NetBSD/sys/kern/kern_entropy.c

2349 lines
63 KiB
C

/* $NetBSD: kern_entropy.c,v 1.22 2020/05/12 20:50:17 riastradh Exp $ */
/*-
* Copyright (c) 2019 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Taylor R. Campbell.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Entropy subsystem
*
* * Each CPU maintains a per-CPU entropy pool so that gathering
* entropy requires no interprocessor synchronization, except
* early at boot when we may be scrambling to gather entropy as
* soon as possible.
*
* - entropy_enter gathers entropy and never drops it on the
* floor, at the cost of sometimes having to do cryptography.
*
* - entropy_enter_intr gathers entropy or drops it on the
* floor, with low latency. Work to stir the pool or kick the
* housekeeping thread is scheduled in soft interrupts.
*
* * entropy_enter immediately enters into the global pool if it
* can transition to full entropy in one swell foop. Otherwise,
* it defers to a housekeeping thread that consolidates entropy,
* but only when the CPUs collectively have full entropy, in
* order to mitigate iterative-guessing attacks.
*
* * The entropy housekeeping thread continues to consolidate
* entropy even after we think we have full entropy, in case we
* are wrong, but is limited to one discretionary consolidation
* per minute, and only when new entropy is actually coming in,
* to limit performance impact.
*
* * The entropy epoch is the number that changes when we
* transition from partial entropy to full entropy, so that
* users can easily determine when to reseed. This also
* facilitates an operator explicitly causing everything to
* reseed by sysctl -w kern.entropy.consolidate=1.
*
* * No entropy estimation based on the sample values, which is a
* contradiction in terms and a potential source of side
* channels. It is the responsibility of the driver author to
* study how predictable the physical source of input can ever
* be, and to furnish a lower bound on the amount of entropy it
* has.
*
* * Entropy depletion is available for testing (or if you're into
* that sort of thing), with sysctl -w kern.entropy.depletion=1;
* the logic to support it is small, to minimize chance of bugs.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.22 2020/05/12 20:50:17 riastradh Exp $");
#include <sys/param.h>
#include <sys/types.h>
#include <sys/atomic.h>
#include <sys/compat_stub.h>
#include <sys/condvar.h>
#include <sys/cpu.h>
#include <sys/entropy.h>
#include <sys/errno.h>
#include <sys/evcnt.h>
#include <sys/event.h>
#include <sys/file.h>
#include <sys/intr.h>
#include <sys/kauth.h>
#include <sys/kernel.h>
#include <sys/kmem.h>
#include <sys/kthread.h>
#include <sys/module_hook.h>
#include <sys/mutex.h>
#include <sys/percpu.h>
#include <sys/poll.h>
#include <sys/queue.h>
#include <sys/rnd.h> /* legacy kernel API */
#include <sys/rndio.h> /* userland ioctl interface */
#include <sys/rndsource.h> /* kernel rndsource driver API */
#include <sys/select.h>
#include <sys/selinfo.h>
#include <sys/sha1.h> /* for boot seed checksum */
#include <sys/stdint.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/xcall.h>
#include <lib/libkern/entpool.h>
#include <machine/limits.h>
#ifdef __HAVE_CPU_COUNTER
#include <machine/cpu_counter.h>
#endif
/*
* struct entropy_cpu
*
* Per-CPU entropy state. The pool is allocated separately
* because percpu(9) sometimes moves per-CPU objects around
* without zeroing them, which would lead to unwanted copies of
* sensitive secrets. The evcnt is allocated separately becuase
* evcnt(9) assumes it stays put in memory.
*/
struct entropy_cpu {
struct evcnt *ec_softint_evcnt;
struct entpool *ec_pool;
unsigned ec_pending;
bool ec_locked;
};
/*
* struct rndsource_cpu
*
* Per-CPU rndsource state.
*/
struct rndsource_cpu {
unsigned rc_nbits; /* bits of entropy added */
};
/*
* entropy_global (a.k.a. E for short in this file)
*
* Global entropy state. Writes protected by the global lock.
* Some fields, marked (A), can be read outside the lock, and are
* maintained with atomic_load/store_relaxed.
*/
struct {
kmutex_t lock; /* covers all global state */
struct entpool pool; /* global pool for extraction */
unsigned needed; /* (A) needed globally */
unsigned pending; /* (A) pending in per-CPU pools */
unsigned timestamp; /* (A) time of last consolidation */
unsigned epoch; /* (A) changes when needed -> 0 */
kcondvar_t cv; /* notifies state changes */
struct selinfo selq; /* notifies needed -> 0 */
struct lwp *sourcelock; /* lock on list of sources */
LIST_HEAD(,krndsource) sources; /* list of entropy sources */
enum entropy_stage {
ENTROPY_COLD = 0, /* single-threaded */
ENTROPY_WARM, /* multi-threaded at boot before CPUs */
ENTROPY_HOT, /* multi-threaded multi-CPU */
} stage;
bool consolidate; /* kick thread to consolidate */
bool seed_rndsource; /* true if seed source is attached */
bool seeded; /* true if seed file already loaded */
} entropy_global __cacheline_aligned = {
/* Fields that must be initialized when the kernel is loaded. */
.needed = ENTROPY_CAPACITY*NBBY,
.epoch = (unsigned)-1, /* -1 means entropy never consolidated */
.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
.stage = ENTROPY_COLD,
};
#define E (&entropy_global) /* declutter */
/* Read-mostly globals */
static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
static void *entropy_sih __read_mostly; /* softint handler */
static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
int rnd_initial_entropy __read_mostly; /* XXX legacy */
static struct krndsource seed_rndsource __read_mostly;
/*
* Event counters
*
* Must be careful with adding these because they can serve as
* side channels.
*/
static struct evcnt entropy_discretionary_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
static struct evcnt entropy_immediate_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
static struct evcnt entropy_partial_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
static struct evcnt entropy_consolidate_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
static struct evcnt entropy_extract_intr_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
static struct evcnt entropy_extract_fail_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
static struct evcnt entropy_request_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
EVCNT_ATTACH_STATIC(entropy_request_evcnt);
static struct evcnt entropy_deplete_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
static struct evcnt entropy_notify_evcnt =
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
/* Sysctl knobs */
static bool entropy_collection = 1;
static bool entropy_depletion = 0; /* Silly! */
static const struct sysctlnode *entropy_sysctlroot;
static struct sysctllog *entropy_sysctllog;
/* Forward declarations */
static void entropy_init_cpu(void *, void *, struct cpu_info *);
static void entropy_fini_cpu(void *, void *, struct cpu_info *);
static void entropy_account_cpu(struct entropy_cpu *);
static void entropy_enter(const void *, size_t, unsigned);
static bool entropy_enter_intr(const void *, size_t, unsigned);
static void entropy_softintr(void *);
static void entropy_thread(void *);
static uint32_t entropy_pending(void);
static void entropy_pending_cpu(void *, void *, struct cpu_info *);
static void entropy_do_consolidate(void);
static void entropy_consolidate_xc(void *, void *);
static void entropy_notify(void);
static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
static int sysctl_entropy_gather(SYSCTLFN_ARGS);
static void filt_entropy_read_detach(struct knote *);
static int filt_entropy_read_event(struct knote *, long);
static void entropy_request(size_t);
static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
uint32_t);
static unsigned rndsource_entropybits(struct krndsource *);
static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
static void rndsource_to_user(struct krndsource *, rndsource_t *);
static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
/*
* entropy_timer()
*
* Cycle counter, time counter, or anything that changes a wee bit
* unpredictably.
