NetBSD/sys/kern/subr_psref.c
ozaki-r 7fc219a5ee Implement an aggressive psref leak detector
It is yet another psref leak detector that enables to tell where a leak occurs
while a simpler version that is already committed just tells an occurrence of a
leak.

Investigating of psref leaks is hard because once a leak occurs a percpu list of
psref that tracks references can be corrupted.  A reference to a tracking object
is memorized in the list via an intermediate object (struct psref) that is
normally allocated on a stack of a thread.  Thus, the intermediate object can be
overwritten on a leak resulting in corruption of the list.

The tracker makes a shadow entry to an intermediate object and stores some hints
into it (currently it's a caller address of psref_acquire).  We can detect a
leak by checking the entries on certain points where any references should be
released such as the return point of syscalls and the end of each softint
handler.

The feature is expensive and enabled only if the kernel is built with
PSREF_DEBUG.

Proposed on tech-kern
2019-05-17 03:34:26 +00:00

700 lines
19 KiB
C

/* $NetBSD: subr_psref.c,v 1.13 2019/05/17 03:34:26 ozaki-r Exp $ */
/*-
* Copyright (c) 2016 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Taylor R. Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Passive references
*
* Passive references are references to objects that guarantee the
* object will not be destroyed until the reference is released.
*
* Passive references require no interprocessor synchronization to
* acquire or release. However, destroying the target of passive
* references requires expensive interprocessor synchronization --
* xcalls to determine on which CPUs the object is still in use.
*
* Passive references may be held only on a single CPU and by a
* single LWP. They require the caller to allocate a little stack
* space, a struct psref object. Sleeping while a passive
* reference is held is allowed, provided that the owner's LWP is
* bound to a CPU -- e.g., the owner is a softint or a bound
* kthread. However, sleeping should be kept to a short duration,
* e.g. sleeping on an adaptive lock.
*
* Passive references serve as an intermediate stage between
* reference counting and passive serialization (pserialize(9)):
*
* - If you need references to transfer from CPU to CPU or LWP to
* LWP, or if you need long-term references, you must use
* reference counting, e.g. with atomic operations or locks,
* which incurs interprocessor synchronization for every use --
* cheaper than an xcall, but not scalable.
*
* - If all users *guarantee* that they will not sleep, then it is
* not necessary to use passive references: you may as well just
* use the even cheaper pserialize(9), because you have
* satisfied the requirements of a pserialize read section.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: subr_psref.c,v 1.13 2019/05/17 03:34:26 ozaki-r Exp $");
#include <sys/types.h>
#include <sys/condvar.h>
#include <sys/cpu.h>
#include <sys/intr.h>
#include <sys/kmem.h>
#include <sys/lwp.h>
#include <sys/mutex.h>
#include <sys/percpu.h>
#include <sys/psref.h>
#include <sys/queue.h>
#include <sys/xcall.h>
#include <sys/lwp.h>
SLIST_HEAD(psref_head, psref);
static bool _psref_held(const struct psref_target *, struct psref_class *,
bool);
/*
* struct psref_class
*
* Private global state for a class of passive reference targets.
* Opaque to callers.
*/
struct psref_class {
kmutex_t prc_lock;
kcondvar_t prc_cv;
struct percpu *prc_percpu; /* struct psref_cpu */
ipl_cookie_t prc_iplcookie;
unsigned int prc_xc_flags;
};
/*
* struct psref_cpu
*
* Private per-CPU state for a class of passive reference targets.
* Not exposed by the API.
*/
struct psref_cpu {
struct psref_head pcpu_head;
};
/*
* Data structures and functions for debugging.
*/
#ifndef PSREF_DEBUG_NITEMS
#define PSREF_DEBUG_NITEMS 16
#endif
struct psref_debug_item {
void *prdi_caller;
struct psref *prdi_psref;
};
struct psref_debug {
int prd_refs_peek;
struct psref_debug_item prd_items[PSREF_DEBUG_NITEMS];
};
#ifdef PSREF_DEBUG
static void psref_debug_acquire(struct psref *);
static void psref_debug_release(struct psref *);
static void psref_debug_lwp_free(void *);
static specificdata_key_t psref_debug_lwp_key;
#endif
/*
* psref_init()
*/
void
psref_init(void)
{
#ifdef PSREF_DEBUG
lwp_specific_key_create(&psref_debug_lwp_key, psref_debug_lwp_free);
#endif
}
/*
* psref_class_create(name, ipl)
*
* Create a new passive reference class, with the given wchan name
* and ipl.
