2349 lines
63 KiB
C
2349 lines
63 KiB
C
/* $NetBSD: kern_entropy.c,v 1.22 2020/05/12 20:50:17 riastradh Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2019 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Taylor R. Campbell.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Entropy subsystem
|
|
*
|
|
* * Each CPU maintains a per-CPU entropy pool so that gathering
|
|
* entropy requires no interprocessor synchronization, except
|
|
* early at boot when we may be scrambling to gather entropy as
|
|
* soon as possible.
|
|
*
|
|
* - entropy_enter gathers entropy and never drops it on the
|
|
* floor, at the cost of sometimes having to do cryptography.
|
|
*
|
|
* - entropy_enter_intr gathers entropy or drops it on the
|
|
* floor, with low latency. Work to stir the pool or kick the
|
|
* housekeeping thread is scheduled in soft interrupts.
|
|
*
|
|
* * entropy_enter immediately enters into the global pool if it
|
|
* can transition to full entropy in one swell foop. Otherwise,
|
|
* it defers to a housekeeping thread that consolidates entropy,
|
|
* but only when the CPUs collectively have full entropy, in
|
|
* order to mitigate iterative-guessing attacks.
|
|
*
|
|
* * The entropy housekeeping thread continues to consolidate
|
|
* entropy even after we think we have full entropy, in case we
|
|
* are wrong, but is limited to one discretionary consolidation
|
|
* per minute, and only when new entropy is actually coming in,
|
|
* to limit performance impact.
|
|
*
|
|
* * The entropy epoch is the number that changes when we
|
|
* transition from partial entropy to full entropy, so that
|
|
* users can easily determine when to reseed. This also
|
|
* facilitates an operator explicitly causing everything to
|
|
* reseed by sysctl -w kern.entropy.consolidate=1.
|
|
*
|
|
* * No entropy estimation based on the sample values, which is a
|
|
* contradiction in terms and a potential source of side
|
|
* channels. It is the responsibility of the driver author to
|
|
* study how predictable the physical source of input can ever
|
|
* be, and to furnish a lower bound on the amount of entropy it
|
|
* has.
|
|
*
|
|
* * Entropy depletion is available for testing (or if you're into
|
|
* that sort of thing), with sysctl -w kern.entropy.depletion=1;
|
|
* the logic to support it is small, to minimize chance of bugs.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: kern_entropy.c,v 1.22 2020/05/12 20:50:17 riastradh Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/types.h>
|
|
#include <sys/atomic.h>
|
|
#include <sys/compat_stub.h>
|
|
#include <sys/condvar.h>
|
|
#include <sys/cpu.h>
|
|
#include <sys/entropy.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/evcnt.h>
|
|
#include <sys/event.h>
|
|
#include <sys/file.h>
|
|
#include <sys/intr.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/kmem.h>
|
|
#include <sys/kthread.h>
|
|
#include <sys/module_hook.h>
|
|
#include <sys/mutex.h>
|
|
#include <sys/percpu.h>
|
|
#include <sys/poll.h>
|
|
#include <sys/queue.h>
|
|
#include <sys/rnd.h> /* legacy kernel API */
|
|
#include <sys/rndio.h> /* userland ioctl interface */
|
|
#include <sys/rndsource.h> /* kernel rndsource driver API */
|
|
#include <sys/select.h>
|
|
#include <sys/selinfo.h>
|
|
#include <sys/sha1.h> /* for boot seed checksum */
|
|
#include <sys/stdint.h>
|
|
#include <sys/sysctl.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/time.h>
|
|
#include <sys/xcall.h>
|
|
|
|
#include <lib/libkern/entpool.h>
|
|
|
|
#include <machine/limits.h>
|
|
|
|
#ifdef __HAVE_CPU_COUNTER
|
|
#include <machine/cpu_counter.h>
|
|
#endif
|
|
|
|
/*
|
|
* struct entropy_cpu
|
|
*
|
|
* Per-CPU entropy state. The pool is allocated separately
|
|
* because percpu(9) sometimes moves per-CPU objects around
|
|
* without zeroing them, which would lead to unwanted copies of
|
|
* sensitive secrets. The evcnt is allocated separately becuase
|
|
* evcnt(9) assumes it stays put in memory.
|
|
*/
|
|
struct entropy_cpu {
|
|
struct evcnt *ec_softint_evcnt;
|
|
struct entpool *ec_pool;
|
|
unsigned ec_pending;
|
|
bool ec_locked;
|
|
};
|
|
|
|
/*
|
|
* struct rndsource_cpu
|
|
*
|
|
* Per-CPU rndsource state.
|
|
*/
|
|
struct rndsource_cpu {
|
|
unsigned rc_nbits; /* bits of entropy added */
|
|
};
|
|
|
|
/*
|
|
* entropy_global (a.k.a. E for short in this file)
|
|
*
|
|
* Global entropy state. Writes protected by the global lock.
|
|
* Some fields, marked (A), can be read outside the lock, and are
|
|
* maintained with atomic_load/store_relaxed.
|
|
*/
|
|
struct {
|
|
kmutex_t lock; /* covers all global state */
|
|
struct entpool pool; /* global pool for extraction */
|
|
unsigned needed; /* (A) needed globally */
|
|
unsigned pending; /* (A) pending in per-CPU pools */
|
|
unsigned timestamp; /* (A) time of last consolidation */
|
|
unsigned epoch; /* (A) changes when needed -> 0 */
|
|
kcondvar_t cv; /* notifies state changes */
|
|
struct selinfo selq; /* notifies needed -> 0 */
|
|
struct lwp *sourcelock; /* lock on list of sources */
|
|
LIST_HEAD(,krndsource) sources; /* list of entropy sources */
|
|
enum entropy_stage {
|
|
ENTROPY_COLD = 0, /* single-threaded */
|
|
ENTROPY_WARM, /* multi-threaded at boot before CPUs */
|
|
ENTROPY_HOT, /* multi-threaded multi-CPU */
|
|
} stage;
|
|
bool consolidate; /* kick thread to consolidate */
|
|
bool seed_rndsource; /* true if seed source is attached */
|
|
bool seeded; /* true if seed file already loaded */
|
|
} entropy_global __cacheline_aligned = {
|
|
/* Fields that must be initialized when the kernel is loaded. */
|
|
.needed = ENTROPY_CAPACITY*NBBY,
|
|
.epoch = (unsigned)-1, /* -1 means entropy never consolidated */
|
|
.sources = LIST_HEAD_INITIALIZER(entropy_global.sources),
|
|
.stage = ENTROPY_COLD,
|
|
};
|
|
|
|
#define E (&entropy_global) /* declutter */
|
|
|
|
/* Read-mostly globals */
|
|
static struct percpu *entropy_percpu __read_mostly; /* struct entropy_cpu */
|
|
static void *entropy_sih __read_mostly; /* softint handler */
|
|
static struct lwp *entropy_lwp __read_mostly; /* housekeeping thread */
|
|
|
|
int rnd_initial_entropy __read_mostly; /* XXX legacy */
|
|
|
|
static struct krndsource seed_rndsource __read_mostly;
|
|
|
|
/*
|
|
* Event counters
|
|
*
|
|
* Must be careful with adding these because they can serve as
|
|
* side channels.
|
|
*/
|
|
static struct evcnt entropy_discretionary_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "discretionary");
|
|
EVCNT_ATTACH_STATIC(entropy_discretionary_evcnt);
|
|
static struct evcnt entropy_immediate_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "immediate");
|
|
EVCNT_ATTACH_STATIC(entropy_immediate_evcnt);
|
|
static struct evcnt entropy_partial_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "partial");
|
|
EVCNT_ATTACH_STATIC(entropy_partial_evcnt);
|
|
static struct evcnt entropy_consolidate_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "consolidate");
|
|
EVCNT_ATTACH_STATIC(entropy_consolidate_evcnt);
|
|
static struct evcnt entropy_extract_intr_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract intr");
|
|
EVCNT_ATTACH_STATIC(entropy_extract_intr_evcnt);
|
|
static struct evcnt entropy_extract_fail_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "extract fail");
|
|
EVCNT_ATTACH_STATIC(entropy_extract_fail_evcnt);
|
|
static struct evcnt entropy_request_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "request");
|
|
EVCNT_ATTACH_STATIC(entropy_request_evcnt);
|
|
static struct evcnt entropy_deplete_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "deplete");
|
|
EVCNT_ATTACH_STATIC(entropy_deplete_evcnt);
|
|
static struct evcnt entropy_notify_evcnt =
|
|
EVCNT_INITIALIZER(EVCNT_TYPE_MISC, NULL, "entropy", "notify");
|
|
EVCNT_ATTACH_STATIC(entropy_notify_evcnt);
|
|
|
|
/* Sysctl knobs */
|
|
static bool entropy_collection = 1;
|
|
static bool entropy_depletion = 0; /* Silly! */
|
|
|
|
static const struct sysctlnode *entropy_sysctlroot;
|
|
static struct sysctllog *entropy_sysctllog;
|
|
|
|
/* Forward declarations */
|
|
static void entropy_init_cpu(void *, void *, struct cpu_info *);
|
|
static void entropy_fini_cpu(void *, void *, struct cpu_info *);
|
|
static void entropy_account_cpu(struct entropy_cpu *);
|
|
static void entropy_enter(const void *, size_t, unsigned);
|
|
static bool entropy_enter_intr(const void *, size_t, unsigned);
|
|
static void entropy_softintr(void *);
|
|
static void entropy_thread(void *);
|
|
static uint32_t entropy_pending(void);
|
|
static void entropy_pending_cpu(void *, void *, struct cpu_info *);
|
|
static void entropy_do_consolidate(void);
|
|
static void entropy_consolidate_xc(void *, void *);
|
|
static void entropy_notify(void);
|
|
static int sysctl_entropy_consolidate(SYSCTLFN_ARGS);
|
|
static int sysctl_entropy_gather(SYSCTLFN_ARGS);
|
|
static void filt_entropy_read_detach(struct knote *);
|
|
static int filt_entropy_read_event(struct knote *, long);
|
|
static void entropy_request(size_t);
|
|
static void rnd_add_data_1(struct krndsource *, const void *, uint32_t,
|
|
uint32_t);
|
|
static unsigned rndsource_entropybits(struct krndsource *);
|
|
static void rndsource_entropybits_cpu(void *, void *, struct cpu_info *);
|
|
static void rndsource_to_user(struct krndsource *, rndsource_t *);
|
|
static void rndsource_to_user_est(struct krndsource *, rndsource_est_t *);
|
|
|
|
/*
|
|
* entropy_timer()
|
|
*
|
|
* Cycle counter, time counter, or anything that changes a wee bit
|
|
* unpredictably.