*/
static inline uint32_t
entropy_timer(void)
{
struct bintime bt;
uint32_t v;
/* If we have a CPU cycle counter, use the low 32 bits. */
#ifdef __HAVE_CPU_COUNTER
if (__predict_true(cpu_hascounter()))
return cpu_counter32();
#endif /* __HAVE_CPU_COUNTER */
/* If we're cold, tough. Can't binuptime while cold. */
if (__predict_false(cold))
return 0;
/* Fold the 128 bits of binuptime into 32 bits. */
binuptime(&bt);
v = bt.frac;
v ^= bt.frac >> 32;
v ^= bt.sec;
v ^= bt.sec >> 32;
return v;
}
static void
attach_seed_rndsource(void)
{
/*
* First called no later than entropy_init, while we are still
* single-threaded, so no need for RUN_ONCE.
*/
if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
return;
rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
RND_FLAG_COLLECT_VALUE);
E->seed_rndsource = true;
}
/*
* entropy_init()
*
* Initialize the entropy subsystem. Panic on failure.
*
* Requires percpu(9) and sysctl(9) to be initialized.
*/
static void
entropy_init(void)
{
uint32_t extra[2];
struct krndsource *rs;
unsigned i = 0;
KASSERT(E->stage == ENTROPY_COLD);
/* Grab some cycle counts early at boot. */
extra[i++] = entropy_timer();
/* Run the entropy pool cryptography self-test. */
if (entpool_selftest() == -1)
panic("entropy pool crypto self-test failed");
/* Create the sysctl directory. */
sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
SYSCTL_DESCR("Entropy (random number sources) options"),
NULL, 0, NULL, 0,
CTL_KERN, CTL_CREATE, CTL_EOL);
/* Create the sysctl knobs. */
/* XXX These shouldn't be writable at securelevel>0. */
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
SYSCTL_DESCR("Automatically collect entropy from hardware"),
NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
SYSCTL_DESCR("`Deplete' entropy pool when observed"),
NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
SYSCTL_DESCR("Trigger entropy consolidation now"),
sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
SYSCTL_DESCR("Trigger entropy gathering from sources now"),
sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
/* XXX These should maybe not be readable at securelevel>0. */
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
"needed", SYSCTL_DESCR("Systemwide entropy deficit"),
NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
"pending", SYSCTL_DESCR("Entropy pending on CPUs"),
NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
"epoch", SYSCTL_DESCR("Entropy epoch"),
NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
/* Initialize the global state for multithreaded operation. */
mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
cv_init(&E->cv, "entropy");
selinit(&E->selq);
/* Make sure the seed source is attached. */
attach_seed_rndsource();
/* Note if the bootloader didn't provide a seed. */
if (!E->seeded)
printf("entropy: no seed from bootloader\n");
/* Allocate the per-CPU records for all early entropy sources. */
LIST_FOREACH(rs, &E->sources, list)
rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
/* Enter the boot cycle count to get started. */
extra[i++] = entropy_timer();
KASSERT(i == __arraycount(extra));
entropy_enter(extra, sizeof extra, 0);
explicit_memset(extra, 0, sizeof extra);
/* We are now ready for multi-threaded operation. */
E->stage = ENTROPY_WARM;
}
/*
* entropy_init_late()
*
* Late initialization. Panic on failure.
*
* Requires CPUs to have been detected and LWPs to have started.
*/
static void
entropy_init_late(void)
{
int error;
KASSERT(E->stage == ENTROPY_WARM);
/* Allocate and initialize the per-CPU state. */
entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
entropy_init_cpu, entropy_fini_cpu, NULL);
/*
* Establish the softint at the highest softint priority level.
* Must happen after CPU detection.
*/
entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
&entropy_softintr, NULL);
if (entropy_sih == NULL)
panic("unable to establish entropy softint");
/*
* Create the entropy housekeeping thread. Must happen after
* lwpinit.
*/
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
entropy_thread, NULL, &entropy_lwp, "entbutler");
if (error)
panic("unable to create entropy housekeeping thread: %d",
error);
/*
* Wait until the per-CPU initialization has hit all CPUs
* before proceeding to mark the entropy system hot.
*/
xc_barrier(XC_HIGHPRI);
E->stage = ENTROPY_HOT;
}
/*
* entropy_init_cpu(ptr, cookie, ci)
*
* percpu(9) constructor for per-CPU entropy pool.
*/
static void
entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
struct entropy_cpu *ec = ptr;
ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
KM_SLEEP);
ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
ec->ec_pending = 0;
ec->ec_locked = false;
evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
ci->ci_cpuname, "entropy softint");
}
/*
* entropy_fini_cpu(ptr, cookie, ci)
*
* percpu(9) destructor for per-CPU entropy pool.
*/
static void
entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
struct entropy_cpu *ec = ptr;
/*
* Zero any lingering data. Disclosure of the per-CPU pool
* shouldn't retroactively affect the security of any keys
* generated, because entpool(9) erases whatever we have just
* drawn out of any pool, but better safe than sorry.
*/
explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
evcnt_detach(ec->ec_softint_evcnt);
kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
}
/*
* entropy_seed(seed)
*
* Seed the entropy pool with seed. Meant to be called as early
* as possible by the bootloader; may be called before or after
* entropy_init. Must be called before system reaches userland.
* Must be called in thread or soft interrupt context, not in hard
* interrupt context. Must be called at most once.
*
* Overwrites the seed in place. Caller may then free the memory.
*/
static void
entropy_seed(rndsave_t *seed)
{
SHA1_CTX ctx;
uint8_t digest[SHA1_DIGEST_LENGTH];
bool seeded;
/*
* Verify the checksum. If the checksum fails, take the data
* but ignore the entropy estimate -- the file may have been
* incompletely written with garbage, which is harmless to add
* but may not be as unpredictable as alleged.
*/
SHA1Init(&ctx);
SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
SHA1Update(&ctx, seed->data, sizeof(seed->data));
SHA1Final(digest, &ctx);
CTASSERT(sizeof(seed->digest) == sizeof(digest));
if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
printf("entropy: invalid seed checksum\n");
seed->entropy = 0;
}
explicit_memset(&ctx, 0, sizeof ctx);
explicit_memset(digest, 0, sizeof digest);
/*
* If the entropy is insensibly large, try byte-swapping.
* Otherwise assume the file is corrupted and act as though it
* has zero entropy.
*/
if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
seed->entropy = bswap32(seed->entropy);
if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
seed->entropy = 0;
}
/* Make sure the seed source is attached. */
attach_seed_rndsource();
/* Test and set E->seeded. */
if (E->stage >= ENTROPY_WARM)
mutex_enter(&E->lock);
seeded = E->seeded;
E->seeded = (seed->entropy > 0);
if (E->stage >= ENTROPY_WARM)
mutex_exit(&E->lock);
/*
* If we've been seeded, may be re-entering the same seed
* (e.g., bootloader vs module init, or something). No harm in
* entering it twice, but it contributes no additional entropy.
*/
if (seeded) {
printf("entropy: double-seeded by bootloader\n");
seed->entropy = 0;
} else {
printf("entropy: entering seed from bootloader"
" with %u bits of entropy\n", (unsigned)seed->entropy);
}
/* Enter it into the pool and promptly zero it. */
rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
seed->entropy);
explicit_memset(seed, 0, sizeof(*seed));
}
/*
* entropy_bootrequest()
*
* Request entropy from all sources at boot, once config is
* complete and interrupts are running.
