage */
uint16_t newbustime[2]; /* new bustimes (see index below) */
uint8_t tregs[4]; /* ADR, LEN, PID, DEV */
uint8_t newlen[2]; /* 0 = short data, 1 = ctrl data */
uint8_t newpid; /* for ctrl */
uint8_t wantshort; /* last xfer must be short */
uint8_t control; /* Host control register settings */
uint8_t nerrs; /* Current number of errors */
uint8_t ptype; /* Pipe type */
};
#ifdef SLHCI_PROFILE_TRANSFER
#if defined(__mips__)
/*
* MIPS cycle counter does not directly count cpu cycles but is a different
* fraction of cpu cycles depending on the cpu.
*/
typedef u_int32_t cc_type;
#define CC_TYPE_FMT "%u"
#define slhci_cc_set(x) __asm volatile ("mfc0 %[cc], $9\n\tnop\n\tnop\n\tnop" \
: [cc] "=r"(x))
#elif defined(__i386__)
typedef u_int64_t cc_type;
#define CC_TYPE_FMT "%llu"
#define slhci_cc_set(x) __asm volatile ("rdtsc" : "=A"(x))
#else
#error "SLHCI_PROFILE_TRANSFER not implemented on this MACHINE_ARCH (see sys/dev/ic/sl811hs.c)"
#endif
struct slhci_cc_time {
cc_type start;
cc_type stop;
unsigned int miscdata;
};
#ifndef SLHCI_N_TIMES
#define SLHCI_N_TIMES 200
#endif
struct slhci_cc_times {
struct slhci_cc_time times[SLHCI_N_TIMES];
int current;
int wraparound;
};
static struct slhci_cc_times t_ab[2];
static struct slhci_cc_times t_abdone;
static struct slhci_cc_times t_copy_to_dev;
static struct slhci_cc_times t_copy_from_dev;
static struct slhci_cc_times t_intr;
static struct slhci_cc_times t_lock;
static struct slhci_cc_times t_delay;
static struct slhci_cc_times t_hard_int;
static struct slhci_cc_times t_callback;
static inline void
start_cc_time(struct slhci_cc_times *times, unsigned int misc) {
times->times[times->current].miscdata = misc;
slhci_cc_set(times->times[times->current].start);
}
static inline void
stop_cc_time(struct slhci_cc_times *times) {
slhci_cc_set(times->times[times->current].stop);
if (++times->current >= SLHCI_N_TIMES) {
times->current = 0;
times->wraparound = 1;
}
}
void slhci_dump_cc_times(int);
void
slhci_dump_cc_times(int n) {
struct slhci_cc_times *times;
int i;
switch (n) {
default:
case 0:
printf("USBA start transfer to intr:\n");
times = &t_ab[A];
break;
case 1:
printf("USBB start transfer to intr:\n");
times = &t_ab[B];
break;
case 2:
printf("abdone:\n");
times = &t_abdone;
break;
case 3:
printf("copy to device:\n");
times = &t_copy_to_dev;
break;
case 4:
printf("copy from device:\n");
times = &t_copy_from_dev;
break;
case 5:
printf("intr to intr:\n");
times = &t_intr;
break;
case 6:
printf("lock to release:\n");
times = &t_lock;
break;
case 7:
printf("delay time:\n");
times = &t_delay;
break;
case 8:
printf("hard interrupt enter to exit:\n");
times = &t_hard_int;
break;
case 9:
printf("callback:\n");
times = &t_callback;
break;
}
if (times->wraparound)
for (i = times->current + 1; i < SLHCI_N_TIMES; i++)
printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
" difference %8i miscdata %#x\n",
times->times[i].start, times->times[i].stop,
(int)(times->times[i].stop -
times->times[i].start), times->times[i].miscdata);
for (i = 0; i < times->current; i++)
printf("start " CC_TYPE_FMT " stop " CC_TYPE_FMT
" difference %8i miscdata %#x\n", times->times[i].start,
times->times[i].stop, (int)(times->times[i].stop -
times->times[i].start), times->times[i].miscdata);
}
#else
#define start_cc_time(x, y)
#define stop_cc_time(x)
#endif /* SLHCI_PROFILE_TRANSFER */
typedef usbd_status (*LockCallFunc)(struct slhci_softc *, struct slhci_pipe
*, struct usbd_xfer *);
usbd_status slhci_allocm(struct usbd_bus *, usb_dma_t *, u_int32_t);
void slhci_freem(struct usbd_bus *, usb_dma_t *);
struct usbd_xfer * slhci_allocx(struct usbd_bus *);
void slhci_freex(struct usbd_bus *, struct usbd_xfer *);
static void slhci_get_lock(struct usbd_bus *, kmutex_t **);
usbd_status slhci_transfer(struct usbd_xfer *);
usbd_status slhci_start(struct usbd_xfer *);
usbd_status slhci_root_start(struct usbd_xfer *);
usbd_status slhci_open(struct usbd_pipe *);
/*
* slhci_supported_rev, slhci_preinit, slhci_attach, slhci_detach,
* slhci_activate
*/
void slhci_abort(struct usbd_xfer *);
void slhci_close(struct usbd_pipe *);
void slhci_clear_toggle(struct usbd_pipe *);
void slhci_poll(struct usbd_bus *);
void slhci_done(struct usbd_xfer *);
void slhci_void(void *);
/* lock entry functions */
#ifdef SLHCI_MEM_ACCOUNTING
void slhci_mem_use(struct usbd_bus *, int);
#endif
void slhci_reset_entry(void *);
usbd_status slhci_lock_call(struct slhci_softc *, LockCallFunc,
struct slhci_pipe *, struct usbd_xfer *);
void slhci_start_entry(struct slhci_softc *, struct slhci_pipe *);
void slhci_callback_entry(void *arg);
void slhci_do_callback(struct slhci_softc *, struct usbd_xfer *);
/* slhci_intr */
void slhci_main(struct slhci_softc *);
/* in lock functions */
static void slhci_write(struct slhci_softc *, uint8_t, uint8_t);
static uint8_t slhci_read(struct slhci_softc *, uint8_t);
static void slhci_write_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
static void slhci_read_multi(struct slhci_softc *, uint8_t, uint8_t *, int);
static void slhci_waitintr(struct slhci_softc *, int);
static int slhci_dointr(struct slhci_softc *);
static void slhci_abdone(struct slhci_softc *, int);
static void slhci_tstart(struct slhci_softc *);
static void slhci_dotransfer(struct slhci_softc *);
static void slhci_callback(struct slhci_softc *);
static void slhci_enter_xfer(struct slhci_softc *, struct slhci_pipe *);
static void slhci_enter_xfers(struct slhci_softc *);
static void slhci_queue_timed(struct slhci_softc *, struct slhci_pipe *);
static void slhci_xfer_timer(struct slhci_softc *, struct slhci_pipe *);
static void slhci_do_repeat(struct slhci_softc *, struct usbd_xfer *);
static void slhci_callback_schedule(struct slhci_softc *);
static void slhci_do_callback_schedule(struct slhci_softc *);
#if 0
void slhci_pollxfer(struct slhci_softc *, struct usbd_xfer *); /* XXX */
#endif
static usbd_status slhci_do_poll(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static usbd_status slhci_lsvh_warn(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static usbd_status slhci_isoc_warn(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static usbd_status slhci_open_pipe(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static usbd_status slhci_close_pipe(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static usbd_status slhci_do_abort(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static usbd_status slhci_halt(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
static void slhci_intrchange(struct slhci_softc *, uint8_t);
static void slhci_drain(struct slhci_softc *);
static void slhci_reset(struct slhci_softc *);
static int slhci_reserve_bustime(struct slhci_softc *, struct slhci_pipe *,
int);
static void slhci_insert(struct slhci_softc *);
static usbd_status slhci_clear_feature(struct slhci_softc *, unsigned int);
static usbd_status slhci_set_feature(struct slhci_softc *, unsigned int);
static void slhci_get_status(struct slhci_softc *, usb_port_status_t *);
static usbd_status slhci_root(struct slhci_softc *, struct slhci_pipe *,
struct usbd_xfer *);
#ifdef SLHCI_DEBUG
void slhci_log_buffer(struct usbd_xfer *);
void slhci_log_req(usb_device_request_t *);
void slhci_log_req_hub(usb_device_request_t *);
void slhci_log_dumpreg(void);
void slhci_log_xfer(struct usbd_xfer *);
void slhci_log_spipe(struct slhci_pipe *);
void slhci_print_intr(void);
void slhci_log_sc(void);
void slhci_log_slreq(struct slhci_pipe *);
extern int usbdebug;
/* Constified so you can read the values from ddb */
const int SLHCI_D_TRACE = 0x0001;
const int SLHCI_D_MSG = 0x0002;
const int SLHCI_D_XFER = 0x0004;
const int SLHCI_D_MEM = 0x0008;
const int SLHCI_D_INTR = 0x0010;
const int SLHCI_D_SXFER = 0x0020;
const int SLHCI_D_ERR = 0x0080;
const int SLHCI_D_BUF = 0x0100;
const int SLHCI_D_SOFT = 0x0200;
const int SLHCI_D_WAIT = 0x0400;
const int SLHCI_D_ROOT = 0x0800;
/* SOF/NAK alone normally ignored, SOF also needs D_INTR */
const int SLHCI_D_SOF = 0x1000;
const int SLHCI_D_NAK = 0x2000;
int slhci_debug = 0x1cbc; /* 0xc8c; */ /* 0xffff; */ /* 0xd8c; */
struct slhci_softc *ssc;
#ifdef USB_DEBUG
int slhci_usbdebug = -1; /* value to set usbdebug on attach, -1 = leave alone */
#endif
/*
* XXXMRG the SLHCI UVMHIST code has been converted to KERNHIST, but it has
* not been tested. the extra instructions to enable it can probably be
* commited to the kernhist code, and these instructions reduced to simply
* enabling SLHCI_DEBUG.
*/
/*
* Add KERNHIST history for debugging:
*
* Before kern_hist in sys/kern/subr_kernhist.c add:
* KERNHIST_DECL(slhcihist);
*
* In kern_hist add:
* if ((bitmask & KERNHIST_SLHCI))
* hists[i++] = &slhcihist;
*
* In sys/sys/kernhist.h add KERNHIST_SLHCI define.
*/
#include <sys/kernhist.h>
KERNHIST_DECL(slhcihist);
#if !defined(KERNHIST) || !defined(KERNHIST_SLHCI)
#error "SLHCI_DEBUG requires KERNHIST (with modifications, see sys/dev/ic/sl81hs.c)"
#endif
#ifndef SLHCI_NHIST
#define SLHCI_NHIST 409600
#endif
const unsigned int SLHCI_HISTMASK = KERNHIST_SLHCI;
struct kern_history_ent slhci_he[SLHCI_NHIST];
#define SLHCI_DEXEC(x, y) do { if ((slhci_debug & SLHCI_ ## x)) { y; } \
} while (/*CONSTCOND*/ 0)
#define DDOLOG(f, a, b, c, d) do { const char *_kernhist_name = __func__; \
u_long _kernhist_call = 0; KERNHIST_LOG(slhcihist, f, a, b, c, d); \
} while (/*CONSTCOND*/0)
#define DLOG(x, f, a, b, c, d) SLHCI_DEXEC(x, DDOLOG(f, a, b, c, d))
/*
* DLOGFLAG8 is a macro not a function so that flag name expressions are not
* evaluated unless the flag bit is set (which could save a register read).
* x is debug mask, y is flag identifier, z is flag variable,
* a-h are flag names (must evaluate to string constants, msb first).
*/
#define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) do { uint8_t _DLF8 = (z); \
const char *_kernhist_name = __func__; u_long _kernhist_call = 0; \
if (_DLF8 & 0xf0) KERNHIST_LOG(slhcihist, y " %s %s %s %s", _DLF8 & 0x80 ? \
(a) : "", _DLF8 & 0x40 ? (b) : "", _DLF8 & 0x20 ? (c) : "", _DLF8 & 0x10 ? \
(d) : ""); if (_DLF8 & 0x0f) KERNHIST_LOG(slhcihist, y " %s %s %s %s", \
_DLF8 & 0x08 ? (e) : "", _DLF8 & 0x04 ? (f) : "", _DLF8 & 0x02 ? (g) : "", \
_DLF8 & 0x01 ? (h) : ""); \
} while (/*CONSTCOND*/ 0)
#define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) \
SLHCI_DEXEC(x, DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h))
/*
* DDOLOGBUF logs a buffer up to 8 bytes at a time. No identifier so that we
* can make it a real function.
