NetBSD/sys/kern/uipc_usrreq.c
thorpej c55795d055 Change fdalloc() to return ERESTART if we had to reallocate the
descriptor array, which may have blocked.  Change callers of
fdalloc() to restart whatever they\'re doing if this condition
happens.  (XXX unp_externalize() needs some work, but that will
be tackled later.)

Change finishdup() to close the descriptor in the `new\' slot if
one exists, and change sys_dup2() accordingly.

Closes a race condition when using kernel-assisted user threads.

While here, garbage-collect UF_MAPPED -- it is not used anywhere.
2001-06-06 17:00:00 +00:00

1279 lines
31 KiB
C

/* $NetBSD: uipc_usrreq.c,v 1.49 2001/06/06 17:00:00 thorpej Exp $ */
/*-
* Copyright (c) 1998, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1997 Christopher G. Demetriou. All rights reserved.
* Copyright (c) 1982, 1986, 1989, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)uipc_usrreq.c 8.9 (Berkeley) 5/14/95
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/filedesc.h>
#include <sys/domain.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/unpcb.h>
#include <sys/un.h>
#include <sys/namei.h>
#include <sys/vnode.h>
#include <sys/file.h>
#include <sys/stat.h>
#include <sys/mbuf.h>
/*
* Unix communications domain.
*
* TODO:
* SEQPACKET, RDM
* rethink name space problems
* need a proper out-of-band
*/
struct sockaddr_un sun_noname = { sizeof(sun_noname), AF_LOCAL };
ino_t unp_ino; /* prototype for fake inode numbers */
struct mbuf *unp_addsockcred __P((struct proc *, struct mbuf *));
int
unp_output(m, control, unp, p)
struct mbuf *m, *control;
struct unpcb *unp;
struct proc *p;
{
struct socket *so2;
struct sockaddr_un *sun;
so2 = unp->unp_conn->unp_socket;
if (unp->unp_addr)
sun = unp->unp_addr;
else
sun = &sun_noname;
if (unp->unp_conn->unp_flags & UNP_WANTCRED)
control = unp_addsockcred(p, control);
if (sbappendaddr(&so2->so_rcv, (struct sockaddr *)sun, m,
control) == 0) {
m_freem(control);
m_freem(m);
return (EINVAL);
} else {
sorwakeup(so2);
return (0);
}
}
void
unp_setsockaddr(unp, nam)
struct unpcb *unp;
struct mbuf *nam;
{
struct sockaddr_un *sun;
if (unp->unp_addr)
sun = unp->unp_addr;
else
sun = &sun_noname;
nam->m_len = sun->sun_len;
if (nam->m_len > MLEN)
MEXTMALLOC(nam, nam->m_len, M_WAITOK);
memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
}
void
unp_setpeeraddr(unp, nam)
struct unpcb *unp;
struct mbuf *nam;
{
struct sockaddr_un *sun;
if (unp->unp_conn && unp->unp_conn->unp_addr)
sun = unp->unp_conn->unp_addr;
else
sun = &sun_noname;
nam->m_len = sun->sun_len;
if (nam->m_len > MLEN)
MEXTMALLOC(nam, nam->m_len, M_WAITOK);
memcpy(mtod(nam, caddr_t), sun, (size_t)nam->m_len);
}
/*ARGSUSED*/
int
uipc_usrreq(so, req, m, nam, control, p)
struct socket *so;
int req;
struct mbuf *m, *nam, *control;
struct proc *p;
{
struct unpcb *unp = sotounpcb(so);
struct socket *so2;
int error = 0;
if (req == PRU_CONTROL)
return (EOPNOTSUPP);
#ifdef DIAGNOSTIC
if (req != PRU_SEND && req != PRU_SENDOOB && control)
panic("uipc_usrreq: unexpected control mbuf");
#endif
if (unp == 0 && req != PRU_ATTACH) {
error = EINVAL;
goto release;
}
switch (req) {
case PRU_ATTACH:
if (unp != 0) {
error = EISCONN;
break;
}
error = unp_attach(so);
break;
case PRU_DETACH:
unp_detach(unp);
break;
case PRU_BIND:
error = unp_bind(unp, nam, p);
break;
case PRU_LISTEN:
if (unp->unp_vnode == 0)
error = EINVAL;
break;
case PRU_CONNECT:
error = unp_connect(so, nam, p);
break;
case PRU_CONNECT2:
error = unp_connect2(so, (struct socket *)nam);
break;
case PRU_DISCONNECT:
unp_disconnect(unp);
break;
case PRU_ACCEPT:
unp_setpeeraddr(unp, nam);
break;
case PRU_SHUTDOWN:
socantsendmore(so);
unp_shutdown(unp);
break;
case PRU_RCVD:
switch (so->so_type) {
case SOCK_DGRAM:
panic("uipc 1");
/*NOTREACHED*/
case SOCK_STREAM:
#define rcv (&so->so_rcv)
#define snd (&so2->so_snd)
if (unp->unp_conn == 0)
break;
so2 = unp->unp_conn->unp_socket;
/*
* Adjust backpressure on sender
* and wakeup any waiting to write.