*/
void
entropy_bootrequest(void)
{
KASSERT(E->stage >= ENTROPY_WARM);
/*
* Request enough to satisfy the maximum entropy shortage.
* This is harmless overkill if the bootloader provided a seed.
*/
mutex_enter(&E->lock);
entropy_request(ENTROPY_CAPACITY);
mutex_exit(&E->lock);
}
/*
* entropy_epoch()
*
* Returns the current entropy epoch. If this changes, you should
* reseed. If -1, means system entropy has not yet reached full
* entropy or been explicitly consolidated; never reverts back to
* -1. Never zero, so you can always use zero as an uninitialized
* sentinel value meaning `reseed ASAP'.
*
* Usage model:
*
* struct foo {
* struct crypto_prng prng;
* unsigned epoch;
* } *foo;
*
* unsigned epoch = entropy_epoch();
* if (__predict_false(epoch != foo->epoch)) {
* uint8_t seed[32];
* if (entropy_extract(seed, sizeof seed, 0) != 0)
* warn("no entropy");
* crypto_prng_reseed(&foo->prng, seed, sizeof seed);
* foo->epoch = epoch;
* }
*/
unsigned
entropy_epoch(void)
{
/*
* Unsigned int, so no need for seqlock for an atomic read, but
* make sure we read it afresh each time.
*/
return atomic_load_relaxed(&E->epoch);
}
/*
* entropy_account_cpu(ec)
*
* Consider whether to consolidate entropy into the global pool
* after we just added some into the current CPU's pending pool.
*
* - If this CPU can provide enough entropy now, do so.
*
* - If this and whatever else is available on other CPUs can
* provide enough entropy, kick the consolidation thread.
*
* - Otherwise, do as little as possible, except maybe consolidate
* entropy at most once a minute.
*
* Caller must be bound to a CPU and therefore have exclusive
* access to ec. Will acquire and release the global lock.
*/
static void
entropy_account_cpu(struct entropy_cpu *ec)
{
unsigned diff;
KASSERT(E->stage == ENTROPY_HOT);
/*
* If there's no entropy needed, and entropy has been
* consolidated in the last minute, do nothing.
*/
if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
__predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
__predict_true((time_uptime - E->timestamp) <= 60))
return;
/* If there's nothing pending, stop here. */
if (ec->ec_pending == 0)
return;
/* Consider consolidation, under the lock. */
mutex_enter(&E->lock);
if (E->needed != 0 && E->needed <= ec->ec_pending) {
/*
* If we have not yet attained full entropy but we can
* now, do so. This way we disseminate entropy
* promptly when it becomes available early at boot;
* otherwise we leave it to the entropy consolidation
* thread, which is rate-limited to mitigate side
* channels and abuse.
*/
uint8_t buf[ENTPOOL_CAPACITY];
/* Transfer from the local pool to the global pool. */
entpool_extract(ec->ec_pool, buf, sizeof buf);
entpool_enter(&E->pool, buf, sizeof buf);
atomic_store_relaxed(&ec->ec_pending, 0);
atomic_store_relaxed(&E->needed, 0);
/* Notify waiters that we now have full entropy. */
entropy_notify();
entropy_immediate_evcnt.ev_count++;
} else {
/* Record how much we can add to the global pool. */
diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
E->pending += diff;
atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
/*
* This should have made a difference unless we were
* already saturated.
*/
KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
KASSERT(E->pending);
if (E->needed <= E->pending) {
/*
* Enough entropy between all the per-CPU
* pools. Wake up the housekeeping thread.
*
* If we don't need any entropy, this doesn't
* mean much, but it is the only time we ever
* gather additional entropy in case the
* accounting has been overly optimistic. This
* happens at most once a minute, so there's
* negligible performance cost.
*/
E->consolidate = true;
cv_broadcast(&E->cv);
if (E->needed == 0)
entropy_discretionary_evcnt.ev_count++;
} else {
/* Can't get full entropy. Keep gathering. */
entropy_partial_evcnt.ev_count++;
}
}
mutex_exit(&E->lock);
}
/*
* entropy_enter_early(buf, len, nbits)
*
* Do entropy bookkeeping globally, before we have established
* per-CPU pools. Enter directly into the global pool in the hope
* that we enter enough before the first entropy_extract to thwart
* iterative-guessing attacks; entropy_extract will warn if not.
*/
static void
entropy_enter_early(const void *buf, size_t len, unsigned nbits)
{
bool notify = false;
if (E->stage >= ENTROPY_WARM)
mutex_enter(&E->lock);
/* Enter it into the pool. */
entpool_enter(&E->pool, buf, len);
/*
* Decide whether to notify reseed -- we will do so if either:
* (a) we transition from partial entropy to full entropy, or
* (b) we get a batch of full entropy all at once.
*/
notify |= (E->needed && E->needed <= nbits);
notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
/* Subtract from the needed count and notify if appropriate. */
E->needed -= MIN(E->needed, nbits);
if (notify) {
entropy_notify();
entropy_immediate_evcnt.ev_count++;
}
if (E->stage >= ENTROPY_WARM)
mutex_exit(&E->lock);
}
/*
* entropy_enter(buf, len, nbits)
*
* Enter len bytes of data from buf into the system's entropy
* pool, stirring as necessary when the internal buffer fills up.
* nbits is a lower bound on the number of bits of entropy in the
* process that led to this sample.
*/
static void
entropy_enter(const void *buf, size_t len, unsigned nbits)
{
struct entropy_cpu *ec;
uint32_t pending;
int s;
KASSERTMSG(!cpu_intr_p(),
"use entropy_enter_intr from interrupt context");
KASSERTMSG(howmany(nbits, NBBY) <= len,
"impossible entropy rate: %u bits in %zu-byte string", nbits, len);
/* If it's too early after boot, just use entropy_enter_early. */
if (__predict_false(E->stage < ENTROPY_HOT)) {
entropy_enter_early(buf, len, nbits);
return;
}
/*
* Acquire the per-CPU state, blocking soft interrupts and
* causing hard interrupts to drop samples on the floor.
*/
ec = percpu_getref(entropy_percpu);
s = splsoftserial();
KASSERT(!ec->ec_locked);
ec->ec_locked = true;
__insn_barrier();
/* Enter into the per-CPU pool. */
entpool_enter(ec->ec_pool, buf, len);
/* Count up what we can add. */
pending = ec->ec_pending;
pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
atomic_store_relaxed(&ec->ec_pending, pending);
/* Consolidate globally if appropriate based on what we added. */
entropy_account_cpu(ec);
/* Release the per-CPU state. */
KASSERT(ec->ec_locked);
__insn_barrier();
ec->ec_locked = false;
splx(s);
percpu_putref(entropy_percpu);
}
/*
* entropy_enter_intr(buf, len, nbits)
*
* Enter up to len bytes of data from buf into the system's
* entropy pool without stirring. nbits is a lower bound on the
* number of bits of entropy in the process that led to this
* sample. If the sample could be entered completely, assume
* nbits of entropy pending; otherwise assume none, since we don't
* know whether some parts of the sample are constant, for
* instance. Schedule a softint to stir the entropy pool if
* needed. Return true if used fully, false if truncated at all.
*
* Using this in thread context will work, but you might as well
* use entropy_enter in that case.
