859 lines
23 KiB
C
859 lines
23 KiB
C
/* $NetBSD: atari_init.c,v 1.22 1996/12/26 23:25:01 leo Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1995 Leo Weppelman
|
|
* Copyright (c) 1994 Michael L. Hitch
|
|
* Copyright (c) 1993 Markus Wild
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Markus Wild.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/proc.h>
|
|
#include <vm/vm.h>
|
|
#include <sys/user.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/select.h>
|
|
#include <sys/tty.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/msgbuf.h>
|
|
#include <sys/mbuf.h>
|
|
#include <sys/protosw.h>
|
|
#include <sys/domain.h>
|
|
#include <sys/dkbad.h>
|
|
#include <sys/reboot.h>
|
|
#include <sys/exec.h>
|
|
#include <sys/core.h>
|
|
#include <sys/kcore.h>
|
|
#include <vm/pmap.h>
|
|
#include <machine/vmparam.h>
|
|
#include <machine/pte.h>
|
|
#include <machine/cpu.h>
|
|
#include <machine/iomap.h>
|
|
#include <machine/mfp.h>
|
|
#include <machine/scu.h>
|
|
#include <machine/kcore.h>
|
|
#include <atari/atari/intr.h>
|
|
#include <atari/atari/stalloc.h>
|
|
#include <atari/dev/ym2149reg.h>
|
|
|
|
void start_c __P((int, u_int, u_int, u_int, char *));
|
|
static void cpu_init_kcorehdr __P((u_long));
|
|
static void mmu030_setup __P((st_entry_t *, u_int, pt_entry_t *, u_int,
|
|
pt_entry_t *, u_int, u_int));
|
|
static void map_io_areas __P((pt_entry_t *, u_int, u_int));
|
|
static void set_machtype __P((void));
|
|
|
|
#if defined(M68040) || defined(M68060)
|
|
static void mmu040_setup __P((st_entry_t *, u_int, pt_entry_t *, u_int,
|
|
pt_entry_t *, u_int, u_int));
|
|
#endif
|
|
|
|
/*
|
|
* All info needed to generate a panic dump. All fields are setup by
|
|
* start_c().
|
|
* XXX: Should sheck usage of phys_segs. There is some unwanted overlap
|
|
* here.... Also, the name is badly choosen. Phys_segs contains the
|
|
* segment descriptions _after_ reservations are made.
|
|
* XXX: 'lowram' is obsoleted by the new panicdump format
|
|
*/
|
|
static cpu_kcore_hdr_t cpu_kcore_hdr;
|
|
|
|
extern u_int lowram;
|
|
extern u_int Sysptsize, Sysseg_pa, proc0paddr;
|
|
extern pt_entry_t *Sysptmap;
|
|
extern st_entry_t *Sysseg;
|
|
u_int *Sysmap;
|
|
int machineid, mmutype, cpu040, astpending;
|
|
char *vmmap;
|
|
pv_entry_t pv_table;
|
|
#if defined(M68040) || defined(M68060)
|
|
extern int protostfree;
|
|
#endif
|
|
|
|
extern char *esym;
|
|
extern struct pcb *curpcb;
|
|
|
|
/*
|
|
* This is the virtual address of physical page 0. Used by 'do_boot()'.
|
|
*/
|
|
vm_offset_t page_zero;
|
|
|
|
/*
|
|
* Crude support for allocation in ST-ram. Currently only used to allocate
|
|
* video ram.
|
|
* The physical address is also returned because the video init needs it to
|
|
* setup the controller at the time the vm-system is not yet operational so
|
|
* 'kvtop()' cannot be used.
|
|
*/
|
|
#ifndef ST_POOL_SIZE
|
|
#define ST_POOL_SIZE 40 /* XXX: enough? */
|
|
#endif
|
|
|
|
u_long st_pool_size = ST_POOL_SIZE * NBPG; /* Patchable */
|
|
u_long st_pool_virt, st_pool_phys;
|
|
|
|
/*
|
|
* this is the C-level entry function, it's called from locore.s.
|
|
* Preconditions:
|
|
* Interrupts are disabled
|
|
* PA == VA, we don't have to relocate addresses before enabling
|
|
* the MMU
|
|
* Exec is no longer available (because we're loaded all over
|
|
* low memory, no ExecBase is available anymore)
|
|
*
|
|
* It's purpose is:
|
|
* Do the things that are done in locore.s in the hp300 version,
|
|
* this includes allocation of kernel maps and enabling the MMU.