*/
static void
DDOLOGBUF(uint8_t *buf, unsigned int length)
{
int i;
for(i=0; i+8 <= length; i+=8)
DDOLOG("%.4x %.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
(buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
(buf[i+6] << 8) | buf[i+7]);
if (length == i+7)
DDOLOG("%.4x %.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
(buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5],
buf[i+6]);
else if (length == i+6)
DDOLOG("%.4x %.4x %.4x", (buf[i] << 8) | buf[i+1],
(buf[i+2] << 8) | buf[i+3], (buf[i+4] << 8) | buf[i+5], 0);
else if (length == i+5)
DDOLOG("%.4x %.4x %.2x", (buf[i] << 8) | buf[i+1],
(buf[i+2] << 8) | buf[i+3], buf[i+4], 0);
else if (length == i+4)
DDOLOG("%.4x %.4x", (buf[i] << 8) | buf[i+1],
(buf[i+2] << 8) | buf[i+3], 0,0);
else if (length == i+3)
DDOLOG("%.4x %.2x", (buf[i] << 8) | buf[i+1], buf[i+2], 0,0);
else if (length == i+2)
DDOLOG("%.4x", (buf[i] << 8) | buf[i+1], 0,0,0);
else if (length == i+1)
DDOLOG("%.2x", buf[i], 0,0,0);
}
#define DLOGBUF(x, b, l) SLHCI_DEXEC(x, DDOLOGBUF(b, l))
#else /* now !SLHCI_DEBUG */
#define slhci_log_spipe(spipe) ((void)0)
#define slhci_log_xfer(xfer) ((void)0)
#define SLHCI_DEXEC(x, y) ((void)0)
#define DDOLOG(f, a, b, c, d) ((void)0)
#define DLOG(x, f, a, b, c, d) ((void)0)
#define DDOLOGFLAG8(y, z, a, b, c, d, e, f, g, h) ((void)0)
#define DLOGFLAG8(x, y, z, a, b, c, d, e, f, g, h) ((void)0)
#define DDOLOGBUF(b, l) ((void)0)
#define DLOGBUF(x, b, l) ((void)0)
#endif /* SLHCI_DEBUG */
#ifdef DIAGNOSTIC
#define LK_SLASSERT(exp, sc, spipe, xfer, ext) do { \
if (!(exp)) { \
printf("%s: assertion %s failed line %u function %s!" \
" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
DDOLOG("%s: assertion %s failed line %u function %s!" \
" halted\n", SC_NAME(sc), #exp, __LINE__, __func__);\
slhci_halt(sc, spipe, xfer); \
ext; \
} \
} while (/*CONSTCOND*/0)
#define UL_SLASSERT(exp, sc, spipe, xfer, ext) do { \
if (!(exp)) { \
printf("%s: assertion %s failed line %u function %s!" \
" halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
DDOLOG("%s: assertion %s failed line %u function %s!" \
" halted\n", SC_NAME(sc), #exp, __LINE__, __func__); \
slhci_lock_call(sc, &slhci_halt, spipe, xfer); \
ext; \
} \
} while (/*CONSTCOND*/0)
#else
#define LK_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
#define UL_SLASSERT(exp, sc, spipe, xfer, ext) ((void)0)
#endif
const struct usbd_bus_methods slhci_bus_methods = {
.open_pipe = slhci_open,
.soft_intr = slhci_void,
.do_poll = slhci_poll,
.allocm = slhci_allocm,
.freem = slhci_freem,
.allocx = slhci_allocx,
.freex = slhci_freex,
.get_lock = slhci_get_lock,
NULL, /* new_device */
};
const struct usbd_pipe_methods slhci_pipe_methods = {
.transfer = slhci_transfer,
.start = slhci_start,
.abort = slhci_abort,
.close = slhci_close,
.cleartoggle = slhci_clear_toggle,
.done = slhci_done,
};
const struct usbd_pipe_methods slhci_root_methods = {
.transfer = slhci_transfer,
.start = slhci_root_start,
.abort = slhci_abort,
.close = (void (*)(struct usbd_pipe *))slhci_void, /* XXX safe? */
.cleartoggle = slhci_clear_toggle,
.done = slhci_done,
};
/* Queue inlines */
#define GOT_FIRST_TO(tvar, t) \
GCQ_GOT_FIRST_TYPED(tvar, &(t)->to, struct slhci_pipe, to)
#define FIND_TO(var, t, tvar, cond) \
GCQ_FIND_TYPED(var, &(t)->to, tvar, struct slhci_pipe, to, cond)
#define FOREACH_AP(var, t, tvar) \
GCQ_FOREACH_TYPED(var, &(t)->ap, tvar, struct slhci_pipe, ap)
#define GOT_FIRST_TIMED_COND(tvar, t, cond) \
GCQ_GOT_FIRST_COND_TYPED(tvar, &(t)->timed, struct slhci_pipe, xq, cond)
#define GOT_FIRST_CB(tvar, t) \
GCQ_GOT_FIRST_TYPED(tvar, &(t)->q[Q_CB], struct slhci_pipe, xq)
#define DEQUEUED_CALLBACK(tvar, t) \
GCQ_DEQUEUED_FIRST_TYPED(tvar, &(t)->q[Q_CALLBACKS], struct slhci_pipe, xq)
#define FIND_TIMED(var, t, tvar, cond) \
GCQ_FIND_TYPED(var, &(t)->timed, tvar, struct slhci_pipe, xq, cond)
#define DEQUEUED_WAITQ(tvar, sc) \
GCQ_DEQUEUED_FIRST_TYPED(tvar, &(sc)->sc_waitq, struct slhci_pipe, xq)
static inline void
enter_waitq(struct slhci_softc *sc, struct slhci_pipe *spipe)
{
gcq_insert_tail(&sc->sc_waitq, &spipe->xq);
}
static inline void
enter_q(struct slhci_transfers *t, struct slhci_pipe *spipe, int i)
{
gcq_insert_tail(&t->q[i], &spipe->xq);
}
static inline void
enter_callback(struct slhci_transfers *t, struct slhci_pipe *spipe)
{
gcq_insert_tail(&t->q[Q_CALLBACKS], &spipe->xq);
}
static inline void
enter_all_pipes(struct slhci_transfers *t, struct slhci_pipe *spipe)
{
gcq_insert_tail(&t->ap, &spipe->ap);
}
/* Start out of lock functions. */
struct slhci_mem {
usb_dma_block_t block;
uint8_t data[];
};
/*
* The SL811HS does not do DMA as a host controller, but NetBSD's USB interface
* assumes DMA is used. So we fake the DMA block.
*/
usbd_status
slhci_allocm(struct usbd_bus *bus, usb_dma_t *dma, u_int32_t size)
{
struct slhci_mem *mem;
mem = malloc(sizeof(struct slhci_mem) + size, M_USB, M_NOWAIT|M_ZERO);
DLOG(D_MEM, "allocm %p", mem, 0,0,0);
if (mem == NULL)
return USBD_NOMEM;
dma->block = &mem->block;
dma->block->kaddr = mem->data;
/* dma->offs = 0; */
dma->block->nsegs = 1;
dma->block->size = size;
dma->block->align = size;
dma->block->flags |= USB_DMA_FULLBLOCK;
#ifdef SLHCI_MEM_ACCOUNTING
slhci_mem_use(bus, 1);
#endif
return USBD_NORMAL_COMPLETION;
}
void
slhci_freem(struct usbd_bus *bus, usb_dma_t *dma)
{
DLOG(D_MEM, "freem %p", dma->block, 0,0,0);
#ifdef SLHCI_MEM_ACCOUNTING
slhci_mem_use(bus, -1);
#endif
free(dma->block, M_USB);
}
struct usbd_xfer *
slhci_allocx(struct usbd_bus *bus)
{
struct usbd_xfer *xfer;
xfer = malloc(sizeof(*xfer), M_USB, M_NOWAIT|M_ZERO);
DLOG(D_MEM, "allocx %p", xfer, 0,0,0);
#ifdef SLHCI_MEM_ACCOUNTING
slhci_mem_use(bus, 1);
#endif
#ifdef DIAGNOSTIC
if (xfer != NULL)
xfer->busy_free = XFER_BUSY;
#endif
return xfer;
}
void
slhci_freex(struct usbd_bus *bus, struct usbd_xfer *xfer)
{
DLOG(D_MEM, "freex xfer %p spipe %p", xfer, xfer->pipe,0,0);
#ifdef SLHCI_MEM_ACCOUNTING
slhci_mem_use(bus, -1);
#endif
#ifdef DIAGNOSTIC
if (xfer->busy_free != XFER_BUSY) {
struct slhci_softc *sc = bus->hci_private;
printf("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
SC_NAME(sc), xfer, xfer->busy_free);
DDOLOG("%s: slhci_freex: xfer=%p not busy, %#08x halted\n",
SC_NAME(sc), xfer, xfer->busy_free, 0);
slhci_lock_call(sc, &slhci_halt, NULL, NULL);
return;
}
xfer->busy_free = XFER_FREE;
#endif
free(xfer, M_USB);
}
static void
slhci_get_lock(struct usbd_bus *bus, kmutex_t **lock)
{
struct slhci_softc *sc = bus->hci_private;
*lock = &sc->sc_lock;
}
usbd_status
slhci_transfer(struct usbd_xfer *xfer)
{
struct slhci_softc *sc = xfer->pipe->device->bus->hci_private;
usbd_status error;
DLOG(D_TRACE, "%s transfer xfer %p spipe %p ",
pnames(SLHCI_XFER_TYPE(xfer)), xfer, xfer->pipe,0);
/* Insert last in queue */
mutex_enter(&sc->sc_lock);
error = usb_insert_transfer(xfer);
mutex_exit(&sc->sc_lock);
if (error) {
if (error != USBD_IN_PROGRESS)
DLOG(D_ERR, "usb_insert_transfer returns %d!", error,
0,0,0);
return error;
}
/*
* Pipe isn't running (otherwise error would be USBD_INPROG),
* so start it first.
*/
/*
* Start will take the lock.
*/
error = xfer->pipe->methods->start(SIMPLEQ_FIRST(&xfer->pipe->queue));
return error;
}
/* It is not safe for start to return anything other than USBD_INPROG. */
usbd_status
slhci_start(struct usbd_xfer *xfer)
{
struct slhci_softc *sc = xfer->pipe->device->bus->hci_private;
struct usbd_pipe *pipe = xfer->pipe;
struct slhci_pipe *spipe = (struct slhci_pipe *)pipe;
struct slhci_transfers *t = &sc->sc_transfers;
; usb_endpoint_descriptor_t *ed = pipe->endpoint->edesc;
unsigned int max_packet;
mutex_enter(&sc->sc_lock);
max_packet = UGETW(ed->wMaxPacketSize);
DLOG(D_TRACE, "%s start xfer %p spipe %p length %d",
pnames(spipe->ptype), xfer, spipe, xfer->length);
/* root transfers use slhci_root_start */
KASSERT(spipe->xfer == NULL); /* not SLASSERT */
xfer->actlen = 0;
xfer->status = USBD_IN_PROGRESS;
spipe->xfer = xfer;
spipe->nerrs = 0;
spipe->frame = t->frame;
spipe->control = SL11_EPCTRL_ARM_ENABLE;
spipe->tregs[DEV] = pipe->device->address;
spipe->tregs[PID] = spipe->newpid = UE_GET_ADDR(ed->bEndpointAddress)
| (UE_GET_DIR(ed->bEndpointAddress) == UE_DIR_IN ? SL11_PID_IN :
SL11_PID_OUT);
spipe->newlen[0] = xfer->length % max_packet;
spipe->newlen[1] = min(xfer->length, max_packet);
if (spipe->ptype == PT_BULK || spipe->ptype == PT_INTR) {
if (spipe->pflags & PF_TOGGLE)
spipe->control |= SL11_EPCTRL_DATATOGGLE;
spipe->tregs[LEN] = spipe->newlen[1];
if (spipe->tregs[LEN])
spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
else
spipe->buffer = NULL;
spipe->lastframe = t->frame;
#if defined(DEBUG) || defined(SLHCI_DEBUG)
if (__predict_false(spipe->ptype == PT_INTR &&
xfer->length > spipe->tregs[LEN])) {
printf("%s: Long INTR transfer not supported!\n",
SC_NAME(sc));
DDOLOG("%s: Long INTR transfer not supported!\n",
SC_NAME(sc), 0,0,0);
xfer->status = USBD_INVAL;
}
#endif
} else {
/* ptype may be currently set to any control transfer type. */
SLHCI_DEXEC(D_TRACE, slhci_log_xfer(xfer));
/* SETUP contains IN/OUT bits also */
spipe->tregs[PID] |= SL11_PID_SETUP;
spipe->tregs[LEN] = 8;
spipe->buffer = (uint8_t *)&xfer->request;
DLOGBUF(D_XFER, spipe->buffer, spipe->tregs[LEN]);
spipe->ptype = PT_CTRL_SETUP;
spipe->newpid &= ~SL11_PID_BITS;
if (xfer->length == 0 || (xfer->request.bmRequestType &
UT_READ))
spipe->newpid |= SL11_PID_IN;
else
spipe->newpid |= SL11_PID_OUT;
}
if (xfer->flags & USBD_FORCE_SHORT_XFER && spipe->tregs[LEN] ==
max_packet && (spipe->newpid & SL11_PID_BITS) == SL11_PID_OUT)
spipe->wantshort = 1;
else
spipe->wantshort = 0;
/*
* The goal of newbustime and newlen is to avoid bustime calculation
* in the interrupt. The calculations are not too complex, but they
* complicate the conditional logic somewhat and doing them all in the
* same place shares constants. Index 0 is "short length" for bulk and
* ctrl data and 1 is "full length" for ctrl data (bulk/intr are
* already set to full length).
*/
if (spipe->pflags & PF_LS) {
/*
* Setting PREAMBLE for directly connnected LS devices will
* lock up the chip.
*/
if (spipe->pflags & PF_PREAMBLE)
spipe->control |= SL11_EPCTRL_PREAMBLE;
if (max_packet <= 8) {
spipe->bustime = SLHCI_LS_CONST +
SLHCI_LS_DATA_TIME(spipe->tregs[LEN]);
spipe->newbustime[0] = SLHCI_LS_CONST +
SLHCI_LS_DATA_TIME(spipe->newlen[0]);
spipe->newbustime[1] = SLHCI_LS_CONST +
SLHCI_LS_DATA_TIME(spipe->newlen[1]);
} else
xfer->status = USBD_INVAL;
} else {
UL_SLASSERT(pipe->device->speed == USB_SPEED_FULL, sc,
spipe, xfer, return USBD_IN_PROGRESS);
if (max_packet <= SL11_MAX_PACKET_SIZE) {
spipe->bustime = SLHCI_FS_CONST +
SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
spipe->newbustime[0] = SLHCI_FS_CONST +
SLHCI_FS_DATA_TIME(spipe->newlen[0]);
spipe->newbustime[1] = SLHCI_FS_CONST +
SLHCI_FS_DATA_TIME(spipe->newlen[1]);
} else
xfer->status = USBD_INVAL;
}
/*
* The datasheet incorrectly indicates that DIRECTION is for
* "transmit to host". It is for OUT and SETUP. The app note
* describes its use correctly.
