0bc3200029
problem with a common MDIO bus used for multiple interfaces. Some drivers converted to CFATTACL_DECL_NEW.
1966 lines
49 KiB
C
1966 lines
49 KiB
C
/* $NetBSD: elinkxl.c,v 1.115 2012/07/22 14:32:57 matt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1998 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Frank van der Linden.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: elinkxl.c,v 1.115 2012/07/22 14:32:57 matt Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/callout.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/socket.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/syslog.h>
|
|
#include <sys/select.h>
|
|
#include <sys/device.h>
|
|
#include <sys/rnd.h>
|
|
|
|
#include <net/if.h>
|
|
#include <net/if_dl.h>
|
|
#include <net/if_ether.h>
|
|
#include <net/if_media.h>
|
|
|
|
#include <net/bpf.h>
|
|
#include <net/bpfdesc.h>
|
|
|
|
#include <sys/cpu.h>
|
|
#include <sys/bus.h>
|
|
#include <sys/intr.h>
|
|
#include <machine/endian.h>
|
|
|
|
#include <dev/mii/miivar.h>
|
|
#include <dev/mii/mii.h>
|
|
#include <dev/mii/mii_bitbang.h>
|
|
|
|
#include <dev/ic/elink3reg.h>
|
|
/* #include <dev/ic/elink3var.h> */
|
|
#include <dev/ic/elinkxlreg.h>
|
|
#include <dev/ic/elinkxlvar.h>
|
|
|
|
#ifdef DEBUG
|
|
int exdebug = 0;
|
|
#endif
|
|
|
|
/* ifmedia callbacks */
|
|
int ex_media_chg(struct ifnet *ifp);
|
|
void ex_media_stat(struct ifnet *ifp, struct ifmediareq *req);
|
|
|
|
static int ex_ifflags_cb(struct ethercom *);
|
|
|
|
void ex_probe_media(struct ex_softc *);
|
|
void ex_set_filter(struct ex_softc *);
|
|
void ex_set_media(struct ex_softc *);
|
|
void ex_set_xcvr(struct ex_softc *, uint16_t);
|
|
struct mbuf *ex_get(struct ex_softc *, int);
|
|
uint16_t ex_read_eeprom(struct ex_softc *, int);
|
|
int ex_init(struct ifnet *);
|
|
void ex_read(struct ex_softc *);
|
|
void ex_reset(struct ex_softc *);
|
|
void ex_set_mc(struct ex_softc *);
|
|
void ex_getstats(struct ex_softc *);
|
|
void ex_printstats(struct ex_softc *);
|
|
void ex_tick(void *);
|
|
|
|
static int ex_eeprom_busy(struct ex_softc *);
|
|
static int ex_add_rxbuf(struct ex_softc *, struct ex_rxdesc *);
|
|
static void ex_init_txdescs(struct ex_softc *);
|
|
|
|
static void ex_setup_tx(struct ex_softc *);
|
|
static bool ex_shutdown(device_t, int);
|
|
static void ex_start(struct ifnet *);
|
|
static void ex_txstat(struct ex_softc *);
|
|
|
|
int ex_mii_readreg(device_t, int, int);
|
|
void ex_mii_writereg(device_t, int, int, int);
|
|
void ex_mii_statchg(struct ifnet *);
|
|
|
|
void ex_probemedia(struct ex_softc *);
|
|
|
|
/*
|
|
* Structure to map media-present bits in boards to ifmedia codes and
|
|
* printable media names. Used for table-driven ifmedia initialization.
|
|
*/
|
|
struct ex_media {
|
|
int exm_mpbit; /* media present bit */
|
|
const char *exm_name; /* name of medium */
|
|
int exm_ifmedia; /* ifmedia word for medium */
|
|
int exm_epmedia; /* ELINKMEDIA_* constant */
|
|
};
|
|
|
|
/*
|
|
* Media table for 3c90x chips. Note that chips with MII have no
|
|
* `native' media.
|
|
*/
|
|
struct ex_media ex_native_media[] = {
|
|
{ ELINK_PCI_10BASE_T, "10baseT", IFM_ETHER|IFM_10_T,
|
|
ELINKMEDIA_10BASE_T },
|
|
{ ELINK_PCI_10BASE_T, "10baseT-FDX", IFM_ETHER|IFM_10_T|IFM_FDX,
|
|
ELINKMEDIA_10BASE_T },
|
|
{ ELINK_PCI_AUI, "10base5", IFM_ETHER|IFM_10_5,
|
|
ELINKMEDIA_AUI },
|
|
{ ELINK_PCI_BNC, "10base2", IFM_ETHER|IFM_10_2,
|
|
ELINKMEDIA_10BASE_2 },
|
|
{ ELINK_PCI_100BASE_TX, "100baseTX", IFM_ETHER|IFM_100_TX,
|
|
ELINKMEDIA_100BASE_TX },
|
|
{ ELINK_PCI_100BASE_TX, "100baseTX-FDX",IFM_ETHER|IFM_100_TX|IFM_FDX,
|
|
ELINKMEDIA_100BASE_TX },
|
|
{ ELINK_PCI_100BASE_FX, "100baseFX", IFM_ETHER|IFM_100_FX,
|
|
ELINKMEDIA_100BASE_FX },
|
|
{ ELINK_PCI_100BASE_MII,"manual", IFM_ETHER|IFM_MANUAL,
|
|
ELINKMEDIA_MII },
|
|
{ ELINK_PCI_100BASE_T4, "100baseT4", IFM_ETHER|IFM_100_T4,
|
|
ELINKMEDIA_100BASE_T4 },
|
|
{ 0, NULL, 0,
|
|
0 },
|
|
};
|
|
|
|
/*
|
|
* MII bit-bang glue.
|
|
*/
|
|
uint32_t ex_mii_bitbang_read(device_t);
|
|
void ex_mii_bitbang_write(device_t, uint32_t);
|
|
|
|
const struct mii_bitbang_ops ex_mii_bitbang_ops = {
|
|
ex_mii_bitbang_read,
|
|
ex_mii_bitbang_write,
|
|
{
|
|
ELINK_PHY_DATA, /* MII_BIT_MDO */
|
|
ELINK_PHY_DATA, /* MII_BIT_MDI */
|
|
ELINK_PHY_CLK, /* MII_BIT_MDC */
|
|
ELINK_PHY_DIR, /* MII_BIT_DIR_HOST_PHY */
|
|
0, /* MII_BIT_DIR_PHY_HOST */
|
|
}
|
|
};
|
|
|
|
/*
|
|
* Back-end attach and configure.
|
|
*/
|
|
void
|
|
ex_config(struct ex_softc *sc)
|
|
{
|
|
struct ifnet *ifp;
|
|
uint16_t val;
|
|
uint8_t macaddr[ETHER_ADDR_LEN] = {0};
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i, error, attach_stage;
|
|
|
|
pmf_self_suspensor_init(sc->sc_dev, &sc->sc_suspensor, &sc->sc_qual);
|
|
|
|
callout_init(&sc->ex_mii_callout, 0);
|
|
|
|
ex_reset(sc);
|
|
|
|
val = ex_read_eeprom(sc, EEPROM_OEM_ADDR0);
|
|
macaddr[0] = val >> 8;
|
|
macaddr[1] = val & 0xff;
|
|
val = ex_read_eeprom(sc, EEPROM_OEM_ADDR1);
|
|
macaddr[2] = val >> 8;
|
|
macaddr[3] = val & 0xff;
|
|
val = ex_read_eeprom(sc, EEPROM_OEM_ADDR2);
|
|
macaddr[4] = val >> 8;
|
|
macaddr[5] = val & 0xff;
|
|
|
|
aprint_normal_dev(sc->sc_dev, "MAC address %s\n", ether_sprintf(macaddr));
|
|
|
|
if (sc->ex_conf & (EX_CONF_INV_LED_POLARITY|EX_CONF_PHY_POWER)) {
|
|
GO_WINDOW(2);
|
|
val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
|
|
if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
|
|
val |= ELINK_RESET_OPT_LEDPOLAR;
|
|
if (sc->ex_conf & EX_CONF_PHY_POWER)
|
|
val |= ELINK_RESET_OPT_PHYPOWER;
|
|
bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
|
|
}
|
|
if (sc->ex_conf & EX_CONF_NO_XCVR_PWR) {
|
|
GO_WINDOW(0);
|
|
bus_space_write_2(iot, ioh, ELINK_W0_MFG_ID,
|
|
EX_XCVR_PWR_MAGICBITS);
|
|
}
|
|
|
|
attach_stage = 0;
|
|
|
|
/*
|
|
* Allocate the upload descriptors, and create and load the DMA
|
|
* map for them.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
EX_NUPD * sizeof (struct ex_upd), PAGE_SIZE, 0, &sc->sc_useg, 1,
|
|
&sc->sc_urseg, BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't allocate upload descriptors, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
attach_stage = 1;
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg,
|
|
EX_NUPD * sizeof (struct ex_upd), (void **)&sc->sc_upd,
|
|
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't map upload descriptors, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
attach_stage = 2;
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
EX_NUPD * sizeof (struct ex_upd), 1,
|
|
EX_NUPD * sizeof (struct ex_upd), 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_upd_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't create upload desc. DMA map, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
attach_stage = 3;
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_upd_dmamap,
|
|
sc->sc_upd, EX_NUPD * sizeof (struct ex_upd), NULL,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load upload desc. DMA map, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
attach_stage = 4;
|
|
|
|
/*
|
|
* Allocate the download descriptors, and create and load the DMA
|
|
* map for them.