|
|
*/
|
|
static inline uint32_t
|
|
entropy_timer(void)
|
|
{
|
|
struct bintime bt;
|
|
uint32_t v;
|
|
|
|
/* If we have a CPU cycle counter, use the low 32 bits. */
|
|
#ifdef __HAVE_CPU_COUNTER
|
|
if (__predict_true(cpu_hascounter()))
|
|
return cpu_counter32();
|
|
#endif /* __HAVE_CPU_COUNTER */
|
|
|
|
/* If we're cold, tough. Can't binuptime while cold. */
|
|
if (__predict_false(cold))
|
|
return 0;
|
|
|
|
/* Fold the 128 bits of binuptime into 32 bits. */
|
|
binuptime(&bt);
|
|
v = bt.frac;
|
|
v ^= bt.frac >> 32;
|
|
v ^= bt.sec;
|
|
v ^= bt.sec >> 32;
|
|
return v;
|
|
}
|
|
|
|
static void
|
|
attach_seed_rndsource(void)
|
|
{
|
|
|
|
/*
|
|
* First called no later than entropy_init, while we are still
|
|
* single-threaded, so no need for RUN_ONCE.
|
|
*/
|
|
if (E->stage >= ENTROPY_WARM || E->seed_rndsource)
|
|
return;
|
|
rnd_attach_source(&seed_rndsource, "seed", RND_TYPE_UNKNOWN,
|
|
RND_FLAG_COLLECT_VALUE);
|
|
E->seed_rndsource = true;
|
|
}
|
|
|
|
/*
|
|
* entropy_init()
|
|
*
|
|
* Initialize the entropy subsystem. Panic on failure.
|
|
*
|
|
* Requires percpu(9) and sysctl(9) to be initialized.
|
|
*/
|
|
static void
|
|
entropy_init(void)
|
|
{
|
|
uint32_t extra[2];
|
|
struct krndsource *rs;
|
|
unsigned i = 0;
|
|
|
|
KASSERT(E->stage == ENTROPY_COLD);
|
|
|
|
/* Grab some cycle counts early at boot. */
|
|
extra[i++] = entropy_timer();
|
|
|
|
/* Run the entropy pool cryptography self-test. */
|
|
if (entpool_selftest() == -1)
|
|
panic("entropy pool crypto self-test failed");
|
|
|
|
/* Create the sysctl directory. */
|
|
sysctl_createv(&entropy_sysctllog, 0, NULL, &entropy_sysctlroot,
|
|
CTLFLAG_PERMANENT, CTLTYPE_NODE, "entropy",
|
|
SYSCTL_DESCR("Entropy (random number sources) options"),
|
|
NULL, 0, NULL, 0,
|
|
CTL_KERN, CTL_CREATE, CTL_EOL);
|
|
|
|
/* Create the sysctl knobs. */
|
|
/* XXX These shouldn't be writable at securelevel>0. */
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "collection",
|
|
SYSCTL_DESCR("Automatically collect entropy from hardware"),
|
|
NULL, 0, &entropy_collection, 0, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "depletion",
|
|
SYSCTL_DESCR("`Deplete' entropy pool when observed"),
|
|
NULL, 0, &entropy_depletion, 0, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "consolidate",
|
|
SYSCTL_DESCR("Trigger entropy consolidation now"),
|
|
sysctl_entropy_consolidate, 0, NULL, 0, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT, "gather",
|
|
SYSCTL_DESCR("Trigger entropy gathering from sources now"),
|
|
sysctl_entropy_gather, 0, NULL, 0, CTL_CREATE, CTL_EOL);
|
|
/* XXX These should maybe not be readable at securelevel>0. */
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
|
|
"needed", SYSCTL_DESCR("Systemwide entropy deficit"),
|
|
NULL, 0, &E->needed, 0, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
|
|
"pending", SYSCTL_DESCR("Entropy pending on CPUs"),
|
|
NULL, 0, &E->pending, 0, CTL_CREATE, CTL_EOL);
|
|
sysctl_createv(&entropy_sysctllog, 0, &entropy_sysctlroot, NULL,
|
|
CTLFLAG_PERMANENT|CTLFLAG_READONLY|CTLFLAG_PRIVATE, CTLTYPE_INT,
|
|
"epoch", SYSCTL_DESCR("Entropy epoch"),
|
|
NULL, 0, &E->epoch, 0, CTL_CREATE, CTL_EOL);
|
|
|
|
/* Initialize the global state for multithreaded operation. */
|
|
mutex_init(&E->lock, MUTEX_DEFAULT, IPL_VM);
|
|
cv_init(&E->cv, "entropy");
|
|
selinit(&E->selq);
|
|
|
|
/* Make sure the seed source is attached. */
|
|
attach_seed_rndsource();
|
|
|
|
/* Note if the bootloader didn't provide a seed. */
|
|
if (!E->seeded)
|
|
printf("entropy: no seed from bootloader\n");
|
|
|
|
/* Allocate the per-CPU records for all early entropy sources. */
|
|
LIST_FOREACH(rs, &E->sources, list)
|
|
rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
|
|
|
|
/* Enter the boot cycle count to get started. */
|
|
extra[i++] = entropy_timer();
|
|
KASSERT(i == __arraycount(extra));
|
|
entropy_enter(extra, sizeof extra, 0);
|
|
explicit_memset(extra, 0, sizeof extra);
|
|
|
|
/* We are now ready for multi-threaded operation. */
|
|
E->stage = ENTROPY_WARM;
|
|
}
|
|
|
|
/*
|
|
* entropy_init_late()
|
|
*
|
|
* Late initialization. Panic on failure.
|
|
*
|
|
* Requires CPUs to have been detected and LWPs to have started.
|
|
*/
|
|
static void
|
|
entropy_init_late(void)
|
|
{
|
|
int error;
|
|
|
|
KASSERT(E->stage == ENTROPY_WARM);
|
|
|
|
/* Allocate and initialize the per-CPU state. */
|
|
entropy_percpu = percpu_create(sizeof(struct entropy_cpu),
|
|
entropy_init_cpu, entropy_fini_cpu, NULL);
|
|
|
|
/*
|
|
* Establish the softint at the highest softint priority level.
|
|
* Must happen after CPU detection.
|
|
*/
|
|
entropy_sih = softint_establish(SOFTINT_SERIAL|SOFTINT_MPSAFE,
|
|
&entropy_softintr, NULL);
|
|
if (entropy_sih == NULL)
|
|
panic("unable to establish entropy softint");
|
|
|
|
/*
|
|
* Create the entropy housekeeping thread. Must happen after
|
|
* lwpinit.
|
|
*/
|
|
error = kthread_create(PRI_NONE, KTHREAD_MPSAFE|KTHREAD_TS, NULL,
|
|
entropy_thread, NULL, &entropy_lwp, "entbutler");
|
|
if (error)
|
|
panic("unable to create entropy housekeeping thread: %d",
|
|
error);
|
|
|
|
/*
|
|
* Wait until the per-CPU initialization has hit all CPUs
|
|
* before proceeding to mark the entropy system hot.
|
|
*/
|
|
xc_barrier(XC_HIGHPRI);
|
|
E->stage = ENTROPY_HOT;
|
|
}
|
|
|
|
/*
|
|
* entropy_init_cpu(ptr, cookie, ci)
|
|
*
|
|
* percpu(9) constructor for per-CPU entropy pool.
|
|
*/
|
|
static void
|
|
entropy_init_cpu(void *ptr, void *cookie, struct cpu_info *ci)
|
|
{
|
|
struct entropy_cpu *ec = ptr;
|
|
|
|
ec->ec_softint_evcnt = kmem_alloc(sizeof(*ec->ec_softint_evcnt),
|
|
KM_SLEEP);
|
|
ec->ec_pool = kmem_zalloc(sizeof(*ec->ec_pool), KM_SLEEP);
|
|
ec->ec_pending = 0;
|
|
ec->ec_locked = false;
|
|
|
|
evcnt_attach_dynamic(ec->ec_softint_evcnt, EVCNT_TYPE_MISC, NULL,
|
|
ci->ci_cpuname, "entropy softint");
|
|
}
|
|
|
|
/*
|
|
* entropy_fini_cpu(ptr, cookie, ci)
|
|
*
|
|
* percpu(9) destructor for per-CPU entropy pool.
|
|
*/
|
|
static void
|
|
entropy_fini_cpu(void *ptr, void *cookie, struct cpu_info *ci)
|
|
{
|
|
struct entropy_cpu *ec = ptr;
|
|
|
|
/*
|
|
* Zero any lingering data. Disclosure of the per-CPU pool
|
|
* shouldn't retroactively affect the security of any keys
|
|
* generated, because entpool(9) erases whatever we have just
|
|
* drawn out of any pool, but better safe than sorry.
|
|
*/
|
|
explicit_memset(ec->ec_pool, 0, sizeof(*ec->ec_pool));
|
|
|
|
evcnt_detach(ec->ec_softint_evcnt);
|
|
|
|
kmem_free(ec->ec_pool, sizeof(*ec->ec_pool));
|
|
kmem_free(ec->ec_softint_evcnt, sizeof(*ec->ec_softint_evcnt));
|
|
}
|
|
|
|
/*
|
|
* entropy_seed(seed)
|
|
*
|
|
* Seed the entropy pool with seed. Meant to be called as early
|
|
* as possible by the bootloader; may be called before or after
|
|
* entropy_init. Must be called before system reaches userland.
|
|
* Must be called in thread or soft interrupt context, not in hard
|
|
* interrupt context. Must be called at most once.
|
|
*
|
|
* Overwrites the seed in place. Caller may then free the memory.
|
|
*/
|
|
static void
|
|
entropy_seed(rndsave_t *seed)
|
|
{
|
|
SHA1_CTX ctx;
|
|
uint8_t digest[SHA1_DIGEST_LENGTH];
|
|
bool seeded;
|
|
|
|
/*
|
|
* Verify the checksum. If the checksum fails, take the data
|
|
* but ignore the entropy estimate -- the file may have been
|
|
* incompletely written with garbage, which is harmless to add
|
|
* but may not be as unpredictable as alleged.
|
|
*/
|
|
SHA1Init(&ctx);
|
|
SHA1Update(&ctx, (const void *)&seed->entropy, sizeof(seed->entropy));
|
|
SHA1Update(&ctx, seed->data, sizeof(seed->data));
|
|
SHA1Final(digest, &ctx);
|
|
CTASSERT(sizeof(seed->digest) == sizeof(digest));
|
|
if (!consttime_memequal(digest, seed->digest, sizeof(digest))) {
|
|
printf("entropy: invalid seed checksum\n");
|
|
seed->entropy = 0;
|
|
}
|
|
explicit_memset(&ctx, 0, sizeof ctx);
|
|
explicit_memset(digest, 0, sizeof digest);
|
|
|
|
/*
|
|
* If the entropy is insensibly large, try byte-swapping.
|
|
* Otherwise assume the file is corrupted and act as though it
|
|
* has zero entropy.