*/
static bool
entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
{
struct entropy_cpu *ec;
bool fullyused = false;
uint32_t pending;
KASSERTMSG(howmany(nbits, NBBY) <= len,
"impossible entropy rate: %u bits in %zu-byte string", nbits, len);
/* If it's too early after boot, just use entropy_enter_early. */
if (__predict_false(E->stage < ENTROPY_HOT)) {
entropy_enter_early(buf, len, nbits);
return true;
}
/*
* Acquire the per-CPU state. If someone is in the middle of
* using it, drop the sample. Otherwise, take the lock so that
* higher-priority interrupts will drop their samples.
*/
ec = percpu_getref(entropy_percpu);
if (ec->ec_locked)
goto out0;
ec->ec_locked = true;
__insn_barrier();
/*
* Enter as much as we can into the per-CPU pool. If it was
* truncated, schedule a softint to stir the pool and stop.
*/
if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
softint_schedule(entropy_sih);
goto out1;
}
fullyused = true;
/* Count up what we can contribute. */
pending = ec->ec_pending;
pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
atomic_store_relaxed(&ec->ec_pending, pending);
/* Schedule a softint if we added anything and it matters. */
if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
atomic_load_relaxed(&entropy_depletion)) &&
nbits != 0)
softint_schedule(entropy_sih);
out1: /* Release the per-CPU state. */
KASSERT(ec->ec_locked);
__insn_barrier();
ec->ec_locked = false;
out0: percpu_putref(entropy_percpu);
return fullyused;
}
/*
* entropy_softintr(cookie)
*
* Soft interrupt handler for entering entropy. Takes care of
* stirring the local CPU's entropy pool if it filled up during
* hard interrupts, and promptly crediting entropy from the local
* CPU's entropy pool to the global entropy pool if needed.
*/
static void
entropy_softintr(void *cookie)
{
struct entropy_cpu *ec;
/*
* Acquire the per-CPU state. Other users can lock this only
* while soft interrupts are blocked. Cause hard interrupts to
* drop samples on the floor.
*/
ec = percpu_getref(entropy_percpu);
KASSERT(!ec->ec_locked);
ec->ec_locked = true;
__insn_barrier();
/* Count statistics. */
ec->ec_softint_evcnt->ev_count++;
/* Stir the pool if necessary. */
entpool_stir(ec->ec_pool);
/* Consolidate globally if appropriate based on what we added. */
entropy_account_cpu(ec);
/* Release the per-CPU state. */
KASSERT(ec->ec_locked);
__insn_barrier();
ec->ec_locked = false;
percpu_putref(entropy_percpu);
}
/*
* entropy_thread(cookie)
*
* Handle any asynchronous entropy housekeeping.
*/
static void
entropy_thread(void *cookie)
{
bool consolidate;
for (;;) {
/*
* Wait until there's full entropy somewhere among the
* CPUs, as confirmed at most once per minute, or
* someone wants to consolidate.
*/
if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
consolidate = true;
} else {
mutex_enter(&E->lock);
if (!E->consolidate)
cv_timedwait(&E->cv, &E->lock, 60*hz);
consolidate = E->consolidate;
E->consolidate = false;
mutex_exit(&E->lock);
}
if (consolidate) {
/* Do it. */
entropy_do_consolidate();
/* Mitigate abuse. */
kpause("entropy", false, hz, NULL);
}
}
}
/*
* entropy_pending()
*
* Count up the amount of entropy pending on other CPUs.
*/
static uint32_t
entropy_pending(void)
{
uint32_t pending = 0;
percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
return pending;
}
static void
entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
struct entropy_cpu *ec = ptr;
uint32_t *pendingp = cookie;
uint32_t cpu_pending;
cpu_pending = atomic_load_relaxed(&ec->ec_pending);
*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
}
/*
* entropy_do_consolidate()
*
* Issue a cross-call to gather entropy on all CPUs and advance
* the entropy epoch.
*/
static void
entropy_do_consolidate(void)
{
static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
static struct timeval lasttime; /* serialized by E->lock */
struct entpool pool;
uint8_t buf[ENTPOOL_CAPACITY];
unsigned diff;
uint64_t ticket;
/* Gather entropy on all CPUs into a temporary pool. */
memset(&pool, 0, sizeof pool);
ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
xc_wait(ticket);
/* Acquire the lock to notify waiters. */
mutex_enter(&E->lock);
/* Count another consolidation. */
entropy_consolidate_evcnt.ev_count++;
/* Note when we last consolidated, i.e. now. */
E->timestamp = time_uptime;
/* Mix what we gathered into the global pool. */
entpool_extract(&pool, buf, sizeof buf);
entpool_enter(&E->pool, buf, sizeof buf);
explicit_memset(&pool, 0, sizeof pool);
/* Count the entropy that was gathered. */
diff = MIN(E->needed, E->pending);
atomic_store_relaxed(&E->needed, E->needed - diff);
E->pending -= diff;
if (__predict_false(E->needed > 0)) {
if (ratecheck(&lasttime, &interval))
printf("entropy: WARNING:"
" consolidating less than full entropy\n");
}
/* Advance the epoch and notify waiters. */
entropy_notify();
/* Release the lock. */
mutex_exit(&E->lock);
}
/*
* entropy_consolidate_xc(vpool, arg2)
*
* Extract output from the local CPU's input pool and enter it
* into a temporary pool passed as vpool.
*/
static void
entropy_consolidate_xc(void *vpool, void *arg2 __unused)
{
struct entpool *pool = vpool;
struct entropy_cpu *ec;
uint8_t buf[ENTPOOL_CAPACITY];
uint32_t extra[7];
unsigned i = 0;
int s;
/* Grab CPU number and cycle counter to mix extra into the pool. */
extra[i++] = cpu_number();
extra[i++] = entropy_timer();
/*
* Acquire the per-CPU state, blocking soft interrupts and
* discarding entropy in hard interrupts, so that we can
* extract from the per-CPU pool.
*/
ec = percpu_getref(entropy_percpu);
s = splsoftserial();
KASSERT(!ec->ec_locked);
ec->ec_locked = true;
__insn_barrier();
extra[i++] = entropy_timer();
/* Extract the data and count it no longer pending. */
entpool_extract(ec->ec_pool, buf, sizeof buf);
atomic_store_relaxed(&ec->ec_pending, 0);
extra[i++] = entropy_timer();
/* Release the per-CPU state. */
KASSERT(ec->ec_locked);
__insn_barrier();
ec->ec_locked = false;
splx(s);
percpu_putref(entropy_percpu);
extra[i++] = entropy_timer();
/*
* Copy over statistics, and enter the per-CPU extract and the
* extra timing into the temporary pool, under the global lock.
*/
mutex_enter(&E->lock);
extra[i++] = entropy_timer();
entpool_enter(pool, buf, sizeof buf);
explicit_memset(buf, 0, sizeof buf);
extra[i++] = entropy_timer();
KASSERT(i == __arraycount(extra));
entpool_enter(pool, extra, sizeof extra);
explicit_memset(extra, 0, sizeof extra);
mutex_exit(&E->lock);
}
/*
* entropy_notify()
*
* Caller just contributed entropy to the global pool. Advance
* the entropy epoch and notify waiters.
*
* Caller must hold the global entropy lock. Except for the
* `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
* have just have transitioned from partial entropy to full
* entropy -- E->needed should be zero now.
*/
static void
entropy_notify(void)
{
static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
static struct timeval lasttime; /* serialized by E->lock */
unsigned epoch;
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
/*
* If this is the first time, print a message to the console
* that we're ready so operators can compare it to the timing
* of other events.