*/
if ((spipe->tregs[PID] & SL11_PID_BITS) != SL11_PID_IN)
spipe->control |= SL11_EPCTRL_DIRECTION;
slhci_start_entry(sc, spipe);
mutex_exit(&sc->sc_lock);
return USBD_IN_PROGRESS;
}
usbd_status
slhci_root_start(struct usbd_xfer *xfer)
{
struct slhci_softc *sc;
struct slhci_pipe *spipe;
spipe = (struct slhci_pipe *)xfer->pipe;
sc = xfer->pipe->device->bus->hci_private;
return slhci_lock_call(sc, &slhci_root, spipe, xfer);
}
usbd_status
slhci_open(struct usbd_pipe *pipe)
{
struct usbd_device *dev;
struct slhci_softc *sc;
struct slhci_pipe *spipe;
usb_endpoint_descriptor_t *ed;
struct slhci_transfers *t;
unsigned int max_packet, pmaxpkt;
dev = pipe->device;
sc = dev->bus->hci_private;
spipe = (struct slhci_pipe *)pipe;
ed = pipe->endpoint->edesc;
t = &sc->sc_transfers;
DLOG(D_TRACE, "slhci_open(addr=%d,ep=%d,rootaddr=%d)",
dev->address, ed->bEndpointAddress, t->rootaddr, 0);
spipe->pflags = 0;
spipe->frame = 0;
spipe->lastframe = 0;
spipe->xfer = NULL;
spipe->buffer = NULL;
gcq_init(&spipe->ap);
gcq_init(&spipe->to);
gcq_init(&spipe->xq);
/*
* The endpoint descriptor will not have been set up yet in the case
* of the standard control pipe, so the max packet checks are also
* necessary in start.
*/
max_packet = UGETW(ed->wMaxPacketSize);
if (dev->speed == USB_SPEED_LOW) {
spipe->pflags |= PF_LS;
if (dev->myhub->address != t->rootaddr) {
spipe->pflags |= PF_PREAMBLE;
if (!slhci_try_lsvh)
return slhci_lock_call(sc, &slhci_lsvh_warn,
spipe, NULL);
}
pmaxpkt = 8;
} else
pmaxpkt = SL11_MAX_PACKET_SIZE;
if (max_packet > pmaxpkt) {
DLOG(D_ERR, "packet too large! size %d spipe %p", max_packet,
spipe, 0,0);
return USBD_INVAL;
}
if (dev->address == t->rootaddr) {
switch (ed->bEndpointAddress) {
case USB_CONTROL_ENDPOINT:
spipe->ptype = PT_ROOT_CTRL;
pipe->interval = 0;
break;
case UE_DIR_IN | ROOT_INTR_ENDPT:
spipe->ptype = PT_ROOT_INTR;
pipe->interval = 1;
break;
default:
printf("%s: Invalid root endpoint!\n", SC_NAME(sc));
DDOLOG("%s: Invalid root endpoint!\n", SC_NAME(sc),
0,0,0);
return USBD_INVAL;
}
pipe->methods = __UNCONST(&slhci_root_methods);
return USBD_NORMAL_COMPLETION;
} else {
switch (ed->bmAttributes & UE_XFERTYPE) {
case UE_CONTROL:
spipe->ptype = PT_CTRL_SETUP;
pipe->interval = 0;
break;
case UE_INTERRUPT:
spipe->ptype = PT_INTR;
if (pipe->interval == USBD_DEFAULT_INTERVAL)
pipe->interval = ed->bInterval;
break;
case UE_ISOCHRONOUS:
return slhci_lock_call(sc, &slhci_isoc_warn, spipe,
NULL);
case UE_BULK:
spipe->ptype = PT_BULK;
pipe->interval = 0;
break;
}
DLOG(D_MSG, "open pipe %s interval %d", pnames(spipe->ptype),
pipe->interval, 0,0);
pipe->methods = __UNCONST(&slhci_pipe_methods);
return slhci_lock_call(sc, &slhci_open_pipe, spipe, NULL);
}
}
int
slhci_supported_rev(uint8_t rev)
{
return (rev >= SLTYPE_SL811HS_R12 && rev <= SLTYPE_SL811HS_R15);
}
/*
* Must be called before the ISR is registered. Interrupts can be shared so
* slhci_intr could be called as soon as the ISR is registered.
* Note max_current argument is actual current, but stored as current/2
*/
void
slhci_preinit(struct slhci_softc *sc, PowerFunc pow, bus_space_tag_t iot,
bus_space_handle_t ioh, uint16_t max_current, uint32_t stride)
{
struct slhci_transfers *t;
int i;
t = &sc->sc_transfers;
#ifdef SLHCI_DEBUG
KERNHIST_INIT_STATIC(slhcihist, slhci_he);
#endif
mutex_init(&sc->sc_lock, MUTEX_DEFAULT, IPL_SOFTUSB);
mutex_init(&sc->sc_intr_lock, MUTEX_DEFAULT, IPL_SCHED);
/* sc->sc_ier = 0; */
/* t->rootintr = NULL; */
t->flags = F_NODEV|F_UDISABLED;
t->pend = INT_MAX;
KASSERT(slhci_wait_time != INT_MAX);
t->len[0] = t->len[1] = -1;
if (max_current > 500)
max_current = 500;
t->max_current = (uint8_t)(max_current / 2);
sc->sc_enable_power = pow;
sc->sc_iot = iot;
sc->sc_ioh = ioh;
sc->sc_stride = stride;
KASSERT(Q_MAX+1 == sizeof(t->q) / sizeof(t->q[0]));
for (i = 0; i <= Q_MAX; i++)
gcq_init_head(&t->q[i]);
gcq_init_head(&t->timed);
gcq_init_head(&t->to);
gcq_init_head(&t->ap);
gcq_init_head(&sc->sc_waitq);
}
int
slhci_attach(struct slhci_softc *sc)
{
struct slhci_transfers *t;
const char *rev;
t = &sc->sc_transfers;
/* Detect and check the controller type */
t->sltype = SL11_GET_REV(slhci_read(sc, SL11_REV));
/* SL11H not supported */
if (!slhci_supported_rev(t->sltype)) {
if (t->sltype == SLTYPE_SL11H)
printf("%s: SL11H unsupported or bus error!\n",
SC_NAME(sc));
else
printf("%s: Unknown chip revision!\n", SC_NAME(sc));
return -1;
}
callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
callout_setfunc(&sc->sc_timer, slhci_reset_entry, sc);
/*
* It is not safe to call the soft interrupt directly as
* usb_schedsoftintr does in the use_polling case (due to locking).
*/
sc->sc_cb_softintr = softint_establish(SOFTINT_NET,
slhci_callback_entry, sc);
#ifdef SLHCI_DEBUG
ssc = sc;
#ifdef USB_DEBUG
if (slhci_usbdebug >= 0)
usbdebug = slhci_usbdebug;
#endif
#endif
if (t->sltype == SLTYPE_SL811HS_R12)
rev = " (rev 1.2)";
else if (t->sltype == SLTYPE_SL811HS_R14)
rev = " (rev 1.4 or 1.5)";
else
rev = " (unknown revision)";
aprint_normal("%s: ScanLogic SL811HS/T USB Host Controller %s\n",
SC_NAME(sc), rev);
aprint_normal("%s: Max Current %u mA (value by code, not by probe)\n",
SC_NAME(sc), t->max_current * 2);
#if defined(SLHCI_DEBUG) || defined(SLHCI_NO_OVERTIME) || \
defined(SLHCI_TRY_LSVH) || defined(SLHCI_PROFILE_TRANSFER)
aprint_normal("%s: driver options:"
#ifdef SLHCI_DEBUG
" SLHCI_DEBUG"
#endif
#ifdef SLHCI_TRY_LSVH
" SLHCI_TRY_LSVH"
#endif
#ifdef SLHCI_NO_OVERTIME
" SLHCI_NO_OVERTIME"
#endif
#ifdef SLHCI_PROFILE_TRANSFER
" SLHCI_PROFILE_TRANSFER"
#endif
"\n", SC_NAME(sc));
#endif
sc->sc_bus.usbrev = USBREV_1_1;
sc->sc_bus.methods = __UNCONST(&slhci_bus_methods);
sc->sc_bus.pipe_size = sizeof(struct slhci_pipe);
if (!sc->sc_enable_power)
t->flags |= F_REALPOWER;
t->flags |= F_ACTIVE;
/* Attach usb and uhub. */
sc->sc_child = config_found(SC_DEV(sc), &sc->sc_bus, usbctlprint);
if (!sc->sc_child)
return -1;
else
return 0;
}
int
slhci_detach(struct slhci_softc *sc, int flags)
{
struct slhci_transfers *t;
int ret;
t = &sc->sc_transfers;
/* By this point bus access is no longer allowed. */
KASSERT(!(t->flags & F_ACTIVE));
/*
* To be MPSAFE is not sufficient to cancel callouts and soft
* interrupts and assume they are dead since the code could already be
* running or about to run. Wait until they are known to be done.
*/
while (t->flags & (F_RESET|F_CALLBACK))
tsleep(&sc, PPAUSE, "slhci_detach", hz);
softint_disestablish(sc->sc_cb_softintr);
mutex_destroy(&sc->sc_lock);
mutex_destroy(&sc->sc_intr_lock);
ret = 0;
if (sc->sc_child)
ret = config_detach(sc->sc_child, flags);
#ifdef SLHCI_MEM_ACCOUNTING
if (sc->sc_mem_use) {
printf("%s: Memory still in use after detach! mem_use (count)"
" = %d\n", SC_NAME(sc), sc->sc_mem_use);
DDOLOG("%s: Memory still in use after detach! mem_use (count)"
" = %d\n", SC_NAME(sc), sc->sc_mem_use, 0,0);
}
#endif
return ret;
}
int
slhci_activate(device_t self, enum devact act)
{
struct slhci_softc *sc = device_private(self);
switch (act) {
case DVACT_DEACTIVATE:
slhci_lock_call(sc, &slhci_halt, NULL, NULL);
return 0;
default:
return EOPNOTSUPP;
}
}
void
slhci_abort(struct usbd_xfer *xfer)
{
struct slhci_softc *sc;
struct slhci_pipe *spipe;
spipe = (struct slhci_pipe *)xfer->pipe;
if (spipe == NULL)
goto callback;
sc = spipe->pipe.device->bus->hci_private;
KASSERT(mutex_owned(&sc->sc_lock));
DLOG(D_TRACE, "%s abort xfer %p spipe %p spipe->xfer %p",
pnames(spipe->ptype), xfer, spipe, spipe->xfer);
slhci_lock_call(sc, &slhci_do_abort, spipe, xfer);
callback:
xfer->status = USBD_CANCELLED;
/* Abort happens at IPL_USB. */
usb_transfer_complete(xfer);
}
void
slhci_close(struct usbd_pipe *pipe)
{
struct slhci_softc *sc;
struct slhci_pipe *spipe;
sc = pipe->device->bus->hci_private;
spipe = (struct slhci_pipe *)pipe;
DLOG(D_TRACE, "%s close spipe %p spipe->xfer %p",
pnames(spipe->ptype), spipe, spipe->xfer, 0);
slhci_lock_call(sc, &slhci_close_pipe, spipe, NULL);
}
void
slhci_clear_toggle(struct usbd_pipe *pipe)
{
struct slhci_pipe *spipe;
spipe = (struct slhci_pipe *)pipe;
DLOG(D_TRACE, "%s toggle spipe %p", pnames(spipe->ptype),
spipe,0,0);
spipe->pflags &= ~PF_TOGGLE;
#ifdef DIAGNOSTIC
if (spipe->xfer != NULL) {
struct slhci_softc *sc = (struct slhci_softc
*)pipe->device->bus;
printf("%s: Clear toggle on transfer in progress! halted\n",
SC_NAME(sc));
DDOLOG("%s: Clear toggle on transfer in progress! halted\n",
SC_NAME(sc), 0,0,0);
slhci_halt(sc, NULL, NULL);
}
#endif
}
void
slhci_poll(struct usbd_bus *bus) /* XXX necessary? */
{
struct slhci_softc *sc;
sc = bus->hci_private;
DLOG(D_TRACE, "slhci_poll", 0,0,0,0);
slhci_lock_call(sc, &slhci_do_poll, NULL, NULL);
}
void
slhci_done(struct usbd_xfer *xfer)
{
/* xfer may not be valid here */
}
void
slhci_void(void *v) {}
/* End out of lock functions. Start lock entry functions. */
#ifdef SLHCI_MEM_ACCOUNTING
void
slhci_mem_use(struct usbd_bus *bus, int val)
{
struct slhci_softc *sc = bus->hci_private;
int s;
mutex_enter(&sc->sc_intr_lock);
sc->sc_mem_use += val;
mutex_exit(&sc->sc_intr_lock);
}
#endif
void
slhci_reset_entry(void *arg)
{
struct slhci_softc *sc = arg;
mutex_enter(&sc->sc_intr_lock);
slhci_reset(sc);
/*
* We cannot call the callback directly since we could then be reset
* again before finishing and need the callout delay for timing.
* Scheduling the callout again before we exit would defeat the reap
* mechanism since we could be unlocked while the reset flag is not
* set. The callback code will check the wait queue.