*/
struct psref_class *
psref_class_create(const char *name, int ipl)
{
struct psref_class *class;
ASSERT_SLEEPABLE();
class = kmem_alloc(sizeof(*class), KM_SLEEP);
class->prc_percpu = percpu_alloc(sizeof(struct psref_cpu));
mutex_init(&class->prc_lock, MUTEX_DEFAULT, ipl);
cv_init(&class->prc_cv, name);
class->prc_iplcookie = makeiplcookie(ipl);
class->prc_xc_flags = XC_HIGHPRI_IPL(ipl);
return class;
}
#ifdef DIAGNOSTIC
static void
psref_cpu_drained_p(void *p, void *cookie, struct cpu_info *ci __unused)
{
const struct psref_cpu *pcpu = p;
bool *retp = cookie;
if (!SLIST_EMPTY(&pcpu->pcpu_head))
*retp = false;
}
static bool
psref_class_drained_p(const struct psref_class *prc)
{
bool ret = true;
percpu_foreach(prc->prc_percpu, &psref_cpu_drained_p, &ret);
return ret;
}
#endif /* DIAGNOSTIC */
/*
* psref_class_destroy(class)
*
* Destroy a passive reference class and free memory associated
* with it. All targets in this class must have been drained and
* destroyed already.
*/
void
psref_class_destroy(struct psref_class *class)
{
KASSERT(psref_class_drained_p(class));
cv_destroy(&class->prc_cv);
mutex_destroy(&class->prc_lock);
percpu_free(class->prc_percpu, sizeof(struct psref_cpu));
kmem_free(class, sizeof(*class));
}
/*
* psref_target_init(target, class)
*
* Initialize a passive reference target in the specified class.
* The caller is responsible for issuing a membar_producer after
* psref_target_init and before exposing a pointer to the target
* to other CPUs.
*/
void
psref_target_init(struct psref_target *target,
struct psref_class *class)
{
target->prt_class = class;
target->prt_draining = false;
}
#ifdef DEBUG
static bool
psref_exist(struct psref_cpu *pcpu, struct psref *psref)
{
struct psref *_psref;
SLIST_FOREACH(_psref, &pcpu->pcpu_head, psref_entry) {
if (_psref == psref)
return true;
}
return false;
}
static void
psref_check_duplication(struct psref_cpu *pcpu, struct psref *psref,
const struct psref_target *target)
{
bool found = false;
found = psref_exist(pcpu, psref);
if (found) {
panic("The psref is already in the list (acquiring twice?): "
"psref=%p target=%p", psref, target);
}
}
static void
psref_check_existence(struct psref_cpu *pcpu, struct psref *psref,
const struct psref_target *target)
{
bool found = false;
found = psref_exist(pcpu, psref);
if (!found) {
panic("The psref isn't in the list (releasing unused psref?): "
"psref=%p target=%p", psref, target);
}
}
#endif /* DEBUG */
/*
* psref_acquire(psref, target, class)
*
* Acquire a passive reference to the specified target, which must
* be in the specified class.
*
* The caller must guarantee that the target will not be destroyed
* before psref_acquire returns.
*
* The caller must additionally guarantee that it will not switch
* CPUs before releasing the passive reference, either by
* disabling kpreemption and avoiding sleeps, or by being in a
* softint or in an LWP bound to a CPU.