|
|
*
|
|
* Some of the code in here is `stolen' from Amiga MACH, and was
|
|
* written by Bryan Ford and Niklas Hallqvist.
|
|
*
|
|
* Very crude 68040 support by Michael L. Hitch.
|
|
*/
|
|
|
|
void
|
|
start_c(id, ttphystart, ttphysize, stphysize, esym_addr)
|
|
int id; /* Machine id */
|
|
u_int ttphystart, ttphysize; /* Start address and size of TT-ram */
|
|
u_int stphysize; /* Size of ST-ram */
|
|
char *esym_addr; /* Address of kernel '_esym' symbol */
|
|
{
|
|
extern char end[];
|
|
extern void etext __P((void));
|
|
extern u_long protorp[2];
|
|
u_int pstart; /* Next available physical address*/
|
|
u_int vstart; /* Next available virtual address */
|
|
u_int avail;
|
|
pt_entry_t *pt;
|
|
u_int ptsize, ptextra;
|
|
u_int tc, i;
|
|
u_int *pg;
|
|
u_int pg_proto;
|
|
u_int end_loaded;
|
|
u_long kbase;
|
|
u_int kstsize;
|
|
|
|
boot_segs[0].start = 0;
|
|
boot_segs[0].end = stphysize;
|
|
boot_segs[1].start = ttphystart;
|
|
boot_segs[1].end = ttphystart + ttphysize;
|
|
boot_segs[2].start = boot_segs[2].end = 0; /* End of segments! */
|
|
|
|
/*
|
|
* The following is a hack. We do not know how much ST memory we
|
|
* really need until after configuration has finished. At this
|
|
* time I have no idea how to grab ST memory at that time.
|
|
* The round_page() call is ment to correct errors made by
|
|
* binpatching!
|
|
*/
|
|
st_pool_size = atari_round_page(st_pool_size);
|
|
st_pool_phys = stphysize - st_pool_size;
|
|
stphysize = st_pool_phys;
|
|
|
|
machineid = id;
|
|
esym = esym_addr;
|
|
|
|
/*
|
|
* the kernel ends at end() or esym.
|
|
*/
|
|
if(esym == NULL)
|
|
end_loaded = (u_int)end;
|
|
else end_loaded = (u_int)esym;
|
|
|
|
/*
|
|
* If we have enough fast-memory to put the kernel in, do it!
|
|
*/
|
|
if(ttphysize >= end_loaded)
|
|
kbase = ttphystart;
|
|
else kbase = 0;
|
|
|
|
/*
|
|
* update these as soon as possible!
|
|
*/
|
|
PAGE_SIZE = NBPG;
|
|
PAGE_MASK = NBPG-1;
|
|
PAGE_SHIFT = PG_SHIFT;
|
|
|
|
/*
|
|
* Determine the type of machine we are running on. This needs
|
|
* to be done early!
|
|
*/
|
|
set_machtype();
|
|
|
|
/*
|
|
* We run the kernel from ST memory at the moment.
|
|
* The kernel segment table is put just behind the loaded image.
|
|
* pstart: start of usable ST memory
|
|
* avail : size of ST memory available.
|
|
*/
|
|
pstart = (u_int)end_loaded;
|
|
pstart = atari_round_page(pstart);
|
|
avail = stphysize - pstart;
|
|
|
|
/*
|
|
* Calculate the number of pages needed for Sysseg.
|
|
* For the 68030, we need 256 descriptors (segment-table-entries).
|
|
* This easily fits into one page.
|
|
* For the 68040, both the level-1 and level-2 descriptors are
|
|
* stored into Sysseg. We currently handle a maximum sum of MAXKL2SIZE
|
|
* level-1 & level-2 tables.
|
|
*/
|
|
#if defined(M68040) || defined(M68060)
|
|
if (mmutype == MMU_68040)
|
|
kstsize = MAXKL2SIZE / (NPTEPG/SG4_LEV2SIZE);
|
|
else
|
|
#endif
|
|
kstsize = 1;
|
|
/*
|
|
* allocate the kernel segment table
|
|
*/
|
|
Sysseg = (st_entry_t *)pstart;
|
|
Sysseg_pa = (u_int)Sysseg + kbase;
|
|
pstart += kstsize * NBPG;
|
|
avail -= kstsize * NBPG;
|
|
|
|
/*
|
|
* Determine the number of pte's we need for extra's like
|
|
* ST I/O map's.