|
|
*/
|
|
if (howmany(seed->entropy, NBBY) > sizeof(seed->data)) {
|
|
seed->entropy = bswap32(seed->entropy);
|
|
if (howmany(seed->entropy, NBBY) > sizeof(seed->data))
|
|
seed->entropy = 0;
|
|
}
|
|
|
|
/* Make sure the seed source is attached. */
|
|
attach_seed_rndsource();
|
|
|
|
/* Test and set E->seeded. */
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_enter(&E->lock);
|
|
seeded = E->seeded;
|
|
E->seeded = (seed->entropy > 0);
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_exit(&E->lock);
|
|
|
|
/*
|
|
* If we've been seeded, may be re-entering the same seed
|
|
* (e.g., bootloader vs module init, or something). No harm in
|
|
* entering it twice, but it contributes no additional entropy.
|
|
*/
|
|
if (seeded) {
|
|
printf("entropy: double-seeded by bootloader\n");
|
|
seed->entropy = 0;
|
|
} else {
|
|
printf("entropy: entering seed from bootloader"
|
|
" with %u bits of entropy\n", (unsigned)seed->entropy);
|
|
}
|
|
|
|
/* Enter it into the pool and promptly zero it. */
|
|
rnd_add_data(&seed_rndsource, seed->data, sizeof(seed->data),
|
|
seed->entropy);
|
|
explicit_memset(seed, 0, sizeof(*seed));
|
|
}
|
|
|
|
/*
|
|
* entropy_bootrequest()
|
|
*
|
|
* Request entropy from all sources at boot, once config is
|
|
* complete and interrupts are running.
|
|
*/
|
|
void
|
|
entropy_bootrequest(void)
|
|
{
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
|
|
/*
|
|
* Request enough to satisfy the maximum entropy shortage.
|
|
* This is harmless overkill if the bootloader provided a seed.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
entropy_request(ENTROPY_CAPACITY);
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* entropy_epoch()
|
|
*
|
|
* Returns the current entropy epoch. If this changes, you should
|
|
* reseed. If -1, means system entropy has not yet reached full
|
|
* entropy or been explicitly consolidated; never reverts back to
|
|
* -1. Never zero, so you can always use zero as an uninitialized
|
|
* sentinel value meaning `reseed ASAP'.
|
|
*
|
|
* Usage model:
|
|
*
|
|
* struct foo {
|
|
* struct crypto_prng prng;
|
|
* unsigned epoch;
|
|
* } *foo;
|
|
*
|
|
* unsigned epoch = entropy_epoch();
|
|
* if (__predict_false(epoch != foo->epoch)) {
|
|
* uint8_t seed[32];
|
|
* if (entropy_extract(seed, sizeof seed, 0) != 0)
|
|
* warn("no entropy");
|
|
* crypto_prng_reseed(&foo->prng, seed, sizeof seed);
|
|
* foo->epoch = epoch;
|
|
* }
|
|
*/
|
|
unsigned
|
|
entropy_epoch(void)
|
|
{
|
|
|
|
/*
|
|
* Unsigned int, so no need for seqlock for an atomic read, but
|
|
* make sure we read it afresh each time.
|
|
*/
|
|
return atomic_load_relaxed(&E->epoch);
|
|
}
|
|
|
|
/*
|
|
* entropy_account_cpu(ec)
|
|
*
|
|
* Consider whether to consolidate entropy into the global pool
|
|
* after we just added some into the current CPU's pending pool.
|
|
*
|
|
* - If this CPU can provide enough entropy now, do so.
|
|
*
|
|
* - If this and whatever else is available on other CPUs can
|
|
* provide enough entropy, kick the consolidation thread.
|
|
*
|
|
* - Otherwise, do as little as possible, except maybe consolidate
|
|
* entropy at most once a minute.
|
|
*
|
|
* Caller must be bound to a CPU and therefore have exclusive
|
|
* access to ec. Will acquire and release the global lock.
|
|
*/
|
|
static void
|
|
entropy_account_cpu(struct entropy_cpu *ec)
|
|
{
|
|
unsigned diff;
|
|
|
|
KASSERT(E->stage == ENTROPY_HOT);
|
|
|
|
/*
|
|
* If there's no entropy needed, and entropy has been
|
|
* consolidated in the last minute, do nothing.
|
|
*/
|
|
if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
|
|
__predict_true(!atomic_load_relaxed(&entropy_depletion)) &&
|
|
__predict_true((time_uptime - E->timestamp) <= 60))
|
|
return;
|
|
|
|
/* If there's nothing pending, stop here. */
|
|
if (ec->ec_pending == 0)
|
|
return;
|
|
|
|
/* Consider consolidation, under the lock. */
|
|
mutex_enter(&E->lock);
|
|
if (E->needed != 0 && E->needed <= ec->ec_pending) {
|
|
/*
|
|
* If we have not yet attained full entropy but we can
|
|
* now, do so. This way we disseminate entropy
|
|
* promptly when it becomes available early at boot;
|
|
* otherwise we leave it to the entropy consolidation
|
|
* thread, which is rate-limited to mitigate side
|
|
* channels and abuse.
|
|
*/
|
|
uint8_t buf[ENTPOOL_CAPACITY];
|
|
|
|
/* Transfer from the local pool to the global pool. */
|
|
entpool_extract(ec->ec_pool, buf, sizeof buf);
|
|
entpool_enter(&E->pool, buf, sizeof buf);
|
|
atomic_store_relaxed(&ec->ec_pending, 0);
|
|
atomic_store_relaxed(&E->needed, 0);
|
|
|
|
/* Notify waiters that we now have full entropy. */
|
|
entropy_notify();
|
|
entropy_immediate_evcnt.ev_count++;
|
|
} else {
|
|
/* Record how much we can add to the global pool. */
|
|
diff = MIN(ec->ec_pending, ENTROPY_CAPACITY*NBBY - E->pending);
|
|
E->pending += diff;
|
|
atomic_store_relaxed(&ec->ec_pending, ec->ec_pending - diff);
|
|
|
|
/*
|
|
* This should have made a difference unless we were
|
|
* already saturated.
|
|
*/
|
|
KASSERT(diff || E->pending == ENTROPY_CAPACITY*NBBY);
|
|
KASSERT(E->pending);
|
|
|
|
if (E->needed <= E->pending) {
|
|
/*
|
|
* Enough entropy between all the per-CPU
|
|
* pools. Wake up the housekeeping thread.
|
|
*
|
|
* If we don't need any entropy, this doesn't
|
|
* mean much, but it is the only time we ever
|
|
* gather additional entropy in case the
|
|
* accounting has been overly optimistic. This
|
|
* happens at most once a minute, so there's
|
|
* negligible performance cost.
|
|
*/
|
|
E->consolidate = true;
|
|
cv_broadcast(&E->cv);
|
|
if (E->needed == 0)
|
|
entropy_discretionary_evcnt.ev_count++;
|
|
} else {
|
|
/* Can't get full entropy. Keep gathering. */
|
|
entropy_partial_evcnt.ev_count++;
|
|
}
|
|
}
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* entropy_enter_early(buf, len, nbits)
|
|
*
|
|
* Do entropy bookkeeping globally, before we have established
|
|
* per-CPU pools. Enter directly into the global pool in the hope
|
|
* that we enter enough before the first entropy_extract to thwart
|
|
* iterative-guessing attacks; entropy_extract will warn if not.
|
|
*/
|
|
static void
|
|
entropy_enter_early(const void *buf, size_t len, unsigned nbits)
|
|
{
|
|
bool notify = false;
|
|
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_enter(&E->lock);
|
|
|
|
/* Enter it into the pool. */
|
|
entpool_enter(&E->pool, buf, len);
|
|
|
|
/*
|
|
* Decide whether to notify reseed -- we will do so if either:
|
|
* (a) we transition from partial entropy to full entropy, or
|
|
* (b) we get a batch of full entropy all at once.
|
|
*/
|
|
notify |= (E->needed && E->needed <= nbits);
|
|
notify |= (nbits >= ENTROPY_CAPACITY*NBBY);
|
|
|
|
/* Subtract from the needed count and notify if appropriate. */
|
|
E->needed -= MIN(E->needed, nbits);
|
|
if (notify) {
|
|
entropy_notify();
|
|
entropy_immediate_evcnt.ev_count++;
|
|
}
|
|
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* entropy_enter(buf, len, nbits)
|
|
*
|
|
* Enter len bytes of data from buf into the system's entropy
|
|
* pool, stirring as necessary when the internal buffer fills up.
|
|
* nbits is a lower bound on the number of bits of entropy in the
|
|
* process that led to this sample.
|
|
*/
|
|
static void
|
|
entropy_enter(const void *buf, size_t len, unsigned nbits)
|
|
{
|
|
struct entropy_cpu *ec;
|
|
uint32_t pending;
|
|
int s;
|
|
|
|
KASSERTMSG(!cpu_intr_p(),
|
|
"use entropy_enter_intr from interrupt context");
|
|
KASSERTMSG(howmany(nbits, NBBY) <= len,
|
|
"impossible entropy rate: %u bits in %zu-byte string", nbits, len);
|
|
|
|
/* If it's too early after boot, just use entropy_enter_early. */
|
|
if (__predict_false(E->stage < ENTROPY_HOT)) {
|
|
entropy_enter_early(buf, len, nbits);
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* Acquire the per-CPU state, blocking soft interrupts and
|
|
* causing hard interrupts to drop samples on the floor.
|
|
*/
|
|
ec = percpu_getref(entropy_percpu);
|
|
s = splsoftserial();
|
|
KASSERT(!ec->ec_locked);
|
|
ec->ec_locked = true;
|
|
__insn_barrier();
|
|
|
|
/* Enter into the per-CPU pool. */
|
|
entpool_enter(ec->ec_pool, buf, len);
|
|
|
|
/* Count up what we can add. */
|
|
pending = ec->ec_pending;
|
|
pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
|
|
atomic_store_relaxed(&ec->ec_pending, pending);
|
|
|
|
/* Consolidate globally if appropriate based on what we added. */
|
|
entropy_account_cpu(ec);
|
|
|
|
/* Release the per-CPU state. */
|
|
KASSERT(ec->ec_locked);
|
|
__insn_barrier();
|
|
ec->ec_locked = false;
|
|
splx(s);
|
|
percpu_putref(entropy_percpu);
|
|
}
|
|
|
|
/*
|
|
* entropy_enter_intr(buf, len, nbits)
|
|
*
|
|
* Enter up to len bytes of data from buf into the system's
|
|
* entropy pool without stirring. nbits is a lower bound on the
|
|
* number of bits of entropy in the process that led to this
|
|
* sample. If the sample could be entered completely, assume
|
|
* nbits of entropy pending; otherwise assume none, since we don't
|
|
* know whether some parts of the sample are constant, for
|
|
* instance. Schedule a softint to stir the entropy pool if
|
|
* needed. Return true if used fully, false if truncated at all.
|
|
*
|
|
* Using this in thread context will work, but you might as well
|
|
* use entropy_enter in that case.