|
|
*/
|
|
if ((error = bus_dmamem_alloc(sc->sc_dmat,
|
|
DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, PAGE_SIZE, 0, &sc->sc_dseg, 1,
|
|
&sc->sc_drseg, BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't allocate download descriptors, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
attach_stage = 5;
|
|
|
|
if ((error = bus_dmamem_map(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg,
|
|
DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, (void **)&sc->sc_dpd,
|
|
BUS_DMA_NOWAIT|BUS_DMA_COHERENT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't map download descriptors, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
memset(sc->sc_dpd, 0, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN);
|
|
|
|
attach_stage = 6;
|
|
|
|
if ((error = bus_dmamap_create(sc->sc_dmat,
|
|
DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 1,
|
|
DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_dpd_dmamap)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't create download desc. DMA map, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
|
|
attach_stage = 7;
|
|
|
|
if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
sc->sc_dpd, DPDMEM_SIZE + EX_IP4CSUMTX_PADLEN, NULL,
|
|
BUS_DMA_NOWAIT)) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load download desc. DMA map, error = %d\n", error);
|
|
goto fail;
|
|
}
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
DPDMEMPAD_OFF, EX_IP4CSUMTX_PADLEN, BUS_DMASYNC_PREWRITE);
|
|
|
|
attach_stage = 8;
|
|
|
|
|
|
/*
|
|
* Create the transmit buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < EX_NDPD; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
EX_NTFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_tx_dmamaps[i])) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't create tx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
attach_stage = 9;
|
|
|
|
/*
|
|
* Create the receive buffer DMA maps.
|
|
*/
|
|
for (i = 0; i < EX_NUPD; i++) {
|
|
if ((error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
|
|
EX_NRFRAGS, MCLBYTES, 0, BUS_DMA_NOWAIT,
|
|
&sc->sc_rx_dmamaps[i])) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't create rx DMA map %d, error = %d\n",
|
|
i, error);
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
attach_stage = 10;
|
|
|
|
/*
|
|
* Create ring of upload descriptors, only once. The DMA engine
|
|
* will loop over this when receiving packets, stalling if it
|
|
* hits an UPD with a finished receive.
|
|
*/
|
|
for (i = 0; i < EX_NUPD; i++) {
|
|
sc->sc_rxdescs[i].rx_dmamap = sc->sc_rx_dmamaps[i];
|
|
sc->sc_rxdescs[i].rx_upd = &sc->sc_upd[i];
|
|
sc->sc_upd[i].upd_frags[0].fr_len =
|
|
htole32((MCLBYTES - 2) | EX_FR_LAST);
|
|
if (ex_add_rxbuf(sc, &sc->sc_rxdescs[i]) != 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't allocate or map rx buffers\n");
|
|
goto fail;
|
|
}
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap, 0,
|
|
EX_NUPD * sizeof (struct ex_upd),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
ex_init_txdescs(sc);
|
|
|
|
attach_stage = 11;
|
|
|
|
|
|
GO_WINDOW(3);
|
|
val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
|
|
if (val & ELINK_MEDIACAP_MII)
|
|
sc->ex_conf |= EX_CONF_MII;
|
|
|
|
ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
/*
|
|
* Initialize our media structures and MII info. We'll
|
|
* probe the MII if we discover that we have one.
|
|
*/
|
|
sc->ex_mii.mii_ifp = ifp;
|
|
sc->ex_mii.mii_readreg = ex_mii_readreg;
|
|
sc->ex_mii.mii_writereg = ex_mii_writereg;
|
|
sc->ex_mii.mii_statchg = ex_mii_statchg;
|
|
ifmedia_init(&sc->ex_mii.mii_media, IFM_IMASK, ex_media_chg,
|
|
ex_media_stat);
|
|
|
|
if (sc->ex_conf & EX_CONF_MII) {
|
|
/*
|
|
* Find PHY, extract media information from it.
|
|
* First, select the right transceiver.
|
|
*/
|
|
ex_set_xcvr(sc, val);
|
|
|
|
mii_attach(sc->sc_dev, &sc->ex_mii, 0xffffffff,
|
|
MII_PHY_ANY, MII_OFFSET_ANY, 0);
|
|
if (LIST_FIRST(&sc->ex_mii.mii_phys) == NULL) {
|
|
ifmedia_add(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE,
|
|
0, NULL);
|
|
ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_NONE);
|
|
} else {
|
|
ifmedia_set(&sc->ex_mii.mii_media, IFM_ETHER|IFM_AUTO);
|
|
}
|
|
} else
|
|
ex_probemedia(sc);
|
|
|
|
strlcpy(ifp->if_xname, device_xname(sc->sc_dev), IFNAMSIZ);
|
|
ifp->if_softc = sc;
|
|
ifp->if_start = ex_start;
|
|
ifp->if_ioctl = ex_ioctl;
|
|
ifp->if_watchdog = ex_watchdog;
|
|
ifp->if_init = ex_init;
|
|
ifp->if_stop = ex_stop;
|
|
ifp->if_flags =
|
|
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
IFQ_SET_READY(&ifp->if_snd);
|
|
|
|
/*
|
|
* We can support 802.1Q VLAN-sized frames.
|
|
*/
|
|
sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
|
|
|
|
/*
|
|
* The 3c90xB has hardware IPv4/TCPv4/UDPv4 checksum support.
|
|
*/
|
|
if (sc->ex_conf & EX_CONF_90XB)
|
|
sc->sc_ethercom.ec_if.if_capabilities |=
|
|
IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
|
|
IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
|
|
IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
|
|
|
|
if_attach(ifp);
|
|
ether_ifattach(ifp, macaddr);
|
|
ether_set_ifflags_cb(&sc->sc_ethercom, ex_ifflags_cb);
|
|
|
|
GO_WINDOW(1);
|
|
|
|
sc->tx_start_thresh = 20;
|
|
sc->tx_succ_ok = 0;
|
|
|
|
/* TODO: set queues to 0 */
|
|
|
|
rnd_attach_source(&sc->rnd_source, device_xname(sc->sc_dev),
|
|
RND_TYPE_NET, 0);
|
|
|
|
if (pmf_device_register1(sc->sc_dev, NULL, NULL, ex_shutdown))
|
|
pmf_class_network_register(sc->sc_dev, &sc->sc_ethercom.ec_if);
|
|
else
|
|
aprint_error_dev(sc->sc_dev,
|
|
"couldn't establish power handler\n");
|
|
|
|
/* The attach is successful. */
|
|
sc->ex_flags |= EX_FLAGS_ATTACHED;
|
|
return;
|
|
|
|
fail:
|
|
/*
|
|
* Free any resources we've allocated during the failed attach
|
|
* attempt. Do this in reverse order and fall though.
|
|
*/
|
|
switch (attach_stage) {
|
|
case 11:
|
|
{
|
|
struct ex_rxdesc *rxd;
|
|
|
|
for (i = 0; i < EX_NUPD; i++) {
|
|
rxd = &sc->sc_rxdescs[i];
|
|
if (rxd->rx_mbhead != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
|
|
m_freem(rxd->rx_mbhead);
|
|
}
|
|
}
|
|
}
|
|
/* FALLTHROUGH */
|
|
|
|
case 10:
|
|
for (i = 0; i < EX_NUPD; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
|
|
/* FALLTHROUGH */
|
|
|
|
case 9:
|
|
for (i = 0; i < EX_NDPD; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
|
|
/* FALLTHROUGH */
|
|
case 8:
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
|
|
/* FALLTHROUGH */
|
|
|
|
case 7:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
|
|
/* FALLTHROUGH */
|
|
|
|
case 6:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
|
|
EX_NDPD * sizeof (struct ex_dpd));
|
|
/* FALLTHROUGH */
|
|
|
|
case 5:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
|
|
break;
|
|
|
|
case 4:
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
|
|
/* FALLTHROUGH */
|
|
|
|
case 3:
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
|
|
/* FALLTHROUGH */
|
|
|
|
case 2:
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
|
|
EX_NUPD * sizeof (struct ex_upd));
|
|
/* FALLTHROUGH */
|
|
|
|
case 1:
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
/*
|
|
* Find the media present on non-MII chips.