*/
snd->sb_mbmax += unp->unp_mbcnt - rcv->sb_mbcnt;
unp->unp_mbcnt = rcv->sb_mbcnt;
snd->sb_hiwat += unp->unp_cc - rcv->sb_cc;
unp->unp_cc = rcv->sb_cc;
sowwakeup(so2);
#undef snd
#undef rcv
break;
default:
panic("uipc 2");
}
break;
case PRU_SEND:
/*
* Note: unp_internalize() rejects any control message
* other than SCM_RIGHTS, and only allows one. This
* has the side-effect of preventing a caller from
* forging SCM_CREDS.
*/
if (control && (error = unp_internalize(control, p)))
break;
switch (so->so_type) {
case SOCK_DGRAM: {
if (nam) {
if ((so->so_state & SS_ISCONNECTED) != 0) {
error = EISCONN;
goto die;
}
error = unp_connect(so, nam, p);
if (error) {
die:
m_freem(control);
m_freem(m);
break;
}
} else {
if ((so->so_state & SS_ISCONNECTED) == 0) {
error = ENOTCONN;
goto die;
}
}
error = unp_output(m, control, unp, p);
if (nam)
unp_disconnect(unp);
break;
}
case SOCK_STREAM:
#define rcv (&so2->so_rcv)
#define snd (&so->so_snd)
if (unp->unp_conn == 0)
panic("uipc 3");
so2 = unp->unp_conn->unp_socket;
if (unp->unp_conn->unp_flags & UNP_WANTCRED) {
/*
* Credentials are passed only once on
* SOCK_STREAM.
*/
unp->unp_conn->unp_flags &= ~UNP_WANTCRED;
control = unp_addsockcred(p, control);
}
/*
* Send to paired receive port, and then reduce
* send buffer hiwater marks to maintain backpressure.
* Wake up readers.
*/
if (control) {
if (sbappendcontrol(rcv, m, control) == 0)
m_freem(control);
} else
sbappend(rcv, m);
snd->sb_mbmax -=
rcv->sb_mbcnt - unp->unp_conn->unp_mbcnt;
unp->unp_conn->unp_mbcnt = rcv->sb_mbcnt;
snd->sb_hiwat -= rcv->sb_cc - unp->unp_conn->unp_cc;
unp->unp_conn->unp_cc = rcv->sb_cc;
sorwakeup(so2);
#undef snd
#undef rcv
break;
default:
panic("uipc 4");
}
break;
case PRU_ABORT:
unp_drop(unp, ECONNABORTED);
#ifdef DIAGNOSTIC
if (so->so_pcb == 0)
panic("uipc 5: drop killed pcb");
#endif
unp_detach(unp);
break;
case PRU_SENSE:
((struct stat *) m)->st_blksize = so->so_snd.sb_hiwat;
if (so->so_type == SOCK_STREAM && unp->unp_conn != 0) {
so2 = unp->unp_conn->unp_socket;
((struct stat *) m)->st_blksize += so2->so_rcv.sb_cc;
}
((struct stat *) m)->st_dev = NODEV;
if (unp->unp_ino == 0)
unp->unp_ino = unp_ino++;
((struct stat *) m)->st_atimespec =
((struct stat *) m)->st_mtimespec =
((struct stat *) m)->st_ctimespec = unp->unp_ctime;
((struct stat *) m)->st_ino = unp->unp_ino;
return (0);
case PRU_RCVOOB:
error = EOPNOTSUPP;
break;
case PRU_SENDOOB:
m_freem(control);
m_freem(m);
error = EOPNOTSUPP;
break;
case PRU_SOCKADDR:
unp_setsockaddr(unp, nam);
break;
case PRU_PEERADDR:
unp_setpeeraddr(unp, nam);
break;
default:
panic("piusrreq");
}
release:
return (error);
}
/*
* Unix domain socket option processing.