*/
void
psref_acquire(struct psref *psref, const struct psref_target *target,
struct psref_class *class)
{
struct psref_cpu *pcpu;
int s;
KASSERTMSG((kpreempt_disabled() || cpu_softintr_p() ||
ISSET(curlwp->l_pflag, LP_BOUND)),
"passive references are CPU-local,"
" but preemption is enabled and the caller is not"
" in a softint or CPU-bound LWP");
KASSERTMSG((target->prt_class == class),
"mismatched psref target class: %p (ref) != %p (expected)",
target->prt_class, class);
KASSERTMSG(!target->prt_draining, "psref target already destroyed: %p",
target);
/* Block interrupts and acquire the current CPU's reference list. */
s = splraiseipl(class->prc_iplcookie);
pcpu = percpu_getref(class->prc_percpu);
#ifdef DEBUG
/* Sanity-check if the target is already acquired with the same psref. */
psref_check_duplication(pcpu, psref, target);
#endif
/* Record our reference. */
SLIST_INSERT_HEAD(&pcpu->pcpu_head, psref, psref_entry);
psref->psref_target = target;
psref->psref_lwp = curlwp;
psref->psref_cpu = curcpu();
/* Release the CPU list and restore interrupts. */
percpu_putref(class->prc_percpu);
splx(s);
#if defined(DIAGNOSTIC) || defined(PSREF_DEBUG)
curlwp->l_psrefs++;
#endif
#ifdef PSREF_DEBUG
psref_debug_acquire(psref);
#endif
}
/*
* psref_release(psref, target, class)
*
* Release a passive reference to the specified target, which must
* be in the specified class.
*
* The caller must not have switched CPUs or LWPs since acquiring
* the passive reference.
*/
void
psref_release(struct psref *psref, const struct psref_target *target,
struct psref_class *class)
{
struct psref_cpu *pcpu;
int s;
KASSERTMSG((kpreempt_disabled() || cpu_softintr_p() ||
ISSET(curlwp->l_pflag, LP_BOUND)),
"passive references are CPU-local,"
" but preemption is enabled and the caller is not"
" in a softint or CPU-bound LWP");
KASSERTMSG((target->prt_class == class),
"mismatched psref target class: %p (ref) != %p (expected)",
target->prt_class, class);
/* Make sure the psref looks sensible. */
KASSERTMSG((psref->psref_target == target),
"passive reference target mismatch: %p (ref) != %p (expected)",
psref->psref_target, target);
KASSERTMSG((psref->psref_lwp == curlwp),
"passive reference transferred from lwp %p to lwp %p",
psref->psref_lwp, curlwp);
KASSERTMSG((psref->psref_cpu == curcpu()),
"passive reference transferred from CPU %u to CPU %u",
cpu_index(psref->psref_cpu), cpu_index(curcpu()));
/*
* Block interrupts and remove the psref from the current CPU's
* list. No need to percpu_getref or get the head of the list,
* and the caller guarantees that we are bound to a CPU anyway
* (as does blocking interrupts).
*/
s = splraiseipl(class->prc_iplcookie);
pcpu = percpu_getref(class->prc_percpu);
#ifdef DEBUG
/* Sanity-check if the target is surely acquired before. */
psref_check_existence(pcpu, psref, target);
#endif
SLIST_REMOVE(&pcpu->pcpu_head, psref, psref, psref_entry);
percpu_putref(class->prc_percpu);
splx(s);
#if defined(DIAGNOSTIC) || defined(PSREF_DEBUG)
KASSERT(curlwp->l_psrefs > 0);
curlwp->l_psrefs--;
#endif
#ifdef PSREF_DEBUG
psref_debug_release(psref);
#endif
/* If someone is waiting for users to drain, notify 'em. */
if (__predict_false(target->prt_draining))
cv_broadcast(&class->prc_cv);
}
/*
* psref_copy(pto, pfrom, class)
*
* Copy a passive reference from pfrom, which must be in the
* specified class, to pto. Both pfrom and pto must later be
* released with psref_release.
*
* The caller must not have switched CPUs or LWPs since acquiring
* pfrom, and must not switch CPUs or LWPs before releasing both
* pfrom and pto.