|
|
*/
|
|
void
|
|
ex_probemedia(struct ex_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ifmedia *ifm = &sc->ex_mii.mii_media;
|
|
struct ex_media *exm;
|
|
uint16_t config1, reset_options, default_media;
|
|
int defmedia = 0;
|
|
const char *sep = "", *defmedianame = NULL;
|
|
|
|
GO_WINDOW(3);
|
|
config1 = bus_space_read_2(iot, ioh, ELINK_W3_INTERNAL_CONFIG + 2);
|
|
reset_options = bus_space_read_1(iot, ioh, ELINK_W3_RESET_OPTIONS);
|
|
GO_WINDOW(0);
|
|
|
|
default_media = (config1 & CONFIG_MEDIAMASK) >> CONFIG_MEDIAMASK_SHIFT;
|
|
|
|
/* Sanity check that there are any media! */
|
|
if ((reset_options & ELINK_PCI_MEDIAMASK) == 0) {
|
|
aprint_error_dev(sc->sc_dev, "no media present!\n");
|
|
ifmedia_add(ifm, IFM_ETHER|IFM_NONE, 0, NULL);
|
|
ifmedia_set(ifm, IFM_ETHER|IFM_NONE);
|
|
return;
|
|
}
|
|
|
|
aprint_normal_dev(sc->sc_dev, "");
|
|
|
|
#define PRINT(str) aprint_normal("%s%s", sep, str); sep = ", "
|
|
|
|
for (exm = ex_native_media; exm->exm_name != NULL; exm++) {
|
|
if (reset_options & exm->exm_mpbit) {
|
|
/*
|
|
* Default media is a little complicated. We
|
|
* support full-duplex which uses the same
|
|
* reset options bit.
|
|
*
|
|
* XXX Check EEPROM for default to FDX?
|
|
*/
|
|
if (exm->exm_epmedia == default_media) {
|
|
if ((exm->exm_ifmedia & IFM_FDX) == 0) {
|
|
defmedia = exm->exm_ifmedia;
|
|
defmedianame = exm->exm_name;
|
|
}
|
|
} else if (defmedia == 0) {
|
|
defmedia = exm->exm_ifmedia;
|
|
defmedianame = exm->exm_name;
|
|
}
|
|
ifmedia_add(ifm, exm->exm_ifmedia, exm->exm_epmedia,
|
|
NULL);
|
|
PRINT(exm->exm_name);
|
|
}
|
|
}
|
|
|
|
#undef PRINT
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (defmedia == 0)
|
|
panic("ex_probemedia: impossible");
|
|
#endif
|
|
|
|
aprint_normal(", default %s\n", defmedianame);
|
|
ifmedia_set(ifm, defmedia);
|
|
}
|
|
|
|
/*
|
|
* Setup transmitter parameters.
|
|
*/
|
|
static void
|
|
ex_setup_tx(struct ex_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
|
|
/*
|
|
* Disable reclaim threshold for 90xB, set free threshold to
|
|
* 6 * 256 = 1536 for 90x.
|
|
*/
|
|
if (sc->ex_conf & EX_CONF_90XB)
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
ELINK_TXRECLTHRESH | 255);
|
|
else
|
|
bus_space_write_1(iot, ioh, ELINK_TXFREETHRESH, 6);
|
|
|
|
/* Setup early transmission start threshold. */
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
ELINK_TXSTARTTHRESH | sc->tx_start_thresh);
|
|
}
|
|
|
|
/*
|
|
* Bring device up.
|
|
*/
|
|
int
|
|
ex_init(struct ifnet *ifp)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i;
|
|
uint16_t val;
|
|
int error = 0;
|
|
|
|
if ((error = ex_enable(sc)) != 0)
|
|
goto out;
|
|
|
|
ex_waitcmd(sc);
|
|
ex_stop(ifp, 0);
|
|
|
|
GO_WINDOW(2);
|
|
|
|
/* Turn on PHY power. */
|
|
if (sc->ex_conf & (EX_CONF_PHY_POWER | EX_CONF_INV_LED_POLARITY)) {
|
|
val = bus_space_read_2(iot, ioh, ELINK_W2_RESET_OPTIONS);
|
|
if (sc->ex_conf & EX_CONF_PHY_POWER)
|
|
val |= ELINK_RESET_OPT_PHYPOWER; /* turn on PHY power */
|
|
if (sc->ex_conf & EX_CONF_INV_LED_POLARITY)
|
|
val |= ELINK_RESET_OPT_LEDPOLAR; /* invert LED polarity */
|
|
bus_space_write_2(iot, ioh, ELINK_W2_RESET_OPTIONS, val);
|
|
}
|
|
|
|
/*
|
|
* Set the station address and clear the station mask. The latter
|
|
* is needed for 90x cards, 0 is the default for 90xB cards.
|
|
*/
|
|
for (i = 0; i < ETHER_ADDR_LEN; i++) {
|
|
bus_space_write_1(iot, ioh, ELINK_W2_ADDR_0 + i,
|
|
CLLADDR(ifp->if_sadl)[i]);
|
|
bus_space_write_1(iot, ioh, ELINK_W2_RECVMASK_0 + i, 0);
|
|
}
|
|
|
|
GO_WINDOW(3);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_RESET);
|
|
ex_waitcmd(sc);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
|
|
ex_waitcmd(sc);
|
|
|
|
/* Load Tx parameters. */
|
|
ex_setup_tx(sc);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_RX_EARLY_THRESH | ELINK_THRESH_DISABLE);
|
|
|
|
bus_space_write_4(iot, ioh, ELINK_DMACTRL,
|
|
bus_space_read_4(iot, ioh, ELINK_DMACTRL) | ELINK_DMAC_UPRXEAREN);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_RD_0_MASK | XL_WATCHED_INTERRUPTS);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
SET_INTR_MASK | XL_WATCHED_INTERRUPTS);
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | 0xff);
|
|
if (sc->intr_ack)
|
|
(* sc->intr_ack)(sc);
|
|
ex_set_media(sc);
|
|
ex_set_mc(sc);
|
|
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, STATS_ENABLE);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
|
|
bus_space_write_4(iot, ioh, ELINK_UPLISTPTR, sc->sc_upddma);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_ENABLE);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_UPUNSTALL);
|
|
|
|
ifp->if_flags |= IFF_RUNNING;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
ex_start(ifp);
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
|
|
GO_WINDOW(1);
|
|
|
|
callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
|
|
|
|
out:
|
|
if (error) {
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
ifp->if_timer = 0;
|
|
aprint_error_dev(sc->sc_dev, "interface not running\n");
|
|
}
|
|
return (error);
|
|
}
|
|
|
|
#define MCHASHSIZE 256
|
|
#define ex_mchash(addr) (ether_crc32_be((addr), ETHER_ADDR_LEN) & \
|
|
(MCHASHSIZE - 1))
|
|
|
|
/*
|
|
* Set multicast receive filter. Also take care of promiscuous mode
|
|
* here (XXX).
|
|
*/
|
|
void
|
|
ex_set_mc(struct ex_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ethercom *ec = &sc->sc_ethercom;
|
|
struct ether_multi *enm;
|
|
struct ether_multistep estep;
|
|
int i;
|
|
uint16_t mask = FIL_INDIVIDUAL | FIL_BRDCST;
|
|
|
|
if (ifp->if_flags & IFF_PROMISC) {
|
|
mask |= FIL_PROMISC;
|
|
goto allmulti;
|
|
}
|
|
|
|
ETHER_FIRST_MULTI(estep, ec, enm);
|
|
if (enm == NULL)
|
|
goto nomulti;
|
|
|
|
if ((sc->ex_conf & EX_CONF_90XB) == 0)
|
|
/* No multicast hash filtering. */
|
|
goto allmulti;
|
|
|
|
for (i = 0; i < MCHASHSIZE; i++)
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
ELINK_COMMAND, ELINK_CLEARHASHFILBIT | i);
|
|
|
|
do {
|
|
if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
|
|
ETHER_ADDR_LEN) != 0)
|
|
goto allmulti;
|
|
|
|
i = ex_mchash(enm->enm_addrlo);
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh,
|
|
ELINK_COMMAND, ELINK_SETHASHFILBIT | i);
|
|
ETHER_NEXT_MULTI(estep, enm);
|
|
} while (enm != NULL);
|
|
mask |= FIL_MULTIHASH;
|
|
|
|
nomulti:
|
|
ifp->if_flags &= ~IFF_ALLMULTI;
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
|
|
SET_RX_FILTER | mask);
|
|
return;
|
|
|
|
allmulti:
|
|
ifp->if_flags |= IFF_ALLMULTI;
|
|
mask |= FIL_MULTICAST;
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND,
|
|
SET_RX_FILTER | mask);
|
|
}
|
|
|
|
|
|
/*
|
|
* The Tx Complete interrupts occur only on errors,
|
|
* and this is the error handler.
|
|
*/
|
|
static void
|
|
ex_txstat(struct ex_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i, err = 0;
|
|
|
|
/*
|
|
* We need to read+write TX_STATUS until we get a 0 status
|
|
* in order to turn off the interrupt flag.
|
|
* ELINK_TXSTATUS is in the upper byte of 2 with ELINK_TIMER.
|
|
*/
|
|
for (;;) {
|
|
i = bus_space_read_2(iot, ioh, ELINK_TIMER);
|
|
if ((i & TXS_COMPLETE) == 0)
|
|
break;
|
|
bus_space_write_2(iot, ioh, ELINK_TIMER, 0x0);
|
|
err |= i;
|
|
}
|
|
err &= ~TXS_TIMER;
|
|
|
|
if ((err & (TXS_UNDERRUN | TXS_JABBER | TXS_RECLAIM))
|
|
|| err == 0 /* should not happen, just in case */) {
|
|
/*
|
|
* Make sure the transmission is stopped.