*/
int
uipc_ctloutput(op, so, level, optname, mp)
int op;
struct socket *so;
int level, optname;
struct mbuf **mp;
{
struct unpcb *unp = sotounpcb(so);
struct mbuf *m = *mp;
int optval = 0, error = 0;
if (level != 0) {
error = EINVAL;
if (op == PRCO_SETOPT && m)
(void) m_free(m);
} else switch (op) {
case PRCO_SETOPT:
switch (optname) {
case LOCAL_CREDS:
if (m == NULL || m->m_len != sizeof(int))
error = EINVAL;
else {
optval = *mtod(m, int *);
switch (optname) {
#define OPTSET(bit) \
if (optval) \
unp->unp_flags |= (bit); \
else \
unp->unp_flags &= ~(bit);
case LOCAL_CREDS:
OPTSET(UNP_WANTCRED);
break;
}
}
break;
#undef OPTSET
default:
error = ENOPROTOOPT;
break;
}
if (m)
(void) m_free(m);
break;
case PRCO_GETOPT:
switch (optname) {
case LOCAL_CREDS:
*mp = m = m_get(M_WAIT, MT_SOOPTS);
m->m_len = sizeof(int);
switch (optname) {
#define OPTBIT(bit) (unp->unp_flags & (bit) ? 1 : 0)
case LOCAL_CREDS:
optval = OPTBIT(UNP_WANTCRED);
break;
}
*mtod(m, int *) = optval;
break;
#undef OPTBIT
default:
error = ENOPROTOOPT;
break;
}
break;
}
return (error);
}
/*
* Both send and receive buffers are allocated PIPSIZ bytes of buffering
* for stream sockets, although the total for sender and receiver is
* actually only PIPSIZ.
* Datagram sockets really use the sendspace as the maximum datagram size,
* and don't really want to reserve the sendspace. Their recvspace should
* be large enough for at least one max-size datagram plus address.
*/
#define PIPSIZ 4096
u_long unpst_sendspace = PIPSIZ;
u_long unpst_recvspace = PIPSIZ;
u_long unpdg_sendspace = 2*1024; /* really max datagram size */
u_long unpdg_recvspace = 4*1024;
int unp_rights; /* file descriptors in flight */
int
unp_attach(so)
struct socket *so;
{
struct unpcb *unp;
struct timeval tv;
int error;
if (so->so_snd.sb_hiwat == 0 || so->so_rcv.sb_hiwat == 0) {
switch (so->so_type) {
case SOCK_STREAM:
error = soreserve(so, unpst_sendspace, unpst_recvspace);
break;
case SOCK_DGRAM:
error = soreserve(so, unpdg_sendspace, unpdg_recvspace);
break;
default:
panic("unp_attach");
}
if (error)
return (error);
}
unp = malloc(sizeof(*unp), M_PCB, M_NOWAIT);
if (unp == NULL)
return (ENOBUFS);
memset((caddr_t)unp, 0, sizeof(*unp));
unp->unp_socket = so;
so->so_pcb = unp;
microtime(&tv);
TIMEVAL_TO_TIMESPEC(&tv, &unp->unp_ctime);
return (0);
}
void
unp_detach(unp)
struct unpcb *unp;
{
if (unp->unp_vnode) {
unp->unp_vnode->v_socket = 0;
vrele(unp->unp_vnode);
unp->unp_vnode = 0;
}
if (unp->unp_conn)
unp_disconnect(unp);
while (unp->unp_refs)
unp_drop(unp->unp_refs, ECONNRESET);
soisdisconnected(unp->unp_socket);
unp->unp_socket->so_pcb = 0;
if (unp->unp_addr)
free(unp->unp_addr, M_SONAME);
if (unp_rights) {
/*
* Normally the receive buffer is flushed later,
* in sofree, but if our receive buffer holds references
* to descriptors that are now garbage, we will dispose
* of those descriptor references after the garbage collector
* gets them (resulting in a "panic: closef: count < 0").
