347 lines
9.8 KiB
C
347 lines
9.8 KiB
C
/* $NetBSD: becc.c,v 1.12 2005/12/24 20:06:52 perry Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 2002, 2003 Wasabi Systems, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Written by Jason R. Thorpe for Wasabi Systems, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project by
|
|
* Wasabi Systems, Inc.
|
|
* 4. The name of Wasabi Systems, Inc. may not be used to endorse
|
|
* or promote products derived from this software without specific prior
|
|
* written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY WASABI SYSTEMS, INC. ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL WASABI SYSTEMS, INC
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Autoconfiguration support for the ADI Engineering Big Endian
|
|
* Companion Chip.
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: becc.c,v 1.12 2005/12/24 20:06:52 perry Exp $");
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/device.h>
|
|
|
|
#define _ARM32_BUS_DMA_PRIVATE
|
|
#include <machine/bus.h>
|
|
|
|
#include <arm/xscale/i80200reg.h>
|
|
#include <arm/xscale/beccreg.h>
|
|
#include <arm/xscale/beccvar.h>
|
|
|
|
/*
|
|
* Virtual address at which the BECC is mapped. This is filled in
|
|
* by machine-dependent code.
|
|
*/
|
|
vaddr_t becc_vaddr;
|
|
|
|
/*
|
|
* BECC revision number. This is initialized by early bootstrap code.
|
|
*/
|
|
int becc_rev;
|
|
const char *becc_revisions[] = {
|
|
"<= 7",
|
|
"8",
|
|
">= 9",
|
|
};
|
|
|
|
/*
|
|
* There can be only one BECC, so we keep a global pointer to
|
|
* the softc, so board-specific code can use features of the
|
|
* BECC without having to have a handle on the softc itself.
|
|
*/
|
|
struct becc_softc *becc_softc;
|
|
|
|
static int becc_search(struct device *, struct cfdata *,
|
|
const int *, void *);
|
|
static int becc_print(void *, const char *);
|
|
|
|
static void becc_pci_dma_init(struct becc_softc *);
|
|
static void becc_local_dma_init(struct becc_softc *);
|
|
|
|
/*
|
|
* becc_attach:
|
|
*
|
|
* Board-independent attach routine for the BECC.
|
|
*/
|
|
void
|
|
becc_attach(struct becc_softc *sc)
|
|
{
|
|
struct pcibus_attach_args pba;
|
|
uint32_t reg;
|
|
|
|
becc_softc = sc;
|
|
|
|
/*
|
|
* Set the AF bit in the BCUMOD since the BECC will honor it.
|
|
* This allows the BECC to return the requested 4-byte word
|
|
* first when filling a cache line.
|
|
*/
|
|
__asm volatile("mrc p13, 0, %0, c1, c1, 0" : "=r" (reg));
|
|
__asm volatile("mcr p13, 0, %0, c1, c1, 0" : : "r" (reg | BCUMOD_AF));
|
|
|
|
/*
|
|
* Program the address windows of the PCI core. Note
|
|
* that PCI master and target cycles must be disabled
|
|
* while we configure the windows.
|
|
*/
|
|
reg = becc_pcicore_read(sc, PCI_COMMAND_STATUS_REG);
|
|
reg &= ~(PCI_COMMAND_MEM_ENABLE|PCI_COMMAND_MASTER_ENABLE);
|
|
becc_pcicore_write(sc, PCI_COMMAND_STATUS_REG, reg);
|
|
|
|
/*
|
|
* Program the two inbound PCI memory windows.