|
|
*/
|
|
static bool
|
|
entropy_enter_intr(const void *buf, size_t len, unsigned nbits)
|
|
{
|
|
struct entropy_cpu *ec;
|
|
bool fullyused = false;
|
|
uint32_t pending;
|
|
|
|
KASSERTMSG(howmany(nbits, NBBY) <= len,
|
|
"impossible entropy rate: %u bits in %zu-byte string", nbits, len);
|
|
|
|
/* If it's too early after boot, just use entropy_enter_early. */
|
|
if (__predict_false(E->stage < ENTROPY_HOT)) {
|
|
entropy_enter_early(buf, len, nbits);
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Acquire the per-CPU state. If someone is in the middle of
|
|
* using it, drop the sample. Otherwise, take the lock so that
|
|
* higher-priority interrupts will drop their samples.
|
|
*/
|
|
ec = percpu_getref(entropy_percpu);
|
|
if (ec->ec_locked)
|
|
goto out0;
|
|
ec->ec_locked = true;
|
|
__insn_barrier();
|
|
|
|
/*
|
|
* Enter as much as we can into the per-CPU pool. If it was
|
|
* truncated, schedule a softint to stir the pool and stop.
|
|
*/
|
|
if (!entpool_enter_nostir(ec->ec_pool, buf, len)) {
|
|
softint_schedule(entropy_sih);
|
|
goto out1;
|
|
}
|
|
fullyused = true;
|
|
|
|
/* Count up what we can contribute. */
|
|
pending = ec->ec_pending;
|
|
pending += MIN(ENTROPY_CAPACITY*NBBY - pending, nbits);
|
|
atomic_store_relaxed(&ec->ec_pending, pending);
|
|
|
|
/* Schedule a softint if we added anything and it matters. */
|
|
if (__predict_false((atomic_load_relaxed(&E->needed) != 0) ||
|
|
atomic_load_relaxed(&entropy_depletion)) &&
|
|
nbits != 0)
|
|
softint_schedule(entropy_sih);
|
|
|
|
out1: /* Release the per-CPU state. */
|
|
KASSERT(ec->ec_locked);
|
|
__insn_barrier();
|
|
ec->ec_locked = false;
|
|
out0: percpu_putref(entropy_percpu);
|
|
|
|
return fullyused;
|
|
}
|
|
|
|
/*
|
|
* entropy_softintr(cookie)
|
|
*
|
|
* Soft interrupt handler for entering entropy. Takes care of
|
|
* stirring the local CPU's entropy pool if it filled up during
|
|
* hard interrupts, and promptly crediting entropy from the local
|
|
* CPU's entropy pool to the global entropy pool if needed.
|
|
*/
|
|
static void
|
|
entropy_softintr(void *cookie)
|
|
{
|
|
struct entropy_cpu *ec;
|
|
|
|
/*
|
|
* Acquire the per-CPU state. Other users can lock this only
|
|
* while soft interrupts are blocked. Cause hard interrupts to
|
|
* drop samples on the floor.
|
|
*/
|
|
ec = percpu_getref(entropy_percpu);
|
|
KASSERT(!ec->ec_locked);
|
|
ec->ec_locked = true;
|
|
__insn_barrier();
|
|
|
|
/* Count statistics. */
|
|
ec->ec_softint_evcnt->ev_count++;
|
|
|
|
/* Stir the pool if necessary. */
|
|
entpool_stir(ec->ec_pool);
|
|
|
|
/* Consolidate globally if appropriate based on what we added. */
|
|
entropy_account_cpu(ec);
|
|
|
|
/* Release the per-CPU state. */
|
|
KASSERT(ec->ec_locked);
|
|
__insn_barrier();
|
|
ec->ec_locked = false;
|
|
percpu_putref(entropy_percpu);
|
|
}
|
|
|
|
/*
|
|
* entropy_thread(cookie)
|
|
*
|
|
* Handle any asynchronous entropy housekeeping.
|
|
*/
|
|
static void
|
|
entropy_thread(void *cookie)
|
|
{
|
|
bool consolidate;
|
|
|
|
for (;;) {
|
|
/*
|
|
* Wait until there's full entropy somewhere among the
|
|
* CPUs, as confirmed at most once per minute, or
|
|
* someone wants to consolidate.
|
|
*/
|
|
if (entropy_pending() >= ENTROPY_CAPACITY*NBBY) {
|
|
consolidate = true;
|
|
} else {
|
|
mutex_enter(&E->lock);
|
|
if (!E->consolidate)
|
|
cv_timedwait(&E->cv, &E->lock, 60*hz);
|
|
consolidate = E->consolidate;
|
|
E->consolidate = false;
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
if (consolidate) {
|
|
/* Do it. */
|
|
entropy_do_consolidate();
|
|
|
|
/* Mitigate abuse. */
|
|
kpause("entropy", false, hz, NULL);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* entropy_pending()
|
|
*
|
|
* Count up the amount of entropy pending on other CPUs.
|
|
*/
|
|
static uint32_t
|
|
entropy_pending(void)
|
|
{
|
|
uint32_t pending = 0;
|
|
|
|
percpu_foreach(entropy_percpu, &entropy_pending_cpu, &pending);
|
|
return pending;
|
|
}
|
|
|
|
static void
|
|
entropy_pending_cpu(void *ptr, void *cookie, struct cpu_info *ci)
|
|
{
|
|
struct entropy_cpu *ec = ptr;
|
|
uint32_t *pendingp = cookie;
|
|
uint32_t cpu_pending;
|
|
|
|
cpu_pending = atomic_load_relaxed(&ec->ec_pending);
|
|
*pendingp += MIN(ENTROPY_CAPACITY*NBBY - *pendingp, cpu_pending);
|
|
}
|
|
|
|
/*
|
|
* entropy_do_consolidate()
|
|
*
|
|
* Issue a cross-call to gather entropy on all CPUs and advance
|
|
* the entropy epoch.
|
|
*/
|
|
static void
|
|
entropy_do_consolidate(void)
|
|
{
|
|
static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
|
|
static struct timeval lasttime; /* serialized by E->lock */
|
|
struct entpool pool;
|
|
uint8_t buf[ENTPOOL_CAPACITY];
|
|
unsigned diff;
|
|
uint64_t ticket;
|
|
|
|
/* Gather entropy on all CPUs into a temporary pool. */
|
|
memset(&pool, 0, sizeof pool);
|
|
ticket = xc_broadcast(0, &entropy_consolidate_xc, &pool, NULL);
|
|
xc_wait(ticket);
|
|
|
|
/* Acquire the lock to notify waiters. */
|
|
mutex_enter(&E->lock);
|
|
|
|
/* Count another consolidation. */
|
|
entropy_consolidate_evcnt.ev_count++;
|
|
|
|
/* Note when we last consolidated, i.e. now. */
|
|
E->timestamp = time_uptime;
|
|
|
|
/* Mix what we gathered into the global pool. */
|
|
entpool_extract(&pool, buf, sizeof buf);
|
|
entpool_enter(&E->pool, buf, sizeof buf);
|
|
explicit_memset(&pool, 0, sizeof pool);
|
|
|
|
/* Count the entropy that was gathered. */
|
|
diff = MIN(E->needed, E->pending);
|
|
atomic_store_relaxed(&E->needed, E->needed - diff);
|
|
E->pending -= diff;
|
|
if (__predict_false(E->needed > 0)) {
|
|
if (ratecheck(&lasttime, &interval))
|
|
printf("entropy: WARNING:"
|
|
" consolidating less than full entropy\n");
|
|
}
|
|
|
|
/* Advance the epoch and notify waiters. */
|
|
entropy_notify();
|
|
|
|
/* Release the lock. */
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* entropy_consolidate_xc(vpool, arg2)
|
|
*
|
|
* Extract output from the local CPU's input pool and enter it
|
|
* into a temporary pool passed as vpool.
|
|
*/
|
|
static void
|
|
entropy_consolidate_xc(void *vpool, void *arg2 __unused)
|
|
{
|
|
struct entpool *pool = vpool;
|
|
struct entropy_cpu *ec;
|
|
uint8_t buf[ENTPOOL_CAPACITY];
|
|
uint32_t extra[7];
|
|
unsigned i = 0;
|
|
int s;
|
|
|
|
/* Grab CPU number and cycle counter to mix extra into the pool. */
|
|
extra[i++] = cpu_number();
|
|
extra[i++] = entropy_timer();
|
|
|
|
/*
|
|
* Acquire the per-CPU state, blocking soft interrupts and
|
|
* discarding entropy in hard interrupts, so that we can
|
|
* extract from the per-CPU pool.
|
|
*/
|
|
ec = percpu_getref(entropy_percpu);
|
|
s = splsoftserial();
|
|
KASSERT(!ec->ec_locked);
|
|
ec->ec_locked = true;
|
|
__insn_barrier();
|
|
extra[i++] = entropy_timer();
|
|
|
|
/* Extract the data and count it no longer pending. */
|
|
entpool_extract(ec->ec_pool, buf, sizeof buf);
|
|
atomic_store_relaxed(&ec->ec_pending, 0);
|
|
extra[i++] = entropy_timer();
|
|
|
|
/* Release the per-CPU state. */
|
|
KASSERT(ec->ec_locked);
|
|
__insn_barrier();
|
|
ec->ec_locked = false;
|
|
splx(s);
|
|
percpu_putref(entropy_percpu);
|
|
extra[i++] = entropy_timer();
|
|
|
|
/*
|
|
* Copy over statistics, and enter the per-CPU extract and the
|
|
* extra timing into the temporary pool, under the global lock.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
extra[i++] = entropy_timer();
|
|
entpool_enter(pool, buf, sizeof buf);
|
|
explicit_memset(buf, 0, sizeof buf);
|
|
extra[i++] = entropy_timer();
|
|
KASSERT(i == __arraycount(extra));
|
|
entpool_enter(pool, extra, sizeof extra);
|
|
explicit_memset(extra, 0, sizeof extra);
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* entropy_notify()
|
|
*
|
|
* Caller just contributed entropy to the global pool. Advance
|
|
* the entropy epoch and notify waiters.
|
|
*
|
|
* Caller must hold the global entropy lock. Except for the
|
|
* `sysctl -w kern.entropy.consolidate=1` trigger, the caller must
|
|
* have just have transitioned from partial entropy to full
|
|
* entropy -- E->needed should be zero now.
|
|
*/
|
|
static void
|
|
entropy_notify(void)
|
|
{
|
|
static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
|
|
static struct timeval lasttime; /* serialized by E->lock */
|
|
unsigned epoch;
|
|
|
|
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
|
|
|
|
/*
|
|
* If this is the first time, print a message to the console
|
|
* that we're ready so operators can compare it to the timing
|
|
* of other events.