*/
sorflush(unp->unp_socket);
free(unp, M_PCB);
unp_gc();
} else
free(unp, M_PCB);
}
int
unp_bind(unp, nam, p)
struct unpcb *unp;
struct mbuf *nam;
struct proc *p;
{
struct sockaddr_un *sun;
struct vnode *vp;
struct vattr vattr;
size_t addrlen;
int error;
struct nameidata nd;
if (unp->unp_vnode != 0)
return (EINVAL);
/*
* Allocate the new sockaddr. We have to allocate one
* extra byte so that we can ensure that the pathname
* is nul-terminated.
*/
addrlen = nam->m_len + 1;
sun = malloc(addrlen, M_SONAME, M_WAITOK);
m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
*(((char *)sun) + nam->m_len) = '\0';
NDINIT(&nd, CREATE, FOLLOW | LOCKPARENT, UIO_SYSSPACE,
sun->sun_path, p);
/* SHOULD BE ABLE TO ADOPT EXISTING AND wakeup() ALA FIFO's */
if ((error = namei(&nd)) != 0)
goto bad;
vp = nd.ni_vp;
if (vp != NULL) {
VOP_ABORTOP(nd.ni_dvp, &nd.ni_cnd);
if (nd.ni_dvp == vp)
vrele(nd.ni_dvp);
else
vput(nd.ni_dvp);
vrele(vp);
error = EADDRINUSE;
goto bad;
}
VATTR_NULL(&vattr);
vattr.va_type = VSOCK;
vattr.va_mode = ACCESSPERMS;
VOP_LEASE(nd.ni_dvp, p, p->p_ucred, LEASE_WRITE);
error = VOP_CREATE(nd.ni_dvp, &nd.ni_vp, &nd.ni_cnd, &vattr);
if (error)
goto bad;
vp = nd.ni_vp;
vp->v_socket = unp->unp_socket;
unp->unp_vnode = vp;
unp->unp_addrlen = addrlen;
unp->unp_addr = sun;
VOP_UNLOCK(vp, 0);
return (0);
bad:
free(sun, M_SONAME);
return (error);
}
int
unp_connect(so, nam, p)
struct socket *so;
struct mbuf *nam;
struct proc *p;
{
struct sockaddr_un *sun;
struct vnode *vp;
struct socket *so2, *so3;
struct unpcb *unp2, *unp3;
size_t addrlen;
int error;
struct nameidata nd;
/*
* Allocate a temporary sockaddr. We have to allocate one extra
* byte so that we can ensure that the pathname is nul-terminated.
* When we establish the connection, we copy the other PCB's
* sockaddr to our own.
*/
addrlen = nam->m_len + 1;
sun = malloc(addrlen, M_SONAME, M_WAITOK);
m_copydata(nam, 0, nam->m_len, (caddr_t)sun);
*(((char *)sun) + nam->m_len) = '\0';
NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF, UIO_SYSSPACE, sun->sun_path, p);
if ((error = namei(&nd)) != 0)
goto bad2;
vp = nd.ni_vp;
if (vp->v_type != VSOCK) {
error = ENOTSOCK;
goto bad;
}
if ((error = VOP_ACCESS(vp, VWRITE, p->p_ucred, p)) != 0)
goto bad;
so2 = vp->v_socket;
if (so2 == 0) {
error = ECONNREFUSED;
goto bad;
}
if (so->so_type != so2->so_type) {
error = EPROTOTYPE;
goto bad;
}
if (so->so_proto->pr_flags & PR_CONNREQUIRED) {
if ((so2->so_options & SO_ACCEPTCONN) == 0 ||
(so3 = sonewconn(so2, 0)) == 0) {
error = ECONNREFUSED;
goto bad;
}
unp2 = sotounpcb(so2);
unp3 = sotounpcb(so3);
if (unp2->unp_addr) {
unp3->unp_addr = malloc(unp2->unp_addrlen,
M_SONAME, M_WAITOK);
memcpy(unp3->unp_addr, unp2->unp_addr,
unp2->unp_addrlen);
unp3->unp_addrlen = unp2->unp_addrlen;
}
unp3->unp_flags = unp2->unp_flags;
so2 = so3;
}
error = unp_connect2(so, so2);
bad:
vput(vp);
bad2:
free(sun, M_SONAME);
return (error);
}
int
unp_connect2(so, so2)
struct socket *so;
struct socket *so2;
{
struct unpcb *unp = sotounpcb(so);
struct unpcb *unp2;
if (so2->so_type != so->so_type)