*/
if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
printf("entropy: ready\n");
rnd_initial_entropy = 1;
}
/* Set the epoch; roll over from UINTMAX-1 to 1. */
if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
ratecheck(&lasttime, &interval)) {
epoch = E->epoch + 1;
if (epoch == 0 || epoch == (unsigned)-1)
epoch = 1;
atomic_store_relaxed(&E->epoch, epoch);
}
/* Notify waiters. */
if (E->stage >= ENTROPY_WARM) {
cv_broadcast(&E->cv);
selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
}
/* Count another notification. */
entropy_notify_evcnt.ev_count++;
}
/*
* entropy_consolidate()
*
* Trigger entropy consolidation and wait for it to complete.
*
* This should be used sparingly, not periodically -- requiring
* conscious intervention by the operator or a clear policy
* decision. Otherwise, the kernel will automatically consolidate
* when enough entropy has been gathered into per-CPU pools to
* transition to full entropy.
*/
void
entropy_consolidate(void)
{
uint64_t ticket;
int error;
KASSERT(E->stage == ENTROPY_HOT);
mutex_enter(&E->lock);
ticket = entropy_consolidate_evcnt.ev_count;
E->consolidate = true;
cv_broadcast(&E->cv);
while (ticket == entropy_consolidate_evcnt.ev_count) {
error = cv_wait_sig(&E->cv, &E->lock);
if (error)
break;
}
mutex_exit(&E->lock);
}
/*
* sysctl -w kern.entropy.consolidate=1
*
* Trigger entropy consolidation and wait for it to complete.
* Writable only by superuser. This, writing to /dev/random, and
* ioctl(RNDADDDATA) are the only ways for the system to
* consolidate entropy if the operator knows something the kernel
* doesn't about how unpredictable the pending entropy pools are.
*/
static int
sysctl_entropy_consolidate(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
int arg;
int error;
KASSERT(E->stage == ENTROPY_HOT);
node.sysctl_data = &arg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (arg)
entropy_consolidate();
return error;
}
/*
* sysctl -w kern.entropy.gather=1
*
* Trigger gathering entropy from all on-demand sources, and wait
* for synchronous sources (but not asynchronous sources) to
* complete. Writable only by superuser.
*/
static int
sysctl_entropy_gather(SYSCTLFN_ARGS)
{
struct sysctlnode node = *rnode;
int arg;
int error;
KASSERT(E->stage == ENTROPY_HOT);
node.sysctl_data = &arg;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
if (arg) {
mutex_enter(&E->lock);
entropy_request(ENTROPY_CAPACITY);
mutex_exit(&E->lock);
}
return 0;
}
/*
* entropy_extract(buf, len, flags)
*
* Extract len bytes from the global entropy pool into buf.
*
* Flags may have:
*
* ENTROPY_WAIT Wait for entropy if not available yet.
* ENTROPY_SIG Allow interruption by a signal during wait.
*
* Return zero on success, or error on failure:
*
* EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
* EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
*
* If ENTROPY_WAIT is set, allowed only in thread context. If
* ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
* awfully high... Do we really need it in hard interrupts? This
* arises from use of cprng_strong(9).)
*/
int
entropy_extract(void *buf, size_t len, int flags)
{
static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
static struct timeval lasttime; /* serialized by E->lock */
int error;
if (ISSET(flags, ENTROPY_WAIT)) {
ASSERT_SLEEPABLE();
KASSERTMSG(E->stage >= ENTROPY_WARM,
"can't wait for entropy until warm");
}
/* Acquire the global lock to get at the global pool. */
if (E->stage >= ENTROPY_WARM)
mutex_enter(&E->lock);
/* Count up request for entropy in interrupt context. */
if (cpu_intr_p())
entropy_extract_intr_evcnt.ev_count++;
/* Wait until there is enough entropy in the system. */
error = 0;
while (E->needed) {
/* Ask for more, synchronously if possible. */
entropy_request(len);
/* If we got enough, we're done. */
if (E->needed == 0) {
KASSERT(error == 0);
break;
}
/* If not waiting, stop here. */
if (!ISSET(flags, ENTROPY_WAIT)) {
error = EWOULDBLOCK;
break;
}
/* Wait for some entropy to come in and try again. */
KASSERT(E->stage >= ENTROPY_WARM);
if (ISSET(flags, ENTROPY_SIG)) {
error = cv_wait_sig(&E->cv, &E->lock);
if (error)
break;
} else {
cv_wait(&E->cv, &E->lock);
}
}
/* Count failure -- but fill the buffer nevertheless. */
if (error)
entropy_extract_fail_evcnt.ev_count++;
/*
* Report a warning if we have never yet reached full entropy.
* This is the only case where we consider entropy to be
* `depleted' without kern.entropy.depletion enabled -- when we
* only have partial entropy, an adversary may be able to
* narrow the state of the pool down to a small number of
* possibilities; the output then enables them to confirm a
* guess, reducing its entropy from the adversary's perspective
* to zero.
*/
if (__predict_false(E->epoch == (unsigned)-1)) {
if (ratecheck(&lasttime, &interval))
printf("entropy: WARNING:"
" extracting entropy too early\n");
atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
}
/* Extract data from the pool, and `deplete' if we're doing that. */
entpool_extract(&E->pool, buf, len);
if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
error == 0) {
unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
atomic_store_relaxed(&E->needed,
E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
entropy_deplete_evcnt.ev_count++;
}
/* Release the global lock and return the error. */
if (E->stage >= ENTROPY_WARM)
mutex_exit(&E->lock);
return error;
}
/*
* entropy_poll(events)
*
* Return the subset of events ready, and if it is not all of
* events, record curlwp as waiting for entropy.
*/
int
entropy_poll(int events)
{
int revents = 0;
KASSERT(E->stage >= ENTROPY_WARM);
/* Always ready for writing. */
revents |= events & (POLLOUT|POLLWRNORM);
/* Narrow it down to reads. */
events &= POLLIN|POLLRDNORM;
if (events == 0)
return revents;
/*
* If we have reached full entropy and we're not depleting
* entropy, we are forever ready.
*/
if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
__predict_true(!atomic_load_relaxed(&entropy_depletion)))
return revents | events;
/*
* Otherwise, check whether we need entropy under the lock. If
* we don't, we're ready; if we do, add ourselves to the queue.
*/
mutex_enter(&E->lock);
if (E->needed == 0)
revents |= events;
else
selrecord(curlwp, &E->selq);
mutex_exit(&E->lock);
return revents;
}
/*
* filt_entropy_read_detach(kn)
*
* struct filterops::f_detach callback for entropy read events:
* remove kn from the list of waiters.
*/
static void
filt_entropy_read_detach(struct knote *kn)
{
KASSERT(E->stage >= ENTROPY_WARM);
mutex_enter(&E->lock);
SLIST_REMOVE(&E->selq.sel_klist, kn, knote, kn_selnext);
mutex_exit(&E->lock);
}
/*
* filt_entropy_read_event(kn, hint)
*
* struct filterops::f_event callback for entropy read events:
* poll for entropy. Caller must hold the global entropy lock if
* hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
*/
static int
filt_entropy_read_event(struct knote *kn, long hint)
{
int ret;
KASSERT(E->stage >= ENTROPY_WARM);
/* Acquire the lock, if caller is outside entropy subsystem. */
if (hint == NOTE_SUBMIT)
KASSERT(mutex_owned(&E->lock));
else
mutex_enter(&E->lock);
/*
* If we still need entropy, can't read anything; if not, can
* read arbitrarily much.
