NetBSD/sys/kern/vfs_cluster.c
cgd e9d17d38b5 avoid unnecessary aging of buffers. This used to make sense, when buffer
caches were much smaller, but makes little sense now, and will become more
useless as RAM (and buffer cache) sizes grow.  Suggested by Bob Baron.
1995-07-24 21:19:27 +00:00

774 lines
21 KiB
C

/* $NetBSD: vfs_cluster.c,v 1.8 1995/07/24 21:19:50 cgd Exp $ */
/*-
* Copyright (c) 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_cluster.c 8.8 (Berkeley) 7/28/94
*/
#include <sys/param.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/trace.h>
#include <sys/malloc.h>
#include <sys/resourcevar.h>
#include <lib/libkern/libkern.h>
#ifdef DEBUG
#include <vm/vm.h>
#include <sys/sysctl.h>
int doreallocblks = 0;
struct ctldebug debug13 = { "doreallocblks", &doreallocblks };
#else
/* XXX for cluster_write */
#define doreallocblks 0
#endif
/*
* Local declarations
*/
struct buf *cluster_newbuf __P((struct vnode *, struct buf *, long, daddr_t,
daddr_t, long, int));
struct buf *cluster_rbuild __P((struct vnode *, u_quad_t, struct buf *,
daddr_t, daddr_t, long, int, long));
void cluster_wbuild __P((struct vnode *, struct buf *, long,
daddr_t, int, daddr_t));
struct cluster_save *cluster_collectbufs __P((struct vnode *, struct buf *));
#ifdef DIAGNOSTIC
/*
* Set to 1 if reads of block zero should cause readahead to be done.
* Set to 0 treats a read of block zero as a non-sequential read.
*
* Setting to one assumes that most reads of block zero of files are due to
* sequential passes over the files (e.g. cat, sum) where additional blocks
* will soon be needed. Setting to zero assumes that the majority are
* surgical strikes to get particular info (e.g. size, file) where readahead
* blocks will not be used and, in fact, push out other potentially useful
* blocks from the cache. The former seems intuitive, but some quick tests
* showed that the latter performed better from a system-wide point of view.
*/
int doclusterraz = 0;
#define ISSEQREAD(vp, blk) \
(((blk) != 0 || doclusterraz) && \
((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
#else
#define ISSEQREAD(vp, blk) \
((blk) != 0 && ((blk) == (vp)->v_lastr + 1 || (blk) == (vp)->v_lastr))
#endif
/*
* This replaces bread. If this is a bread at the beginning of a file and
* lastr is 0, we assume this is the first read and we'll read up to two
* blocks if they are sequential. After that, we'll do regular read ahead
* in clustered chunks.
*
* There are 4 or 5 cases depending on how you count:
* Desired block is in the cache:
* 1 Not sequential access (0 I/Os).
* 2 Access is sequential, do read-ahead (1 ASYNC).
* Desired block is not in cache:
* 3 Not sequential access (1 SYNC).
* 4 Sequential access, next block is contiguous (1 SYNC).
* 5 Sequential access, next block is not contiguous (1 SYNC, 1 ASYNC)
*
* There are potentially two buffers that require I/O.
* bp is the block requested.
* rbp is the read-ahead block.
* If either is NULL, then you don't have to do the I/O.
*/
cluster_read(vp, filesize, lblkno, size, cred, bpp)
struct vnode *vp;
u_quad_t filesize;
daddr_t lblkno;
long size;
struct ucred *cred;
struct buf **bpp;
{
struct buf *bp, *rbp;
daddr_t blkno, ioblkno;
long flags;
int error, num_ra, alreadyincore;
#ifdef DIAGNOSTIC
if (size == 0)
panic("cluster_read: size = 0");
#endif
error = 0;
flags = B_READ;
*bpp = bp = getblk(vp, lblkno, size, 0, 0);
if (bp->b_flags & B_CACHE) {
/*
* Desired block is in cache; do any readahead ASYNC.
* Case 1, 2.