return (EPROTOTYPE);
unp2 = sotounpcb(so2);
unp->unp_conn = unp2;
switch (so->so_type) {
case SOCK_DGRAM:
unp->unp_nextref = unp2->unp_refs;
unp2->unp_refs = unp;
soisconnected(so);
break;
case SOCK_STREAM:
unp2->unp_conn = unp;
soisconnected(so);
soisconnected(so2);
break;
default:
panic("unp_connect2");
}
return (0);
}
void
unp_disconnect(unp)
struct unpcb *unp;
{
struct unpcb *unp2 = unp->unp_conn;
if (unp2 == 0)
return;
unp->unp_conn = 0;
switch (unp->unp_socket->so_type) {
case SOCK_DGRAM:
if (unp2->unp_refs == unp)
unp2->unp_refs = unp->unp_nextref;
else {
unp2 = unp2->unp_refs;
for (;;) {
if (unp2 == 0)
panic("unp_disconnect");
if (unp2->unp_nextref == unp)
break;
unp2 = unp2->unp_nextref;
}
unp2->unp_nextref = unp->unp_nextref;
}
unp->unp_nextref = 0;
unp->unp_socket->so_state &= ~SS_ISCONNECTED;
break;
case SOCK_STREAM:
soisdisconnected(unp->unp_socket);
unp2->unp_conn = 0;
soisdisconnected(unp2->unp_socket);
break;
}
}
#ifdef notdef
unp_abort(unp)
struct unpcb *unp;
{
unp_detach(unp);
}
#endif
void
unp_shutdown(unp)
struct unpcb *unp;
{
struct socket *so;
if (unp->unp_socket->so_type == SOCK_STREAM && unp->unp_conn &&
(so = unp->unp_conn->unp_socket))
socantrcvmore(so);
}
void
unp_drop(unp, errno)
struct unpcb *unp;
int errno;
{
struct socket *so = unp->unp_socket;
so->so_error = errno;
unp_disconnect(unp);
if (so->so_head) {
so->so_pcb = 0;
sofree(so);
if (unp->unp_addr)
free(unp->unp_addr, M_SONAME);
free(unp, M_PCB);
}
}
#ifdef notdef
unp_drain()
{
}
#endif
int
unp_externalize(rights)
struct mbuf *rights;
{
struct proc *p = curproc; /* XXX */
struct cmsghdr *cm = mtod(rights, struct cmsghdr *);
int i, *fdp;
struct file **rp;
struct file *fp;
int nfds, f, error = 0, err;
nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) /
sizeof(struct file *);
fdp = (int *)CMSG_DATA(cm);
rp = (struct file **)CMSG_DATA(cm);
/* Make sure the recipient should be able to see the descriptors.. */
if (p->p_cwdi->cwdi_rdir != NULL) {
rp = (struct file **)CMSG_DATA(cm);
for (i = 0; i < nfds; i++) {
fp = *rp++;
/*
* If we are in a chroot'ed directory, and
* someone wants to pass us a directory, make
* sure it's inside the subtree we're allowed
* to access.
*/
if (fp->f_type == DTYPE_VNODE) {
struct vnode *vp = (struct vnode *)fp->f_data;
if ((vp->v_type == VDIR) &&
!vn_isunder(vp, p->p_cwdi->cwdi_rdir, p)) {
error = EPERM;
break;
}
}
}
}
rp = (struct file **)CMSG_DATA(cm);
/* Make sure that the recipient has space */
if (error || (!fdavail(p, nfds))) {
for (i = 0; i < nfds; i++) {
fp = *rp;
/*
* zero the pointer before calling unp_discard,
* since it may end up in unp_gc()..
*/
*rp++ = 0;
unp_discard(fp);
}
return (error ? error : EMSGSIZE);
}
/*
* Add file to the recipient's open file table, converting them
* to integer file descriptors as we go. Done in forward order
* because an integer will always come in the same place or before
* its corresponding struct file pointer.
*/
for (i = 0; i < nfds; i++) {
fp = *rp++;
fp->f_msgcount--;
unp_rights--;
if ((err = fdalloc(p, 0, &f)) != 0) {
/*
* XXXSMP -- FIX ME, PLEASE.