|
|
*/
|
|
if (__predict_false(!rnd_initial_entropy) && E->needed == 0) {
|
|
printf("entropy: ready\n");
|
|
rnd_initial_entropy = 1;
|
|
}
|
|
|
|
/* Set the epoch; roll over from UINTMAX-1 to 1. */
|
|
if (__predict_true(!atomic_load_relaxed(&entropy_depletion)) ||
|
|
ratecheck(&lasttime, &interval)) {
|
|
epoch = E->epoch + 1;
|
|
if (epoch == 0 || epoch == (unsigned)-1)
|
|
epoch = 1;
|
|
atomic_store_relaxed(&E->epoch, epoch);
|
|
}
|
|
|
|
/* Notify waiters. */
|
|
if (E->stage >= ENTROPY_WARM) {
|
|
cv_broadcast(&E->cv);
|
|
selnotify(&E->selq, POLLIN|POLLRDNORM, NOTE_SUBMIT);
|
|
}
|
|
|
|
/* Count another notification. */
|
|
entropy_notify_evcnt.ev_count++;
|
|
}
|
|
|
|
/*
|
|
* entropy_consolidate()
|
|
*
|
|
* Trigger entropy consolidation and wait for it to complete.
|
|
*
|
|
* This should be used sparingly, not periodically -- requiring
|
|
* conscious intervention by the operator or a clear policy
|
|
* decision. Otherwise, the kernel will automatically consolidate
|
|
* when enough entropy has been gathered into per-CPU pools to
|
|
* transition to full entropy.
|
|
*/
|
|
void
|
|
entropy_consolidate(void)
|
|
{
|
|
uint64_t ticket;
|
|
int error;
|
|
|
|
KASSERT(E->stage == ENTROPY_HOT);
|
|
|
|
mutex_enter(&E->lock);
|
|
ticket = entropy_consolidate_evcnt.ev_count;
|
|
E->consolidate = true;
|
|
cv_broadcast(&E->cv);
|
|
while (ticket == entropy_consolidate_evcnt.ev_count) {
|
|
error = cv_wait_sig(&E->cv, &E->lock);
|
|
if (error)
|
|
break;
|
|
}
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* sysctl -w kern.entropy.consolidate=1
|
|
*
|
|
* Trigger entropy consolidation and wait for it to complete.
|
|
* Writable only by superuser. This, writing to /dev/random, and
|
|
* ioctl(RNDADDDATA) are the only ways for the system to
|
|
* consolidate entropy if the operator knows something the kernel
|
|
* doesn't about how unpredictable the pending entropy pools are.
|
|
*/
|
|
static int
|
|
sysctl_entropy_consolidate(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node = *rnode;
|
|
int arg;
|
|
int error;
|
|
|
|
KASSERT(E->stage == ENTROPY_HOT);
|
|
|
|
node.sysctl_data = &arg;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
if (arg)
|
|
entropy_consolidate();
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* sysctl -w kern.entropy.gather=1
|
|
*
|
|
* Trigger gathering entropy from all on-demand sources, and wait
|
|
* for synchronous sources (but not asynchronous sources) to
|
|
* complete. Writable only by superuser.
|
|
*/
|
|
static int
|
|
sysctl_entropy_gather(SYSCTLFN_ARGS)
|
|
{
|
|
struct sysctlnode node = *rnode;
|
|
int arg;
|
|
int error;
|
|
|
|
KASSERT(E->stage == ENTROPY_HOT);
|
|
|
|
node.sysctl_data = &arg;
|
|
error = sysctl_lookup(SYSCTLFN_CALL(&node));
|
|
if (error || newp == NULL)
|
|
return error;
|
|
if (arg) {
|
|
mutex_enter(&E->lock);
|
|
entropy_request(ENTROPY_CAPACITY);
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* entropy_extract(buf, len, flags)
|
|
*
|
|
* Extract len bytes from the global entropy pool into buf.
|
|
*
|
|
* Flags may have:
|
|
*
|
|
* ENTROPY_WAIT Wait for entropy if not available yet.
|
|
* ENTROPY_SIG Allow interruption by a signal during wait.
|
|
*
|
|
* Return zero on success, or error on failure:
|
|
*
|
|
* EWOULDBLOCK No entropy and ENTROPY_WAIT not set.
|
|
* EINTR/ERESTART No entropy, ENTROPY_SIG set, and interrupted.
|
|
*
|
|
* If ENTROPY_WAIT is set, allowed only in thread context. If
|
|
* ENTROPY_WAIT is not set, allowed up to IPL_VM. (XXX That's
|
|
* awfully high... Do we really need it in hard interrupts? This
|
|
* arises from use of cprng_strong(9).)
|
|
*/
|
|
int
|
|
entropy_extract(void *buf, size_t len, int flags)
|
|
{
|
|
static const struct timeval interval = {.tv_sec = 60, .tv_usec = 0};
|
|
static struct timeval lasttime; /* serialized by E->lock */
|
|
int error;
|
|
|
|
if (ISSET(flags, ENTROPY_WAIT)) {
|
|
ASSERT_SLEEPABLE();
|
|
KASSERTMSG(E->stage >= ENTROPY_WARM,
|
|
"can't wait for entropy until warm");
|
|
}
|
|
|
|
/* Acquire the global lock to get at the global pool. */
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_enter(&E->lock);
|
|
|
|
/* Count up request for entropy in interrupt context. */
|
|
if (cpu_intr_p())
|
|
entropy_extract_intr_evcnt.ev_count++;
|
|
|
|
/* Wait until there is enough entropy in the system. */
|
|
error = 0;
|
|
while (E->needed) {
|
|
/* Ask for more, synchronously if possible. */
|
|
entropy_request(len);
|
|
|
|
/* If we got enough, we're done. */
|
|
if (E->needed == 0) {
|
|
KASSERT(error == 0);
|
|
break;
|
|
}
|
|
|
|
/* If not waiting, stop here. */
|
|
if (!ISSET(flags, ENTROPY_WAIT)) {
|
|
error = EWOULDBLOCK;
|
|
break;
|
|
}
|
|
|
|
/* Wait for some entropy to come in and try again. */
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
if (ISSET(flags, ENTROPY_SIG)) {
|
|
error = cv_wait_sig(&E->cv, &E->lock);
|
|
if (error)
|
|
break;
|
|
} else {
|
|
cv_wait(&E->cv, &E->lock);
|
|
}
|
|
}
|
|
|
|
/* Count failure -- but fill the buffer nevertheless. */
|
|
if (error)
|
|
entropy_extract_fail_evcnt.ev_count++;
|
|
|
|
/*
|
|
* Report a warning if we have never yet reached full entropy.
|
|
* This is the only case where we consider entropy to be
|
|
* `depleted' without kern.entropy.depletion enabled -- when we
|
|
* only have partial entropy, an adversary may be able to
|
|
* narrow the state of the pool down to a small number of
|
|
* possibilities; the output then enables them to confirm a
|
|
* guess, reducing its entropy from the adversary's perspective
|
|
* to zero.
|
|
*/
|
|
if (__predict_false(E->epoch == (unsigned)-1)) {
|
|
if (ratecheck(&lasttime, &interval))
|
|
printf("entropy: WARNING:"
|
|
" extracting entropy too early\n");
|
|
atomic_store_relaxed(&E->needed, ENTROPY_CAPACITY*NBBY);
|
|
}
|
|
|
|
/* Extract data from the pool, and `deplete' if we're doing that. */
|
|
entpool_extract(&E->pool, buf, len);
|
|
if (__predict_false(atomic_load_relaxed(&entropy_depletion)) &&
|
|
error == 0) {
|
|
unsigned cost = MIN(len, ENTROPY_CAPACITY)*NBBY;
|
|
|
|
atomic_store_relaxed(&E->needed,
|
|
E->needed + MIN(ENTROPY_CAPACITY*NBBY - E->needed, cost));
|
|
entropy_deplete_evcnt.ev_count++;
|
|
}
|
|
|
|
/* Release the global lock and return the error. */
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_exit(&E->lock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* entropy_poll(events)
|
|
*
|
|
* Return the subset of events ready, and if it is not all of
|
|
* events, record curlwp as waiting for entropy.
|
|
*/
|
|
int
|
|
entropy_poll(int events)
|
|
{
|
|
int revents = 0;
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
|
|
/* Always ready for writing. */
|
|
revents |= events & (POLLOUT|POLLWRNORM);
|
|
|
|
/* Narrow it down to reads. */
|
|
events &= POLLIN|POLLRDNORM;
|
|
if (events == 0)
|
|
return revents;
|
|
|
|
/*
|
|
* If we have reached full entropy and we're not depleting
|
|
* entropy, we are forever ready.
|
|
*/
|
|
if (__predict_true(atomic_load_relaxed(&E->needed) == 0) &&
|
|
__predict_true(!atomic_load_relaxed(&entropy_depletion)))
|
|
return revents | events;
|
|
|
|
/*
|
|
* Otherwise, check whether we need entropy under the lock. If
|
|
* we don't, we're ready; if we do, add ourselves to the queue.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
if (E->needed == 0)
|
|
revents |= events;
|
|
else
|
|
selrecord(curlwp, &E->selq);
|
|
mutex_exit(&E->lock);
|
|
|
|
return revents;
|
|
}
|
|
|
|
/*
|
|
* filt_entropy_read_detach(kn)
|
|
*
|
|
* struct filterops::f_detach callback for entropy read events:
|
|
* remove kn from the list of waiters.
|
|
*/
|
|
static void
|
|
filt_entropy_read_detach(struct knote *kn)
|
|
{
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
|
|
mutex_enter(&E->lock);
|
|
SLIST_REMOVE(&E->selq.sel_klist, kn, knote, kn_selnext);
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* filt_entropy_read_event(kn, hint)
|
|
*
|
|
* struct filterops::f_event callback for entropy read events:
|
|
* poll for entropy. Caller must hold the global entropy lock if
|
|
* hint is NOTE_SUBMIT, and must not if hint is not NOTE_SUBMIT.
|
|
*/
|
|
static int
|
|
filt_entropy_read_event(struct knote *kn, long hint)
|
|
{
|
|
int ret;
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
|
|
/* Acquire the lock, if caller is outside entropy subsystem. */
|
|
if (hint == NOTE_SUBMIT)
|
|
KASSERT(mutex_owned(&E->lock));
|
|
else
|
|
mutex_enter(&E->lock);
|
|
|
|
/*
|
|
* If we still need entropy, can't read anything; if not, can
|
|
* read arbitrarily much.
|
|
*/
|
|
if (E->needed != 0) {
|
|
ret = 0;
|
|
} else {
|
|
if (atomic_load_relaxed(&entropy_depletion))
|
|
kn->kn_data = ENTROPY_CAPACITY*NBBY;
|
|
else
|
|
kn->kn_data = MIN(INT64_MAX, SSIZE_MAX);
|
|
ret = 1;
|
|
}
|
|
|
|
/* Release the lock, if caller is outside entropy subsystem. */
|
|
if (hint == NOTE_SUBMIT)
|
|
KASSERT(mutex_owned(&E->lock));
|
|
else
|
|
mutex_exit(&E->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct filterops entropy_read_filtops = {
|
|
.f_isfd = 1, /* XXX Makes sense only for /dev/u?random. */
|
|
.f_attach = NULL,
|
|
.f_detach = filt_entropy_read_detach,
|
|
.f_event = filt_entropy_read_event,
|
|
};
|
|
|
|
/*
|
|
* entropy_kqfilter(kn)
|
|
*
|
|
* Register kn to receive entropy event notifications. May be
|
|
* EVFILT_READ or EVFILT_WRITE; anything else yields EINVAL.