|
|
*/
|
|
ptextra = btoc(STIO_SIZE);
|
|
|
|
/*
|
|
* If present, add pci areas
|
|
*/
|
|
if (machineid & ATARI_HADES)
|
|
ptextra += btoc(PCI_CONF_SIZE + PCI_IO_SIZE + PCI_MEM_SIZE);
|
|
|
|
/*
|
|
* The 'pt' (the initial kernel pagetable) has to map the kernel and
|
|
* the I/O areas. The various I/O areas are mapped (virtually) at
|
|
* the top of the address space mapped by 'pt' (ie. just below Sysmap).
|
|
*/
|
|
pt = (pt_entry_t *)pstart;
|
|
ptsize = (Sysptsize + howmany(ptextra, NPTEPG)) << PGSHIFT;
|
|
pstart += ptsize;
|
|
avail -= ptsize;
|
|
|
|
/*
|
|
* allocate kernel page table map
|
|
*/
|
|
Sysptmap = (pt_entry_t *)pstart;
|
|
pstart += NBPG;
|
|
avail -= NBPG;
|
|
|
|
/*
|
|
* Set Sysmap; mapped after page table pages. Because I too (LWP)
|
|
* didn't understand the reason for this, I borrowed the following
|
|
* (sligthly modified) comment from mac68k/locore.s:
|
|
* LAK: There seems to be some confusion here about the next line,
|
|
* so I'll explain. The kernel needs some way of dynamically modifying
|
|
* the page tables for its own virtual memory. What it does is that it
|
|
* has a page table map. This page table map is mapped right after the
|
|
* kernel itself (in our implementation; in HP's it was after the I/O
|
|
* space). Therefore, the first three (or so) entries in the segment
|
|
* table point to the first three pages of the page tables (which
|
|
* point to the kernel) and the next entry in the segment table points
|
|
* to the page table map (this is done later). Therefore, the value
|
|
* of the pointer "Sysmap" will be something like 16M*3 = 48M. When
|
|
* the kernel addresses this pointer (e.g., Sysmap[0]), it will get
|
|
* the first longword of the first page map (== pt[0]). Since the
|
|
* page map mirrors the segment table, addressing any index of Sysmap
|
|
* will give you a PTE of the page maps which map the kernel.
|
|
*/
|
|
Sysmap = (u_int *)(ptsize << (SEGSHIFT - PGSHIFT));
|
|
|
|
/*
|
|
* Initialize segment tables
|
|
*/
|
|
#if defined(M68040) || defined(M68060)
|
|
if (mmutype == MMU_68040)
|
|
mmu040_setup(Sysseg, kstsize, pt, ptsize, Sysptmap, 1, kbase);
|
|
else
|
|
#endif /* defined(M68040) || defined(M68060) */
|
|
mmu030_setup(Sysseg, kstsize, pt, ptsize, Sysptmap, 1, kbase);
|
|
|
|
/*
|
|
* initialize kernel page table page(s).
|
|
* Assume load at VA 0.
|
|
* - Text pages are RO
|
|
* - Page zero is invalid
|
|
*/
|
|
pg_proto = (0 + kbase) | PG_RO | PG_V;
|
|
pg = pt;
|
|
*pg++ = PG_NV; pg_proto += NBPG;
|
|
for(i = NBPG; i < (u_int)etext; i += NBPG, pg_proto += NBPG)
|
|
*pg++ = pg_proto;
|
|
|
|
/*
|
|
* data, bss and dynamic tables are read/write
|
|
*/
|
|
pg_proto = (pg_proto & PG_FRAME) | PG_RW | PG_V;
|
|
|
|
#if defined(M68040) || defined(M68060)
|
|
/*
|
|
* Map the kernel segment table cache invalidated for
|
|
* these machines (for the 68040 not strictly necessary, but
|
|
* recommended by Motorola; for the 68060 mandatory)
|
|
*/
|
|
if (mmutype == MMU_68040) {
|
|
for (; i < (u_int)Sysseg; i += NBPG, pg_proto += NBPG)
|
|
*pg++ = pg_proto;
|
|
pg_proto = (pg_proto & ~PG_CCB) | PG_CI;
|
|
for (; i < (u_int)&Sysseg[kstsize * NPTEPG]; i += NBPG,
|
|
pg_proto += NBPG)
|
|
*pg++ = pg_proto;
|
|
pg_proto = (pg_proto & ~PG_CI) | PG_CCB;
|
|
}
|
|
#endif /* defined(M68040) || defined(M68060) */
|
|
|
|
/*
|
|
* go till end of data allocated so far
|
|
* plus proc0 u-area (to be allocated)
|
|
*/
|
|
for(; i < pstart + USPACE; i += NBPG, pg_proto += NBPG)
|
|
*pg++ = pg_proto;
|
|
|
|
/*
|
|
* invalidate remainder of kernel PT
|
|
*/
|
|
while(pg < &pt[ptsize/sizeof(pt_entry_t)])
|
|
*pg++ = PG_NV;
|
|
|
|
/*
|
|
* Map various I/O areas
|
|
*/
|
|
map_io_areas(pt, ptsize, ptextra);
|
|
|
|
/*
|
|
* Save KVA of proc0 user-area and allocate it
|
|
*/
|
|
proc0paddr = pstart;
|
|
pstart += USPACE;
|
|
avail -= USPACE;
|
|
|
|
/*
|
|
* At this point, virtual and physical allocation starts to divert.