*/
slhci_callback_schedule(sc);
mutex_exit(&sc->sc_intr_lock);
}
usbd_status
slhci_lock_call(struct slhci_softc *sc, LockCallFunc lcf, struct slhci_pipe
*spipe, struct usbd_xfer *xfer)
{
usbd_status ret;
mutex_enter(&sc->sc_intr_lock);
ret = (*lcf)(sc, spipe, xfer);
slhci_main(sc);
mutex_exit(&sc->sc_intr_lock);
return ret;
}
void
slhci_start_entry(struct slhci_softc *sc, struct slhci_pipe *spipe)
{
struct slhci_transfers *t;
mutex_enter(&sc->sc_intr_lock);
t = &sc->sc_transfers;
if (!(t->flags & (F_AINPROG|F_BINPROG))) {
slhci_enter_xfer(sc, spipe);
slhci_dotransfer(sc);
slhci_main(sc);
} else {
enter_waitq(sc, spipe);
}
mutex_exit(&sc->sc_intr_lock);
}
void
slhci_callback_entry(void *arg)
{
struct slhci_softc *sc;
struct slhci_transfers *t;
sc = (struct slhci_softc *)arg;
mutex_enter(&sc->sc_intr_lock);
t = &sc->sc_transfers;
DLOG(D_SOFT, "callback_entry flags %#x", t->flags, 0,0,0);
repeat:
slhci_callback(sc);
if (!gcq_empty(&sc->sc_waitq)) {
slhci_enter_xfers(sc);
slhci_dotransfer(sc);
slhci_waitintr(sc, 0);
goto repeat;
}
t->flags &= ~F_CALLBACK;
mutex_exit(&sc->sc_intr_lock);
}
void
slhci_do_callback(struct slhci_softc *sc, struct usbd_xfer *xfer)
{
KASSERT(mutex_owned(&sc->sc_intr_lock));
int repeat;
start_cc_time(&t_callback, (u_int)xfer);
mutex_exit(&sc->sc_intr_lock);
mutex_enter(&sc->sc_lock);
repeat = xfer->pipe->repeat;
usb_transfer_complete(xfer);
mutex_exit(&sc->sc_lock);
mutex_enter(&sc->sc_intr_lock);
stop_cc_time(&t_callback);
if (repeat && !sc->sc_bus.use_polling)
slhci_do_repeat(sc, xfer);
}
int
slhci_intr(void *arg)
{
struct slhci_softc *sc = arg;
int ret;
start_cc_time(&t_hard_int, (unsigned int)arg);
mutex_enter(&sc->sc_intr_lock);
ret = slhci_dointr(sc);
slhci_main(sc);
mutex_exit(&sc->sc_intr_lock);
stop_cc_time(&t_hard_int);
return ret;
}
/* called with main lock only held, returns with locks released. */
void
slhci_main(struct slhci_softc *sc)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
waitcheck:
slhci_waitintr(sc, slhci_wait_time);
/*
* The direct call is needed in the use_polling and disabled cases
* since the soft interrupt is not available. In the disabled case,
* this code can be reached from the usb detach, after the reaping of
* the soft interrupt. That test could be !F_ACTIVE, but there is no
* reason not to make the callbacks directly in the other DISABLED
* cases.
*/
if ((t->flags & F_ROOTINTR) || !gcq_empty(&t->q[Q_CALLBACKS])) {
if (__predict_false(sc->sc_bus.use_polling ||
t->flags & F_DISABLED))
slhci_callback(sc);
else
slhci_callback_schedule(sc);
}
if (!gcq_empty(&sc->sc_waitq)) {
slhci_enter_xfers(sc);
slhci_dotransfer(sc);
goto waitcheck;
}
}
/* End lock entry functions. Start in lock function. */
/* Register read/write routines and barriers. */
#ifdef SLHCI_BUS_SPACE_BARRIERS
#define BSB(a, b, c, d, e) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_ # e)
#define BSB_SYNC(a, b, c, d) bus_space_barrier(a, b, c, d, BUS_SPACE_BARRIER_SYNC)
#else /* now !SLHCI_BUS_SPACE_BARRIERS */
#define BSB(a, b, c, d, e) __USE(d)
#define BSB_SYNC(a, b, c, d)
#endif /* SLHCI_BUS_SPACE_BARRIERS */
static void
slhci_write(struct slhci_softc *sc, uint8_t addr, uint8_t data)
{
bus_size_t paddr, pdata, pst, psz;
bus_space_tag_t iot;
bus_space_handle_t ioh;
paddr = pst = 0;
pdata = sc->sc_stride;
psz = pdata * 2;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
bus_space_write_1(iot, ioh, paddr, addr);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
bus_space_write_1(iot, ioh, pdata, data);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
}
static uint8_t
slhci_read(struct slhci_softc *sc, uint8_t addr)
{
bus_size_t paddr, pdata, pst, psz;
bus_space_tag_t iot;
bus_space_handle_t ioh;
uint8_t data;
paddr = pst = 0;
pdata = sc->sc_stride;
psz = pdata * 2;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
bus_space_write_1(iot, ioh, paddr, addr);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
data = bus_space_read_1(iot, ioh, pdata);
BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
return data;
}
#if 0 /* auto-increment mode broken, see errata doc */
static void
slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
{
bus_size_t paddr, pdata, pst, psz;
bus_space_tag_t iot;
bus_space_handle_t ioh;
paddr = pst = 0;
pdata = sc->sc_stride;
psz = pdata * 2;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
bus_space_write_1(iot, ioh, paddr, addr);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
bus_space_write_multi_1(iot, ioh, pdata, buf, l);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
}
static void
slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
{
bus_size_t paddr, pdata, pst, psz;
bus_space_tag_t iot;
bus_space_handle_t ioh;
paddr = pst = 0;
pdata = sc->sc_stride;
psz = pdata * 2;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
bus_space_write_1(iot, ioh, paddr, addr);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
bus_space_read_multi_1(iot, ioh, pdata, buf, l);
BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
}
#else
static void
slhci_write_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
{
#if 1
for (; l; addr++, buf++, l--)
slhci_write(sc, addr, *buf);
#else
bus_size_t paddr, pdata, pst, psz;
bus_space_tag_t iot;
bus_space_handle_t ioh;
paddr = pst = 0;
pdata = sc->sc_stride;
psz = pdata * 2;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
for (; l; addr++, buf++, l--) {
bus_space_write_1(iot, ioh, paddr, addr);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
bus_space_write_1(iot, ioh, pdata, *buf);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_WRITE);
}
#endif
}
static void
slhci_read_multi(struct slhci_softc *sc, uint8_t addr, uint8_t *buf, int l)
{
#if 1
for (; l; addr++, buf++, l--)
*buf = slhci_read(sc, addr);
#else
bus_size_t paddr, pdata, pst, psz;
bus_space_tag_t iot;
bus_space_handle_t ioh;
paddr = pst = 0;
pdata = sc->sc_stride;
psz = pdata * 2;
iot = sc->sc_iot;
ioh = sc->sc_ioh;
for (; l; addr++, buf++, l--) {
bus_space_write_1(iot, ioh, paddr, addr);
BSB(iot, ioh, pst, psz, WRITE_BEFORE_READ);
*buf = bus_space_read_1(iot, ioh, pdata);
BSB(iot, ioh, pst, psz, READ_BEFORE_WRITE);
}
#endif
}
#endif
/*
* After calling waitintr it is necessary to either call slhci_callback or
* schedule the callback if necessary. The callback cannot be called directly
* from the hard interrupt since it interrupts at a high IPL and callbacks
* can do copyout and such.
*/
static void
slhci_waitintr(struct slhci_softc *sc, int wait_time)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (__predict_false(sc->sc_bus.use_polling))
wait_time = 12000;
while (t->pend <= wait_time) {
DLOG(D_WAIT, "waiting... frame %d pend %d flags %#x",
t->frame, t->pend, t->flags, 0);
LK_SLASSERT(t->flags & F_ACTIVE, sc, NULL, NULL, return);
LK_SLASSERT(t->flags & (F_AINPROG|F_BINPROG), sc, NULL, NULL,
return);
slhci_dointr(sc);
}
}
static int
slhci_dointr(struct slhci_softc *sc)
{
struct slhci_transfers *t;
struct slhci_pipe *tosp;
uint8_t r;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (sc->sc_ier == 0)
return 0;
r = slhci_read(sc, SL11_ISR);
#ifdef SLHCI_DEBUG
if (slhci_debug & SLHCI_D_INTR && r & sc->sc_ier &&
((r & ~(SL11_ISR_SOF|SL11_ISR_DATA)) || slhci_debug &
SLHCI_D_SOF)) {
uint8_t e, f;
e = slhci_read(sc, SL11_IER);
f = slhci_read(sc, SL11_CTRL);
DDOLOG("Flags=%#x IER=%#x ISR=%#x", t->flags, e, r, 0);
DDOLOGFLAG8("Status=", r, "D+", (f & SL11_CTRL_SUSPEND) ?
"RESUME" : "NODEV", "INSERT", "SOF", "res", "BABBLE",
"USBB", "USBA");
}
#endif
/*
* check IER for corruption occasionally. Assume that the above
* sc_ier == 0 case works correctly.
*/
if (__predict_false(sc->sc_ier_check++ > SLHCI_IER_CHECK_FREQUENCY)) {
sc->sc_ier_check = 0;
if (sc->sc_ier != slhci_read(sc, SL11_IER)) {
printf("%s: IER value corrupted! halted\n",
SC_NAME(sc));
DDOLOG("%s: IER value corrupted! halted\n",
SC_NAME(sc), 0,0,0);
slhci_halt(sc, NULL, NULL);
return 1;
}
}
r &= sc->sc_ier;
if (r == 0)
return 0;
sc->sc_ier_check = 0;
slhci_write(sc, SL11_ISR, r);
BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
/* If we have an insertion event we do not care about anything else. */
if (__predict_false(r & SL11_ISR_INSERT)) {
slhci_insert(sc);
return 1;
}
stop_cc_time(&t_intr);
start_cc_time(&t_intr, r);
if (r & SL11_ISR_SOF) {
t->frame++;
gcq_merge_tail(&t->q[Q_CB], &t->q[Q_NEXT_CB]);
/*
* SOFCHECK flags are cleared in tstart. Two flags are needed
* since the first SOF interrupt processed after the transfer
* is started might have been generated before the transfer
* was started.
*/
if (__predict_false(t->flags & F_SOFCHECK2 && t->flags &
(F_AINPROG|F_BINPROG))) {
printf("%s: Missed transfer completion. halted\n",
SC_NAME(sc));
DDOLOG("%s: Missed transfer completion. halted\n",
SC_NAME(sc), 0,0,0);
slhci_halt(sc, NULL, NULL);
return 1;
} else if (t->flags & F_SOFCHECK1) {
t->flags |= F_SOFCHECK2;
} else
t->flags |= F_SOFCHECK1;
if (t->flags & F_CHANGE)
t->flags |= F_ROOTINTR;
while (__predict_true(GOT_FIRST_TO(tosp, t)) &&
__predict_false(tosp->to_frame <= t->frame)) {
tosp->xfer->status = USBD_TIMEOUT;
slhci_do_abort(sc, tosp, tosp->xfer);
enter_callback(t, tosp);
}
/*
* Start any waiting transfers right away. If none, we will
* start any new transfers later.
*/
slhci_tstart(sc);
}
if (r & (SL11_ISR_USBA|SL11_ISR_USBB)) {
int ab;
if ((r & (SL11_ISR_USBA|SL11_ISR_USBB)) ==
(SL11_ISR_USBA|SL11_ISR_USBB)) {
if (!(t->flags & (F_AINPROG|F_BINPROG)))
return 1; /* presume card pulled */
LK_SLASSERT((t->flags & (F_AINPROG|F_BINPROG)) !=
(F_AINPROG|F_BINPROG), sc, NULL, NULL, return 1);
/*
* This should never happen (unless card removal just
* occurred) but appeared frequently when both
* transfers were started at the same time and was
* accompanied by data corruption. It still happens
* at times. I have not seen data correption except
* when the STATUS bit gets set, which now causes the
* driver to halt, however this should still not
* happen so the warning is kept. See comment in
* abdone, below.
*/
printf("%s: Transfer reported done but not started! "
"Verify data integrity if not detaching. "
" flags %#x r %x\n", SC_NAME(sc), t->flags, r);
if (!(t->flags & F_AINPROG))
r &= ~SL11_ISR_USBA;
else
r &= ~SL11_ISR_USBB;
}
t->pend = INT_MAX;
if (r & SL11_ISR_USBA)
ab = A;
else
ab = B;
/*
* This happens when a low speed device is attached to
* a hub with chip rev 1.5. SOF stops, but a few transfers
* still work before causing this error.
*/
if (!(t->flags & (ab ? F_BINPROG : F_AINPROG))) {
printf("%s: %s done but not in progress! halted\n",
SC_NAME(sc), ab ? "B" : "A");
DDOLOG("%s: %s done but not in progress! halted\n",
SC_NAME(sc), ab ? "B" : "A", 0,0);
slhci_halt(sc, NULL, NULL);
return 1;
}
t->flags &= ~(ab ? F_BINPROG : F_AINPROG);
slhci_tstart(sc);
stop_cc_time(&t_ab[ab]);
start_cc_time(&t_abdone, t->flags);
slhci_abdone(sc, ab);
stop_cc_time(&t_abdone);
}
slhci_dotransfer(sc);
return 1;
}
static void
slhci_abdone(struct slhci_softc *sc, int ab)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
struct usbd_xfer *xfer;
uint8_t status, buf_start;
uint8_t *target_buf;
unsigned int actlen;
int head;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
DLOG(D_TRACE, "ABDONE flags %#x", t->flags, 0,0,0);
DLOG(D_MSG, "DONE %s spipe %p len %d xfer %p", ab ? "B" : "A",
t->spipe[ab], t->len[ab], t->spipe[ab] ?
t->spipe[ab]->xfer : NULL);
spipe = t->spipe[ab];
/*
* skip this one if aborted; do not call return from the rest of the
* function unless halting, else t->len will not be cleared.
*/
if (spipe == NULL)
goto done;
t->spipe[ab] = NULL;
xfer = spipe->xfer;
gcq_remove(&spipe->to);
LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
status = slhci_read(sc, slhci_tregs[ab][STAT]);
/*
* I saw no status or remaining length greater than the requested
* length in early driver versions in circumstances I assumed caused
* excess power draw. I am no longer able to reproduce this when
* causing excess power draw circumstances.
*
* Disabling a power check and attaching aue to a keyboard and hub
* that is directly attached (to CFU1U, 100mA max, aue 160mA, keyboard
* 98mA) sometimes works and sometimes fails to configure. After
* removing the aue and attaching a self-powered umass dvd reader
* (unknown if it draws power from the host also) soon a single Error
* status occurs then only timeouts. The controller soon halts freeing
* memory due to being ONQU instead of BUSY. This may be the same
* basic sequence that caused the no status/bad length errors. The
* umass device seems to work (better at least) with the keyboard hub
* when not first attaching aue (tested once reading an approximately
* 200MB file).