*/
trace(TR_BREADHIT, pack(vp, size), lblkno);
flags |= B_ASYNC;
ioblkno = lblkno + (vp->v_ralen ? vp->v_ralen : 1);
alreadyincore = incore(vp, ioblkno) != NULL;
bp = NULL;
} else {
/* Block wasn't in cache, case 3, 4, 5. */
trace(TR_BREADMISS, pack(vp, size), lblkno);
bp->b_flags |= B_READ;
ioblkno = lblkno;
alreadyincore = 0;
curproc->p_stats->p_ru.ru_inblock++; /* XXX */
}
/*
* XXX
* Replace 1 with a window size based on some permutation of
* maxcontig and rot_delay. This will let you figure out how
* many blocks you should read-ahead (case 2, 4, 5).
*
* If the access isn't sequential, reset the window to 1.
* Note that a read to the same block is considered sequential.
* This catches the case where the file is being read sequentially,
* but at smaller than the filesystem block size.
*/
rbp = NULL;
if (!ISSEQREAD(vp, lblkno)) {
vp->v_ralen = 0;
vp->v_maxra = lblkno;
} else if ((ioblkno + 1) * size <= filesize && !alreadyincore &&
!(error = VOP_BMAP(vp, ioblkno, NULL, &blkno, &num_ra)) &&
blkno != -1) {
/*
* Reading sequentially, and the next block is not in the
* cache. We are going to try reading ahead.
*/
if (num_ra) {
/*
* If our desired readahead block had been read
* in a previous readahead but is no longer in
* core, then we may be reading ahead too far
* or are not using our readahead very rapidly.
* In this case we scale back the window.
*/
if (!alreadyincore && ioblkno <= vp->v_maxra)
vp->v_ralen = max(vp->v_ralen >> 1, 1);
/*
* There are more sequential blocks than our current
* window allows, scale up. Ideally we want to get
* in sync with the filesystem maxcontig value.
*/
else if (num_ra > vp->v_ralen && lblkno != vp->v_lastr)
vp->v_ralen = vp->v_ralen ?
min(num_ra, vp->v_ralen << 1) : 1;
if (num_ra > vp->v_ralen)
num_ra = vp->v_ralen;
}
if (num_ra) /* case 2, 4 */
rbp = cluster_rbuild(vp, filesize,
bp, ioblkno, blkno, size, num_ra, flags);
else if (ioblkno == lblkno) {
bp->b_blkno = blkno;
/* Case 5: check how many blocks to read ahead */
++ioblkno;
if ((ioblkno + 1) * size > filesize ||
incore(vp, ioblkno) || (error = VOP_BMAP(vp,
ioblkno, NULL, &blkno, &num_ra)) || blkno == -1)
goto skip_readahead;
/*
* Adjust readahead as above.
* Don't check alreadyincore, we know it is 0 from
* the previous conditional.
*/
if (num_ra) {
if (ioblkno <= vp->v_maxra)
vp->v_ralen = max(vp->v_ralen >> 1, 1);
else if (num_ra > vp->v_ralen &&
lblkno != vp->v_lastr)
vp->v_ralen = vp->v_ralen ?
min(num_ra,vp->v_ralen<<1) : 1;
if (num_ra > vp->v_ralen)
num_ra = vp->v_ralen;
}
flags |= B_ASYNC;
if (num_ra)
rbp = cluster_rbuild(vp, filesize,
NULL, ioblkno, blkno, size, num_ra, flags);
else {
rbp = getblk(vp, ioblkno, size, 0, 0);
rbp->b_flags |= flags;
rbp->b_blkno = blkno;
}
} else {
/* case 2; read ahead single block */
rbp = getblk(vp, ioblkno, size, 0, 0);
rbp->b_flags |= flags;
rbp->b_blkno = blkno;
}
if (rbp == bp) /* case 4 */
rbp = NULL;
else if (rbp) { /* case 2, 5 */
trace(TR_BREADMISSRA,
pack(vp, (num_ra + 1) * size), ioblkno);
curproc->p_stats->p_ru.ru_inblock++; /* XXX */
}
}
/* XXX Kirk, do we need to make sure the bp has creds? */
skip_readahead:
if (bp)
if (bp->b_flags & (B_DONE | B_DELWRI))
panic("cluster_read: DONE bp");
else
error = VOP_STRATEGY(bp);
if (rbp)
if (error || rbp->b_flags & (B_DONE | B_DELWRI)) {
rbp->b_flags &= ~(B_ASYNC | B_READ);
brelse(rbp);
} else
(void) VOP_STRATEGY(rbp);
/*
* Recalculate our maximum readahead
*/
if (rbp == NULL)
rbp = bp;
if (rbp)
vp->v_maxra = rbp->b_lblkno + (rbp->b_bufsize / size) - 1;
if (bp)
return(biowait(bp));
return(error);
}
/*
* If blocks are contiguous on disk, use this to provide clustered
* read ahead. We will read as many blocks as possible sequentially
* and then parcel them up into logical blocks in the buffer hash table.