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNSTALL);
|
|
for (i = 1000; i > 0; i--)
|
|
if ((bus_space_read_4(iot, ioh, ELINK_DMACTRL) &
|
|
ELINK_DMAC_DNINPROG) == 0)
|
|
break;
|
|
|
|
/*
|
|
* Reset the transmitter.
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_RESET);
|
|
|
|
/* Resetting takes a while and we will do more than wait. */
|
|
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
++sc->sc_ethercom.ec_if.if_oerrors;
|
|
aprint_error_dev(sc->sc_dev, "%s%s%s",
|
|
(err & TXS_UNDERRUN) ? " transmit underrun" : "",
|
|
(err & TXS_JABBER) ? " jabber" : "",
|
|
(err & TXS_RECLAIM) ? " reclaim" : "");
|
|
if (err == 0)
|
|
aprint_error(" unknown Tx error");
|
|
printf(" (%x)", err);
|
|
if (err & TXS_UNDERRUN) {
|
|
aprint_error(" @%d", sc->tx_start_thresh);
|
|
if (sc->tx_succ_ok < 256 &&
|
|
(i = min(ETHER_MAX_LEN, sc->tx_start_thresh + 20))
|
|
> sc->tx_start_thresh) {
|
|
aprint_error(", new threshold is %d", i);
|
|
sc->tx_start_thresh = i;
|
|
}
|
|
sc->tx_succ_ok = 0;
|
|
}
|
|
aprint_error("\n");
|
|
if (err & TXS_MAX_COLLISION)
|
|
++sc->sc_ethercom.ec_if.if_collisions;
|
|
|
|
/* Wait for TX_RESET to finish. */
|
|
ex_waitcmd(sc);
|
|
|
|
/* Reload Tx parameters. */
|
|
ex_setup_tx(sc);
|
|
} else {
|
|
if (err & TXS_MAX_COLLISION)
|
|
++sc->sc_ethercom.ec_if.if_collisions;
|
|
sc->sc_ethercom.ec_if.if_flags &= ~IFF_OACTIVE;
|
|
}
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_ENABLE);
|
|
|
|
/* Retransmit current packet if any. */
|
|
if (sc->tx_head) {
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
ELINK_DNUNSTALL);
|
|
bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
|
|
DPD_DMADDR(sc, sc->tx_head));
|
|
|
|
/* Retrigger watchdog if stopped. */
|
|
if (ifp->if_timer == 0)
|
|
ifp->if_timer = 1;
|
|
}
|
|
}
|
|
|
|
int
|
|
ex_media_chg(struct ifnet *ifp)
|
|
{
|
|
|
|
if (ifp->if_flags & IFF_UP)
|
|
ex_init(ifp);
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
ex_set_xcvr(struct ex_softc *sc, const uint16_t media)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
uint32_t icfg;
|
|
|
|
/*
|
|
* We're already in Window 3
|
|
*/
|
|
icfg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
|
|
icfg &= ~(CONFIG_XCVR_SEL << 16);
|
|
if (media & (ELINK_MEDIACAP_MII | ELINK_MEDIACAP_100BASET4))
|
|
icfg |= ELINKMEDIA_MII << (CONFIG_XCVR_SEL_SHIFT + 16);
|
|
if (media & ELINK_MEDIACAP_100BASETX)
|
|
icfg |= ELINKMEDIA_AUTO << (CONFIG_XCVR_SEL_SHIFT + 16);
|
|
if (media & ELINK_MEDIACAP_100BASEFX)
|
|
icfg |= ELINKMEDIA_100BASE_FX
|
|
<< (CONFIG_XCVR_SEL_SHIFT + 16);
|
|
bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, icfg);
|
|
}
|
|
|
|
void
|
|
ex_set_media(struct ex_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
uint32_t configreg;
|
|
|
|
if (((sc->ex_conf & EX_CONF_MII) &&
|
|
(sc->ex_mii.mii_media_active & IFM_FDX))
|
|
|| (!(sc->ex_conf & EX_CONF_MII) &&
|
|
(sc->ex_mii.mii_media.ifm_media & IFM_FDX))) {
|
|
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL,
|
|
MAC_CONTROL_FDX);
|
|
} else {
|
|
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, 0);
|
|
}
|
|
|
|
/*
|
|
* If the device has MII, select it, and then tell the
|
|
* PHY which media to use.
|
|
*/
|
|
if (sc->ex_conf & EX_CONF_MII) {
|
|
uint16_t val;
|
|
|
|
GO_WINDOW(3);
|
|
val = bus_space_read_2(iot, ioh, ELINK_W3_RESET_OPTIONS);
|
|
ex_set_xcvr(sc, val);
|
|
mii_mediachg(&sc->ex_mii);
|
|
return;
|
|
}
|
|
|
|
GO_WINDOW(4);
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE, 0);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
|
|
delay(800);
|
|
|
|
/*
|
|
* Now turn on the selected media/transceiver.
|
|
*/
|
|
switch (IFM_SUBTYPE(sc->ex_mii.mii_media.ifm_cur->ifm_media)) {
|
|
case IFM_10_T:
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
|
|
JABBER_GUARD_ENABLE|LINKBEAT_ENABLE);
|
|
break;
|
|
|
|
case IFM_10_2:
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, START_TRANSCEIVER);
|
|
DELAY(800);
|
|
break;
|
|
|
|
case IFM_100_TX:
|
|
case IFM_100_FX:
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
|
|
LINKBEAT_ENABLE);
|
|
DELAY(800);
|
|
break;
|
|
|
|
case IFM_10_5:
|
|
bus_space_write_2(iot, ioh, ELINK_W4_MEDIA_TYPE,
|
|
SQE_ENABLE);
|
|
DELAY(800);
|
|
break;
|
|
|
|
case IFM_MANUAL:
|
|
break;
|
|
|
|
case IFM_NONE:
|
|
return;
|
|
|
|
default:
|
|
panic("ex_set_media: impossible");
|
|
}
|
|
|
|
GO_WINDOW(3);
|
|
configreg = bus_space_read_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG);
|
|
|
|
configreg &= ~(CONFIG_MEDIAMASK << 16);
|
|
configreg |= (sc->ex_mii.mii_media.ifm_cur->ifm_data <<
|
|
(CONFIG_MEDIAMASK_SHIFT + 16));
|
|
|
|
bus_space_write_4(iot, ioh, ELINK_W3_INTERNAL_CONFIG, configreg);
|
|
}
|
|
|
|
/*
|
|
* Get currently-selected media from card.
|
|
* (if_media callback, may be called before interface is brought up).
|
|
*/
|
|
void
|
|
ex_media_stat(struct ifnet *ifp, struct ifmediareq *req)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
uint16_t help;
|
|
|
|
if ((ifp->if_flags & (IFF_UP|IFF_RUNNING)) == (IFF_UP|IFF_RUNNING)) {
|
|
if (sc->ex_conf & EX_CONF_MII) {
|
|
mii_pollstat(&sc->ex_mii);
|
|
req->ifm_status = sc->ex_mii.mii_media_status;
|
|
req->ifm_active = sc->ex_mii.mii_media_active;
|
|
} else {
|
|
GO_WINDOW(4);
|
|
req->ifm_status = IFM_AVALID;
|
|
req->ifm_active =
|
|
sc->ex_mii.mii_media.ifm_cur->ifm_media;
|
|
help = bus_space_read_2(sc->sc_iot, sc->sc_ioh,
|
|
ELINK_W4_MEDIA_TYPE);
|
|
if (help & LINKBEAT_DETECT)
|
|
req->ifm_status |= IFM_ACTIVE;
|
|
GO_WINDOW(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
* Start outputting on the interface.
|
|
*/
|
|
static void
|
|
ex_start(struct ifnet *ifp)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
volatile struct ex_fraghdr *fr = NULL;
|
|
volatile struct ex_dpd *dpd = NULL, *prevdpd = NULL;
|
|
struct ex_txdesc *txp;
|
|
struct mbuf *mb_head;
|
|
bus_dmamap_t dmamap;
|
|
int m_csumflags, offset, seglen, totlen, segment, error;
|
|
uint32_t csum_flags;
|
|
|
|
if (sc->tx_head || sc->tx_free == NULL)
|
|
return;
|
|
|
|
txp = NULL;
|
|
|
|
/*
|
|
* We're finished if there is nothing more to add to the list or if
|
|
* we're all filled up with buffers to transmit.