*
* Overflow can indicate that the device and host disagree about how
* much data has been transfered. This may indicate a problem at any
* point during the transfer, not just when the error occurs. It may
* indicate data corruption. A warning message is printed.
*
* Trying to use both A and B transfers at the same time results in
* incorrect transfer completion ISR reports and the status will then
* include SL11_EPSTAT_SETUP, which is apparently set while the
* transfer is in progress. I also noticed data corruption, even
* after waiting for the transfer to complete. The driver now avoids
* trying to start both at the same time.
*
* I had accidently initialized the B registers before they were valid
* in some driver versions. Since every other performance enhancing
* feature has been confirmed buggy in the errata doc, I have not
* tried both transfers at once again with the documented
* initialization order.
*
* However, I have seen this problem again ("done but not started"
* errors), which in some cases cases the SETUP status bit to remain
* set on future transfers. In other cases, the SETUP bit is not set
* and no data corruption occurs. This occured while using both umass
* and aue on a powered hub (maybe triggered by some local activity
* also) and needs several reads of the 200MB file to trigger. The
* driver now halts if SETUP is detected.
*/
actlen = 0;
if (__predict_false(!status)) {
DDOLOG("no status! xfer %p spipe %p", xfer, spipe, 0,0);
printf("%s: no status! halted\n", SC_NAME(sc));
slhci_halt(sc, spipe, xfer);
return;
}
#ifdef SLHCI_DEBUG
if (slhci_debug & SLHCI_D_NAK || (status & SL11_EPSTAT_ERRBITS) !=
SL11_EPSTAT_NAK)
DLOGFLAG8(D_XFER, "STATUS=", status, "STALL", "NAK",
"Overflow", "Setup", "Data Toggle", "Timeout", "Error",
"ACK");
#endif
if (!(status & SL11_EPSTAT_ERRBITS)) {
unsigned int cont;
cont = slhci_read(sc, slhci_tregs[ab][CONT]);
if (cont != 0)
DLOG(D_XFER, "cont %d len %d", cont,
spipe->tregs[LEN], 0,0);
if (__predict_false(cont > spipe->tregs[LEN])) {
DDOLOG("cont > len! cont %d len %d xfer->length %d "
"spipe %p", cont, spipe->tregs[LEN], xfer->length,
spipe);
printf("%s: cont > len! cont %d len %d xfer->length "
"%d", SC_NAME(sc), cont, spipe->tregs[LEN],
xfer->length);
slhci_halt(sc, spipe, xfer);
return;
} else {
spipe->nerrs = 0;
actlen = spipe->tregs[LEN] - cont;
}
}
/* Actual copyin done after starting next transfer. */
if (actlen && (spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN) {
target_buf = spipe->buffer;
buf_start = spipe->tregs[ADR];
} else {
target_buf = NULL;
buf_start = 0; /* XXX gcc uninitialized warnings */
}
if (status & SL11_EPSTAT_ERRBITS) {
status &= SL11_EPSTAT_ERRBITS;
if (status & SL11_EPSTAT_SETUP) {
printf("%s: Invalid controller state detected! "
"halted\n", SC_NAME(sc));
DDOLOG("%s: Invalid controller state detected! "
"halted\n", SC_NAME(sc), 0,0,0);
slhci_halt(sc, spipe, xfer);
return;
} else if (__predict_false(sc->sc_bus.use_polling)) {
if (status == SL11_EPSTAT_STALL)
xfer->status = USBD_STALLED;
else if (status == SL11_EPSTAT_TIMEOUT)
xfer->status = USBD_TIMEOUT;
else if (status == SL11_EPSTAT_NAK)
xfer->status = USBD_TIMEOUT; /*XXX*/
else
xfer->status = USBD_IOERROR;
head = Q_CALLBACKS;
} else if (status == SL11_EPSTAT_NAK) {
if (spipe->pipe.interval) {
spipe->lastframe = spipe->frame =
t->frame + spipe->pipe.interval;
slhci_queue_timed(sc, spipe);
goto queued;
}
head = Q_NEXT_CB;
} else if (++spipe->nerrs > SLHCI_MAX_RETRIES ||
status == SL11_EPSTAT_STALL) {
if (status == SL11_EPSTAT_STALL)
xfer->status = USBD_STALLED;
else if (status == SL11_EPSTAT_TIMEOUT)
xfer->status = USBD_TIMEOUT;
else
xfer->status = USBD_IOERROR;
DLOG(D_ERR, "Max retries reached! status %#x "
"xfer->status %#x", status, xfer->status, 0,0);
DLOGFLAG8(D_ERR, "STATUS=", status, "STALL",
"NAK", "Overflow", "Setup", "Data Toggle",
"Timeout", "Error", "ACK");
if (status == SL11_EPSTAT_OVERFLOW &&
ratecheck(&sc->sc_overflow_warn_rate,
&overflow_warn_rate)) {
printf("%s: Overflow condition: "
"data corruption possible\n",
SC_NAME(sc));
DDOLOG("%s: Overflow condition: "
"data corruption possible\n",
SC_NAME(sc), 0,0,0);
}
head = Q_CALLBACKS;
} else {
head = Q_NEXT_CB;
}
} else if (spipe->ptype == PT_CTRL_SETUP) {
spipe->tregs[PID] = spipe->newpid;
if (xfer->length) {
LK_SLASSERT(spipe->newlen[1] != 0, sc, spipe, xfer,
return);
spipe->tregs[LEN] = spipe->newlen[1];
spipe->bustime = spipe->newbustime[1];
spipe->buffer = KERNADDR(&xfer->dmabuf, 0);
spipe->ptype = PT_CTRL_DATA;
} else {
status_setup:
/* CTRL_DATA swaps direction in PID then jumps here */
spipe->tregs[LEN] = 0;
if (spipe->pflags & PF_LS)
spipe->bustime = SLHCI_LS_CONST;
else
spipe->bustime = SLHCI_FS_CONST;
spipe->ptype = PT_CTRL_STATUS;
spipe->buffer = NULL;
}
/* Status or first data packet must be DATA1. */
spipe->control |= SL11_EPCTRL_DATATOGGLE;
if ((spipe->tregs[PID] & SL11_PID_BITS) == SL11_PID_IN)
spipe->control &= ~SL11_EPCTRL_DIRECTION;
else
spipe->control |= SL11_EPCTRL_DIRECTION;
head = Q_CB;
} else if (spipe->ptype == PT_CTRL_STATUS) {
head = Q_CALLBACKS;
} else { /* bulk, intr, control data */
xfer->actlen += actlen;
spipe->control ^= SL11_EPCTRL_DATATOGGLE;
if (actlen == spipe->tregs[LEN] && (xfer->length >
xfer->actlen || spipe->wantshort)) {
spipe->buffer += actlen;
LK_SLASSERT(xfer->length >= xfer->actlen, sc,
spipe, xfer, return);
if (xfer->length - xfer->actlen < actlen) {
spipe->wantshort = 0;
spipe->tregs[LEN] = spipe->newlen[0];
spipe->bustime = spipe->newbustime[0];
LK_SLASSERT(xfer->actlen +
spipe->tregs[LEN] == xfer->length, sc,
spipe, xfer, return);
}
head = Q_CB;
} else if (spipe->ptype == PT_CTRL_DATA) {
spipe->tregs[PID] ^= SLHCI_PID_SWAP_IN_OUT;
goto status_setup;
} else {
if (spipe->ptype == PT_INTR) {
spipe->lastframe +=
spipe->pipe.interval;
/*
* If ack, we try to keep the
* interrupt rate by using lastframe
* instead of the current frame.
*/
spipe->frame = spipe->lastframe +
spipe->pipe.interval;
}
/*
* Set the toggle for the next transfer. It
* has already been toggled above, so the
* current setting will apply to the next
* transfer.
*/
if (spipe->control & SL11_EPCTRL_DATATOGGLE)
spipe->pflags |= PF_TOGGLE;
else
spipe->pflags &= ~PF_TOGGLE;
head = Q_CALLBACKS;
}
}
if (head == Q_CALLBACKS) {
gcq_remove(&spipe->to);
if (xfer->status == USBD_IN_PROGRESS) {
LK_SLASSERT(xfer->actlen <= xfer->length, sc,
spipe, xfer, return);
xfer->status = USBD_NORMAL_COMPLETION;
#if 0 /* usb_transfer_complete will do this */
if (xfer->length == xfer->actlen || xfer->flags &
USBD_SHORT_XFER_OK)
xfer->status = USBD_NORMAL_COMPLETION;
else
xfer->status = USBD_SHORT_XFER;
#endif
}
}
enter_q(t, spipe, head);
queued:
if (target_buf != NULL) {
slhci_dotransfer(sc);
start_cc_time(&t_copy_from_dev, actlen);
slhci_read_multi(sc, buf_start, target_buf, actlen);
stop_cc_time(&t_copy_from_dev);
DLOGBUF(D_BUF, target_buf, actlen);
t->pend -= SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(actlen);
}
done:
t->len[ab] = -1;
}
static void
slhci_tstart(struct slhci_softc *sc)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
int remaining_bustime;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (!(t->flags & (F_AREADY|F_BREADY)))
return;
if (t->flags & (F_AINPROG|F_BINPROG|F_DISABLED))
return;
/*
* We have about 6 us to get from the bus time check to
* starting the transfer or we might babble or the chip might fail to
* signal transfer complete. This leaves no time for any other
* interrupts.
*/
remaining_bustime = (int)(slhci_read(sc, SL811_CSOF)) << 6;
remaining_bustime -= SLHCI_END_BUSTIME;
/*
* Start one transfer only, clearing any aborted transfers that are
* not yet in progress and skipping missed isoc. It is easier to copy
* & paste most of the A/B sections than to make the logic work
* otherwise and this allows better constant use.
*/
if (t->flags & F_AREADY) {
spipe = t->spipe[A];
if (spipe == NULL) {
t->flags &= ~F_AREADY;
t->len[A] = -1;
} else if (remaining_bustime >= spipe->bustime) {
t->flags &= ~(F_AREADY|F_SOFCHECK1|F_SOFCHECK2);
t->flags |= F_AINPROG;
start_cc_time(&t_ab[A], spipe->tregs[LEN]);
slhci_write(sc, SL11_E0CTRL, spipe->control);
goto pend;
}
}
if (t->flags & F_BREADY) {
spipe = t->spipe[B];
if (spipe == NULL) {
t->flags &= ~F_BREADY;
t->len[B] = -1;
} else if (remaining_bustime >= spipe->bustime) {
t->flags &= ~(F_BREADY|F_SOFCHECK1|F_SOFCHECK2);
t->flags |= F_BINPROG;
start_cc_time(&t_ab[B], spipe->tregs[LEN]);
slhci_write(sc, SL11_E1CTRL, spipe->control);
pend:
t->pend = spipe->bustime;
}
}
}
static void
slhci_dotransfer(struct slhci_softc *sc)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
int ab, i;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
while ((t->len[A] == -1 || t->len[B] == -1) &&
(GOT_FIRST_TIMED_COND(spipe, t, spipe->frame <= t->frame) ||
GOT_FIRST_CB(spipe, t))) {
LK_SLASSERT(spipe->xfer != NULL, sc, spipe, NULL, return);
LK_SLASSERT(spipe->ptype != PT_ROOT_CTRL && spipe->ptype !=
PT_ROOT_INTR, sc, spipe, NULL, return);
/* Check that this transfer can fit in the remaining memory. */
if (t->len[A] + t->len[B] + spipe->tregs[LEN] + 1 >
SL11_MAX_PACKET_SIZE) {
DLOG(D_XFER, "Transfer does not fit. alen %d blen %d "
"len %d", t->len[A], t->len[B], spipe->tregs[LEN],
0);
return;
}
gcq_remove(&spipe->xq);
if (t->len[A] == -1) {
ab = A;
spipe->tregs[ADR] = SL11_BUFFER_START;
} else {
ab = B;
spipe->tregs[ADR] = SL11_BUFFER_END -
spipe->tregs[LEN];
}
t->len[ab] = spipe->tregs[LEN];
if (spipe->tregs[LEN] && (spipe->tregs[PID] & SL11_PID_BITS)
!= SL11_PID_IN) {
start_cc_time(&t_copy_to_dev,
spipe->tregs[LEN]);
slhci_write_multi(sc, spipe->tregs[ADR],
spipe->buffer, spipe->tregs[LEN]);
stop_cc_time(&t_copy_to_dev);
t->pend -= SLHCI_FS_CONST +
SLHCI_FS_DATA_TIME(spipe->tregs[LEN]);
}
DLOG(D_MSG, "NEW TRANSFER %s flags %#x alen %d blen %d",
ab ? "B" : "A", t->flags, t->len[0], t->len[1]);
if (spipe->tregs[LEN])
i = 0;
else
i = 1;
for (; i <= 3; i++)
if (t->current_tregs[ab][i] != spipe->tregs[i]) {
t->current_tregs[ab][i] = spipe->tregs[i];
slhci_write(sc, slhci_tregs[ab][i],
spipe->tregs[i]);
}
DLOG(D_SXFER, "Transfer len %d pid %#x dev %d type %s",
spipe->tregs[LEN], spipe->tregs[PID], spipe->tregs[DEV],
pnames(spipe->ptype));
t->spipe[ab] = spipe;
t->flags |= ab ? F_BREADY : F_AREADY;
slhci_tstart(sc);
}
}
/*
* slhci_callback is called after the lock is taken from splusb.