*/
struct buf *
cluster_rbuild(vp, filesize, bp, lbn, blkno, size, run, flags)
struct vnode *vp;
u_quad_t filesize;
struct buf *bp;
daddr_t lbn;
daddr_t blkno;
long size;
int run;
long flags;
{
struct cluster_save *b_save;
struct buf *tbp;
daddr_t bn;
int i, inc;
#ifdef DIAGNOSTIC
if (size != vp->v_mount->mnt_stat.f_iosize)
panic("cluster_rbuild: size %d != filesize %d\n",
size, vp->v_mount->mnt_stat.f_iosize);
#endif
if (size * (lbn + run + 1) > filesize)
--run;
if (run == 0) {
if (!bp) {
bp = getblk(vp, lbn, size, 0, 0);
bp->b_blkno = blkno;
bp->b_flags |= flags;
}
return(bp);
}
bp = cluster_newbuf(vp, bp, flags, blkno, lbn, size, run + 1);
if (bp->b_flags & (B_DONE | B_DELWRI))
return (bp);
b_save = malloc(sizeof(struct buf *) * run + sizeof(struct cluster_save),
M_SEGMENT, M_WAITOK);
b_save->bs_bufsize = b_save->bs_bcount = size;
b_save->bs_nchildren = 0;
b_save->bs_children = (struct buf **)(b_save + 1);
b_save->bs_saveaddr = bp->b_saveaddr;
bp->b_saveaddr = (caddr_t) b_save;
inc = btodb(size);
for (bn = blkno + inc, i = 1; i <= run; ++i, bn += inc) {
/*
* A component of the cluster is already in core,
* terminate the cluster early.
*/
if (incore(vp, lbn + i))
break;
tbp = getblk(vp, lbn + i, 0, 0, 0);
/*
* getblk may return some memory in the buffer if there were
* no empty buffers to shed it to. If there is currently
* memory in the buffer, we move it down size bytes to make
* room for the valid pages that cluster_callback will insert.
* We do this now so we don't have to do it at interrupt time
* in the callback routine.
*/
if (tbp->b_bufsize != 0) {
caddr_t bdata = (char *)tbp->b_data;
/*
* No room in the buffer to add another page,
* terminate the cluster early.
*/
if (tbp->b_bufsize + size > MAXBSIZE) {
#ifdef DIAGNOSTIC
if (tbp->b_bufsize != MAXBSIZE)
panic("cluster_rbuild: too much memory");
#endif
brelse(tbp);
break;
}
if (tbp->b_bufsize > size) {
/*
* XXX if the source and destination regions
* overlap we have to copy backward to avoid
* clobbering any valid pages (i.e. pagemove
* implementations typically can't handle
* overlap).
*/
bdata += tbp->b_bufsize;
while (bdata > (char *)tbp->b_data) {
bdata -= CLBYTES;
pagemove(bdata, bdata + size, CLBYTES);
}
} else
pagemove(bdata, bdata + size, tbp->b_bufsize);
}
tbp->b_blkno = bn;
tbp->b_flags |= flags | B_READ | B_ASYNC;
++b_save->bs_nchildren;
b_save->bs_children[i - 1] = tbp;
}
/*
* The cluster may have been terminated early, adjust the cluster
* buffer size accordingly. If no cluster could be formed,
* deallocate the cluster save info.