|
|
*/
|
|
vstart = pstart;
|
|
|
|
/*
|
|
* Map the allocated space in ST-ram now. In the contig-case, there
|
|
* is no need to make a distinction between virtual and physical
|
|
* adresses. But I make it anyway to be prepared.
|
|
* Physcal space is already reserved!
|
|
*/
|
|
st_pool_virt = vstart;
|
|
pg = &pt[vstart / NBPG];
|
|
pg_proto = st_pool_phys | PG_RW | PG_CI | PG_V;
|
|
vstart += st_pool_size;
|
|
while(pg_proto < (st_pool_phys + st_pool_size)) {
|
|
*pg++ = pg_proto;
|
|
pg_proto += NBPG;
|
|
}
|
|
|
|
/*
|
|
* Map physical page_zero and page-zero+1 (First ST-ram page). We need
|
|
* to reference it in the reboot code. Two pages are mapped, because
|
|
* we must make sure 'doboot()' is contained in it (see the tricky
|
|
* copying there....).
|
|
*/
|
|
page_zero = vstart;
|
|
pg = &pt[vstart / NBPG];
|
|
*pg++ = PG_RW | PG_CI | PG_V;
|
|
vstart += NBPG;
|
|
*pg = PG_RW | PG_CI | PG_V | NBPG;
|
|
vstart += NBPG;
|
|
|
|
lowram = 0 >> PGSHIFT; /* XXX */
|
|
|
|
/*
|
|
* Fill in usable segments. The page indexes will be initialized
|
|
* later when all reservations are made.
|
|
*/
|
|
usable_segs[0].start = 0;
|
|
usable_segs[0].end = stphysize;
|
|
usable_segs[1].start = ttphystart;
|
|
usable_segs[1].end = ttphystart + ttphysize;
|
|
usable_segs[2].start = usable_segs[2].end = 0; /* End of segments! */
|
|
|
|
if(kbase) {
|
|
/*
|
|
* First page of ST-ram is unusable, reserve the space
|
|
* for the kernel in the TT-ram segment.
|
|
* Note: Because physical page-zero is partially mapped to ROM
|
|
* by hardware, it is unusable.
|
|
*/
|
|
usable_segs[0].start = NBPG;
|
|
usable_segs[1].start += pstart;
|
|
}
|
|
else usable_segs[0].start += pstart;
|
|
|
|
/*
|
|
* As all segment sizes are now valid, calculate page indexes and
|
|
* available physical memory.
|
|
*/
|
|
usable_segs[0].first_page = 0;
|
|
for (i = 1; usable_segs[i].start; i++) {
|
|
usable_segs[i].first_page = usable_segs[i-1].first_page;
|
|
usable_segs[i].first_page +=
|
|
(usable_segs[i-1].end - usable_segs[i-1].start) / NBPG;
|
|
}
|
|
for (i = 0, physmem = 0; usable_segs[i].start; i++)
|
|
physmem += usable_segs[i].end - usable_segs[i].start;
|
|
physmem >>= PGSHIFT;
|
|
|
|
/*
|
|
* get the pmap module in sync with reality.
|
|
*/
|
|
pmap_bootstrap(vstart, stio_addr, ptextra);
|
|
|
|
/*
|
|
* Prepare to enable the MMU.