*/
if (err != ERESTART)
panic("unp_externalize");
}
p->p_fd->fd_ofiles[f] = fp;
*fdp++ = f;
}
/*
* Adjust length, in case of transition from large struct file
* pointers to ints.
*/
cm->cmsg_len = CMSG_LEN(nfds * sizeof(int));
rights->m_len = CMSG_SPACE(nfds * sizeof(int));
return (0);
}
int
unp_internalize(control, p)
struct mbuf *control;
struct proc *p;
{
struct filedesc *fdescp = p->p_fd;
struct cmsghdr *cm = mtod(control, struct cmsghdr *);
struct file **rp;
struct file *fp;
int i, fd, *fdp;
int nfds;
u_int neededspace;
/* Sanity check the control message header */
if (cm->cmsg_type != SCM_RIGHTS || cm->cmsg_level != SOL_SOCKET ||
cm->cmsg_len != control->m_len)
return (EINVAL);
/* Verify that the file descriptors are valid */
nfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm))) / sizeof(int);
fdp = (int *)CMSG_DATA(cm);
for (i = 0; i < nfds; i++) {
fd = *fdp++;
if ((unsigned)fd >= fdescp->fd_nfiles ||
fdescp->fd_ofiles[fd] == NULL ||
(fdescp->fd_ofiles[fd]->f_iflags & FIF_WANTCLOSE) != 0)
return (EBADF);
}
/* Make sure we have room for the struct file pointers */
morespace:
neededspace = CMSG_SPACE(nfds * sizeof(struct file *)) -
control->m_len;
if (neededspace > M_TRAILINGSPACE(control)) {
/* if we already have a cluster, the message is just too big */
if (control->m_flags & M_EXT)
return (E2BIG);
/* allocate a cluster and try again */
MCLGET(control, M_WAIT);
if ((control->m_flags & M_EXT) == 0)
return (ENOBUFS); /* allocation failed */
/* copy the data to the cluster */
memcpy(mtod(control, char *), cm, cm->cmsg_len);
cm = mtod(control, struct cmsghdr *);
goto morespace;
}
/* adjust message & mbuf to note amount of space actually used. */
cm->cmsg_len = CMSG_LEN(nfds * sizeof(struct file *));
control->m_len = CMSG_SPACE(nfds * sizeof(struct file *));
/*
* Transform the file descriptors into struct file pointers, in
* reverse order so that if pointers are bigger than ints, the
* int won't get until we're done.
*/
fdp = ((int *)CMSG_DATA(cm)) + nfds - 1;
rp = ((struct file **)CMSG_DATA(cm)) + nfds - 1;
for (i = 0; i < nfds; i++) {
fp = fdescp->fd_ofiles[*fdp--];
FILE_USE(fp);
*rp-- = fp;
fp->f_count++;
fp->f_msgcount++;
FILE_UNUSE(fp, NULL);
unp_rights++;
}
return (0);
}
struct mbuf *
unp_addsockcred(p, control)
struct proc *p;
struct mbuf *control;
{
struct cmsghdr *cmp;
struct sockcred *sc;
struct mbuf *m, *n;
int len, space, i;
len = CMSG_LEN(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
space = CMSG_SPACE(SOCKCREDSIZE(p->p_ucred->cr_ngroups));
m = m_get(M_WAIT, MT_CONTROL);
if (space > MLEN) {
if (space > MCLBYTES)
MEXTMALLOC(m, space, M_WAITOK);
else
MCLGET(m, M_WAIT);
if ((m->m_flags & M_EXT) == 0) {
m_free(m);
return (control);
}
}
m->m_len = space;
m->m_next = NULL;
cmp = mtod(m, struct cmsghdr *);
sc = (struct sockcred *)CMSG_DATA(cmp);
cmp->cmsg_len = len;
cmp->cmsg_level = SOL_SOCKET;
cmp->cmsg_type = SCM_CREDS;
sc->sc_uid = p->p_cred->p_ruid;
sc->sc_euid = p->p_ucred->cr_uid;
sc->sc_gid = p->p_cred->p_rgid;
sc->sc_egid = p->p_ucred->cr_gid;
sc->sc_ngroups = p->p_ucred->cr_ngroups;
for (i = 0; i < sc->sc_ngroups; i++)
sc->sc_groups[i] = p->p_ucred->cr_groups[i];
/*
* If a control message already exists, append us to the end.