*/
if (i <= run) {
if (i == 1) {
bp->b_saveaddr = b_save->bs_saveaddr;
bp->b_flags &= ~B_CALL;
bp->b_iodone = NULL;
free(b_save, M_SEGMENT);
}
allocbuf(bp, size * i);
}
return(bp);
}
/*
* Either get a new buffer or grow the existing one.
*/
struct buf *
cluster_newbuf(vp, bp, flags, blkno, lblkno, size, run)
struct vnode *vp;
struct buf *bp;
long flags;
daddr_t blkno;
daddr_t lblkno;
long size;
int run;
{
if (!bp) {
bp = getblk(vp, lblkno, size, 0, 0);
if (bp->b_flags & (B_DONE | B_DELWRI)) {
bp->b_blkno = blkno;
return(bp);
}
}
allocbuf(bp, run * size);
bp->b_blkno = blkno;
bp->b_iodone = cluster_callback;
bp->b_flags |= flags | B_CALL;
return(bp);
}
/*
* Cleanup after a clustered read or write.
* This is complicated by the fact that any of the buffers might have
* extra memory (if there were no empty buffer headers at allocbuf time)
* that we will need to shift around.
*/
void
cluster_callback(bp)
struct buf *bp;
{
struct cluster_save *b_save;
struct buf **bpp, *tbp;
long bsize;
caddr_t cp;
int error = 0;
/*
* Must propogate errors to all the components.
*/
if (bp->b_flags & B_ERROR)
error = bp->b_error;
b_save = (struct cluster_save *)(bp->b_saveaddr);
bp->b_saveaddr = b_save->bs_saveaddr;
bsize = b_save->bs_bufsize;
cp = (char *)bp->b_data + bsize;
/*
* Move memory from the large cluster buffer into the component
* buffers and mark IO as done on these.
*/
for (bpp = b_save->bs_children; b_save->bs_nchildren--; ++bpp) {
tbp = *bpp;
pagemove(cp, tbp->b_data, bsize);
tbp->b_bufsize += bsize;
tbp->b_bcount = bsize;
if (error) {
tbp->b_flags |= B_ERROR;
tbp->b_error = error;
}
biodone(tbp);
bp->b_bufsize -= bsize;
cp += bsize;
}
/*
* If there was excess memory in the cluster buffer,
* slide it up adjacent to the remaining valid data.
*/
if (bp->b_bufsize != bsize) {
if (bp->b_bufsize < bsize)
panic("cluster_callback: too little memory");
pagemove(cp, (char *)bp->b_data + bsize, bp->b_bufsize - bsize);
}
bp->b_bcount = bsize;
bp->b_iodone = NULL;
free(b_save, M_SEGMENT);
if (bp->b_flags & B_ASYNC)
brelse(bp);
else {
bp->b_flags &= ~B_WANTED;
wakeup((caddr_t)bp);
}
}
/*
* Do clustered write for FFS.
*
* Three cases:
* 1. Write is not sequential (write asynchronously)
* Write is sequential:
* 2. beginning of cluster - begin cluster
* 3. middle of a cluster - add to cluster
* 4. end of a cluster - asynchronously write cluster
*/
void
cluster_write(bp, filesize)
struct buf *bp;
u_quad_t filesize;
{
struct vnode *vp;
daddr_t lbn;
int maxclen, cursize;
vp = bp->b_vp;
lbn = bp->b_lblkno;
/* Initialize vnode to beginning of file. */
if (lbn == 0)
vp->v_lasta = vp->v_clen = vp->v_cstart = vp->v_lastw = 0;
if (vp->v_clen == 0 || lbn != vp->v_lastw + 1 ||
(bp->b_blkno != vp->v_lasta + btodb(bp->b_bcount))) {
maxclen = MAXBSIZE / vp->v_mount->mnt_stat.f_iosize - 1;
if (vp->v_clen != 0) {
/*
* Next block is not sequential.