|
|
* Setup and load SRP nolimit, share global, 4 byte PTE's
|
|
*/
|
|
protorp[0] = 0x80000202;
|
|
protorp[1] = (u_int)Sysseg + kbase; /* + segtable address */
|
|
Sysseg_pa = (u_int)Sysseg + kbase;
|
|
|
|
cpu_init_kcorehdr(kbase);
|
|
|
|
/*
|
|
* copy over the kernel (and all now initialized variables)
|
|
* to fastram. DONT use bcopy(), this beast is much larger
|
|
* than 128k !
|
|
*/
|
|
if(kbase) {
|
|
register u_long *lp, *le, *fp;
|
|
|
|
lp = (u_long *)0;
|
|
le = (u_long *)pstart;
|
|
fp = (u_long *)kbase;
|
|
while(lp < le)
|
|
*fp++ = *lp++;
|
|
}
|
|
#if defined(M68040) || defined(M68060)
|
|
if (mmutype == MMU_68040) {
|
|
/*
|
|
* movel Sysseg_pa,a0;
|
|
* movec a0,SRP;
|
|
* pflusha;
|
|
* movel #$0xc000,d0;
|
|
* movec d0,TC
|
|
*/
|
|
asm volatile ("movel %0,a0;.word 0x4e7b,0x8807" : : "a" (Sysseg_pa) : "a0");
|
|
asm volatile (".word 0xf518" : : );
|
|
asm volatile ("movel #0xc000,d0; .word 0x4e7b,0x0003" : : :"d0" );
|
|
} else
|
|
#endif
|
|
{
|
|
asm volatile ("pmove %0@,srp" : : "a" (&protorp[0]));
|
|
/*
|
|
* setup and load TC register.
|
|
* enable_cpr, enable_srp, pagesize=8k,
|
|
* A = 8 bits, B = 11 bits
|
|
*/
|
|
tc = 0x82d08b00;
|
|
asm volatile ("pmove %0@,tc" : : "a" (&tc));
|
|
}
|
|
|
|
/* Is this to fool the optimizer?? */
|
|
i = *(int *)proc0paddr;
|
|
*(volatile int *)proc0paddr = i;
|
|
|
|
/*
|
|
* Initialize the "u-area" pages.
|
|
* Must initialize p_addr before autoconfig or the
|
|
* fault handler will get a NULL reference.
|
|
*/
|
|
bzero((u_char *)proc0paddr, USPACE);
|
|
proc0.p_addr = (struct user *)proc0paddr;
|
|
curproc = &proc0;
|
|
curpcb = &((struct user *)proc0paddr)->u_pcb;
|
|
|
|
ym2149_init();
|
|
|
|
/*
|
|
* Initialize both MFP chips (if both present!) to generate
|
|
* auto-vectored interrupts with EOI. The active-edge registers are
|
|
* set up. The interrupt enable registers are set to disable all
|
|
* interrupts.
|
|
* A test on presence on the second MFP determines if this is a
|
|
* TT030 or a Falcon. This is added to 'machineid'.
|
|
*/
|
|
MFP->mf_iera = MFP->mf_ierb = 0;
|
|
MFP->mf_imra = MFP->mf_imrb = 0;
|
|
MFP->mf_aer = MFP->mf_ddr = 0;
|
|
MFP->mf_vr = 0x40;
|
|
if(machineid & (ATARI_TT|ATARI_HADES)) {
|
|
MFP2->mf_iera = MFP2->mf_ierb = 0;
|
|
MFP2->mf_imra = MFP2->mf_imrb = 0;
|
|
MFP2->mf_aer = 0x80;
|
|
MFP2->mf_vr = 0x50;
|
|
}
|
|
if(machineid & ATARI_TT) {
|
|
/*
|
|
* Initialize the SCU, to enable interrupts on the SCC (ipl5),
|
|
* MFP (ipl6) and softints (ipl1).
|
|
*/
|
|
SCU->sys_mask = SCU_MFP | SCU_SCC | SCU_SYS_SOFT;
|
|
#ifdef DDB
|
|
/*
|
|
* This allows people with the correct hardware modification
|
|
* to drop into the debugger from an NMI.
|
|
*/
|
|
SCU->sys_mask |= SCU_IRQ7;
|
|
#endif
|
|
|
|
}
|
|
|
|
/*
|
|
* Initialize stmem allocator
|
|
*/
|
|
init_stmem();
|
|
|
|
/*
|
|
* Initialize interrupt mapping.