*/
if (E->needed != 0) {
ret = 0;
} else {
if (atomic_load_relaxed(&entropy_depletion))
kn->kn_data = ENTROPY_CAPACITY*NBBY;
else
kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
ret = 1;
}
/* Release the lock, if caller is outside entropy subsystem. */
if (hint == NOTE_SUBMIT)
KASSERT(mutex_owned(&E->lock));
else
mutex_exit(&E->lock);
return ret;
}
static const struct filterops entropy_read_filtops = {
.f_isfd = 1, /* XXX Makes sense only for /dev/u?random. */
.f_attach = NULL,
.f_detach = filt_entropy_read_detach,
.f_event = filt_entropy_read_event,
};
/*
* entropy_kqfilter(kn)
*
* Register kn to receive entropy event notifications. May be
* EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
*/
int
entropy_kqfilter(struct knote *kn)
{
KASSERT(E->stage >= ENTROPY_WARM);
switch (kn->kn_filter) {
case EVFILT_READ:
/* Enter into the global select queue. */
mutex_enter(&E->lock);
kn->kn_fop = &entropy_read_filtops;
SLIST_INSERT_HEAD(&E->selq.sel_klist, kn, kn_selnext);
mutex_exit(&E->lock);
return 0;
case EVFILT_WRITE:
/* Can always dump entropy into the system. */
kn->kn_fop = &seltrue_filtops;
return 0;
default:
return EINVAL;
}
}
/*
* rndsource_setcb(rs, get, getarg)
*
* Set the request callback for the entropy source rs, if it can
* provide entropy on demand. Must precede rnd_attach_source.
*/
void
rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
void *getarg)
{
rs->get = get;
rs->getarg = getarg;
}
/*
* rnd_attach_source(rs, name, type, flags)
*
* Attach the entropy source rs. Must be done after
* rndsource_setcb, if any, and before any calls to rnd_add_data.
*/
void
rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
uint32_t flags)
{
uint32_t extra[4];
unsigned i = 0;
/* Grab cycle counter to mix extra into the pool. */
extra[i++] = entropy_timer();
/*
* Apply some standard flags:
*
* - We do not bother with network devices by default, for
* hysterical raisins (perhaps: because it is often the case
* that an adversary can influence network packet timings).
*/
switch (type) {
case RND_TYPE_NET:
flags |= RND_FLAG_NO_COLLECT;
break;
}
/* Sanity-check the callback if RND_FLAG_HASCB is set. */
KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
/* Initialize the random source. */
memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
strlcpy(rs->name, name, sizeof(rs->name));
rs->total = 0;
rs->type = type;
rs->flags = flags;
if (E->stage >= ENTROPY_WARM)
rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
extra[i++] = entropy_timer();
/* Wire it into the global list of random sources. */
if (E->stage >= ENTROPY_WARM)
mutex_enter(&E->lock);
LIST_INSERT_HEAD(&E->sources, rs, list);
if (E->stage >= ENTROPY_WARM)
mutex_exit(&E->lock);
extra[i++] = entropy_timer();
/* Request that it provide entropy ASAP, if we can. */
if (ISSET(flags, RND_FLAG_HASCB))
(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
extra[i++] = entropy_timer();
/* Mix the extra into the pool. */
KASSERT(i == __arraycount(extra));
entropy_enter(extra, sizeof extra, 0);
explicit_memset(extra, 0, sizeof extra);
}
/*
* rnd_detach_source(rs)
*
* Detach the entropy source rs. May sleep waiting for users to
* drain. Further use is not allowed.
*/
void
rnd_detach_source(struct krndsource *rs)
{
/*
* If we're cold (shouldn't happen, but hey), just remove it
* from the list -- there's nothing allocated.
*/
if (E->stage == ENTROPY_COLD) {
LIST_REMOVE(rs, list);
return;
}
/* We may have to wait for entropy_request. */
ASSERT_SLEEPABLE();
/* Wait until the source list is not in use, and remove it. */
mutex_enter(&E->lock);
while (E->sourcelock)
cv_wait(&E->cv, &E->lock);
LIST_REMOVE(rs, list);
mutex_exit(&E->lock);
/* Free the per-CPU data. */
percpu_free(rs->state, sizeof(struct rndsource_cpu));
}
/*
* rnd_lock_sources()
*
* Prevent changes to the list of rndsources while we iterate it.
* Interruptible. Caller must hold the global entropy lock. If
* successful, no rndsource will go away until rnd_unlock_sources
* even while the caller releases the global entropy lock.
*/
static int
rnd_lock_sources(void)
{
int error;
KASSERT(mutex_owned(&E->lock));
while (E->sourcelock) {
error = cv_wait_sig(&E->cv, &E->lock);
if (error)
return error;
}
E->sourcelock = curlwp;
return 0;
}
/*
* rnd_trylock_sources()
*
* Try to lock the list of sources, but if it's already locked,
* fail. Caller must hold the global entropy lock. If
* successful, no rndsource will go away until rnd_unlock_sources
* even while the caller releases the global entropy lock.
*/
static bool
rnd_trylock_sources(void)
{
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
if (E->sourcelock)
return false;
E->sourcelock = curlwp;
return true;
}
/*
* rnd_unlock_sources()
*
* Unlock the list of sources after rnd_lock_sources or
* rnd_trylock_sources. Caller must hold the global entropy lock.
*/
static void
rnd_unlock_sources(void)
{
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
curlwp, E->sourcelock);
E->sourcelock = NULL;
if (E->stage >= ENTROPY_WARM)
cv_broadcast(&E->cv);
}
/*
* rnd_sources_locked()
*
* True if we hold the list of rndsources locked, for diagnostic
* assertions.
*/
static bool __diagused
rnd_sources_locked(void)
{
return E->sourcelock == curlwp;
}
/*
* entropy_request(nbytes)
*
* Request nbytes bytes of entropy from all sources in the system.
* OK if we overdo it. Caller must hold the global entropy lock;
* will release and re-acquire it.
*/
static void
entropy_request(size_t nbytes)
{
struct krndsource *rs;
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
/*
* If there is a request in progress, let it proceed.
* Otherwise, note that a request is in progress to avoid
* reentry and to block rnd_detach_source until we're done.
*/
if (!rnd_trylock_sources())
return;
entropy_request_evcnt.ev_count++;
/* Clamp to the maximum reasonable request. */
nbytes = MIN(nbytes, ENTROPY_CAPACITY);
/* Walk the list of sources. */
LIST_FOREACH(rs, &E->sources, list) {
/* Skip sources without callbacks. */
if (!ISSET(rs->flags, RND_FLAG_HASCB))
continue;
/*
* Skip sources that are disabled altogether -- we
* would just ignore their samples anyway.
*/
if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
continue;
/* Drop the lock while we call the callback. */
if (E->stage >= ENTROPY_WARM)
mutex_exit(&E->lock);
(*rs->get)(nbytes, rs->getarg);
if (E->stage >= ENTROPY_WARM)
mutex_enter(&E->lock);
}
/* Notify rnd_detach_source that the request is done. */
rnd_unlock_sources();
}
/*
* rnd_add_uint32(rs, value)
*
* Enter 32 bits of data from an entropy source into the pool.
*
* If rs is NULL, may not be called from interrupt context.
*
* If rs is non-NULL, may be called from any context. May drop
* data if called from interrupt context.