|
|
*/
|
|
int
|
|
entropy_kqfilter(struct knote *kn)
|
|
{
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
|
|
switch (kn->kn_filter) {
|
|
case EVFILT_READ:
|
|
/* Enter into the global select queue. */
|
|
mutex_enter(&E->lock);
|
|
kn->kn_fop = &entropy_read_filtops;
|
|
SLIST_INSERT_HEAD(&E->selq.sel_klist, kn, kn_selnext);
|
|
mutex_exit(&E->lock);
|
|
return 0;
|
|
case EVFILT_WRITE:
|
|
/* Can always dump entropy into the system. */
|
|
kn->kn_fop = &seltrue_filtops;
|
|
return 0;
|
|
default:
|
|
return EINVAL;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rndsource_setcb(rs, get, getarg)
|
|
*
|
|
* Set the request callback for the entropy source rs, if it can
|
|
* provide entropy on demand. Must precede rnd_attach_source.
|
|
*/
|
|
void
|
|
rndsource_setcb(struct krndsource *rs, void (*get)(size_t, void *),
|
|
void *getarg)
|
|
{
|
|
|
|
rs->get = get;
|
|
rs->getarg = getarg;
|
|
}
|
|
|
|
/*
|
|
* rnd_attach_source(rs, name, type, flags)
|
|
*
|
|
* Attach the entropy source rs. Must be done after
|
|
* rndsource_setcb, if any, and before any calls to rnd_add_data.
|
|
*/
|
|
void
|
|
rnd_attach_source(struct krndsource *rs, const char *name, uint32_t type,
|
|
uint32_t flags)
|
|
{
|
|
uint32_t extra[4];
|
|
unsigned i = 0;
|
|
|
|
/* Grab cycle counter to mix extra into the pool. */
|
|
extra[i++] = entropy_timer();
|
|
|
|
/*
|
|
* Apply some standard flags:
|
|
*
|
|
* - We do not bother with network devices by default, for
|
|
* hysterical raisins (perhaps: because it is often the case
|
|
* that an adversary can influence network packet timings).
|
|
*/
|
|
switch (type) {
|
|
case RND_TYPE_NET:
|
|
flags |= RND_FLAG_NO_COLLECT;
|
|
break;
|
|
}
|
|
|
|
/* Sanity-check the callback if RND_FLAG_HASCB is set. */
|
|
KASSERT(!ISSET(flags, RND_FLAG_HASCB) || rs->get != NULL);
|
|
|
|
/* Initialize the random source. */
|
|
memset(rs->name, 0, sizeof(rs->name)); /* paranoia */
|
|
strlcpy(rs->name, name, sizeof(rs->name));
|
|
rs->total = 0;
|
|
rs->type = type;
|
|
rs->flags = flags;
|
|
if (E->stage >= ENTROPY_WARM)
|
|
rs->state = percpu_alloc(sizeof(struct rndsource_cpu));
|
|
extra[i++] = entropy_timer();
|
|
|
|
/* Wire it into the global list of random sources. */
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_enter(&E->lock);
|
|
LIST_INSERT_HEAD(&E->sources, rs, list);
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_exit(&E->lock);
|
|
extra[i++] = entropy_timer();
|
|
|
|
/* Request that it provide entropy ASAP, if we can. */
|
|
if (ISSET(flags, RND_FLAG_HASCB))
|
|
(*rs->get)(ENTROPY_CAPACITY, rs->getarg);
|
|
extra[i++] = entropy_timer();
|
|
|
|
/* Mix the extra into the pool. */
|
|
KASSERT(i == __arraycount(extra));
|
|
entropy_enter(extra, sizeof extra, 0);
|
|
explicit_memset(extra, 0, sizeof extra);
|
|
}
|
|
|
|
/*
|
|
* rnd_detach_source(rs)
|
|
*
|
|
* Detach the entropy source rs. May sleep waiting for users to
|
|
* drain. Further use is not allowed.
|
|
*/
|
|
void
|
|
rnd_detach_source(struct krndsource *rs)
|
|
{
|
|
|
|
/*
|
|
* If we're cold (shouldn't happen, but hey), just remove it
|
|
* from the list -- there's nothing allocated.
|
|
*/
|
|
if (E->stage == ENTROPY_COLD) {
|
|
LIST_REMOVE(rs, list);
|
|
return;
|
|
}
|
|
|
|
/* We may have to wait for entropy_request. */
|
|
ASSERT_SLEEPABLE();
|
|
|
|
/* Wait until the source list is not in use, and remove it. */
|
|
mutex_enter(&E->lock);
|
|
while (E->sourcelock)
|
|
cv_wait(&E->cv, &E->lock);
|
|
LIST_REMOVE(rs, list);
|
|
mutex_exit(&E->lock);
|
|
|
|
/* Free the per-CPU data. */
|
|
percpu_free(rs->state, sizeof(struct rndsource_cpu));
|
|
}
|
|
|
|
/*
|
|
* rnd_lock_sources()
|
|
*
|
|
* Prevent changes to the list of rndsources while we iterate it.
|
|
* Interruptible. Caller must hold the global entropy lock. If
|
|
* successful, no rndsource will go away until rnd_unlock_sources
|
|
* even while the caller releases the global entropy lock.
|
|
*/
|
|
static int
|
|
rnd_lock_sources(void)
|
|
{
|
|
int error;
|
|
|
|
KASSERT(mutex_owned(&E->lock));
|
|
|
|
while (E->sourcelock) {
|
|
error = cv_wait_sig(&E->cv, &E->lock);
|
|
if (error)
|
|
return error;
|
|
}
|
|
|
|
E->sourcelock = curlwp;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* rnd_trylock_sources()
|
|
*
|
|
* Try to lock the list of sources, but if it's already locked,
|
|
* fail. Caller must hold the global entropy lock. If
|
|
* successful, no rndsource will go away until rnd_unlock_sources
|
|
* even while the caller releases the global entropy lock.
|
|
*/
|
|
static bool
|
|
rnd_trylock_sources(void)
|
|
{
|
|
|
|
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
|
|
|
|
if (E->sourcelock)
|
|
return false;
|
|
E->sourcelock = curlwp;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* rnd_unlock_sources()
|
|
*
|
|
* Unlock the list of sources after rnd_lock_sources or
|
|
* rnd_trylock_sources. Caller must hold the global entropy lock.
|
|
*/
|
|
static void
|
|
rnd_unlock_sources(void)
|
|
{
|
|
|
|
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
|
|
|
|
KASSERTMSG(E->sourcelock == curlwp, "lwp %p releasing lock held by %p",
|
|
curlwp, E->sourcelock);
|
|
E->sourcelock = NULL;
|
|
if (E->stage >= ENTROPY_WARM)
|
|
cv_broadcast(&E->cv);
|
|
}
|
|
|
|
/*
|
|
* rnd_sources_locked()
|
|
*
|
|
* True if we hold the list of rndsources locked, for diagnostic
|
|
* assertions.
|
|
*/
|
|
static bool __diagused
|
|
rnd_sources_locked(void)
|
|
{
|
|
|
|
return E->sourcelock == curlwp;
|
|
}
|
|
|
|
/*
|
|
* entropy_request(nbytes)
|
|
*
|
|
* Request nbytes bytes of entropy from all sources in the system.
|
|
* OK if we overdo it. Caller must hold the global entropy lock;
|
|
* will release and re-acquire it.
|
|
*/
|
|
static void
|
|
entropy_request(size_t nbytes)
|
|
{
|
|
struct krndsource *rs;
|
|
|
|
KASSERT(E->stage == ENTROPY_COLD || mutex_owned(&E->lock));
|
|
|
|
/*
|
|
* If there is a request in progress, let it proceed.
|
|
* Otherwise, note that a request is in progress to avoid
|
|
* reentry and to block rnd_detach_source until we're done.
|
|
*/
|
|
if (!rnd_trylock_sources())
|
|
return;
|
|
entropy_request_evcnt.ev_count++;
|
|
|
|
/* Clamp to the maximum reasonable request. */
|
|
nbytes = MIN(nbytes, ENTROPY_CAPACITY);
|
|
|
|
/* Walk the list of sources. */
|
|
LIST_FOREACH(rs, &E->sources, list) {
|
|
/* Skip sources without callbacks. */
|
|
if (!ISSET(rs->flags, RND_FLAG_HASCB))
|
|
continue;
|
|
|
|
/*
|
|
* Skip sources that are disabled altogether -- we
|
|
* would just ignore their samples anyway.
|
|
*/
|
|
if (ISSET(rs->flags, RND_FLAG_NO_COLLECT))
|
|
continue;
|
|
|
|
/* Drop the lock while we call the callback. */
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_exit(&E->lock);
|
|
(*rs->get)(nbytes, rs->getarg);
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_enter(&E->lock);
|
|
}
|
|
|
|
/* Notify rnd_detach_source that the request is done. */
|
|
rnd_unlock_sources();
|
|
}
|
|
|
|
/*
|
|
* rnd_add_uint32(rs, value)
|
|
*
|
|
* Enter 32 bits of data from an entropy source into the pool.
|
|
*
|
|
* If rs is NULL, may not be called from interrupt context.
|
|
*
|
|
* If rs is non-NULL, may be called from any context. May drop
|
|
* data if called from interrupt context.
|
|
*/
|
|
void
|
|
rnd_add_uint32(struct krndsource *rs, uint32_t value)
|
|
{
|
|
|
|
rnd_add_data(rs, &value, sizeof value, 0);
|
|
}
|
|
|
|
void
|
|
_rnd_add_uint32(struct krndsource *rs, uint32_t value)
|
|
{
|
|
|
|
rnd_add_data(rs, &value, sizeof value, 0);
|
|
}
|
|
|
|
void
|
|
_rnd_add_uint64(struct krndsource *rs, uint64_t value)
|
|
{
|
|
|
|
rnd_add_data(rs, &value, sizeof value, 0);
|
|
}
|
|
|
|
/*
|
|
* rnd_add_data(rs, buf, len, entropybits)
|
|
*
|
|
* Enter data from an entropy source into the pool, with a
|
|
* driver's estimate of how much entropy the physical source of
|
|
* the data has. If RND_FLAG_NO_ESTIMATE, we ignore the driver's
|
|
* estimate and treat it as zero.
|
|
*
|
|
* If rs is NULL, may not be called from interrupt context.
|
|
*
|
|
* If rs is non-NULL, may be called from any context. May drop
|
|
* data if called from interrupt context.