*
* If we are not writing at end of file, the process
* seeked to another point in the file since its
* last write, or we have reached our maximum
* cluster size, then push the previous cluster.
* Otherwise try reallocating to make it sequential.
*/
cursize = vp->v_lastw - vp->v_cstart + 1;
if (!doreallocblks ||
(lbn + 1) * bp->b_bcount != filesize ||
lbn != vp->v_lastw + 1 || vp->v_clen <= cursize) {
cluster_wbuild(vp, NULL, bp->b_bcount,
vp->v_cstart, cursize, lbn);
} else {
struct buf **bpp, **endbp;
struct cluster_save *buflist;
buflist = cluster_collectbufs(vp, bp);
endbp = &buflist->bs_children
[buflist->bs_nchildren - 1];
if (VOP_REALLOCBLKS(vp, buflist)) {
/*
* Failed, push the previous cluster.
*/
for (bpp = buflist->bs_children;
bpp < endbp; bpp++)
brelse(*bpp);
free(buflist, M_SEGMENT);
cluster_wbuild(vp, NULL, bp->b_bcount,
vp->v_cstart, cursize, lbn);
} else {
/*
* Succeeded, keep building cluster.
*/
for (bpp = buflist->bs_children;
bpp <= endbp; bpp++)
bdwrite(*bpp);
free(buflist, M_SEGMENT);
vp->v_lastw = lbn;
vp->v_lasta = bp->b_blkno;
return;
}
}
}
/*
* Consider beginning a cluster.
* If at end of file, make cluster as large as possible,
* otherwise find size of existing cluster.
*/
if ((lbn + 1) * bp->b_bcount != filesize &&
(VOP_BMAP(vp, lbn, NULL, &bp->b_blkno, &maxclen) ||
bp->b_blkno == -1)) {
bawrite(bp);
vp->v_clen = 0;
vp->v_lasta = bp->b_blkno;
vp->v_cstart = lbn + 1;
vp->v_lastw = lbn;
return;
}
vp->v_clen = maxclen;
if (maxclen == 0) { /* I/O not contiguous */
vp->v_cstart = lbn + 1;
bawrite(bp);
} else { /* Wait for rest of cluster */
vp->v_cstart = lbn;
bdwrite(bp);
}
} else if (lbn == vp->v_cstart + vp->v_clen) {
/*
* At end of cluster, write it out.
*/
cluster_wbuild(vp, bp, bp->b_bcount, vp->v_cstart,
vp->v_clen + 1, lbn);
vp->v_clen = 0;
vp->v_cstart = lbn + 1;
} else
/*
* In the middle of a cluster, so just delay the
* I/O for now.
*/
bdwrite(bp);
vp->v_lastw = lbn;
vp->v_lasta = bp->b_blkno;
}
/*
* This is an awful lot like cluster_rbuild...wish they could be combined.
* The last lbn argument is the current block on which I/O is being
* performed. Check to see that it doesn't fall in the middle of
* the current block (if last_bp == NULL).
*/
void
cluster_wbuild(vp, last_bp, size, start_lbn, len, lbn)
struct vnode *vp;
struct buf *last_bp;
long size;
daddr_t start_lbn;
int len;
daddr_t lbn;
{
struct cluster_save *b_save;
struct buf *bp, *tbp;
caddr_t cp;
int i, s;
#ifdef DIAGNOSTIC
if (size != vp->v_mount->mnt_stat.f_iosize)
panic("cluster_wbuild: size %d != filesize %d\n",
size, vp->v_mount->mnt_stat.f_iosize);
#endif
redo:
while ((!incore(vp, start_lbn) || start_lbn == lbn) && len) {
++start_lbn;
--len;
}
/* Get more memory for current buffer */
if (len <= 1) {
if (last_bp) {
bawrite(last_bp);
} else if (len) {
bp = getblk(vp, start_lbn, size, 0, 0);
bawrite(bp);
}
return;
}
bp = getblk(vp, start_lbn, size, 0, 0);
if (!(bp->b_flags & B_DELWRI)) {
++start_lbn;
--len;
brelse(bp);
goto redo;
}
/*
* Extra memory in the buffer, punt on this buffer.