*/
void
rnd_add_uint32(struct krndsource *rs, uint32_t value)
{
rnd_add_data(rs, &value, sizeof value, 0);
}
void
_rnd_add_uint32(struct krndsource *rs, uint32_t value)
{
rnd_add_data(rs, &value, sizeof value, 0);
}
void
_rnd_add_uint64(struct krndsource *rs, uint64_t value)
{
rnd_add_data(rs, &value, sizeof value, 0);
}
/*
* rnd_add_data(rs, buf, len, entropybits)
*
* Enter data from an entropy source into the pool, with a
* driver's estimate of how much entropy the physical source of
* the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
* estimate and treat it as zero.
*
* If rs is NULL, may not be called from interrupt context.
*
* If rs is non-NULL, may be called from any context. May drop
* data if called from interrupt context.
*/
void
rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
uint32_t entropybits)
{
uint32_t extra;
uint32_t flags;
KASSERTMSG(howmany(entropybits, NBBY) <= len,
"%s: impossible entropy rate:"
" %"PRIu32" bits in %"PRIu32"-byte string",
rs ? rs->name : "(anonymous)", entropybits, len);
/* If there's no rndsource, just enter the data and time now. */
if (rs == NULL) {
entropy_enter(buf, len, entropybits);
extra = entropy_timer();
entropy_enter(&extra, sizeof extra, 0);
explicit_memset(&extra, 0, sizeof extra);
return;
}
/* Load a snapshot of the flags. Ioctl may change them under us. */
flags = atomic_load_relaxed(&rs->flags);
/*
* Skip if:
* - we're not collecting entropy, or
* - the operator doesn't want to collect entropy from this, or
* - neither data nor timings are being collected from this.
*/
if (!atomic_load_relaxed(&entropy_collection) ||
ISSET(flags, RND_FLAG_NO_COLLECT) ||
!ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
return;
/* If asked, ignore the estimate. */
if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
entropybits = 0;
/* If we are collecting data, enter them. */
if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
rnd_add_data_1(rs, buf, len, entropybits);
/* If we are collecting timings, enter one. */
if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
extra = entropy_timer();
rnd_add_data_1(rs, &extra, sizeof extra, 0);
}
}
/*
* rnd_add_data_1(rs, buf, len, entropybits)
*
* Internal subroutine to call either entropy_enter_intr, if we're
* in interrupt context, or entropy_enter if not, and to count the
* entropy in an rndsource.
*/
static void
rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
uint32_t entropybits)
{
bool fullyused;
/*
* If we're in interrupt context, use entropy_enter_intr and
* take note of whether it consumed the full sample; if not,
* use entropy_enter, which always consumes the full sample.
*/
if (curlwp && cpu_intr_p()) {
fullyused = entropy_enter_intr(buf, len, entropybits);
} else {
entropy_enter(buf, len, entropybits);
fullyused = true;
}
/*
* If we used the full sample, note how many bits were
* contributed from this source.
*/
if (fullyused) {
if (E->stage < ENTROPY_HOT) {
if (E->stage >= ENTROPY_WARM)
mutex_enter(&E->lock);
rs->total += MIN(UINT_MAX - rs->total, entropybits);
if (E->stage >= ENTROPY_WARM)
mutex_exit(&E->lock);
} else {
struct rndsource_cpu *rc = percpu_getref(rs->state);
unsigned nbits = rc->rc_nbits;
nbits += MIN(UINT_MAX - nbits, entropybits);
atomic_store_relaxed(&rc->rc_nbits, nbits);
percpu_putref(rs->state);
}
}
}
/*
* rnd_add_data_sync(rs, buf, len, entropybits)
*
* Same as rnd_add_data. Originally used in rndsource callbacks,
* to break an unnecessary cycle; no longer really needed.
*/
void
rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
uint32_t entropybits)
{
rnd_add_data(rs, buf, len, entropybits);
}
/*
* rndsource_entropybits(rs)
*
* Return approximately the number of bits of entropy that have
* been contributed via rs so far. Approximate if other CPUs may
* be calling rnd_add_data concurrently.
*/
static unsigned
rndsource_entropybits(struct krndsource *rs)
{
unsigned nbits = rs->total;
KASSERT(E->stage >= ENTROPY_WARM);
KASSERT(rnd_sources_locked());
percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
return nbits;
}
static void
rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
{
struct rndsource_cpu *rc = ptr;
unsigned *nbitsp = cookie;
unsigned cpu_nbits;
cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
}
/*
* rndsource_to_user(rs, urs)
*
* Copy a description of rs out to urs for userland.
*/
static void
rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
{
KASSERT(E->stage >= ENTROPY_WARM);
KASSERT(rnd_sources_locked());
/* Avoid kernel memory disclosure. */
memset(urs, 0, sizeof(*urs));
CTASSERT(sizeof(urs->name) == sizeof(rs->name));
strlcpy(urs->name, rs->name, sizeof(urs->name));
urs->total = rndsource_entropybits(rs);
urs->type = rs->type;
urs->flags = atomic_load_relaxed(&rs->flags);
}
/*
* rndsource_to_user_est(rs, urse)
*
* Copy a description of rs and estimation statistics out to urse
* for userland.
*/
static void
rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
{
KASSERT(E->stage >= ENTROPY_WARM);
KASSERT(rnd_sources_locked());
/* Avoid kernel memory disclosure. */
memset(urse, 0, sizeof(*urse));
/* Copy out the rndsource description. */
rndsource_to_user(rs, &urse->rt);
/* Zero out the statistics because we don't do estimation. */
urse->dt_samples = 0;
urse->dt_total = 0;
urse->dv_samples = 0;
urse->dv_total = 0;
}
/*
* entropy_reset_xc(arg1, arg2)
*
* Reset the current CPU's pending entropy to zero.
*/
static void
entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
{
uint32_t extra = entropy_timer();
struct entropy_cpu *ec;
int s;
/*
* Acquire the per-CPU state, blocking soft interrupts and
* causing hard interrupts to drop samples on the floor.
*/
ec = percpu_getref(entropy_percpu);
s = splsoftserial();
KASSERT(!ec->ec_locked);
ec->ec_locked = true;
__insn_barrier();
/* Zero the pending count and enter a cycle count for fun. */
ec->ec_pending = 0;
entpool_enter(ec->ec_pool, &extra, sizeof extra);
/* Release the per-CPU state. */
KASSERT(ec->ec_locked);
__insn_barrier();
ec->ec_locked = false;
splx(s);
percpu_putref(entropy_percpu);
}
/*
* entropy_ioctl(cmd, data)
*
* Handle various /dev/random ioctl queries.
*/
int
entropy_ioctl(unsigned long cmd, void *data)
{
struct krndsource *rs;
bool privileged;
int error;
KASSERT(E->stage >= ENTROPY_WARM);
/* Verify user's authorization to perform the ioctl. */
switch (cmd) {
case RNDGETENTCNT:
case RNDGETPOOLSTAT:
case RNDGETSRCNUM:
case RNDGETSRCNAME:
case RNDGETESTNUM:
case RNDGETESTNAME:
error = kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
break;
case RNDCTL:
error = kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
break;
case RNDADDDATA:
error = kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
/* Ascertain whether the user's inputs should be counted. */
if (kauth_authorize_device(curlwp->l_cred,
KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
NULL, NULL, NULL, NULL) == 0)
privileged = true;
break;
default: {
/*
* XXX Hack to avoid changing module ABI so this can be
* pulled up. Later, we can just remove the argument.