|
|
*/
|
|
while (sc->tx_free != NULL) {
|
|
/*
|
|
* Grab a packet to transmit.
|
|
*/
|
|
IFQ_DEQUEUE(&ifp->if_snd, mb_head);
|
|
if (mb_head == NULL)
|
|
break;
|
|
|
|
/*
|
|
* mb_head might be updated later,
|
|
* so preserve csum_flags here.
|
|
*/
|
|
m_csumflags = mb_head->m_pkthdr.csum_flags;
|
|
|
|
/*
|
|
* Get pointer to next available tx desc.
|
|
*/
|
|
txp = sc->tx_free;
|
|
dmamap = txp->tx_dmamap;
|
|
|
|
/*
|
|
* Go through each of the mbufs in the chain and initialize
|
|
* the transmit buffer descriptors with the physical address
|
|
* and size of the mbuf.
|
|
*/
|
|
reload:
|
|
error = bus_dmamap_load_mbuf(sc->sc_dmat, dmamap,
|
|
mb_head, BUS_DMA_WRITE|BUS_DMA_NOWAIT);
|
|
switch (error) {
|
|
case 0:
|
|
/* Success. */
|
|
break;
|
|
|
|
case EFBIG:
|
|
{
|
|
struct mbuf *mn;
|
|
|
|
/*
|
|
* We ran out of segments. We have to recopy this
|
|
* mbuf chain first. Bail out if we can't get the
|
|
* new buffers.
|
|
*/
|
|
aprint_error_dev(sc->sc_dev, "too many segments, ");
|
|
|
|
MGETHDR(mn, M_DONTWAIT, MT_DATA);
|
|
if (mn == NULL) {
|
|
m_freem(mb_head);
|
|
aprint_error("aborting\n");
|
|
goto out;
|
|
}
|
|
if (mb_head->m_pkthdr.len > MHLEN) {
|
|
MCLGET(mn, M_DONTWAIT);
|
|
if ((mn->m_flags & M_EXT) == 0) {
|
|
m_freem(mn);
|
|
m_freem(mb_head);
|
|
aprint_error("aborting\n");
|
|
goto out;
|
|
}
|
|
}
|
|
m_copydata(mb_head, 0, mb_head->m_pkthdr.len,
|
|
mtod(mn, void *));
|
|
mn->m_pkthdr.len = mn->m_len = mb_head->m_pkthdr.len;
|
|
m_freem(mb_head);
|
|
mb_head = mn;
|
|
aprint_error("retrying\n");
|
|
goto reload;
|
|
}
|
|
|
|
default:
|
|
/*
|
|
* Some other problem; report it.
|
|
*/
|
|
aprint_error_dev(sc->sc_dev,
|
|
"can't load mbuf chain, error = %d\n", error);
|
|
m_freem(mb_head);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* remove our tx desc from freelist.
|
|
*/
|
|
sc->tx_free = txp->tx_next;
|
|
txp->tx_next = NULL;
|
|
|
|
fr = &txp->tx_dpd->dpd_frags[0];
|
|
totlen = 0;
|
|
for (segment = 0; segment < dmamap->dm_nsegs; segment++, fr++) {
|
|
fr->fr_addr = htole32(dmamap->dm_segs[segment].ds_addr);
|
|
seglen = dmamap->dm_segs[segment].ds_len;
|
|
fr->fr_len = htole32(seglen);
|
|
totlen += seglen;
|
|
}
|
|
if (__predict_false(totlen <= EX_IP4CSUMTX_PADLEN &&
|
|
(m_csumflags & M_CSUM_IPv4) != 0)) {
|
|
/*
|
|
* Pad short packets to avoid ip4csum-tx bug.
|
|
*
|
|
* XXX Should we still consider if such short
|
|
* (36 bytes or less) packets might already
|
|
* occupy EX_NTFRAG (== 32) fragments here?
|
|
*/
|
|
KASSERT(segment < EX_NTFRAGS);
|
|
fr->fr_addr = htole32(DPDMEMPAD_DMADDR(sc));
|
|
seglen = EX_IP4CSUMTX_PADLEN + 1 - totlen;
|
|
fr->fr_len = htole32(EX_FR_LAST | seglen);
|
|
totlen += seglen;
|
|
} else {
|
|
fr--;
|
|
fr->fr_len |= htole32(EX_FR_LAST);
|
|
}
|
|
txp->tx_mbhead = mb_head;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, dmamap, 0, dmamap->dm_mapsize,
|
|
BUS_DMASYNC_PREWRITE);
|
|
|
|
dpd = txp->tx_dpd;
|
|
dpd->dpd_nextptr = 0;
|
|
dpd->dpd_fsh = htole32(totlen);
|
|
|
|
/* Byte-swap constants so compiler can optimize. */
|
|
|
|
if (sc->ex_conf & EX_CONF_90XB) {
|
|
csum_flags = 0;
|
|
|
|
if (m_csumflags & M_CSUM_IPv4)
|
|
csum_flags |= htole32(EX_DPD_IPCKSUM);
|
|
|
|
if (m_csumflags & M_CSUM_TCPv4)
|
|
csum_flags |= htole32(EX_DPD_TCPCKSUM);
|
|
else if (m_csumflags & M_CSUM_UDPv4)
|
|
csum_flags |= htole32(EX_DPD_UDPCKSUM);
|
|
|
|
dpd->dpd_fsh |= csum_flags;
|
|
} else {
|
|
KDASSERT((mb_head->m_pkthdr.csum_flags &
|
|
(M_CSUM_IPv4|M_CSUM_TCPv4|M_CSUM_UDPv4)) == 0);
|
|
}
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
((const char *)(intptr_t)dpd - (const char *)sc->sc_dpd),
|
|
sizeof (struct ex_dpd),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
|
|
/*
|
|
* No need to stall the download engine, we know it's
|
|
* not busy right now.
|
|
*
|
|
* Fix up pointers in both the "soft" tx and the physical
|
|
* tx list.
|
|
*/
|
|
if (sc->tx_head != NULL) {
|
|
prevdpd = sc->tx_tail->tx_dpd;
|
|
offset = ((const char *)(intptr_t)prevdpd - (const char *)sc->sc_dpd);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
offset, sizeof (struct ex_dpd),
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
prevdpd->dpd_nextptr = htole32(DPD_DMADDR(sc, txp));
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
offset, sizeof (struct ex_dpd),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
sc->tx_tail->tx_next = txp;
|
|
sc->tx_tail = txp;
|
|
} else {
|
|
sc->tx_tail = sc->tx_head = txp;
|
|
}
|
|
|
|
/*
|
|
* Pass packet to bpf if there is a listener.
|
|
*/
|
|
bpf_mtap(ifp, mb_head);
|
|
}
|
|
out:
|
|
if (sc->tx_head) {
|
|
sc->tx_tail->tx_dpd->dpd_fsh |= htole32(EX_DPD_DNIND);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
((char *)sc->tx_tail->tx_dpd - (char *)sc->sc_dpd),
|
|
sizeof (struct ex_dpd),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
ifp->if_flags |= IFF_OACTIVE;
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ELINK_DNUNSTALL);
|
|
bus_space_write_4(iot, ioh, ELINK_DNLISTPTR,
|
|
DPD_DMADDR(sc, sc->tx_head));
|
|
|
|
/* trigger watchdog */
|
|
ifp->if_timer = 5;
|
|
}
|
|
}
|
|
|
|
|
|
int
|
|
ex_intr(void *arg)
|
|
{
|
|
struct ex_softc *sc = arg;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
uint16_t stat;
|
|
int ret = 0;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
if ((ifp->if_flags & IFF_RUNNING) == 0 ||
|
|
!device_is_active(sc->sc_dev))
|
|
return (0);
|
|
|
|
for (;;) {
|
|
stat = bus_space_read_2(iot, ioh, ELINK_STATUS);
|
|
|
|
if ((stat & XL_WATCHED_INTERRUPTS) == 0) {
|
|
if ((stat & INTR_LATCH) == 0) {
|
|
#if 0
|
|
aprint_error_dev(sc->sc_dev,
|
|
"intr latch cleared\n");
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
/*
|
|
* Acknowledge interrupts.