*/
void
psref_copy(struct psref *pto, const struct psref *pfrom,
struct psref_class *class)
{
struct psref_cpu *pcpu;
int s;
KASSERTMSG((kpreempt_disabled() || cpu_softintr_p() ||
ISSET(curlwp->l_pflag, LP_BOUND)),
"passive references are CPU-local,"
" but preemption is enabled and the caller is not"
" in a softint or CPU-bound LWP");
KASSERTMSG((pto != pfrom),
"can't copy passive reference to itself: %p",
pto);
/* Make sure the pfrom reference looks sensible. */
KASSERTMSG((pfrom->psref_lwp == curlwp),
"passive reference transferred from lwp %p to lwp %p",
pfrom->psref_lwp, curlwp);
KASSERTMSG((pfrom->psref_cpu == curcpu()),
"passive reference transferred from CPU %u to CPU %u",
cpu_index(pfrom->psref_cpu), cpu_index(curcpu()));
KASSERTMSG((pfrom->psref_target->prt_class == class),
"mismatched psref target class: %p (ref) != %p (expected)",
pfrom->psref_target->prt_class, class);
/* Block interrupts and acquire the current CPU's reference list. */
s = splraiseipl(class->prc_iplcookie);
pcpu = percpu_getref(class->prc_percpu);
/* Record the new reference. */
SLIST_INSERT_HEAD(&pcpu->pcpu_head, pto, psref_entry);
pto->psref_target = pfrom->psref_target;
pto->psref_lwp = curlwp;
pto->psref_cpu = curcpu();
/* Release the CPU list and restore interrupts. */
percpu_putref(class->prc_percpu);
splx(s);
#if defined(DIAGNOSTIC) || defined(PSREF_DEBUG)
curlwp->l_psrefs++;
#endif
}
/*
* struct psreffed
*
* Global state for draining a psref target.
*/
struct psreffed {
struct psref_class *class;
struct psref_target *target;
bool ret;
};
static void
psreffed_p_xc(void *cookie0, void *cookie1 __unused)
{
struct psreffed *P = cookie0;
/*
* If we hold a psref to the target, then answer true.
*
* This is the only dynamic decision that may be made with
* psref_held.
*
* No need to lock anything here: every write transitions from
* false to true, so there can be no conflicting writes. No
* need for a memory barrier here because P->ret is read only
* after xc_wait, which has already issued any necessary memory
* barriers.
*/
if (_psref_held(P->target, P->class, true))
P->ret = true;
}
static bool
psreffed_p(struct psref_target *target, struct psref_class *class)
{
struct psreffed P = {
.class = class,
.target = target,
.ret = false,
};
if (__predict_true(mp_online)) {
/*
* Ask all CPUs to say whether they hold a psref to the
* target.
*/
xc_wait(xc_broadcast(class->prc_xc_flags, &psreffed_p_xc, &P,
NULL));
} else
psreffed_p_xc(&P, NULL);
return P.ret;
}
/*
* psref_target_destroy(target, class)
*
* Destroy a passive reference target. Waits for all existing
* references to drain. Caller must guarantee no new references
* will be acquired once it calls psref_target_destroy, e.g. by
* removing the target from a global list first. May sleep.
*/
void
psref_target_destroy(struct psref_target *target, struct psref_class *class)
{
ASSERT_SLEEPABLE();
KASSERTMSG((target->prt_class == class),
"mismatched psref target class: %p (ref) != %p (expected)",
target->prt_class, class);
/* Request psref_release to notify us when done. */
KASSERTMSG(!target->prt_draining, "psref target already destroyed: %p",
target);
target->prt_draining = true;
/* Wait until there are no more references on any CPU. */
while (psreffed_p(target, class)) {
/*
* This enter/wait/exit business looks wrong, but it is
* both necessary, because psreffed_p performs a
* low-priority xcall and hence cannot run while a
* mutex is locked, and OK, because the wait is timed
* -- explicit wakeups are only an optimization.