|
|
*/
|
|
intr_init();
|
|
}
|
|
|
|
/*
|
|
* Try to figure out on what type of machine we are running
|
|
* Note: This module runs *before*
|
|
*/
|
|
static void
|
|
set_machtype()
|
|
{
|
|
if(!badbaddr((caddr_t)(PCI_CONFB_PHYS + PCI_CONFM_PHYS)))
|
|
machineid |= ATARI_HADES;
|
|
else {
|
|
if(!badbaddr((caddr_t)&MFP2->mf_gpip))
|
|
machineid |= ATARI_TT;
|
|
else machineid |= ATARI_FALCON;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Do the dull work of mapping the various I/O areas. They MUST be Cache
|
|
* inhibited!
|
|
* All I/O areas are virtually mapped at the end of the pt-table.
|
|
*/
|
|
static void
|
|
map_io_areas(pt, ptsize, ptextra)
|
|
pt_entry_t *pt;
|
|
u_int ptsize; /* Size of 'pt' in bytes */
|
|
u_int ptextra; /* #of additional I/O pte's */
|
|
{
|
|
vm_offset_t ioaddr;
|
|
pt_entry_t *pg, *epg;
|
|
pt_entry_t pg_proto;
|
|
u_long mask;
|
|
|
|
ioaddr = ((ptsize / sizeof(pt_entry_t)) - ptextra) * NBPG;
|
|
|
|
/*
|
|
* Map ST-IO area
|
|
*/
|
|
stio_addr = ioaddr;
|
|
ioaddr += STIO_SIZE;
|
|
pg = &pt[stio_addr / NBPG];
|
|
epg = &pg[btoc(STIO_SIZE)];
|
|
pg_proto = STIO_PHYS | PG_RW | PG_CI | PG_V;
|
|
while(pg < epg) {
|
|
*pg++ = pg_proto;
|
|
pg_proto += NBPG;
|
|
}
|
|
|
|
/*
|
|
* Map PCI areas
|
|
*/
|
|
if (machineid & ATARI_HADES) {
|
|
|
|
pci_conf_addr = ioaddr;
|
|
ioaddr += PCI_CONF_SIZE;
|
|
pg = &pt[pci_conf_addr / NBPG];
|
|
epg = &pg[btoc(PCI_CONF_SIZE)];
|
|
mask = PCI_CONFM_PHYS;
|
|
pg_proto = PCI_CONFB_PHYS | PG_RW | PG_CI | PG_V;
|
|
for(; pg < epg; mask >>= 1)
|
|
*pg++ = pg_proto | mask;
|
|
|
|
pci_io_addr = ioaddr;
|
|
ioaddr += PCI_IO_SIZE;
|
|
epg = &pg[btoc(PCI_IO_SIZE)];
|
|
pg_proto = PCI_IO_PHYS | PG_RW | PG_CI | PG_V;
|
|
while(pg < epg) {
|
|
*pg++ = pg_proto;
|
|
pg_proto += NBPG;
|
|
}
|
|
|
|
pci_mem_addr = ioaddr;
|
|
ioaddr += PCI_MEM_SIZE;
|
|
epg = &pg[btoc(PCI_MEM_SIZE)];
|
|
pg_proto = PCI_MEM_PHYS | PG_RW | PG_CI | PG_V;
|
|
while(pg < epg) {
|
|
*pg++ = pg_proto;
|
|
pg_proto += NBPG;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used by dumpconf() to get the size of the machine-dependent panic-dump
|
|
* header in disk blocks.
|
|
*/
|
|
int
|
|
cpu_dumpsize()
|
|
{
|
|
int size;
|
|
|
|
size = ALIGN(sizeof(kcore_seg_t)) + ALIGN(sizeof(cpu_kcore_hdr_t));
|
|
return (btodb(roundup(size, dbtob(1))));
|
|
}
|
|
|
|
/*
|
|
* Called by dumpsys() to dump the machine-dependent header.
|
|
* XXX: Assumes that it will all fit in one diskblock.