|
|
*/
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR |
|
|
(stat & (XL_WATCHED_INTERRUPTS | INTR_LATCH)));
|
|
if (sc->intr_ack)
|
|
(*sc->intr_ack)(sc);
|
|
|
|
if (stat & HOST_ERROR) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"adapter failure (%x)\n", stat);
|
|
ex_reset(sc);
|
|
ex_init(ifp);
|
|
return 1;
|
|
}
|
|
if (stat & UPD_STATS) {
|
|
ex_getstats(sc);
|
|
}
|
|
if (stat & TX_COMPLETE) {
|
|
ex_txstat(sc);
|
|
#if 0
|
|
if (stat & DN_COMPLETE)
|
|
aprint_error_dev(sc->sc_dev,
|
|
"Ignoring Dn interrupt (%x)\n", stat);
|
|
#endif
|
|
/*
|
|
* In some rare cases, both Tx Complete and
|
|
* Dn Complete bits are set. However, the packet
|
|
* has been reloaded in ex_txstat() and should not
|
|
* handle the Dn Complete event here.
|
|
* Hence the "else" below.
|
|
*/
|
|
} else if (stat & DN_COMPLETE) {
|
|
struct ex_txdesc *txp, *ptxp = NULL;
|
|
bus_dmamap_t txmap;
|
|
|
|
/* reset watchdog timer, was set in ex_start() */
|
|
ifp->if_timer = 0;
|
|
|
|
for (txp = sc->tx_head; txp != NULL;
|
|
txp = txp->tx_next) {
|
|
bus_dmamap_sync(sc->sc_dmat,
|
|
sc->sc_dpd_dmamap,
|
|
(char *)txp->tx_dpd - (char *)sc->sc_dpd,
|
|
sizeof (struct ex_dpd),
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
if (txp->tx_mbhead != NULL) {
|
|
txmap = txp->tx_dmamap;
|
|
bus_dmamap_sync(sc->sc_dmat, txmap,
|
|
0, txmap->dm_mapsize,
|
|
BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_unload(sc->sc_dmat, txmap);
|
|
m_freem(txp->tx_mbhead);
|
|
txp->tx_mbhead = NULL;
|
|
}
|
|
ptxp = txp;
|
|
}
|
|
|
|
/*
|
|
* Move finished tx buffers back to the tx free list.
|
|
*/
|
|
if (sc->tx_free) {
|
|
sc->tx_ftail->tx_next = sc->tx_head;
|
|
sc->tx_ftail = ptxp;
|
|
} else
|
|
sc->tx_ftail = sc->tx_free = sc->tx_head;
|
|
|
|
sc->tx_head = sc->tx_tail = NULL;
|
|
ifp->if_flags &= ~IFF_OACTIVE;
|
|
|
|
if (sc->tx_succ_ok < 256)
|
|
sc->tx_succ_ok++;
|
|
}
|
|
|
|
if (stat & UP_COMPLETE) {
|
|
struct ex_rxdesc *rxd;
|
|
struct mbuf *m;
|
|
struct ex_upd *upd;
|
|
bus_dmamap_t rxmap;
|
|
uint32_t pktstat;
|
|
|
|
rcvloop:
|
|
rxd = sc->rx_head;
|
|
rxmap = rxd->rx_dmamap;
|
|
m = rxd->rx_mbhead;
|
|
upd = rxd->rx_upd;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxmap, 0,
|
|
rxmap->dm_mapsize,
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
|
|
((char *)upd - (char *)sc->sc_upd),
|
|
sizeof (struct ex_upd),
|
|
BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
|
|
pktstat = le32toh(upd->upd_pktstatus);
|
|
|
|
if (pktstat & EX_UPD_COMPLETE) {
|
|
/*
|
|
* Remove first packet from the chain.
|
|
*/
|
|
sc->rx_head = rxd->rx_next;
|
|
rxd->rx_next = NULL;
|
|
|
|
/*
|
|
* Add a new buffer to the receive chain.
|
|
* If this fails, the old buffer is recycled
|
|
* instead.
|
|
*/
|
|
if (ex_add_rxbuf(sc, rxd) == 0) {
|
|
uint16_t total_len;
|
|
|
|
if (pktstat &
|
|
((sc->sc_ethercom.ec_capenable &
|
|
ETHERCAP_VLAN_MTU) ?
|
|
EX_UPD_ERR_VLAN : EX_UPD_ERR)) {
|
|
ifp->if_ierrors++;
|
|
m_freem(m);
|
|
goto rcvloop;
|
|
}
|
|
|
|
total_len = pktstat & EX_UPD_PKTLENMASK;
|
|
if (total_len <
|
|
sizeof(struct ether_header)) {
|
|
m_freem(m);
|
|
goto rcvloop;
|
|
}
|
|
m->m_pkthdr.rcvif = ifp;
|
|
m->m_pkthdr.len = m->m_len = total_len;
|
|
bpf_mtap(ifp, m);
|
|
/*
|
|
* Set the incoming checksum information for the packet.
|
|
*/
|
|
if ((sc->ex_conf & EX_CONF_90XB) != 0 &&
|
|
(pktstat & EX_UPD_IPCHECKED) != 0) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
|
|
if (pktstat & EX_UPD_IPCKSUMERR)
|
|
m->m_pkthdr.csum_flags |= M_CSUM_IPv4_BAD;
|
|
if (pktstat & EX_UPD_TCPCHECKED) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_TCPv4;
|
|
if (pktstat & EX_UPD_TCPCKSUMERR)
|
|
m->m_pkthdr.csum_flags |=
|
|
M_CSUM_TCP_UDP_BAD;
|
|
} else if (pktstat & EX_UPD_UDPCHECKED) {
|
|
m->m_pkthdr.csum_flags |= M_CSUM_UDPv4;
|
|
if (pktstat & EX_UPD_UDPCKSUMERR)
|
|
m->m_pkthdr.csum_flags |=
|
|
M_CSUM_TCP_UDP_BAD;
|
|
}
|
|
}
|
|
(*ifp->if_input)(ifp, m);
|
|
}
|
|
goto rcvloop;
|
|
}
|
|
/*
|
|
* Just in case we filled up all UPDs and the DMA engine
|
|
* stalled. We could be more subtle about this.
|
|
*/
|
|
if (bus_space_read_4(iot, ioh, ELINK_UPLISTPTR) == 0) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"uplistptr was 0\n");
|
|
ex_init(ifp);
|
|
} else if (bus_space_read_4(iot, ioh, ELINK_UPPKTSTATUS)
|
|
& 0x2000) {
|
|
aprint_error_dev(sc->sc_dev,
|
|
"receive stalled\n");
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND,
|
|
ELINK_UPUNSTALL);
|
|
}
|
|
}
|
|
|
|
if (stat)
|
|
rnd_add_uint32(&sc->rnd_source, stat);
|
|
}
|
|
|
|
/* no more interrupts */
|
|
if (ret && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
|
|
ex_start(ifp);
|
|
return ret;
|
|
}
|
|
|
|
static int
|
|
ex_ifflags_cb(struct ethercom *ec)
|
|
{
|
|
struct ifnet *ifp = &ec->ec_if;
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
int change = ifp->if_flags ^ sc->sc_if_flags;
|
|
|
|
if ((change & ~(IFF_CANTCHANGE|IFF_DEBUG)) != 0)
|
|
return ENETRESET;
|
|
else if ((change & IFF_PROMISC) != 0)
|
|
ex_set_mc(sc);
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
ex_ioctl(struct ifnet *ifp, u_long cmd, void *data)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
struct ifreq *ifr = (struct ifreq *)data;
|
|
int s, error;
|
|
|
|
s = splnet();
|
|
|
|
switch (cmd) {
|
|
case SIOCSIFMEDIA:
|
|
case SIOCGIFMEDIA:
|
|
error = ifmedia_ioctl(ifp, ifr, &sc->ex_mii.mii_media, cmd);
|
|
break;
|
|
default:
|
|
if ((error = ether_ioctl(ifp, cmd, data)) != ENETRESET)
|
|
break;
|
|
|
|
error = 0;
|
|
|
|
if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
|
|
;
|
|
else if (ifp->if_flags & IFF_RUNNING) {
|
|
/*
|
|
* Multicast list has changed; set the hardware filter
|
|
* accordingly.
|
|
*/
|
|
ex_set_mc(sc);
|
|
}
|
|
break;
|
|
}
|
|
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
splx(s);
|
|
return (error);
|
|
}
|
|
|
|
void
|
|
ex_getstats(struct ex_softc *sc)
|
|
{
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
uint8_t upperok;
|
|
|
|
GO_WINDOW(6);
|
|
upperok = bus_space_read_1(iot, ioh, UPPER_FRAMES_OK);
|
|
ifp->if_ipackets += bus_space_read_1(iot, ioh, RX_FRAMES_OK);
|
|
ifp->if_ipackets += (upperok & 0x03) << 8;
|
|
ifp->if_opackets += bus_space_read_1(iot, ioh, TX_FRAMES_OK);
|
|
ifp->if_opackets += (upperok & 0x30) << 4;
|
|
ifp->if_ierrors += bus_space_read_1(iot, ioh, RX_OVERRUNS);
|
|
ifp->if_collisions += bus_space_read_1(iot, ioh, TX_COLLISIONS);
|
|
/*
|
|
* There seems to be no way to get the exact number of collisions,
|
|
* this is the number that occurred at the very least.