*/
if (control != NULL) {
for (n = control; n->m_next != NULL; n = n->m_next)
;
n->m_next = m;
} else
control = m;
return (control);
}
int unp_defer, unp_gcing;
extern struct domain unixdomain;
/*
* Comment added long after the fact explaining what's going on here.
* Do a mark-sweep GC of file descriptors on the system, to free up
* any which are caught in flight to an about-to-be-closed socket.
*
* Traditional mark-sweep gc's start at the "root", and mark
* everything reachable from the root (which, in our case would be the
* process table). The mark bits are cleared during the sweep.
*
* XXX For some inexplicable reason (perhaps because the file
* descriptor tables used to live in the u area which could be swapped
* out and thus hard to reach), we do multiple scans over the set of
* descriptors, using use *two* mark bits per object (DEFER and MARK).
* Whenever we find a descriptor which references other descriptors,
* the ones it references are marked with both bits, and we iterate
* over the whole file table until there are no more DEFER bits set.
* We also make an extra pass *before* the GC to clear the mark bits,
* which could have been cleared at almost no cost during the previous
* sweep.
*
* XXX MP: this needs to run with locks such that no other thread of
* control can create or destroy references to file descriptors. it
* may be necessary to defer the GC until later (when the locking
* situation is more hospitable); it may be necessary to push this
* into a separate thread.
*/
void
unp_gc()
{
struct file *fp, *nextfp;
struct socket *so, *so1;
struct file **extra_ref, **fpp;
int nunref, i;
if (unp_gcing)
return;
unp_gcing = 1;
unp_defer = 0;
/* Clear mark bits */
for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next)
fp->f_flag &= ~(FMARK|FDEFER);
/*
* Iterate over the set of descriptors, marking ones believed
* (based on refcount) to be referenced from a process, and
* marking for rescan descriptors which are queued on a socket.
*/
do {
for (fp = filehead.lh_first; fp != 0; fp = fp->f_list.le_next) {
if (fp->f_flag & FDEFER) {
fp->f_flag &= ~FDEFER;
unp_defer--;
#ifdef DIAGNOSTIC
if (fp->f_count == 0)
panic("unp_gc: deferred unreferenced socket");
#endif
} else {
if (fp->f_count == 0)
continue;
if (fp->f_flag & FMARK)
continue;
if (fp->f_count == fp->f_msgcount)
continue;
}
fp->f_flag |= FMARK;
if (fp->f_type != DTYPE_SOCKET ||
(so = (struct socket *)fp->f_data) == 0)
continue;
if (so->so_proto->pr_domain != &unixdomain ||
(so->so_proto->pr_flags&PR_RIGHTS) == 0)
continue;
#ifdef notdef
if (so->so_rcv.sb_flags & SB_LOCK) {
/*
* This is problematical; it's not clear
* we need to wait for the sockbuf to be
* unlocked (on a uniprocessor, at least),
* and it's also not clear what to do
* if sbwait returns an error due to receipt
* of a signal. If sbwait does return
* an error, we'll go into an infinite
* loop. Delete all of this for now.
*/
(void) sbwait(&so->so_rcv);
goto restart;
}
#endif
unp_scan(so->so_rcv.sb_mb, unp_mark, 0);
/*
* mark descriptors referenced from sockets queued on the accept queue as well.
*/
if (so->so_options & SO_ACCEPTCONN) {
for (so1 = so->so_q0.tqh_first;
so1 != 0;
so1 = so1->so_qe.tqe_next) {
unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
}
for (so1 = so->so_q.tqh_first;
so1 != 0;
so1 = so1->so_qe.tqe_next) {
unp_scan(so1->so_rcv.sb_mb, unp_mark, 0);
}
}
}
} while (unp_defer);
/*
* Sweep pass. Find unmarked descriptors, and free them.
*
* We grab an extra reference to each of the file table entries
* that are not otherwise accessible and then free the rights
* that are stored in messages on them.
*
* The bug in the orginal code is a little tricky, so I'll describe
* what's wrong with it here.