*/
static void
slhci_callback(struct slhci_softc *sc)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
struct usbd_xfer *xfer;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
DLOG(D_SOFT, "CB flags %#x", t->flags, 0,0,0);
for (;;) {
if (__predict_false(t->flags & F_ROOTINTR)) {
t->flags &= ~F_ROOTINTR;
if (t->rootintr != NULL) {
u_char *p;
p = KERNADDR(&t->rootintr->dmabuf, 0);
p[0] = 2;
t->rootintr->actlen = 1;
t->rootintr->status = USBD_NORMAL_COMPLETION;
xfer = t->rootintr;
goto do_callback;
}
}
if (!DEQUEUED_CALLBACK(spipe, t))
return;
xfer = spipe->xfer;
LK_SLASSERT(xfer != NULL, sc, spipe, NULL, return);
spipe->xfer = NULL;
DLOG(D_XFER, "xfer callback length %d actlen %d spipe %x "
"type %s", xfer->length, xfer->actlen, spipe,
pnames(spipe->ptype));
do_callback:
slhci_do_callback(sc, xfer);
}
}
static void
slhci_enter_xfer(struct slhci_softc *sc, struct slhci_pipe *spipe)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (__predict_false(t->flags & F_DISABLED) ||
__predict_false(spipe->pflags & PF_GONE)) {
DLOG(D_MSG, "slhci_enter_xfer: DISABLED or GONE", 0,0,0,0);
spipe->xfer->status = USBD_CANCELLED;
}
if (spipe->xfer->status == USBD_IN_PROGRESS) {
if (spipe->xfer->timeout) {
spipe->to_frame = t->frame + spipe->xfer->timeout;
slhci_xfer_timer(sc, spipe);
}
if (spipe->pipe.interval)
slhci_queue_timed(sc, spipe);
else
enter_q(t, spipe, Q_CB);
} else
enter_callback(t, spipe);
}
static void
slhci_enter_xfers(struct slhci_softc *sc)
{
struct slhci_pipe *spipe;
KASSERT(mutex_owned(&sc->sc_intr_lock));
while (DEQUEUED_WAITQ(spipe, sc))
slhci_enter_xfer(sc, spipe);
}
static void
slhci_queue_timed(struct slhci_softc *sc, struct slhci_pipe *spipe)
{
struct slhci_transfers *t;
struct gcq *q;
struct slhci_pipe *spp;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
FIND_TIMED(q, t, spp, spp->frame > spipe->frame);
gcq_insert_before(q, &spipe->xq);
}
static void
slhci_xfer_timer(struct slhci_softc *sc, struct slhci_pipe *spipe)
{
struct slhci_transfers *t;
struct gcq *q;
struct slhci_pipe *spp;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
FIND_TO(q, t, spp, spp->to_frame >= spipe->to_frame);
gcq_insert_before(q, &spipe->to);
}
static void
slhci_do_repeat(struct slhci_softc *sc, struct usbd_xfer *xfer)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
t = &sc->sc_transfers;
spipe = (struct slhci_pipe *)xfer->pipe;
if (xfer == t->rootintr)
return;
DLOG(D_TRACE, "REPEAT: xfer %p actlen %d frame %u now %u",
xfer, xfer->actlen, spipe->frame, sc->sc_transfers.frame);
xfer->actlen = 0;
spipe->xfer = xfer;
if (spipe->tregs[LEN])
KASSERT(spipe->buffer == KERNADDR(&xfer->dmabuf, 0));
slhci_queue_timed(sc, spipe);
slhci_dotransfer(sc);
}
static void
slhci_callback_schedule(struct slhci_softc *sc)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (t->flags & F_ACTIVE)
slhci_do_callback_schedule(sc);
}
static void
slhci_do_callback_schedule(struct slhci_softc *sc)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (!(t->flags & F_CALLBACK)) {
t->flags |= F_CALLBACK;
softint_schedule(sc->sc_cb_softintr);
}
}
#if 0
/* must be called with lock taken from IPL_USB */
/* XXX static */ void
slhci_pollxfer(struct slhci_softc *sc, struct usbd_xfer *xfer)
{
KASSERT(mutex_owned(&sc->sc_intr_lock));
slhci_dotransfer(sc);
do {
slhci_dointr(sc);
} while (xfer->status == USBD_IN_PROGRESS);
slhci_do_callback(sc, xfer);
}
#endif
static usbd_status
slhci_do_poll(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
usbd_xfer *xfer)
{
slhci_waitintr(sc, 0);
return USBD_NORMAL_COMPLETION;
}
static usbd_status
slhci_lsvh_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
usbd_xfer *xfer)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
if (!(t->flags & F_LSVH_WARNED)) {
printf("%s: Low speed device via hub disabled, "
"see slhci(4)\n", SC_NAME(sc));
DDOLOG("%s: Low speed device via hub disabled, "
"see slhci(4)\n", SC_NAME(sc), 0,0,0);
t->flags |= F_LSVH_WARNED;
}
return USBD_INVAL;
}
static usbd_status
slhci_isoc_warn(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
usbd_xfer *xfer)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
if (!(t->flags & F_ISOC_WARNED)) {
printf("%s: ISOC transfer not supported "
"(see slhci(4))\n", SC_NAME(sc));
DDOLOG("%s: ISOC transfer not supported "
"(see slhci(4))\n", SC_NAME(sc), 0,0,0);
t->flags |= F_ISOC_WARNED;
}
return USBD_INVAL;
}
static usbd_status
slhci_open_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
usbd_xfer *xfer)
{
struct slhci_transfers *t;
struct usbd_pipe *pipe;
t = &sc->sc_transfers;
pipe = &spipe->pipe;
if (t->flags & F_DISABLED)
return USBD_CANCELLED;
else if (pipe->interval && !slhci_reserve_bustime(sc, spipe, 1))
return USBD_PENDING_REQUESTS;
else {
enter_all_pipes(t, spipe);
return USBD_NORMAL_COMPLETION;
}
}
static usbd_status
slhci_close_pipe(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
usbd_xfer *xfer)
{
struct usbd_pipe *pipe;
pipe = &spipe->pipe;
if (pipe->interval && spipe->ptype != PT_ROOT_INTR)
slhci_reserve_bustime(sc, spipe, 0);
gcq_remove(&spipe->ap);
return USBD_NORMAL_COMPLETION;
}
static usbd_status
slhci_do_abort(struct slhci_softc *sc, struct slhci_pipe *spipe, struct
usbd_xfer *xfer)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (spipe->xfer == xfer) {
if (spipe->ptype == PT_ROOT_INTR) {
if (t->rootintr == spipe->xfer) /* XXX assert? */
t->rootintr = NULL;
} else {
gcq_remove(&spipe->to);
gcq_remove(&spipe->xq);
if (t->spipe[A] == spipe) {
t->spipe[A] = NULL;
if (!(t->flags & F_AINPROG))
t->len[A] = -1;
} else if (t->spipe[B] == spipe) {
t->spipe[B] = NULL;
if (!(t->flags & F_BINPROG))
t->len[B] = -1;
}
}
if (xfer->status != USBD_TIMEOUT) {
spipe->xfer = NULL;
spipe->pipe.repeat = 0; /* XXX timeout? */
}
}
return USBD_NORMAL_COMPLETION;
}
/*
* Called to deactivate or stop use of the controller instead of panicking.
* Will cancel the xfer correctly even when not on a list.
*/
static usbd_status
slhci_halt(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
*xfer)
{
struct slhci_transfers *t;
KASSERT(mutex_owned(&sc->sc_intr_lock));
t = &sc->sc_transfers;
DDOLOG("Halt! sc %p spipe %p xfer %p", sc, spipe, xfer, 0);
if (spipe != NULL)
slhci_log_spipe(spipe);
if (xfer != NULL)
slhci_log_xfer(xfer);
if (spipe != NULL && xfer != NULL && spipe->xfer == xfer &&
!gcq_onlist(&spipe->xq) && t->spipe[A] != spipe && t->spipe[B] !=
spipe) {
xfer->status = USBD_CANCELLED;
enter_callback(t, spipe);
}
if (t->flags & F_ACTIVE) {
slhci_intrchange(sc, 0);
/*
* leave power on when halting in case flash devices or disks
* are attached, which may be writing and could be damaged
* by abrupt power loss. The root hub clear power feature
* should still work after halting.
*/
}
t->flags &= ~F_ACTIVE;
t->flags |= F_UDISABLED;
if (!(t->flags & F_NODEV))
t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
slhci_drain(sc);
/* One last callback for the drain and device removal. */
slhci_do_callback_schedule(sc);
return USBD_NORMAL_COMPLETION;
}
/*
* There are three interrupt states: no interrupts during reset and after
* device deactivation, INSERT only for no device present but power on, and
* SOF, INSERT, ADONE, and BDONE when device is present.
*/
static void
slhci_intrchange(struct slhci_softc *sc, uint8_t new_ier)
{
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (sc->sc_ier != new_ier) {
sc->sc_ier = new_ier;
slhci_write(sc, SL11_IER, new_ier);
BSB_SYNC(sc->iot, sc->ioh, sc->pst, sc->psz);
}
}
/*
* Drain: cancel all pending transfers and put them on the callback list and
* set the UDISABLED flag. UDISABLED is cleared only by reset.
*/
static void
slhci_drain(struct slhci_softc *sc)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
struct gcq *q;
int i;
KASSERT(mutex_owned(&sc->sc_intr_lock));
t = &sc->sc_transfers;
DLOG(D_MSG, "DRAIN flags %#x", t->flags, 0,0,0);
t->pend = INT_MAX;
for (i=0; i<=1; i++) {
t->len[i] = -1;
if (t->spipe[i] != NULL) {
enter_callback(t, t->spipe[i]);
t->spipe[i] = NULL;
}
}
/* Merge the queues into the callback queue. */
gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_CB]);
gcq_merge_tail(&t->q[Q_CALLBACKS], &t->q[Q_NEXT_CB]);
gcq_merge_tail(&t->q[Q_CALLBACKS], &t->timed);
/*
* Cancel all pipes. Note that not all of these may be on the
* callback queue yet; some could be in slhci_start, for example.
*/
FOREACH_AP(q, t, spipe) {
spipe->pflags |= PF_GONE;
spipe->pipe.repeat = 0;
spipe->pipe.aborting = 1;
if (spipe->xfer != NULL)
spipe->xfer->status = USBD_CANCELLED;
}
gcq_remove_all(&t->to);
t->flags |= F_UDISABLED;
t->flags &= ~(F_AREADY|F_BREADY|F_AINPROG|F_BINPROG|F_LOWSPEED);
}
/*
* RESET: SL11_CTRL_RESETENGINE=1 and SL11_CTRL_JKSTATE=0 for 50ms
* reconfigure SOF after reset, must wait 2.5us before USB bus activity (SOF)
* check attached device speed.
* must wait 100ms before USB transaction according to app note, 10ms
* by spec. uhub does this delay
*
* Started from root hub set feature reset, which does step one.
* use_polling will call slhci_reset directly, otherwise the callout goes
* through slhci_reset_entry.
*/
void
slhci_reset(struct slhci_softc *sc)
{
struct slhci_transfers *t;
struct slhci_pipe *spipe;
struct gcq *q;
uint8_t r, pol, ctrl;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
stop_cc_time(&t_delay);
KASSERT(t->flags & F_ACTIVE);
start_cc_time(&t_delay, 0);
stop_cc_time(&t_delay);
slhci_write(sc, SL11_CTRL, 0);
start_cc_time(&t_delay, 3);
DELAY(3);
stop_cc_time(&t_delay);
slhci_write(sc, SL11_ISR, 0xff);
r = slhci_read(sc, SL11_ISR);
if (r & SL11_ISR_INSERT)
slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
if (r & SL11_ISR_NODEV) {
DLOG(D_MSG, "NC", 0,0,0,0);
/*
* Normally, the hard interrupt insert routine will issue
* CCONNECT, however we need to do it here if the detach
* happened during reset.
*/
if (!(t->flags & F_NODEV))
t->flags |= F_CCONNECT|F_ROOTINTR|F_NODEV;
slhci_intrchange(sc, SL11_IER_INSERT);
} else {
if (t->flags & F_NODEV)
t->flags |= F_CCONNECT;
t->flags &= ~(F_NODEV|F_LOWSPEED);
if (r & SL11_ISR_DATA) {
DLOG(D_MSG, "FS", 0,0,0,0);
pol = ctrl = 0;
} else {
DLOG(D_MSG, "LS", 0,0,0,0);
pol = SL811_CSOF_POLARITY;
ctrl = SL11_CTRL_LOWSPEED;
t->flags |= F_LOWSPEED;
}
/* Enable SOF auto-generation */
t->frame = 0; /* write to SL811_CSOF will reset frame */
slhci_write(sc, SL11_SOFTIME, 0xe0);
slhci_write(sc, SL811_CSOF, pol|SL811_CSOF_MASTER|0x2e);
slhci_write(sc, SL11_CTRL, ctrl|SL11_CTRL_ENABLESOF);
/*
* According to the app note, ARM must be set
* for SOF generation to work. We initialize all
* USBA registers here for current_tregs.
*/
slhci_write(sc, SL11_E0ADDR, SL11_BUFFER_START);
slhci_write(sc, SL11_E0LEN, 0);
slhci_write(sc, SL11_E0PID, SL11_PID_SOF);
slhci_write(sc, SL11_E0DEV, 0);
slhci_write(sc, SL11_E0CTRL, SL11_EPCTRL_ARM);
/*
* Initialize B registers. This can't be done earlier since
* they are not valid until the SL811_CSOF register is written
* above due to SL11H compatability.