|
|
*/
|
|
ifp->if_collisions += 2 * bus_space_read_1(iot, ioh,
|
|
TX_AFTER_X_COLLISIONS);
|
|
/*
|
|
* Interface byte counts are counted by ether_input() and
|
|
* ether_output(), so don't accumulate them here. Just
|
|
* read the NIC counters so they don't generate overflow interrupts.
|
|
* Upper byte counters are latched from reading the totals, so
|
|
* they don't need to be read if we don't need their values.
|
|
*/
|
|
(void)bus_space_read_2(iot, ioh, RX_TOTAL_OK);
|
|
(void)bus_space_read_2(iot, ioh, TX_TOTAL_OK);
|
|
|
|
/*
|
|
* Clear the following to avoid stats overflow interrupts
|
|
*/
|
|
(void)bus_space_read_1(iot, ioh, TX_DEFERRALS);
|
|
(void)bus_space_read_1(iot, ioh, TX_AFTER_1_COLLISION);
|
|
(void)bus_space_read_1(iot, ioh, TX_NO_SQE);
|
|
(void)bus_space_read_1(iot, ioh, TX_CD_LOST);
|
|
GO_WINDOW(4);
|
|
(void)bus_space_read_1(iot, ioh, ELINK_W4_BADSSD);
|
|
GO_WINDOW(1);
|
|
}
|
|
|
|
void
|
|
ex_printstats(struct ex_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
|
|
ex_getstats(sc);
|
|
printf("in %llu out %llu ierror %llu oerror %llu ibytes %llu obytes "
|
|
"%llu\n", (unsigned long long)ifp->if_ipackets,
|
|
(unsigned long long)ifp->if_opackets,
|
|
(unsigned long long)ifp->if_ierrors,
|
|
(unsigned long long)ifp->if_oerrors,
|
|
(unsigned long long)ifp->if_ibytes,
|
|
(unsigned long long)ifp->if_obytes);
|
|
}
|
|
|
|
void
|
|
ex_tick(void *arg)
|
|
{
|
|
struct ex_softc *sc = arg;
|
|
int s;
|
|
|
|
if (!device_is_active(sc->sc_dev))
|
|
return;
|
|
|
|
s = splnet();
|
|
|
|
if (sc->ex_conf & EX_CONF_MII)
|
|
mii_tick(&sc->ex_mii);
|
|
|
|
if (!(bus_space_read_2((sc)->sc_iot, (sc)->sc_ioh, ELINK_STATUS)
|
|
& COMMAND_IN_PROGRESS))
|
|
ex_getstats(sc);
|
|
|
|
splx(s);
|
|
|
|
callout_reset(&sc->ex_mii_callout, hz, ex_tick, sc);
|
|
}
|
|
|
|
void
|
|
ex_reset(struct ex_softc *sc)
|
|
{
|
|
uint16_t val = GLOBAL_RESET;
|
|
|
|
if (sc->ex_conf & EX_CONF_RESETHACK)
|
|
val |= 0x10;
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_COMMAND, val);
|
|
/*
|
|
* XXX apparently the command in progress bit can't be trusted
|
|
* during a reset, so we just always wait this long. Fortunately
|
|
* we normally only reset the chip during autoconfig.
|
|
*/
|
|
delay(100000);
|
|
ex_waitcmd(sc);
|
|
}
|
|
|
|
void
|
|
ex_watchdog(struct ifnet *ifp)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
|
|
log(LOG_ERR, "%s: device timeout\n", device_xname(sc->sc_dev));
|
|
++sc->sc_ethercom.ec_if.if_oerrors;
|
|
|
|
ex_reset(sc);
|
|
ex_init(ifp);
|
|
}
|
|
|
|
void
|
|
ex_stop(struct ifnet *ifp, int disable)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
struct ex_txdesc *tx;
|
|
struct ex_rxdesc *rx;
|
|
int i;
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, RX_DISABLE);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, TX_DISABLE);
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, STOP_TRANSCEIVER);
|
|
|
|
for (tx = sc->tx_head ; tx != NULL; tx = tx->tx_next) {
|
|
if (tx->tx_mbhead == NULL)
|
|
continue;
|
|
m_freem(tx->tx_mbhead);
|
|
tx->tx_mbhead = NULL;
|
|
bus_dmamap_unload(sc->sc_dmat, tx->tx_dmamap);
|
|
tx->tx_dpd->dpd_fsh = tx->tx_dpd->dpd_nextptr = 0;
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_dpd_dmamap,
|
|
((char *)tx->tx_dpd - (char *)sc->sc_dpd),
|
|
sizeof (struct ex_dpd),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
}
|
|
sc->tx_tail = sc->tx_head = NULL;
|
|
ex_init_txdescs(sc);
|
|
|
|
sc->rx_tail = sc->rx_head = 0;
|
|
for (i = 0; i < EX_NUPD; i++) {
|
|
rx = &sc->sc_rxdescs[i];
|
|
if (rx->rx_mbhead != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rx->rx_dmamap);
|
|
m_freem(rx->rx_mbhead);
|
|
rx->rx_mbhead = NULL;
|
|
}
|
|
ex_add_rxbuf(sc, rx);
|
|
}
|
|
|
|
bus_space_write_2(iot, ioh, ELINK_COMMAND, ACK_INTR | INTR_LATCH);
|
|
|
|
callout_stop(&sc->ex_mii_callout);
|
|
if (sc->ex_conf & EX_CONF_MII)
|
|
mii_down(&sc->ex_mii);
|
|
|
|
if (disable)
|
|
ex_disable(sc);
|
|
|
|
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
|
|
sc->sc_if_flags = ifp->if_flags;
|
|
ifp->if_timer = 0;
|
|
}
|
|
|
|
static void
|
|
ex_init_txdescs(struct ex_softc *sc)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < EX_NDPD; i++) {
|
|
sc->sc_txdescs[i].tx_dmamap = sc->sc_tx_dmamaps[i];
|
|
sc->sc_txdescs[i].tx_dpd = &sc->sc_dpd[i];
|
|
if (i < EX_NDPD - 1)
|
|
sc->sc_txdescs[i].tx_next = &sc->sc_txdescs[i + 1];
|
|
else
|
|
sc->sc_txdescs[i].tx_next = NULL;
|
|
}
|
|
sc->tx_free = &sc->sc_txdescs[0];
|
|
sc->tx_ftail = &sc->sc_txdescs[EX_NDPD-1];
|
|
}
|
|
|
|
|
|
int
|
|
ex_activate(device_t self, enum devact act)
|
|
{
|
|
struct ex_softc *sc = device_private(self);
|
|
|
|
switch (act) {
|
|
case DVACT_DEACTIVATE:
|
|
if_deactivate(&sc->sc_ethercom.ec_if);
|
|
return 0;
|
|
default:
|
|
return EOPNOTSUPP;
|
|
}
|
|
}
|
|
|
|
int
|
|
ex_detach(struct ex_softc *sc)
|
|
{
|
|
struct ifnet *ifp = &sc->sc_ethercom.ec_if;
|
|
struct ex_rxdesc *rxd;
|
|
int i, s;
|
|
|
|
/* Succeed now if there's no work to do. */
|
|
if ((sc->ex_flags & EX_FLAGS_ATTACHED) == 0)
|
|
return (0);
|
|
|
|
s = splnet();
|
|
/* Stop the interface. Callouts are stopped in it. */
|
|
ex_stop(ifp, 1);
|
|
splx(s);
|
|
|
|
/* Destroy our callout. */
|
|
callout_destroy(&sc->ex_mii_callout);
|
|
|
|
if (sc->ex_conf & EX_CONF_MII) {
|
|
/* Detach all PHYs */
|
|
mii_detach(&sc->ex_mii, MII_PHY_ANY, MII_OFFSET_ANY);
|
|
}
|
|
|
|
/* Delete all remaining media. */
|
|
ifmedia_delete_instance(&sc->ex_mii.mii_media, IFM_INST_ANY);
|
|
|
|
rnd_detach_source(&sc->rnd_source);
|
|
ether_ifdetach(ifp);
|
|
if_detach(ifp);
|
|
|
|
for (i = 0; i < EX_NUPD; i++) {
|
|
rxd = &sc->sc_rxdescs[i];
|
|
if (rxd->rx_mbhead != NULL) {
|
|
bus_dmamap_unload(sc->sc_dmat, rxd->rx_dmamap);
|
|
m_freem(rxd->rx_mbhead);
|
|
rxd->rx_mbhead = NULL;
|
|
}
|
|
}
|
|
for (i = 0; i < EX_NUPD; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_rx_dmamaps[i]);
|
|
for (i = 0; i < EX_NDPD; i++)
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_tx_dmamaps[i]);
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_dpd_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_dpd_dmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_dpd,
|
|
EX_NDPD * sizeof (struct ex_dpd));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_dseg, sc->sc_drseg);
|
|
bus_dmamap_unload(sc->sc_dmat, sc->sc_upd_dmamap);
|
|
bus_dmamap_destroy(sc->sc_dmat, sc->sc_upd_dmamap);
|
|
bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_upd,
|
|
EX_NUPD * sizeof (struct ex_upd));
|
|
bus_dmamem_free(sc->sc_dmat, &sc->sc_useg, sc->sc_urseg);
|
|
|
|
pmf_device_deregister(sc->sc_dev);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Before reboots, reset card completely.