|
|
*/
|
|
int
|
|
cpu_dump(dump, p_blkno)
|
|
int (*dump) __P((dev_t, daddr_t, caddr_t, size_t));
|
|
daddr_t *p_blkno;
|
|
{
|
|
int buf[dbtob(1)/sizeof(int)];
|
|
int error;
|
|
kcore_seg_t *kseg_p;
|
|
cpu_kcore_hdr_t *chdr_p;
|
|
|
|
kseg_p = (kcore_seg_t *)buf;
|
|
chdr_p = (cpu_kcore_hdr_t *)&buf[ALIGN(sizeof(*kseg_p)) / sizeof(int)];
|
|
|
|
/*
|
|
* Generate a segment header
|
|
*/
|
|
CORE_SETMAGIC(*kseg_p, KCORE_MAGIC, MID_MACHINE, CORE_CPU);
|
|
kseg_p->c_size = dbtob(1) - ALIGN(sizeof(*kseg_p));
|
|
|
|
/*
|
|
* Add the md header
|
|
*/
|
|
*chdr_p = cpu_kcore_hdr;
|
|
error = dump(dumpdev, *p_blkno, (caddr_t)buf, dbtob(1));
|
|
*p_blkno += 1;
|
|
return (error);
|
|
}
|
|
|
|
#if (NPHYS_RAM_SEGS < NMEM_SEGS)
|
|
#error "Configuration error: NPHYS_RAM_SEGS < NMEM_SEGS"
|
|
#endif
|
|
/*
|
|
* Initialize the cpu_kcore_header.
|
|
*/
|
|
static void
|
|
cpu_init_kcorehdr(kbase)
|
|
u_long kbase;
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < NMEM_SEGS; i++) {
|
|
cpu_kcore_hdr.ram_segs[i].start = boot_segs[i].start;
|
|
cpu_kcore_hdr.ram_segs[i].size = boot_segs[i].end
|
|
- boot_segs[i].start;
|
|
}
|
|
cpu_kcore_hdr.mmutype = mmutype;
|
|
cpu_kcore_hdr.kernel_pa = kbase;
|
|
cpu_kcore_hdr.sysseg_pa = (st_entry_t *)((u_int)Sysseg + kbase);
|
|
}
|
|
|
|
void
|
|
mmu030_setup(sysseg, kstsize, pt, ptsize, sysptmap, sysptsize, kbase)
|
|
st_entry_t *sysseg; /* System segment table */
|
|
u_int kstsize; /* size of 'sysseg' in pages */
|
|
pt_entry_t *pt; /* Kernel page table */
|
|
u_int ptsize; /* size of 'pt' in bytes */
|
|
pt_entry_t *sysptmap; /* System page table */
|
|
u_int sysptsize; /* size of 'sysptmap' in pages */
|
|
u_int kbase;
|
|
{
|
|
st_entry_t sg_proto, *sg;
|
|
pt_entry_t pg_proto, *pg, *epg;
|
|
|
|
sg_proto = ((u_int)pt + kbase) | SG_RW | SG_V;
|
|
pg_proto = ((u_int)pt + kbase) | PG_RW | PG_CI | PG_V;
|
|
|
|
/*
|
|
* Map the page table pages in both the HW segment table
|
|
* and the software Sysptmap. Note that Sysptmap is also
|
|
* considered a PT page, hence the +sysptsize.
|
|
*/
|
|
sg = sysseg;
|
|
pg = sysptmap;
|
|
epg = &pg[(ptsize >> PGSHIFT) + sysptsize];
|
|
while(pg < epg) {
|
|
*sg++ = sg_proto;
|
|
*pg++ = pg_proto;
|
|
sg_proto += NBPG;
|
|
pg_proto += NBPG;
|
|
}
|
|
|
|
/*
|
|
* invalidate the remainder of the tables
|
|
*/
|
|
epg = &sysptmap[sysptsize * NPTEPG];
|
|
while(pg < epg) {
|
|
*sg++ = SG_NV;
|
|
*pg++ = PG_NV;
|
|
}
|
|
}
|
|
|
|
#if defined(M68040) || defined(M68060)
|
|
void
|
|
mmu040_setup(sysseg, kstsize, pt, ptsize, sysptmap, sysptsize, kbase)
|
|
st_entry_t *sysseg; /* System segment table */
|
|
u_int kstsize; /* size of 'sysseg' in pages */
|
|
pt_entry_t *pt; /* Kernel page table */
|
|
u_int ptsize; /* size of 'pt' in bytes */
|
|
pt_entry_t *sysptmap; /* System page table */
|
|
u_int sysptsize; /* size of 'sysptmap' in pages */
|
|
u_int kbase;
|
|
{
|
|
int i;
|
|
st_entry_t sg_proto, *sg, *esg;
|
|
pt_entry_t pg_proto;
|
|
|
|
/*
|
|
* First invalidate the entire "segment table" pages
|
|
* (levels 1 and 2 have the same "invalid" values).