*/
slhci_write(sc, SL11_E1ADDR, SL11_BUFFER_END - 8);
slhci_write(sc, SL11_E1LEN, 0);
slhci_write(sc, SL11_E1PID, 0);
slhci_write(sc, SL11_E1DEV, 0);
t->current_tregs[0][ADR] = SL11_BUFFER_START;
t->current_tregs[0][LEN] = 0;
t->current_tregs[0][PID] = SL11_PID_SOF;
t->current_tregs[0][DEV] = 0;
t->current_tregs[1][ADR] = SL11_BUFFER_END - 8;
t->current_tregs[1][LEN] = 0;
t->current_tregs[1][PID] = 0;
t->current_tregs[1][DEV] = 0;
/* SOF start will produce USBA interrupt */
t->len[A] = 0;
t->flags |= F_AINPROG;
slhci_intrchange(sc, SLHCI_NORMAL_INTERRUPTS);
}
t->flags &= ~(F_UDISABLED|F_RESET);
t->flags |= F_CRESET|F_ROOTINTR;
FOREACH_AP(q, t, spipe) {
spipe->pflags &= ~PF_GONE;
spipe->pipe.aborting = 0;
}
DLOG(D_MSG, "RESET done flags %#x", t->flags, 0,0,0);
}
/* returns 1 if succeeded, 0 if failed, reserve == 0 is unreserve */
static int
slhci_reserve_bustime(struct slhci_softc *sc, struct slhci_pipe *spipe, int
reserve)
{
struct slhci_transfers *t;
int bustime, max_packet;
KASSERT(mutex_owned(&sc->sc_intr_lock));
t = &sc->sc_transfers;
max_packet = UGETW(spipe->pipe.endpoint->edesc->wMaxPacketSize);
if (spipe->pflags & PF_LS)
bustime = SLHCI_LS_CONST + SLHCI_LS_DATA_TIME(max_packet);
else
bustime = SLHCI_FS_CONST + SLHCI_FS_DATA_TIME(max_packet);
if (!reserve) {
t->reserved_bustime -= bustime;
#ifdef DIAGNOSTIC
if (t->reserved_bustime < 0) {
printf("%s: reserved_bustime %d < 0!\n",
SC_NAME(sc), t->reserved_bustime);
DDOLOG("%s: reserved_bustime %d < 0!\n",
SC_NAME(sc), t->reserved_bustime, 0,0);
t->reserved_bustime = 0;
}
#endif
return 1;
}
if (t->reserved_bustime + bustime > SLHCI_RESERVED_BUSTIME) {
if (ratecheck(&sc->sc_reserved_warn_rate,
&reserved_warn_rate))
#ifdef SLHCI_NO_OVERTIME
{
printf("%s: Max reserved bus time exceeded! "
"Erroring request.\n", SC_NAME(sc));
DDOLOG("%s: Max reserved bus time exceeded! "
"Erroring request.\n", SC_NAME(sc), 0,0,0);
}
return 0;
#else
{
printf("%s: Reserved bus time exceeds %d!\n",
SC_NAME(sc), SLHCI_RESERVED_BUSTIME);
DDOLOG("%s: Reserved bus time exceeds %d!\n",
SC_NAME(sc), SLHCI_RESERVED_BUSTIME, 0,0);
}
#endif
}
t->reserved_bustime += bustime;
return 1;
}
/* Device insertion/removal interrupt */
static void
slhci_insert(struct slhci_softc *sc)
{
struct slhci_transfers *t;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (t->flags & F_NODEV)
slhci_intrchange(sc, 0);
else {
slhci_drain(sc);
slhci_intrchange(sc, SL11_IER_INSERT);
}
t->flags ^= F_NODEV;
t->flags |= F_ROOTINTR|F_CCONNECT;
DLOG(D_MSG, "INSERT intr: flags after %#x", t->flags, 0,0,0);
}
/*
* Data structures and routines to emulate the root hub.
*/
static const usb_device_descriptor_t slhci_devd = {
USB_DEVICE_DESCRIPTOR_SIZE,
UDESC_DEVICE, /* type */
{0x01, 0x01}, /* USB version */
UDCLASS_HUB, /* class */
UDSUBCLASS_HUB, /* subclass */
0, /* protocol */
64, /* max packet */
{USB_VENDOR_SCANLOGIC & 0xff, /* vendor ID (low) */
USB_VENDOR_SCANLOGIC >> 8 }, /* vendor ID (high) */
{0} /* ? */, /* product ID */
{0}, /* device */
1, /* index to manufacturer */
2, /* index to product */
0, /* index to serial number */
1 /* number of configurations */
};
static const struct slhci_confd_t {
const usb_config_descriptor_t confd;
const usb_interface_descriptor_t ifcd;
const usb_endpoint_descriptor_t endpd;
} UPACKED slhci_confd = {
{ /* Configuration */
USB_CONFIG_DESCRIPTOR_SIZE,
UDESC_CONFIG,
{USB_CONFIG_DESCRIPTOR_SIZE +
USB_INTERFACE_DESCRIPTOR_SIZE +
USB_ENDPOINT_DESCRIPTOR_SIZE},
1, /* number of interfaces */
1, /* configuration value */
0, /* index to configuration */
UC_SELF_POWERED, /* attributes */
0 /* max current, filled in later */
}, { /* Interface */
USB_INTERFACE_DESCRIPTOR_SIZE,
UDESC_INTERFACE,
0, /* interface number */
0, /* alternate setting */
1, /* number of endpoint */
UICLASS_HUB, /* class */
UISUBCLASS_HUB, /* subclass */
0, /* protocol */
0 /* index to interface */
}, { /* Endpoint */
USB_ENDPOINT_DESCRIPTOR_SIZE,
UDESC_ENDPOINT,
UE_DIR_IN | ROOT_INTR_ENDPT, /* endpoint address */
UE_INTERRUPT, /* attributes */
{240, 0}, /* max packet size */
255 /* interval */
}
};
static const usb_hub_descriptor_t slhci_hubd = {
USB_HUB_DESCRIPTOR_SIZE,
UDESC_HUB,
1, /* number of ports */
{UHD_PWR_INDIVIDUAL | UHD_OC_NONE, 0}, /* hub characteristics */
50, /* 5:power on to power good, units of 2ms */
0, /* 6:maximum current, filled in later */
{ 0x00 }, /* port is removable */
{ 0x00 } /* port power control mask */
};
static usbd_status
slhci_clear_feature(struct slhci_softc *sc, unsigned int what)
{
struct slhci_transfers *t;
usbd_status error;
t = &sc->sc_transfers;
error = USBD_NORMAL_COMPLETION;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (what == UHF_PORT_POWER) {
DLOG(D_MSG, "POWER_OFF", 0,0,0,0);
t->flags &= ~F_POWER;
if (!(t->flags & F_NODEV))
t->flags |= F_NODEV|F_CCONNECT|F_ROOTINTR;
/* for x68k Nereid USB controller */
if (sc->sc_enable_power && (t->flags & F_REALPOWER)) {
t->flags &= ~F_REALPOWER;
sc->sc_enable_power(sc, POWER_OFF);
}
slhci_intrchange(sc, 0);
slhci_drain(sc);
} else if (what == UHF_C_PORT_CONNECTION) {
t->flags &= ~F_CCONNECT;
} else if (what == UHF_C_PORT_RESET) {
t->flags &= ~F_CRESET;
} else if (what == UHF_PORT_ENABLE) {
slhci_drain(sc);
} else if (what != UHF_PORT_SUSPEND) {
DDOLOG("ClrPortFeatERR:value=%#.4x", what, 0,0,0);
error = USBD_IOERROR;
}
return error;
}
static usbd_status
slhci_set_feature(struct slhci_softc *sc, unsigned int what)
{
struct slhci_transfers *t;
uint8_t r;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (what == UHF_PORT_RESET) {
if (!(t->flags & F_ACTIVE)) {
DDOLOG("SET PORT_RESET when not ACTIVE!",
0,0,0,0);
return USBD_INVAL;
}
if (!(t->flags & F_POWER)) {
DDOLOG("SET PORT_RESET without PORT_POWER! flags %p",
t->flags, 0,0,0);
return USBD_INVAL;
}
if (t->flags & F_RESET)
return USBD_NORMAL_COMPLETION;
DLOG(D_MSG, "RESET flags %#x", t->flags, 0,0,0);
slhci_intrchange(sc, 0);
slhci_drain(sc);
slhci_write(sc, SL11_CTRL, SL11_CTRL_RESETENGINE);
/* usb spec says delay >= 10ms, app note 50ms */
start_cc_time(&t_delay, 50000);
if (sc->sc_bus.use_polling) {
DELAY(50000);
slhci_reset(sc);
} else {
t->flags |= F_RESET;
callout_schedule(&sc->sc_timer, max(mstohz(50), 2));
}
} else if (what == UHF_PORT_SUSPEND) {
printf("%s: USB Suspend not implemented!\n", SC_NAME(sc));
DDOLOG("%s: USB Suspend not implemented!\n", SC_NAME(sc),
0,0,0);
} else if (what == UHF_PORT_POWER) {
DLOG(D_MSG, "PORT_POWER", 0,0,0,0);
/* for x68k Nereid USB controller */
if (!(t->flags & F_ACTIVE))
return USBD_INVAL;
if (t->flags & F_POWER)
return USBD_NORMAL_COMPLETION;
if (!(t->flags & F_REALPOWER)) {
if (sc->sc_enable_power)
sc->sc_enable_power(sc, POWER_ON);
t->flags |= F_REALPOWER;
}
t->flags |= F_POWER;
r = slhci_read(sc, SL11_ISR);
if (r & SL11_ISR_INSERT)
slhci_write(sc, SL11_ISR, SL11_ISR_INSERT);
if (r & SL11_ISR_NODEV) {
slhci_intrchange(sc, SL11_IER_INSERT);
t->flags |= F_NODEV;
} else {
t->flags &= ~F_NODEV;
t->flags |= F_CCONNECT|F_ROOTINTR;
}
} else {
DDOLOG("SetPortFeatERR=%#.8x", what, 0,0,0);
return USBD_IOERROR;
}
return USBD_NORMAL_COMPLETION;
}
static void
slhci_get_status(struct slhci_softc *sc, usb_port_status_t *ps)
{
struct slhci_transfers *t;
unsigned int status, change;
t = &sc->sc_transfers;
KASSERT(mutex_owned(&sc->sc_intr_lock));
/*
* We do not have a way to detect over current or bable and
* suspend is currently not implemented, so connect and reset
* are the only changes that need to be reported.
*/
change = 0;
if (t->flags & F_CCONNECT)
change |= UPS_C_CONNECT_STATUS;
if (t->flags & F_CRESET)
change |= UPS_C_PORT_RESET;
status = 0;
if (!(t->flags & F_NODEV))
status |= UPS_CURRENT_CONNECT_STATUS;
if (!(t->flags & F_UDISABLED))
status |= UPS_PORT_ENABLED;
if (t->flags & F_RESET)
status |= UPS_RESET;
if (t->flags & F_POWER)
status |= UPS_PORT_POWER;
if (t->flags & F_LOWSPEED)
status |= UPS_LOW_SPEED;
USETW(ps->wPortStatus, status);
USETW(ps->wPortChange, change);
DLOG(D_ROOT, "status=%#.4x, change=%#.4x", status, change, 0,0);
}
static usbd_status
slhci_root(struct slhci_softc *sc, struct slhci_pipe *spipe, struct usbd_xfer
*xfer)
{
struct slhci_transfers *t;
usb_device_request_t *req;
unsigned int len, value, index, actlen, type;
uint8_t *buf;
usbd_status error;
t = &sc->sc_transfers;
buf = NULL;
LK_SLASSERT(spipe != NULL && xfer != NULL, sc, spipe, xfer, return
USBD_CANCELLED);
DLOG(D_TRACE, "%s start", pnames(SLHCI_XFER_TYPE(xfer)), 0,0,0);
KASSERT(mutex_owned(&sc->sc_intr_lock));
if (spipe->ptype == PT_ROOT_INTR) {
LK_SLASSERT(t->rootintr == NULL, sc, spipe, xfer, return
USBD_CANCELLED);
t->rootintr = xfer;
if (t->flags & F_CHANGE)
t->flags |= F_ROOTINTR;
return USBD_IN_PROGRESS;
}
error = USBD_IOERROR; /* XXX should be STALL */
actlen = 0;
req = &xfer->request;
len = UGETW(req->wLength);
value = UGETW(req->wValue);
index = UGETW(req->wIndex);
type = req->bmRequestType;
if (len)
buf = KERNADDR(&xfer->dmabuf, 0);
SLHCI_DEXEC(D_TRACE, slhci_log_req_hub(req));
/*
* USB requests for hubs have two basic types, standard and class.
* Each could potentially have recipients of device, interface,
* endpoint, or other. For the hub class, CLASS_OTHER means the port
* and CLASS_DEVICE means the hub. For standard requests, OTHER
* is not used. Standard request are described in section 9.4 of the
* standard, hub class requests in 11.16. Each request is either read
* or write.
*
* Clear Feature, Set Feature, and Status are defined for each of the
* used recipients. Get Descriptor and Set Descriptor are defined for
* both standard and hub class types with different descriptors.
* Other requests have only one defined recipient and type. These
* include: Get/Set Address, Get/Set Configuration, Get/Set Interface,
* and Synch Frame for standard requests and Get Bus State for hub
* class.
*
* When a device is first powered up it has address 0 until the
* address is set.
*
* Hubs are only allowed to support one interface and may not have
* isochronous endpoints. The results of the related requests are
* undefined.