|
|
*/
|
|
static bool
|
|
ex_shutdown(device_t self, int flags)
|
|
{
|
|
struct ex_softc *sc = device_private(self);
|
|
|
|
ex_stop(&sc->sc_ethercom.ec_if, 1);
|
|
/*
|
|
* Make sure the interface is powered up when we reboot,
|
|
* otherwise firmware on some systems gets really confused.
|
|
*/
|
|
(void) ex_enable(sc);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Read EEPROM data.
|
|
* XXX what to do if EEPROM doesn't unbusy?
|
|
*/
|
|
uint16_t
|
|
ex_read_eeprom(struct ex_softc *sc, int offset)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
uint16_t data = 0, cmd = READ_EEPROM;
|
|
int off;
|
|
|
|
off = sc->ex_conf & EX_CONF_EEPROM_OFF ? 0x30 : 0;
|
|
cmd = sc->ex_conf & EX_CONF_EEPROM_8BIT ? READ_EEPROM8 : READ_EEPROM;
|
|
|
|
GO_WINDOW(0);
|
|
if (ex_eeprom_busy(sc))
|
|
goto out;
|
|
bus_space_write_2(iot, ioh, ELINK_W0_EEPROM_COMMAND,
|
|
cmd | (off + (offset & 0x3f)));
|
|
if (ex_eeprom_busy(sc))
|
|
goto out;
|
|
data = bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_DATA);
|
|
out:
|
|
return data;
|
|
}
|
|
|
|
static int
|
|
ex_eeprom_busy(struct ex_softc *sc)
|
|
{
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int i = 100;
|
|
|
|
while (i--) {
|
|
if (!(bus_space_read_2(iot, ioh, ELINK_W0_EEPROM_COMMAND) &
|
|
EEPROM_BUSY))
|
|
return 0;
|
|
delay(100);
|
|
}
|
|
aprint_error_dev(sc->sc_dev, "eeprom stays busy.\n");
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Create a new rx buffer and add it to the 'soft' rx list.
|
|
*/
|
|
static int
|
|
ex_add_rxbuf(struct ex_softc *sc, struct ex_rxdesc *rxd)
|
|
{
|
|
struct mbuf *m, *oldm;
|
|
bus_dmamap_t rxmap;
|
|
int error, rval = 0;
|
|
|
|
oldm = rxd->rx_mbhead;
|
|
rxmap = rxd->rx_dmamap;
|
|
|
|
MGETHDR(m, M_DONTWAIT, MT_DATA);
|
|
if (m != NULL) {
|
|
MCLGET(m, M_DONTWAIT);
|
|
if ((m->m_flags & M_EXT) == 0) {
|
|
m_freem(m);
|
|
if (oldm == NULL)
|
|
return 1;
|
|
m = oldm;
|
|
MRESETDATA(m);
|
|
rval = 1;
|
|
}
|
|
} else {
|
|
if (oldm == NULL)
|
|
return 1;
|
|
m = oldm;
|
|
MRESETDATA(m);
|
|
rval = 1;
|
|
}
|
|
|
|
/*
|
|
* Setup the DMA map for this receive buffer.
|
|
*/
|
|
if (m != oldm) {
|
|
if (oldm != NULL)
|
|
bus_dmamap_unload(sc->sc_dmat, rxmap);
|
|
error = bus_dmamap_load(sc->sc_dmat, rxmap,
|
|
m->m_ext.ext_buf, MCLBYTES, NULL,
|
|
BUS_DMA_READ|BUS_DMA_NOWAIT);
|
|
if (error) {
|
|
aprint_error_dev(sc->sc_dev, "can't load rx buffer, error = %d\n",
|
|
error);
|
|
panic("ex_add_rxbuf"); /* XXX */
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Align for data after 14 byte header.
|
|
*/
|
|
m->m_data += 2;
|
|
|
|
rxd->rx_mbhead = m;
|
|
rxd->rx_upd->upd_pktstatus = htole32(MCLBYTES - 2);
|
|
rxd->rx_upd->upd_frags[0].fr_addr =
|
|
htole32(rxmap->dm_segs[0].ds_addr + 2);
|
|
rxd->rx_upd->upd_nextptr = 0;
|
|
|
|
/*
|
|
* Attach it to the end of the list.
|
|
*/
|
|
if (sc->rx_head != NULL) {
|
|
sc->rx_tail->rx_next = rxd;
|
|
sc->rx_tail->rx_upd->upd_nextptr = htole32(sc->sc_upddma +
|
|
((char *)rxd->rx_upd - (char *)sc->sc_upd));
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
|
|
(char *)sc->rx_tail->rx_upd - (char *)sc->sc_upd,
|
|
sizeof (struct ex_upd),
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
} else {
|
|
sc->rx_head = rxd;
|
|
}
|
|
sc->rx_tail = rxd;
|
|
|
|
bus_dmamap_sync(sc->sc_dmat, rxmap, 0, rxmap->dm_mapsize,
|
|
BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
bus_dmamap_sync(sc->sc_dmat, sc->sc_upd_dmamap,
|
|
((char *)rxd->rx_upd - (char *)sc->sc_upd),
|
|
sizeof (struct ex_upd), BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
|
|
return (rval);
|
|
}
|
|
|
|
uint32_t
|
|
ex_mii_bitbang_read(device_t self)
|
|
{
|
|
struct ex_softc *sc = device_private(self);
|
|
|
|
/* We're already in Window 4. */
|
|
return (bus_space_read_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT));
|
|
}
|
|
|
|
void
|
|
ex_mii_bitbang_write(device_t self, uint32_t val)
|
|
{
|
|
struct ex_softc *sc = device_private(self);
|
|
|
|
/* We're already in Window 4. */
|
|
bus_space_write_2(sc->sc_iot, sc->sc_ioh, ELINK_W4_PHYSMGMT, val);
|
|
}
|
|
|
|
int
|
|
ex_mii_readreg(device_t v, int phy, int reg)
|
|
{
|
|
struct ex_softc *sc = device_private(v);
|
|
int val;
|
|
|
|
if ((sc->ex_conf & EX_CONF_INTPHY) && phy != ELINK_INTPHY_ID)
|
|
return 0;
|
|
|
|
GO_WINDOW(4);
|
|
|
|
val = mii_bitbang_readreg(v, &ex_mii_bitbang_ops, phy, reg);
|
|
|
|
GO_WINDOW(1);
|
|
|
|
return (val);
|
|
}
|
|
|
|
void
|
|
ex_mii_writereg(device_t v, int phy, int reg, int data)
|
|
{
|
|
struct ex_softc *sc = device_private(v);
|
|
|
|
GO_WINDOW(4);
|
|
|
|
mii_bitbang_writereg(v, &ex_mii_bitbang_ops, phy, reg, data);
|
|
|
|
GO_WINDOW(1);
|
|
}
|
|
|
|
void
|
|
ex_mii_statchg(struct ifnet *ifp)
|
|
{
|
|
struct ex_softc *sc = ifp->if_softc;
|
|
bus_space_tag_t iot = sc->sc_iot;
|
|
bus_space_handle_t ioh = sc->sc_ioh;
|
|
int mctl;
|
|
|
|
GO_WINDOW(3);
|
|
mctl = bus_space_read_2(iot, ioh, ELINK_W3_MAC_CONTROL);
|
|
if (sc->ex_mii.mii_media_active & IFM_FDX)
|
|
mctl |= MAC_CONTROL_FDX;
|
|
else
|
|
mctl &= ~MAC_CONTROL_FDX;
|
|
bus_space_write_2(iot, ioh, ELINK_W3_MAC_CONTROL, mctl);
|
|
GO_WINDOW(1); /* back to operating window */
|
|
}
|
|
|
|
int
|
|
ex_enable(struct ex_softc *sc)
|
|
{
|
|
if (sc->enabled == 0 && sc->enable != NULL) {
|
|
if ((*sc->enable)(sc) != 0) {
|
|
aprint_error_dev(sc->sc_dev, "device enable failed\n");
|
|
return (EIO);
|
|
}
|
|
sc->enabled = 1;
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
ex_disable(struct ex_softc *sc)
|
|
{
|
|
if (sc->enabled == 1 && sc->disable != NULL) {
|
|
(*sc->disable)(sc);
|
|
sc->enabled = 0;
|
|
}
|
|
}
|
|
|