|
|
*/
|
|
sg = sysseg;
|
|
esg = &sg[kstsize * NPTEPG];
|
|
while (sg < esg)
|
|
*sg++ = SG_NV;
|
|
|
|
/*
|
|
* Initialize level 2 descriptors (which immediately
|
|
* follow the level 1 table). These should map 'pt' + 'sysptmap'.
|
|
* We need:
|
|
* NPTEPG / SG4_LEV3SIZE
|
|
* level 2 descriptors to map each of the nptpages + 1
|
|
* pages of PTEs. Note that we set the "used" bit
|
|
* now to save the HW the expense of doing it.
|
|
*/
|
|
i = ((ptsize >> PGSHIFT) + sysptsize) * (NPTEPG / SG4_LEV3SIZE);
|
|
sg = &sysseg[SG4_LEV1SIZE];
|
|
esg = &sg[i];
|
|
sg_proto = ((u_int)pt + kbase) | SG_U | SG_RW | SG_V;
|
|
while (sg < esg) {
|
|
*sg++ = sg_proto;
|
|
sg_proto += (SG4_LEV3SIZE * sizeof (st_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Initialize level 1 descriptors. We need:
|
|
* roundup(num, SG4_LEV2SIZE) / SG4_LEVEL2SIZE
|
|
* level 1 descriptors to map the 'num' level 2's.
|
|
*/
|
|
i = roundup(i, SG4_LEV2SIZE) / SG4_LEV2SIZE;
|
|
protostfree = (-1 << (i + 1)) /* & ~(-1 << MAXKL2SIZE) */;
|
|
sg = sysseg;
|
|
esg = &sg[i];
|
|
sg_proto = ((u_int)&sg[SG4_LEV1SIZE] + kbase) | SG_U | SG_RW |SG_V;
|
|
while (sg < esg) {
|
|
*sg++ = sg_proto;
|
|
sg_proto += (SG4_LEV2SIZE * sizeof(st_entry_t));
|
|
}
|
|
|
|
/*
|
|
* Initialize sysptmap
|
|
*/
|
|
sg = sysptmap;
|
|
esg = &sg[(ptsize >> PGSHIFT) + sysptsize];
|
|
pg_proto = ((u_int)pt + kbase) | PG_RW | PG_CI | PG_V;
|
|
while (sg < esg) {
|
|
*sg++ = pg_proto;
|
|
pg_proto += NBPG;
|
|
}
|
|
/*
|
|
* Invalidate rest of Sysptmap page
|
|
*/
|
|
esg = &sysptmap[sysptsize * NPTEPG];
|
|
while (sg < esg)
|
|
*sg++ = SG_NV;
|
|
}
|
|
#endif /* M68040 */
|
|
|
|
#ifdef DEBUG
|
|
void
|
|
dump_segtable(stp)
|
|
u_int *stp;
|
|
{
|
|
u_int *s, *es;
|
|
int shift, i;
|
|
|
|
s = stp;
|
|
{
|
|
es = s + (ATARI_STSIZE >> 2);
|
|
shift = SG_ISHIFT;
|
|
}
|
|
|
|
/*
|
|
* XXX need changes for 68040
|
|
*/
|
|
for (i = 0; s < es; s++, i++)
|
|
if (*s & SG_V)
|
|
printf("$%08lx: $%08lx\t", i << shift, *s & SG_FRAME);
|
|
printf("\n");
|
|
}
|
|
|
|
void
|
|
dump_pagetable(ptp, i, n)
|
|
u_int *ptp, i, n;
|
|
{
|
|
u_int *p, *ep;
|
|
|
|
p = ptp + i;
|
|
ep = p + n;
|
|
for (; p < ep; p++, i++)
|
|
if (*p & PG_V)
|
|
printf("$%08lx -> $%08lx\t", i, *p & PG_FRAME);
|
|
printf("\n");
|
|
}
|
|
|
|
u_int
|
|
vmtophys(ste, vm)
|
|
u_int *ste, vm;
|
|
{
|
|
ste = (u_int *) (*(ste + (vm >> SEGSHIFT)) & SG_FRAME);
|
|
ste += (vm & SG_PMASK) >> PGSHIFT;
|
|
return((*ste & -NBPG) | (vm & (NBPG - 1)));
|
|
}
|
|
|
|
#endif
|