|
|
*/
|
|
void
|
|
rnd_add_data(struct krndsource *rs, const void *buf, uint32_t len,
|
|
uint32_t entropybits)
|
|
{
|
|
uint32_t extra;
|
|
uint32_t flags;
|
|
|
|
KASSERTMSG(howmany(entropybits, NBBY) <= len,
|
|
"%s: impossible entropy rate:"
|
|
" %"PRIu32" bits in %"PRIu32"-byte string",
|
|
rs ? rs->name : "(anonymous)", entropybits, len);
|
|
|
|
/* If there's no rndsource, just enter the data and time now. */
|
|
if (rs == NULL) {
|
|
entropy_enter(buf, len, entropybits);
|
|
extra = entropy_timer();
|
|
entropy_enter(&extra, sizeof extra, 0);
|
|
explicit_memset(&extra, 0, sizeof extra);
|
|
return;
|
|
}
|
|
|
|
/* Load a snapshot of the flags. Ioctl may change them under us. */
|
|
flags = atomic_load_relaxed(&rs->flags);
|
|
|
|
/*
|
|
* Skip if:
|
|
* - we're not collecting entropy, or
|
|
* - the operator doesn't want to collect entropy from this, or
|
|
* - neither data nor timings are being collected from this.
|
|
*/
|
|
if (!atomic_load_relaxed(&entropy_collection) ||
|
|
ISSET(flags, RND_FLAG_NO_COLLECT) ||
|
|
!ISSET(flags, RND_FLAG_COLLECT_VALUE|RND_FLAG_COLLECT_TIME))
|
|
return;
|
|
|
|
/* If asked, ignore the estimate. */
|
|
if (ISSET(flags, RND_FLAG_NO_ESTIMATE))
|
|
entropybits = 0;
|
|
|
|
/* If we are collecting data, enter them. */
|
|
if (ISSET(flags, RND_FLAG_COLLECT_VALUE))
|
|
rnd_add_data_1(rs, buf, len, entropybits);
|
|
|
|
/* If we are collecting timings, enter one. */
|
|
if (ISSET(flags, RND_FLAG_COLLECT_TIME)) {
|
|
extra = entropy_timer();
|
|
rnd_add_data_1(rs, &extra, sizeof extra, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rnd_add_data_1(rs, buf, len, entropybits)
|
|
*
|
|
* Internal subroutine to call either entropy_enter_intr, if we're
|
|
* in interrupt context, or entropy_enter if not, and to count the
|
|
* entropy in an rndsource.
|
|
*/
|
|
static void
|
|
rnd_add_data_1(struct krndsource *rs, const void *buf, uint32_t len,
|
|
uint32_t entropybits)
|
|
{
|
|
bool fullyused;
|
|
|
|
/*
|
|
* If we're in interrupt context, use entropy_enter_intr and
|
|
* take note of whether it consumed the full sample; if not,
|
|
* use entropy_enter, which always consumes the full sample.
|
|
*/
|
|
if (curlwp && cpu_intr_p()) {
|
|
fullyused = entropy_enter_intr(buf, len, entropybits);
|
|
} else {
|
|
entropy_enter(buf, len, entropybits);
|
|
fullyused = true;
|
|
}
|
|
|
|
/*
|
|
* If we used the full sample, note how many bits were
|
|
* contributed from this source.
|
|
*/
|
|
if (fullyused) {
|
|
if (E->stage < ENTROPY_HOT) {
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_enter(&E->lock);
|
|
rs->total += MIN(UINT_MAX - rs->total, entropybits);
|
|
if (E->stage >= ENTROPY_WARM)
|
|
mutex_exit(&E->lock);
|
|
} else {
|
|
struct rndsource_cpu *rc = percpu_getref(rs->state);
|
|
unsigned nbits = rc->rc_nbits;
|
|
|
|
nbits += MIN(UINT_MAX - nbits, entropybits);
|
|
atomic_store_relaxed(&rc->rc_nbits, nbits);
|
|
percpu_putref(rs->state);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* rnd_add_data_sync(rs, buf, len, entropybits)
|
|
*
|
|
* Same as rnd_add_data. Originally used in rndsource callbacks,
|
|
* to break an unnecessary cycle; no longer really needed.
|
|
*/
|
|
void
|
|
rnd_add_data_sync(struct krndsource *rs, const void *buf, uint32_t len,
|
|
uint32_t entropybits)
|
|
{
|
|
|
|
rnd_add_data(rs, buf, len, entropybits);
|
|
}
|
|
|
|
/*
|
|
* rndsource_entropybits(rs)
|
|
*
|
|
* Return approximately the number of bits of entropy that have
|
|
* been contributed via rs so far. Approximate if other CPUs may
|
|
* be calling rnd_add_data concurrently.
|
|
*/
|
|
static unsigned
|
|
rndsource_entropybits(struct krndsource *rs)
|
|
{
|
|
unsigned nbits = rs->total;
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
KASSERT(rnd_sources_locked());
|
|
percpu_foreach(rs->state, rndsource_entropybits_cpu, &nbits);
|
|
return nbits;
|
|
}
|
|
|
|
static void
|
|
rndsource_entropybits_cpu(void *ptr, void *cookie, struct cpu_info *ci)
|
|
{
|
|
struct rndsource_cpu *rc = ptr;
|
|
unsigned *nbitsp = cookie;
|
|
unsigned cpu_nbits;
|
|
|
|
cpu_nbits = atomic_load_relaxed(&rc->rc_nbits);
|
|
*nbitsp += MIN(UINT_MAX - *nbitsp, cpu_nbits);
|
|
}
|
|
|
|
/*
|
|
* rndsource_to_user(rs, urs)
|
|
*
|
|
* Copy a description of rs out to urs for userland.
|
|
*/
|
|
static void
|
|
rndsource_to_user(struct krndsource *rs, rndsource_t *urs)
|
|
{
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
KASSERT(rnd_sources_locked());
|
|
|
|
/* Avoid kernel memory disclosure. */
|
|
memset(urs, 0, sizeof(*urs));
|
|
|
|
CTASSERT(sizeof(urs->name) == sizeof(rs->name));
|
|
strlcpy(urs->name, rs->name, sizeof(urs->name));
|
|
urs->total = rndsource_entropybits(rs);
|
|
urs->type = rs->type;
|
|
urs->flags = atomic_load_relaxed(&rs->flags);
|
|
}
|
|
|
|
/*
|
|
* rndsource_to_user_est(rs, urse)
|
|
*
|
|
* Copy a description of rs and estimation statistics out to urse
|
|
* for userland.
|
|
*/
|
|
static void
|
|
rndsource_to_user_est(struct krndsource *rs, rndsource_est_t *urse)
|
|
{
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
KASSERT(rnd_sources_locked());
|
|
|
|
/* Avoid kernel memory disclosure. */
|
|
memset(urse, 0, sizeof(*urse));
|
|
|
|
/* Copy out the rndsource description. */
|
|
rndsource_to_user(rs, &urse->rt);
|
|
|
|
/* Zero out the statistics because we don't do estimation. */
|
|
urse->dt_samples = 0;
|
|
urse->dt_total = 0;
|
|
urse->dv_samples = 0;
|
|
urse->dv_total = 0;
|
|
}
|
|
|
|
/*
|
|
* entropy_reset_xc(arg1, arg2)
|
|
*
|
|
* Reset the current CPU's pending entropy to zero.
|
|
*/
|
|
static void
|
|
entropy_reset_xc(void *arg1 __unused, void *arg2 __unused)
|
|
{
|
|
uint32_t extra = entropy_timer();
|
|
struct entropy_cpu *ec;
|
|
int s;
|
|
|
|
/*
|
|
* Acquire the per-CPU state, blocking soft interrupts and
|
|
* causing hard interrupts to drop samples on the floor.
|
|
*/
|
|
ec = percpu_getref(entropy_percpu);
|
|
s = splsoftserial();
|
|
KASSERT(!ec->ec_locked);
|
|
ec->ec_locked = true;
|
|
__insn_barrier();
|
|
|
|
/* Zero the pending count and enter a cycle count for fun. */
|
|
ec->ec_pending = 0;
|
|
entpool_enter(ec->ec_pool, &extra, sizeof extra);
|
|
|
|
/* Release the per-CPU state. */
|
|
KASSERT(ec->ec_locked);
|
|
__insn_barrier();
|
|
ec->ec_locked = false;
|
|
splx(s);
|
|
percpu_putref(entropy_percpu);
|
|
}
|
|
|
|
/*
|
|
* entropy_ioctl(cmd, data)
|
|
*
|
|
* Handle various /dev/random ioctl queries.
|
|
*/
|
|
int
|
|
entropy_ioctl(unsigned long cmd, void *data)
|
|
{
|
|
struct krndsource *rs;
|
|
bool privileged;
|
|
int error;
|
|
|
|
KASSERT(E->stage >= ENTROPY_WARM);
|
|
|
|
/* Verify user's authorization to perform the ioctl. */
|
|
switch (cmd) {
|
|
case RNDGETENTCNT:
|
|
case RNDGETPOOLSTAT:
|
|
case RNDGETSRCNUM:
|
|
case RNDGETSRCNAME:
|
|
case RNDGETESTNUM:
|
|
case RNDGETESTNAME:
|
|
error = kauth_authorize_device(curlwp->l_cred,
|
|
KAUTH_DEVICE_RND_GETPRIV, NULL, NULL, NULL, NULL);
|
|
break;
|
|
case RNDCTL:
|
|
error = kauth_authorize_device(curlwp->l_cred,
|
|
KAUTH_DEVICE_RND_SETPRIV, NULL, NULL, NULL, NULL);
|
|
break;
|
|
case RNDADDDATA:
|
|
error = kauth_authorize_device(curlwp->l_cred,
|
|
KAUTH_DEVICE_RND_ADDDATA, NULL, NULL, NULL, NULL);
|
|
/* Ascertain whether the user's inputs should be counted. */
|
|
if (kauth_authorize_device(curlwp->l_cred,
|
|
KAUTH_DEVICE_RND_ADDDATA_ESTIMATE,
|
|
NULL, NULL, NULL, NULL) == 0)
|
|
privileged = true;
|
|
break;
|
|
default: {
|
|
/*
|
|
* XXX Hack to avoid changing module ABI so this can be
|
|
* pulled up. Later, we can just remove the argument.