*
* It is incorrect to simply unp_discard each entry for f_msgcount
* times -- consider the case of sockets A and B that contain
* references to each other. On a last close of some other socket,
* we trigger a gc since the number of outstanding rights (unp_rights)
* is non-zero. If during the sweep phase the gc code un_discards,
* we end up doing a (full) closef on the descriptor. A closef on A
* results in the following chain. Closef calls soo_close, which
* calls soclose. Soclose calls first (through the switch
* uipc_usrreq) unp_detach, which re-invokes unp_gc. Unp_gc simply
* returns because the previous instance had set unp_gcing, and
* we return all the way back to soclose, which marks the socket
* with SS_NOFDREF, and then calls sofree. Sofree calls sorflush
* to free up the rights that are queued in messages on the socket A,
* i.e., the reference on B. The sorflush calls via the dom_dispose
* switch unp_dispose, which unp_scans with unp_discard. This second
* instance of unp_discard just calls closef on B.
*
* Well, a similar chain occurs on B, resulting in a sorflush on B,
* which results in another closef on A. Unfortunately, A is already
* being closed, and the descriptor has already been marked with
* SS_NOFDREF, and soclose panics at this point.
*
* Here, we first take an extra reference to each inaccessible
* descriptor. Then, if the inaccessible descriptor is a
* socket, we call sorflush in case it is a Unix domain
* socket. After we destroy all the rights carried in
* messages, we do a last closef to get rid of our extra
* reference. This is the last close, and the unp_detach etc
* will shut down the socket.
*
* 91/09/19, bsy@cs.cmu.edu
*/
extra_ref = malloc(nfiles * sizeof(struct file *), M_FILE, M_WAITOK);
for (nunref = 0, fp = filehead.lh_first, fpp = extra_ref; fp != 0;
fp = nextfp) {
nextfp = fp->f_list.le_next;
if (fp->f_count == 0)
continue;
if (fp->f_count == fp->f_msgcount && !(fp->f_flag & FMARK)) {
*fpp++ = fp;
nunref++;
fp->f_count++;
}
}
for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
fp = *fpp;
FILE_USE(fp);
if (fp->f_type == DTYPE_SOCKET)
sorflush((struct socket *)fp->f_data);
FILE_UNUSE(fp, NULL);
}
for (i = nunref, fpp = extra_ref; --i >= 0; ++fpp) {
fp = *fpp;
FILE_USE(fp);
(void) closef(fp, (struct proc *)0);
}
free((caddr_t)extra_ref, M_FILE);
unp_gcing = 0;
}
void
unp_dispose(m)
struct mbuf *m;
{
if (m)
unp_scan(m, unp_discard, 1);
}
void
unp_scan(m0, op, discard)
struct mbuf *m0;
void (*op) __P((struct file *));
int discard;
{
struct mbuf *m;
struct file **rp;
struct cmsghdr *cm;
int i;
int qfds;
while (m0) {
for (m = m0; m; m = m->m_next) {
if (m->m_type == MT_CONTROL &&
m->m_len >= sizeof(*cm)) {
cm = mtod(m, struct cmsghdr *);
if (cm->cmsg_level != SOL_SOCKET ||
cm->cmsg_type != SCM_RIGHTS)
continue;
qfds = (cm->cmsg_len - CMSG_ALIGN(sizeof(*cm)))
/ sizeof(struct file *);
rp = (struct file **)CMSG_DATA(cm);
for (i = 0; i < qfds; i++) {
struct file *fp = *rp;
if (discard)
*rp = 0;
(*op)(fp);
rp++;
}
break; /* XXX, but saves time */
}
}
m0 = m0->m_act;
}
}
void
unp_mark(fp)
struct file *fp;
{
if (fp == NULL)
return;
if (fp->f_flag & FMARK)
return;
/* If we're already deferred, don't screw up the defer count */
if (fp->f_flag & FDEFER)
return;
/*
* Minimize the number of deferrals... Sockets are the only
* type of descriptor which can hold references to another
* descriptor, so just mark other descriptors, and defer
* unmarked sockets for the next pass.
*/
if (fp->f_type == DTYPE_SOCKET) {
unp_defer++;
if (fp->f_count == 0)
panic("unp_mark: queued unref");
fp->f_flag |= FDEFER;
} else {
fp->f_flag |= FMARK;
}
return;
}
void
unp_discard(fp)
struct file *fp;
{
if (fp == NULL)
return;
FILE_USE(fp);
fp->f_msgcount--;
unp_rights--;
(void) closef(fp, (struct proc *)0);
}