*/
mutex_enter(&class->prc_lock);
(void)cv_timedwait(&class->prc_cv, &class->prc_lock, 1);
mutex_exit(&class->prc_lock);
}
/* No more references. Cause subsequent psref_acquire to kassert. */
target->prt_class = NULL;
}
static bool
_psref_held(const struct psref_target *target, struct psref_class *class,
bool lwp_mismatch_ok)
{
const struct psref_cpu *pcpu;
const struct psref *psref;
int s;
bool held = false;
KASSERTMSG((kpreempt_disabled() || cpu_softintr_p() ||
ISSET(curlwp->l_pflag, LP_BOUND)),
"passive references are CPU-local,"
" but preemption is enabled and the caller is not"
" in a softint or CPU-bound LWP");
KASSERTMSG((target->prt_class == class),
"mismatched psref target class: %p (ref) != %p (expected)",
target->prt_class, class);
/* Block interrupts and acquire the current CPU's reference list. */
s = splraiseipl(class->prc_iplcookie);
pcpu = percpu_getref(class->prc_percpu);
/* Search through all the references on this CPU. */
SLIST_FOREACH(psref, &pcpu->pcpu_head, psref_entry) {
/* Sanity-check the reference's CPU. */
KASSERTMSG((psref->psref_cpu == curcpu()),
"passive reference transferred from CPU %u to CPU %u",
cpu_index(psref->psref_cpu), cpu_index(curcpu()));
/* If it doesn't match, skip it and move on. */
if (psref->psref_target != target)
continue;
/*
* Sanity-check the reference's LWP if we are asserting
* via psref_held that this LWP holds it, but not if we
* are testing in psref_target_destroy whether any LWP
* still holds it.
*/
KASSERTMSG((lwp_mismatch_ok || psref->psref_lwp == curlwp),
"passive reference transferred from lwp %p to lwp %p",
psref->psref_lwp, curlwp);
/* Stop here and report that we found it. */
held = true;
break;
}
/* Release the CPU list and restore interrupts. */
percpu_putref(class->prc_percpu);
splx(s);
return held;
}
/*
* psref_held(target, class)
*
* True if the current CPU holds a passive reference to target,
* false otherwise. May be used only inside assertions.
*/
bool
psref_held(const struct psref_target *target, struct psref_class *class)
{
return _psref_held(target, class, false);
}
#ifdef PSREF_DEBUG
void
psref_debug_init_lwp(struct lwp *l)
{
struct psref_debug *prd;
prd = kmem_zalloc(sizeof(*prd), KM_SLEEP);
lwp_setspecific_by_lwp(l, psref_debug_lwp_key, prd);
}
static void
psref_debug_lwp_free(void *arg)
{
struct psref_debug *prd = arg;
kmem_free(prd, sizeof(*prd));
}
static void
psref_debug_acquire(struct psref *psref)
{
struct psref_debug *prd;
struct lwp *l = curlwp;
int s, i;
prd = lwp_getspecific(psref_debug_lwp_key);
if (__predict_false(prd == NULL)) {
psref->psref_debug = NULL;
return;
}
s = splserial();
if (l->l_psrefs > prd->prd_refs_peek) {
prd->prd_refs_peek = l->l_psrefs;
if (__predict_false(prd->prd_refs_peek > PSREF_DEBUG_NITEMS))
panic("exceeded PSREF_DEBUG_NITEMS");
}
for (i = 0; i < prd->prd_refs_peek; i++) {
struct psref_debug_item *prdi = &prd->prd_items[i];
if (prdi->prdi_psref != NULL)
continue;
prdi->prdi_caller = psref->psref_debug;
prdi->prdi_psref = psref;
psref->psref_debug = prdi;
break;
}
if (__predict_false(i == prd->prd_refs_peek))
panic("out of range: %d", i);
splx(s);
}
static void
psref_debug_release(struct psref *psref)
{
int s;
s = splserial();
if (__predict_true(psref->psref_debug != NULL)) {
struct psref_debug_item *prdi = psref->psref_debug;
prdi->prdi_psref = NULL;
}
splx(s);
}
void
psref_debug_barrier(void)
{
struct psref_debug *prd;
struct lwp *l = curlwp;
int s, i;
prd = lwp_getspecific(psref_debug_lwp_key);
if (__predict_false(prd == NULL))
return;
s = splserial();
for (i = 0; i < prd->prd_refs_peek; i++) {
struct psref_debug_item *prdi = &prd->prd_items[i];
if (__predict_true(prdi->prdi_psref == NULL))
continue;
panic("psref leaked: lwp(%p) acquired at %p", l, prdi->prdi_caller);
}
prd->prd_refs_peek = 0; /* Reset the counter */
splx(s);
}
#endif /* PSREF_DEBUG */