|
|
*/
|
|
static const struct fileops fops = {
|
|
.fo_ioctl = rnd_system_ioctl,
|
|
};
|
|
struct file f = {
|
|
.f_ops = &fops,
|
|
};
|
|
MODULE_HOOK_CALL(rnd_ioctl_50_hook, (&f, cmd, data),
|
|
enosys(), error);
|
|
#if defined(_LP64)
|
|
if (error == ENOSYS)
|
|
MODULE_HOOK_CALL(rnd_ioctl32_50_hook, (&f, cmd, data),
|
|
enosys(), error);
|
|
#endif
|
|
if (error == ENOSYS)
|
|
error = ENOTTY;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* If anything went wrong with authorization, stop here. */
|
|
if (error)
|
|
return error;
|
|
|
|
/* Dispatch on the command. */
|
|
switch (cmd) {
|
|
case RNDGETENTCNT: { /* Get current entropy count in bits. */
|
|
uint32_t *countp = data;
|
|
|
|
mutex_enter(&E->lock);
|
|
*countp = ENTROPY_CAPACITY*NBBY - E->needed;
|
|
mutex_exit(&E->lock);
|
|
|
|
break;
|
|
}
|
|
case RNDGETPOOLSTAT: { /* Get entropy pool statistics. */
|
|
rndpoolstat_t *pstat = data;
|
|
|
|
mutex_enter(&E->lock);
|
|
|
|
/* parameters */
|
|
pstat->poolsize = ENTPOOL_SIZE/sizeof(uint32_t); /* words */
|
|
pstat->threshold = ENTROPY_CAPACITY*1; /* bytes */
|
|
pstat->maxentropy = ENTROPY_CAPACITY*NBBY; /* bits */
|
|
|
|
/* state */
|
|
pstat->added = 0; /* XXX total entropy_enter count */
|
|
pstat->curentropy = ENTROPY_CAPACITY*NBBY - E->needed;
|
|
pstat->removed = 0; /* XXX total entropy_extract count */
|
|
pstat->discarded = 0; /* XXX bits of entropy beyond capacity */
|
|
pstat->generated = 0; /* XXX bits of data...fabricated? */
|
|
|
|
mutex_exit(&E->lock);
|
|
break;
|
|
}
|
|
case RNDGETSRCNUM: { /* Get entropy sources by number. */
|
|
rndstat_t *stat = data;
|
|
uint32_t start = 0, i = 0;
|
|
|
|
/* Skip if none requested; fail if too many requested. */
|
|
if (stat->count == 0)
|
|
break;
|
|
if (stat->count > RND_MAXSTATCOUNT)
|
|
return EINVAL;
|
|
|
|
/*
|
|
* Under the lock, find the first one, copy out as many
|
|
* as requested, and report how many we copied out.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
error = rnd_lock_sources();
|
|
if (error) {
|
|
mutex_exit(&E->lock);
|
|
return error;
|
|
}
|
|
LIST_FOREACH(rs, &E->sources, list) {
|
|
if (start++ == stat->start)
|
|
break;
|
|
}
|
|
while (i < stat->count && rs != NULL) {
|
|
mutex_exit(&E->lock);
|
|
rndsource_to_user(rs, &stat->source[i++]);
|
|
mutex_enter(&E->lock);
|
|
rs = LIST_NEXT(rs, list);
|
|
}
|
|
KASSERT(i <= stat->count);
|
|
stat->count = i;
|
|
rnd_unlock_sources();
|
|
mutex_exit(&E->lock);
|
|
break;
|
|
}
|
|
case RNDGETESTNUM: { /* Get sources and estimates by number. */
|
|
rndstat_est_t *estat = data;
|
|
uint32_t start = 0, i = 0;
|
|
|
|
/* Skip if none requested; fail if too many requested. */
|
|
if (estat->count == 0)
|
|
break;
|
|
if (estat->count > RND_MAXSTATCOUNT)
|
|
return EINVAL;
|
|
|
|
/*
|
|
* Under the lock, find the first one, copy out as many
|
|
* as requested, and report how many we copied out.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
error = rnd_lock_sources();
|
|
if (error) {
|
|
mutex_exit(&E->lock);
|
|
return error;
|
|
}
|
|
LIST_FOREACH(rs, &E->sources, list) {
|
|
if (start++ == estat->start)
|
|
break;
|
|
}
|
|
while (i < estat->count && rs != NULL) {
|
|
mutex_exit(&E->lock);
|
|
rndsource_to_user_est(rs, &estat->source[i++]);
|
|
mutex_enter(&E->lock);
|
|
rs = LIST_NEXT(rs, list);
|
|
}
|
|
KASSERT(i <= estat->count);
|
|
estat->count = i;
|
|
rnd_unlock_sources();
|
|
mutex_exit(&E->lock);
|
|
break;
|
|
}
|
|
case RNDGETSRCNAME: { /* Get entropy sources by name. */
|
|
rndstat_name_t *nstat = data;
|
|
const size_t n = sizeof(rs->name);
|
|
|
|
CTASSERT(sizeof(rs->name) == sizeof(nstat->name));
|
|
|
|
/*
|
|
* Under the lock, search by name. If found, copy it
|
|
* out; if not found, fail with ENOENT.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
error = rnd_lock_sources();
|
|
if (error) {
|
|
mutex_exit(&E->lock);
|
|
return error;
|
|
}
|
|
LIST_FOREACH(rs, &E->sources, list) {
|
|
if (strncmp(rs->name, nstat->name, n) == 0)
|
|
break;
|
|
}
|
|
if (rs != NULL) {
|
|
mutex_exit(&E->lock);
|
|
rndsource_to_user(rs, &nstat->source);
|
|
mutex_enter(&E->lock);
|
|
} else {
|
|
error = ENOENT;
|
|
}
|
|
rnd_unlock_sources();
|
|
mutex_exit(&E->lock);
|
|
break;
|
|
}
|
|
case RNDGETESTNAME: { /* Get sources and estimates by name. */
|
|
rndstat_est_name_t *enstat = data;
|
|
const size_t n = sizeof(rs->name);
|
|
|
|
CTASSERT(sizeof(rs->name) == sizeof(enstat->name));
|
|
|
|
/*
|
|
* Under the lock, search by name. If found, copy it
|
|
* out; if not found, fail with ENOENT.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
error = rnd_lock_sources();
|
|
if (error) {
|
|
mutex_exit(&E->lock);
|
|
return error;
|
|
}
|
|
LIST_FOREACH(rs, &E->sources, list) {
|
|
if (strncmp(rs->name, enstat->name, n) == 0)
|
|
break;
|
|
}
|
|
if (rs != NULL) {
|
|
mutex_exit(&E->lock);
|
|
rndsource_to_user_est(rs, &enstat->source);
|
|
mutex_enter(&E->lock);
|
|
} else {
|
|
error = ENOENT;
|
|
}
|
|
rnd_unlock_sources();
|
|
mutex_exit(&E->lock);
|
|
break;
|
|
}
|
|
case RNDCTL: { /* Modify entropy source flags. */
|
|
rndctl_t *rndctl = data;
|
|
const size_t n = sizeof(rs->name);
|
|
uint32_t resetflags = RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
|
|
uint32_t flags;
|
|
bool reset = false, request = false;
|
|
|
|
CTASSERT(sizeof(rs->name) == sizeof(rndctl->name));
|
|
|
|
/* Whitelist the flags that user can change. */
|
|
rndctl->mask &= RND_FLAG_NO_ESTIMATE|RND_FLAG_NO_COLLECT;
|
|
|
|
/*
|
|
* For each matching rndsource, either by type if
|
|
* specified or by name if not, set the masked flags.
|
|
*/
|
|
mutex_enter(&E->lock);
|
|
LIST_FOREACH(rs, &E->sources, list) {
|
|
if (rndctl->type != 0xff) {
|
|
if (rs->type != rndctl->type)
|
|
continue;
|
|
} else {
|
|
if (strncmp(rs->name, rndctl->name, n) != 0)
|
|
continue;
|
|
}
|
|
flags = rs->flags & ~rndctl->mask;
|
|
flags |= rndctl->flags & rndctl->mask;
|
|
if ((rs->flags & resetflags) == 0 &&
|
|
(flags & resetflags) != 0)
|
|
reset = true;
|
|
if ((rs->flags ^ flags) & resetflags)
|
|
request = true;
|
|
atomic_store_relaxed(&rs->flags, flags);
|
|
}
|
|
mutex_exit(&E->lock);
|
|
|
|
/*
|
|
* If we disabled estimation or collection, nix all the
|
|
* pending entropy and set needed to the maximum.
|
|
*/
|
|
if (reset) {
|
|
xc_broadcast(0, &entropy_reset_xc, NULL, NULL);
|
|
mutex_enter(&E->lock);
|
|
E->pending = 0;
|
|
atomic_store_relaxed(&E->needed,
|
|
ENTROPY_CAPACITY*NBBY);
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/*
|
|
* If we changed any of the estimation or collection
|
|
* flags, request new samples from everyone -- either
|
|
* to make up for what we just lost, or to get new
|
|
* samples from what we just added.
|
|
*/
|
|
if (request) {
|
|
mutex_enter(&E->lock);
|
|
entropy_request(ENTROPY_CAPACITY);
|
|
mutex_exit(&E->lock);
|
|
}
|
|
break;
|
|
}
|
|
case RNDADDDATA: { /* Enter seed into entropy pool. */
|
|
rnddata_t *rdata = data;
|
|
unsigned entropybits = 0;
|
|
|
|
if (!atomic_load_relaxed(&entropy_collection))
|
|
break; /* thanks but no thanks */
|
|
if (rdata->len > MIN(sizeof(rdata->data), UINT32_MAX/NBBY))
|
|
return EINVAL;
|
|
|
|
/*
|
|
* This ioctl serves as the userland alternative a
|
|
* bootloader-provided seed -- typically furnished by
|
|
* /etc/rc.d/random_seed. We accept the user's entropy
|
|
* claim only if
|
|
*
|
|
* (a) the user is privileged, and
|
|
* (b) we have not entered a bootloader seed.
|
|
*
|
|
* under the assumption that the user may use this to
|
|
* load a seed from disk that we have already loaded
|
|
* from the bootloader, so we don't double-count it.
|
|
*/
|
|
if (privileged && rdata->entropy && rdata->len) {
|
|
mutex_enter(&E->lock);
|
|
if (!E->seeded) {
|
|
entropybits = MIN(rdata->entropy,
|
|
MIN(rdata->len, ENTROPY_CAPACITY)*NBBY);
|
|
E->seeded = true;
|
|
}
|
|
mutex_exit(&E->lock);
|
|
}
|
|
|
|
/* Enter the data and consolidate entropy. */
|
|
rnd_add_data(&seed_rndsource, rdata->data, rdata->len,
|
|
entropybits);
|
|
entropy_consolidate();
|
|
break;
|
|
}
|
|
default:
|
|
error = ENOTTY;
|
|
}
|
|
|
|
/* Return any error that may have come up. */
|
|
return error;
|
|
}
|
|
|
|
/* Legacy entry points */
|
|
|
|
void
|
|
rnd_seed(void *seed, size_t len)
|
|
{
|
|
|
|
if (len != sizeof(rndsave_t)) {
|
|
printf("entropy: invalid seed length: %zu,"
|
|
" expected sizeof(rndsave_t) = %zu\n",
|
|
len, sizeof(rndsave_t));
|
|
return;
|
|
}
|
|
entropy_seed(seed);
|
|
}
|
|
|
|
void
|
|
rnd_init(void)
|
|
{
|
|
|
|
entropy_init();
|
|
}
|
|
|
|
void
|
|
rnd_init_softint(void)
|
|
{
|
|
|
|
entropy_init_late();
|
|
}
|
|
|
|
int
|
|
rnd_system_ioctl(struct file *fp, unsigned long cmd, void *data)
|
|
{
|
|
|
|
return entropy_ioctl(cmd, data);
|
|
}
|