*/
static const struct fileops fops = {
.fo_ioctl = rnd_system_ioctl,
};
struct file f = {
.f_ops = &fops,
};
MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
enosys(), error);
#if defined(_LP64)
if (error == ENOSYS)
MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
enosys(), error);
#endif
if (error == ENOSYS)
error = ENOTTY;
break;
}
}
/* If anything went wrong with authorization, stop here. */
if (error)
return error;
/* Dispatch on the command. */
switch (cmd) {
case RNDGETENTCNT: { /* Get current entropy count in bits. */
uint32_t *countp = data;
mutex_enter(&E->lock);
*countp = ENTROPY_CAPACITY*NBBY - E->needed;
mutex_exit(&E->lock);
break;
}
case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
rndpoolstat_t *pstat = data;
mutex_enter(&E->lock);
/* parameters */
pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
/* state */
pstat->added = 0; /* XXX total entropy_enter count */
pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
pstat->removed = 0; /* XXX total entropy_extract count */
pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
pstat->generated = 0; /* XXX bits of data...fabricated? */
mutex_exit(&E->lock);
break;
}
case RNDGETSRCNUM: { /* Get entropy sources by number. */
rndstat_t *stat = data;
uint32_t start = 0, i = 0;
/* Skip if none requested; fail if too many requested. */
if (stat->count == 0)
break;
if (stat->count > RND_MAXSTATCOUNT)
return EINVAL;
/*
* Under the lock, find the first one, copy out as many
* as requested, and report how many we copied out.
*/
mutex_enter(&E->lock);
error = rnd_lock_sources();
if (error) {
mutex_exit(&E->lock);
return error;
}
LIST_FOREACH(rs, &E->sources, list) {
if (start++ == stat->start)
break;
}
while (i < stat->count && rs != NULL) {
mutex_exit(&E->lock);
rndsource_to_user(rs, &stat->source[i++]);
mutex_enter(&E->lock);
rs = LIST_NEXT(rs, list);
}
KASSERT(i <= stat->count);
stat->count = i;
rnd_unlock_sources();
mutex_exit(&E->lock);
break;
}
case RNDGETESTNUM: { /* Get sources and estimates by number. */
rndstat_est_t *estat = data;
uint32_t start = 0, i = 0;
/* Skip if none requested; fail if too many requested. */
if (estat->count == 0)
break;
if (estat->count > RND_MAXSTATCOUNT)
return EINVAL;
/*
* Under the lock, find the first one, copy out as many
* as requested, and report how many we copied out.
*/
mutex_enter(&E->lock);
error = rnd_lock_sources();
if (error) {
mutex_exit(&E->lock);
return error;
}
LIST_FOREACH(rs, &E->sources, list) {
if (start++ == estat->start)
break;
}
while (i < estat->count && rs != NULL) {
mutex_exit(&E->lock);
rndsource_to_user_est(rs, &estat->source[i++]);
mutex_enter(&E->lock);
rs = LIST_NEXT(rs, list);
}
KASSERT(i <= estat->count);
estat->count = i;
rnd_unlock_sources();
mutex_exit(&E->lock);
break;
}
case RNDGETSRCNAME: { /* Get entropy sources by name. */
rndstat_name_t *nstat = data;
const size_t n = sizeof(rs->name);
CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
/*
* Under the lock, search by name. If found, copy it
* out; if not found, fail with ENOENT.
*/
mutex_enter(&E->lock);
error = rnd_lock_sources();
if (error) {
mutex_exit(&E->lock);
return error;
}
LIST_FOREACH(rs, &E->sources, list) {
if (strncmp(rs->name, nstat->name, n) == 0)
break;
}
if (rs != NULL) {
mutex_exit(&E->lock);
rndsource_to_user(rs, &nstat->source);
mutex_enter(&E->lock);
} else {
error = ENOENT;
}
rnd_unlock_sources();
mutex_exit(&E->lock);
break;
}
case RNDGETESTNAME: { /* Get sources and estimates by name. */
rndstat_est_name_t *enstat = data;
const size_t n = sizeof(rs->name);
CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
/*
* Under the lock, search by name. If found, copy it
* out; if not found, fail with ENOENT.
*/
mutex_enter(&E->lock);
error = rnd_lock_sources();
if (error) {
mutex_exit(&E->lock);
return error;
}
LIST_FOREACH(rs, &E->sources, list) {
if (strncmp(rs->name, enstat->name, n) == 0)
break;
}
if (rs != NULL) {
mutex_exit(&E->lock);
rndsource_to_user_est(rs, &enstat->source);
mutex_enter(&E->lock);
} else {
error = ENOENT;
}
rnd_unlock_sources();
mutex_exit(&E->lock);
break;
}
case RNDCTL: { /* Modify entropy source flags. */
rndctl_t *rndctl = data;
const size_t n = sizeof(rs->name);
uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
uint32_t flags;
bool reset = false, request = false;
CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
/* Whitelist the flags that user can change. */
rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
/*
* For each matching rndsource, either by type if
* specified or by name if not, set the masked flags.
*/
mutex_enter(&E->lock);
LIST_FOREACH(rs, &E->sources, list) {
if (rndctl->type != 0xff) {
if (rs->type != rndctl->type)
continue;
} else {
if (strncmp(rs->name, rndctl->name, n) != 0)
continue;
}
flags = rs->flags & ~rndctl->mask;
flags |= rndctl->flags & rndctl->mask;
if ((rs->flags & resetflags) == 0 &&
(flags & resetflags) != 0)
reset = true;
if ((rs->flags ^ flags) & resetflags)
request = true;
atomic_store_relaxed(&rs->flags, flags);
}
mutex_exit(&E->lock);
/*
* If we disabled estimation or collection, nix all the
* pending entropy and set needed to the maximum.
*/
if (reset) {
xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
mutex_enter(&E->lock);
E->pending = 0;
atomic_store_relaxed(&E->needed,
ENTROPY_CAPACITY*NBBY);
mutex_exit(&E->lock);
}
/*
* If we changed any of the estimation or collection
* flags, request new samples from everyone -- either
* to make up for what we just lost, or to get new
* samples from what we just added.
*/
if (request) {
mutex_enter(&E->lock);
entropy_request(ENTROPY_CAPACITY);
mutex_exit(&E->lock);
}
break;
}
case RNDADDDATA: { /* Enter seed into entropy pool. */
rnddata_t *rdata = data;
unsigned entropybits = 0;
if (!atomic_load_relaxed(&entropy_collection))
break; /* thanks but no thanks */
if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
return EINVAL;
/*
* This ioctl serves as the userland alternative a
* bootloader-provided seed -- typically furnished by
* /etc/rc.d/random_seed. We accept the user's entropy
* claim only if
*
* (a) the user is privileged, and
* (b) we have not entered a bootloader seed.
*
* under the assumption that the user may use this to
* load a seed from disk that we have already loaded
* from the bootloader, so we don't double-count it.
*/
if (privileged && rdata->entropy && rdata->len) {
mutex_enter(&E->lock);
if (!E->seeded) {
entropybits = MIN(rdata->entropy,
MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
E->seeded = true;
}
mutex_exit(&E->lock);
}
/* Enter the data and consolidate entropy. */
rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
entropybits);
entropy_consolidate();
break;
}
default:
error = ENOTTY;
}
/* Return any error that may have come up. */
return error;
}
/* Legacy entry points */
void
rnd_seed(void *seed, size_t len)
{
if (len != sizeof(rndsave_t)) {
printf("entropy: invalid seed length: %zu,"
" expected sizeof(rndsave_t) = %zu\n",
len, sizeof(rndsave_t));
return;
}
entropy_seed(seed);
}
void
rnd_init(void)
{
entropy_init();
}
void
rnd_init_softint(void)
{
entropy_init_late();
}
int
rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
{
return entropy_ioctl(cmd, data);
}