* XXX we could handle this in most cases, but we would have to
* push the extra memory down to after our max possible cluster
* size and then potentially pull it back up if the cluster was
* terminated prematurely--too much hassle.
*/
if (bp->b_bcount != bp->b_bufsize) {
++start_lbn;
--len;
bawrite(bp);
goto redo;
}
--len;
b_save = malloc(sizeof(struct buf *) * len + sizeof(struct cluster_save),
M_SEGMENT, M_WAITOK);
b_save->bs_bcount = bp->b_bcount;
b_save->bs_bufsize = bp->b_bufsize;
b_save->bs_nchildren = 0;
b_save->bs_children = (struct buf **)(b_save + 1);
b_save->bs_saveaddr = bp->b_saveaddr;
bp->b_saveaddr = (caddr_t) b_save;
bp->b_flags |= B_CALL;
bp->b_iodone = cluster_callback;
cp = (char *)bp->b_data + size;
for (++start_lbn, i = 0; i < len; ++i, ++start_lbn) {
/*
* Block is not in core or the non-sequential block
* ending our cluster was part of the cluster (in which
* case we don't want to write it twice).
*/
if (!incore(vp, start_lbn) ||
last_bp == NULL && start_lbn == lbn)
break;
/*
* Get the desired block buffer (unless it is the final
* sequential block whose buffer was passed in explictly
* as last_bp).
*/
if (last_bp == NULL || start_lbn != lbn) {
tbp = getblk(vp, start_lbn, size, 0, 0);
if (!(tbp->b_flags & B_DELWRI)) {
brelse(tbp);
break;
}
} else
tbp = last_bp;
++b_save->bs_nchildren;
/* Move memory from children to parent */
if (tbp->b_blkno != (bp->b_blkno + btodb(bp->b_bufsize))) {
printf("Clustered Block: %d addr %x bufsize: %d\n",
bp->b_lblkno, bp->b_blkno, bp->b_bufsize);
printf("Child Block: %d addr: %x\n", tbp->b_lblkno,
tbp->b_blkno);
panic("Clustered write to wrong blocks");
}
pagemove(tbp->b_data, cp, size);
bp->b_bcount += size;
bp->b_bufsize += size;
tbp->b_bufsize -= size;
tbp->b_flags &= ~(B_READ | B_DONE | B_ERROR | B_DELWRI);
/*
* We might as well AGE the buffer here; it's either empty, or
* contains data that we couldn't get rid of (but wanted to).
*/
tbp->b_flags |= (B_ASYNC | B_AGE);
s = splbio();
reassignbuf(tbp, tbp->b_vp); /* put on clean list */
++tbp->b_vp->v_numoutput;
splx(s);
b_save->bs_children[i] = tbp;
cp += size;
}
if (i == 0) {
/* None to cluster */
bp->b_saveaddr = b_save->bs_saveaddr;
bp->b_flags &= ~B_CALL;
bp->b_iodone = NULL;
free(b_save, M_SEGMENT);
}
bawrite(bp);
if (i < len) {
len -= i + 1;
start_lbn += 1;
goto redo;
}
}
/*
* Collect together all the buffers in a cluster.
* Plus add one additional buffer.
*/
struct cluster_save *
cluster_collectbufs(vp, last_bp)
struct vnode *vp;
struct buf *last_bp;
{
struct cluster_save *buflist;
daddr_t lbn;
int i, len;
len = vp->v_lastw - vp->v_cstart + 1;
buflist = malloc(sizeof(struct buf *) * (len + 1) + sizeof(*buflist),
M_SEGMENT, M_WAITOK);
buflist->bs_nchildren = 0;
buflist->bs_children = (struct buf **)(buflist + 1);
for (lbn = vp->v_cstart, i = 0; i < len; lbn++, i++)
(void)bread(vp, lbn, last_bp->b_bcount, NOCRED,
&buflist->bs_children[i]);
buflist->bs_children[i] = last_bp;
buflist->bs_nchildren = i + 1;
return (buflist);
}