*
* The standard requires invalid or unsupported requests to return
* STALL in the data stage, however this does not work well with
* current error handling. XXX
*
* Some unsupported fields:
* Clear Hub Feature is for C_HUB_LOCAL_POWER and C_HUB_OVER_CURRENT
* Set Device Features is for ENDPOINT_HALT and DEVICE_REMOTE_WAKEUP
* Get Bus State is optional sample of D- and D+ at EOF2
*/
switch (req->bRequest) {
/* Write Requests */
case UR_CLEAR_FEATURE:
if (type == UT_WRITE_CLASS_OTHER) {
if (index == 1 /* Port */)
error = slhci_clear_feature(sc, value);
else
DLOG(D_ROOT, "Clear Port Feature "
"index = %#.4x", index, 0,0,0);
}
break;
case UR_SET_FEATURE:
if (type == UT_WRITE_CLASS_OTHER) {
if (index == 1 /* Port */)
error = slhci_set_feature(sc, value);
else
DLOG(D_ROOT, "Set Port Feature "
"index = %#.4x", index, 0,0,0);
} else if (type != UT_WRITE_CLASS_DEVICE)
DLOG(D_ROOT, "Set Device Feature "
"ENDPOINT_HALT or DEVICE_REMOTE_WAKEUP "
"not supported", 0,0,0,0);
break;
case UR_SET_ADDRESS:
if (type == UT_WRITE_DEVICE) {
DLOG(D_ROOT, "Set Address %#.4x", value, 0,0,0);
if (value < USB_MAX_DEVICES) {
t->rootaddr = value;
error = USBD_NORMAL_COMPLETION;
}
}
break;
case UR_SET_CONFIG:
if (type == UT_WRITE_DEVICE) {
DLOG(D_ROOT, "Set Config %#.4x", value, 0,0,0);
if (value == 0 || value == 1) {
t->rootconf = value;
error = USBD_NORMAL_COMPLETION;
}
}
break;
/* Read Requests */
case UR_GET_STATUS:
if (type == UT_READ_CLASS_OTHER) {
if (index == 1 /* Port */ && len == /* XXX >=? */
sizeof(usb_port_status_t)) {
slhci_get_status(sc, (usb_port_status_t *)
buf);
actlen = sizeof(usb_port_status_t);
error = USBD_NORMAL_COMPLETION;
} else
DLOG(D_ROOT, "Get Port Status index = %#.4x "
"len = %#.4x", index, len, 0,0);
} else if (type == UT_READ_CLASS_DEVICE) { /* XXX index? */
if (len == sizeof(usb_hub_status_t)) {
DLOG(D_ROOT, "Get Hub Status",
0,0,0,0);
actlen = sizeof(usb_hub_status_t);
memset(buf, 0, actlen);
error = USBD_NORMAL_COMPLETION;
} else
DLOG(D_ROOT, "Get Hub Status bad len %#.4x",
len, 0,0,0);
} else if (type == UT_READ_DEVICE) {
if (len >= 2) {
USETW(((usb_status_t *)buf)->wStatus, UDS_SELF_POWERED);
actlen = 2;
error = USBD_NORMAL_COMPLETION;
}
} else if (type == (UT_READ_INTERFACE|UT_READ_ENDPOINT)) {
if (len >= 2) {
USETW(((usb_status_t *)buf)->wStatus, 0);
actlen = 2;
error = USBD_NORMAL_COMPLETION;
}
}
break;
case UR_GET_CONFIG:
if (type == UT_READ_DEVICE) {
DLOG(D_ROOT, "Get Config", 0,0,0,0);
if (len > 0) {
*buf = t->rootconf;
actlen = 1;
error = USBD_NORMAL_COMPLETION;
}
}
break;
case UR_GET_INTERFACE:
if (type == UT_READ_INTERFACE) {
if (len > 0) {
*buf = 0;
actlen = 1;
error = USBD_NORMAL_COMPLETION;
}
}
break;
case UR_GET_DESCRIPTOR:
if (type == UT_READ_DEVICE) {
/* value is type (&0xff00) and index (0xff) */
if (value == (UDESC_DEVICE<<8)) {
actlen = min(len, sizeof(slhci_devd));
memcpy(buf, &slhci_devd, actlen);
error = USBD_NORMAL_COMPLETION;
} else if (value == (UDESC_CONFIG<<8)) {
actlen = min(len, sizeof(slhci_confd));
memcpy(buf, &slhci_confd, actlen);
if (actlen > offsetof(usb_config_descriptor_t,
bMaxPower))
((usb_config_descriptor_t *)
buf)->bMaxPower = t->max_current;
/* 2 mA units */
error = USBD_NORMAL_COMPLETION;
} else if (value == (UDESC_STRING<<8)) {
/* language table XXX */
} else if (value == ((UDESC_STRING<<8)|1)) {
/* Vendor */
actlen = usb_makestrdesc((usb_string_descriptor_t *)
buf, len, "ScanLogic/Cypress");
error = USBD_NORMAL_COMPLETION;
} else if (value == ((UDESC_STRING<<8)|2)) {
/* Product */
actlen = usb_makestrdesc((usb_string_descriptor_t *)
buf, len, "SL811HS/T root hub");
error = USBD_NORMAL_COMPLETION;
} else
DDOLOG("Unknown Get Descriptor %#.4x",
value, 0,0,0);
} else if (type == UT_READ_CLASS_DEVICE) {
/* Descriptor number is 0 */
if (value == (UDESC_HUB<<8)) {
actlen = min(len, sizeof(slhci_hubd));
memcpy(buf, &slhci_hubd, actlen);
if (actlen > offsetof(usb_config_descriptor_t,
bMaxPower))
((usb_hub_descriptor_t *)
buf)->bHubContrCurrent = 500 -
t->max_current;
error = USBD_NORMAL_COMPLETION;
} else
DDOLOG("Unknown Get Hub Descriptor %#.4x",
value, 0,0,0);
}
break;
}
if (error == USBD_NORMAL_COMPLETION)
xfer->actlen = actlen;
xfer->status = error;
KASSERT(spipe->xfer == NULL);
spipe->xfer = xfer;
enter_callback(t, spipe);
return USBD_IN_PROGRESS;
}
/* End in lock functions. Start debug functions. */
#ifdef SLHCI_DEBUG
void
slhci_log_buffer(struct usbd_xfer *xfer)
{
u_char *buf;
if(xfer->length > 0 &&
UE_GET_DIR(xfer->pipe->endpoint->edesc->bEndpointAddress) ==
UE_DIR_IN) {
buf = KERNADDR(&xfer->dmabuf, 0);
DDOLOGBUF(buf, xfer->actlen);
DDOLOG("len %d actlen %d short %d", xfer->length,
xfer->actlen, xfer->length - xfer->actlen, 0);
}
}
void
slhci_log_req(usb_device_request_t *r)
{
static const char *xmes[]={
"GETSTAT",
"CLRFEAT",
"res",
"SETFEAT",
"res",
"SETADDR",
"GETDESC",
"SETDESC",
"GETCONF",
"SETCONF",
"GETIN/F",
"SETIN/F",
"SYNC_FR",
"UNKNOWN"
};
int req, mreq, type, value, index, len;
req = r->bRequest;
mreq = (req > 13) ? 13 : req;
type = r->bmRequestType;
value = UGETW(r->wValue);
index = UGETW(r->wIndex);
len = UGETW(r->wLength);
DDOLOG("request: %s %#x", xmes[mreq], type, 0,0);
DDOLOG("request: r=%d,v=%d,i=%d,l=%d ", req, value, index, len);
}
void
slhci_log_req_hub(usb_device_request_t *r)
{
static const struct {
int req;
int type;
const char *str;
} conf[] = {
{ 1, 0x20, "ClrHubFeat" },
{ 1, 0x23, "ClrPortFeat" },
{ 2, 0xa3, "GetBusState" },
{ 6, 0xa0, "GetHubDesc" },
{ 0, 0xa0, "GetHubStat" },
{ 0, 0xa3, "GetPortStat" },
{ 7, 0x20, "SetHubDesc" },
{ 3, 0x20, "SetHubFeat" },
{ 3, 0x23, "SetPortFeat" },
{-1, 0, NULL},
};
int i;
int value, index, len;
const char *str;
value = UGETW(r->wValue);
index = UGETW(r->wIndex);
len = UGETW(r->wLength);
for (i = 0; ; i++) {
if (conf[i].req == -1 ) {
slhci_log_req(r);
return;
}
if (r->bmRequestType == conf[i].type && r->bRequest == conf[i].req) {
str = conf[i].str;
break;
}
}
DDOLOG("hub request: %s v=%d,i=%d,l=%d ", str, value, index, len);
}
void
slhci_log_dumpreg(void)
{
uint8_t r;
unsigned int aaddr, alen, baddr, blen;
static u_char buf[240];
r = slhci_read(ssc, SL11_E0CTRL);
DDOLOG("USB A Host Control = %#.2x", r, 0,0,0);
DDOLOGFLAG8("E0CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
"ISOC", "res", "Out", "Enable", "Arm");
aaddr = slhci_read(ssc, SL11_E0ADDR);
DDOLOG("USB A Base Address = %u", aaddr, 0,0,0);
alen = slhci_read(ssc, SL11_E0LEN);
DDOLOG("USB A Length = %u", alen, 0,0,0);
r = slhci_read(ssc, SL11_E0STAT);
DDOLOG("USB A Status = %#.2x", r, 0,0,0);
DDOLOGFLAG8("E0STAT=", r, "STALL", "NAK", "Overflow", "Setup",
"Data Toggle", "Timeout", "Error", "ACK");
r = slhci_read(ssc, SL11_E0CONT);
DDOLOG("USB A Remaining or Overflow Length = %u", r, 0,0,0);
r = slhci_read(ssc, SL11_E1CTRL);
DDOLOG("USB B Host Control = %#.2x", r, 0,0,0);
DDOLOGFLAG8("E1CTRL=", r, "Preamble", "Data Toggle", "SOF Sync",
"ISOC", "res", "Out", "Enable", "Arm");
baddr = slhci_read(ssc, SL11_E1ADDR);
DDOLOG("USB B Base Address = %u", baddr, 0,0,0);
blen = slhci_read(ssc, SL11_E1LEN);
DDOLOG("USB B Length = %u", blen, 0,0,0);
r = slhci_read(ssc, SL11_E1STAT);
DDOLOG("USB B Status = %#.2x", r, 0,0,0);
DDOLOGFLAG8("E1STAT=", r, "STALL", "NAK", "Overflow", "Setup",
"Data Toggle", "Timeout", "Error", "ACK");
r = slhci_read(ssc, SL11_E1CONT);
DDOLOG("USB B Remaining or Overflow Length = %u", r, 0,0,0);
r = slhci_read(ssc, SL11_CTRL);
DDOLOG("Control = %#.2x", r, 0,0,0);
DDOLOGFLAG8("CTRL=", r, "res", "Suspend", "LOW Speed",
"J-K State Force", "Reset", "res", "res", "SOF");
r = slhci_read(ssc, SL11_IER);
DDOLOG("Interrupt Enable = %#.2x", r, 0,0,0);
DDOLOGFLAG8("IER=", r, "D+ **IER!**", "Device Detect/Resume",
"Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
r = slhci_read(ssc, SL11_ISR);
DDOLOG("Interrupt Status = %#.2x", r, 0,0,0);
DDOLOGFLAG8("ISR=", r, "D+", "Device Detect/Resume",
"Insert/Remove", "SOF", "res", "res", "USBB", "USBA");
r = slhci_read(ssc, SL11_REV);
DDOLOG("Revision = %#.2x", r, 0,0,0);
r = slhci_read(ssc, SL811_CSOF);
DDOLOG("SOF Counter = %#.2x", r, 0,0,0);
if (alen && aaddr >= SL11_BUFFER_START && aaddr < SL11_BUFFER_END &&
alen <= SL11_MAX_PACKET_SIZE && aaddr + alen <= SL11_BUFFER_END) {
slhci_read_multi(ssc, aaddr, buf, alen);
DDOLOG("USBA Buffer: start %u len %u", aaddr, alen, 0,0);
DDOLOGBUF(buf, alen);
} else if (alen)
DDOLOG("USBA Buffer Invalid", 0,0,0,0);
if (blen && baddr >= SL11_BUFFER_START && baddr < SL11_BUFFER_END &&
blen <= SL11_MAX_PACKET_SIZE && baddr + blen <= SL11_BUFFER_END) {
slhci_read_multi(ssc, baddr, buf, blen);
DDOLOG("USBB Buffer: start %u len %u", baddr, blen, 0,0);
DDOLOGBUF(buf, blen);
} else if (blen)
DDOLOG("USBB Buffer Invalid", 0,0,0,0);
}
void
slhci_log_xfer(struct usbd_xfer *xfer)
{
DDOLOG("xfer: length=%u, actlen=%u, flags=%#x, timeout=%u,",
xfer->length, xfer->actlen, xfer->flags, xfer->timeout);
if (xfer->dmabuf.block)
DDOLOG("buffer=%p", KERNADDR(&xfer->dmabuf, 0), 0,0,0);
slhci_log_req_hub(&xfer->request);
}
void
slhci_log_spipe(struct slhci_pipe *spipe)
{
DDOLOG("spipe %p onlists: %s %s %s", spipe, gcq_onlist(&spipe->ap) ?
"AP" : "", gcq_onlist(&spipe->to) ? "TO" : "",
gcq_onlist(&spipe->xq) ? "XQ" : "");
DDOLOG("spipe: xfer %p buffer %p pflags %#x ptype %s",
spipe->xfer, spipe->buffer, spipe->pflags, pnames(spipe->ptype));
}
void
slhci_print_intr(void)
{
unsigned int ier, isr;
ier = slhci_read(ssc, SL11_IER);
isr = slhci_read(ssc, SL11_ISR);
printf("IER: %#x ISR: %#x \n", ier, isr);
}
#if 0
void
slhci_log_sc(void)
{
struct slhci_transfers *t;
int i;
t = &ssc->sc_transfers;
DDOLOG("Flags=%#x", t->flags, 0,0,0);
DDOLOG("a = %p Alen=%d b = %p Blen=%d", t->spipe[0], t->len[0],
t->spipe[1], t->len[1]);
for (i=0; i<=Q_MAX; i++)
DDOLOG("Q %d: %p", i, gcq_first(&t->q[i]), 0,0);
DDOLOG("TIMED: %p", GCQ_ITEM(gcq_first(&t->to),
struct slhci_pipe, to), 0,0,0);
DDOLOG("frame=%d rootintr=%p", t->frame, t->rootintr, 0,0);
DDOLOG("use_polling=%d", ssc->sc_bus.use_polling, 0, 0, 0);
}
void
slhci_log_slreq(struct slhci_pipe *r)
{
DDOLOG("next: %p", r->q.next.sqe_next, 0,0,0);
DDOLOG("xfer: %p", r->xfer, 0,0,0);
DDOLOG("buffer: %p", r->buffer, 0,0,0);
DDOLOG("bustime: %u", r->bustime, 0,0,0);
DDOLOG("control: %#x", r->control, 0,0,0);
DDOLOGFLAG8("control=", r->control, "Preamble", "Data Toggle",
"SOF Sync", "ISOC", "res", "Out", "Enable", "Arm");
DDOLOG("pid: %#x", r->tregs[PID], 0,0,0);
DDOLOG("dev: %u", r->tregs[DEV], 0,0,0);
DDOLOG("len: %u", r->tregs[LEN], 0,0,0);
if (r->xfer)
slhci_log_xfer(r->xfer);
}
#endif
#endif /* SLHCI_DEBUG */
/* End debug functions. */