|
|
*/
|
|
becc_pcicore_write(sc, PCI_MAPREG_START + 0,
|
|
sc->sc_iwin[0].iwin_base | PCI_MAPREG_MEM_TYPE_32BIT |
|
|
PCI_MAPREG_MEM_PREFETCHABLE_MASK);
|
|
reg = becc_pcicore_read(sc, PCI_MAPREG_START + 0);
|
|
BECC_CSR_WRITE(BECC_PSTR0, sc->sc_iwin[0].iwin_xlate & PSTRx_ADDRMASK);
|
|
|
|
becc_pcicore_write(sc, PCI_MAPREG_START + 4,
|
|
sc->sc_iwin[1].iwin_base | PCI_MAPREG_MEM_TYPE_32BIT |
|
|
PCI_MAPREG_MEM_PREFETCHABLE_MASK);
|
|
reg = becc_pcicore_read(sc, PCI_MAPREG_START + 4);
|
|
BECC_CSR_WRITE(BECC_PSTR1, sc->sc_iwin[1].iwin_xlate & PSTRx_ADDRMASK);
|
|
|
|
/*
|
|
* ...and the third on v8 and later.
|
|
*/
|
|
if (becc_rev >= BECC_REV_V8) {
|
|
becc_pcicore_write(sc, PCI_MAPREG_START + 8,
|
|
sc->sc_iwin[2].iwin_base | PCI_MAPREG_MEM_TYPE_32BIT |
|
|
PCI_MAPREG_MEM_PREFETCHABLE_MASK);
|
|
reg = becc_pcicore_read(sc, PCI_MAPREG_START + 8);
|
|
BECC_CSR_WRITE(BECC_PSTR2,
|
|
sc->sc_iwin[2].iwin_xlate & PSTR2_ADDRMASK);
|
|
}
|
|
|
|
/*
|
|
* Program the two outbound PCI memory windows.
|
|
* NOTE: WE DO NOT BYTE-SWAP OUTBOUND WINDOWS IN BIG-ENDIAN
|
|
* MODE. I know this seems counter-intuitive, but that's
|
|
* how it is.
|
|
*
|
|
* There's a third window on v9 and later, but we don't
|
|
* use it for anything; program it anyway, just to be
|
|
* safe.
|
|
*/
|
|
BECC_CSR_WRITE(BECC_POMR1, sc->sc_owin_xlate[0] /* | POMRx_F32 */);
|
|
BECC_CSR_WRITE(BECC_POMR2, sc->sc_owin_xlate[1] /* | POMRx_F32 */);
|
|
|
|
if (becc_rev >= BECC_REV_V9)
|
|
BECC_CSR_WRITE(BECC_POMR3,
|
|
sc->sc_owin_xlate[2] /* | POMRx_F32 */);
|
|
|
|
/*
|
|
* Program the PCI I/O window. See note above about byte-swapping.
|
|
*
|
|
* XXX What about STREAM transfers?
|
|
*/
|
|
BECC_CSR_WRITE(BECC_POIR, sc->sc_ioout_xlate);
|
|
|
|
/*
|
|
* Configure PCI configuration cycle access.
|
|
*/
|
|
BECC_CSR_WRITE(BECC_POCR, 0);
|
|
|
|
/*
|
|
* ...and now reenable PCI access.
|
|
*/
|
|
reg = becc_pcicore_read(sc, PCI_COMMAND_STATUS_REG);
|
|
reg |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE |
|
|
PCI_COMMAND_PARITY_ENABLE | PCI_COMMAND_SERR_ENABLE;
|
|
becc_pcicore_write(sc, PCI_COMMAND_STATUS_REG, reg);
|
|
|
|
/* Initialize the bus space tags. */
|
|
becc_io_bs_init(&sc->sc_pci_iot, sc);
|
|
becc_mem_bs_init(&sc->sc_pci_memt, sc);
|
|
|
|
/* Initialize the PCI chipset tag. */
|
|
becc_pci_init(&sc->sc_pci_chipset, sc);
|
|
|
|
/* Initialize the DMA tags. */
|
|
becc_pci_dma_init(sc);
|
|
becc_local_dma_init(sc);
|
|
|
|
/*
|
|
* Attach any on-chip peripherals. We used indirect config, since
|
|
* the BECC is a soft-core with a variety of peripherals, depending
|
|
* on configuration.
|
|
*/
|
|
config_search_ia(becc_search, &sc->sc_dev, "becc", NULL);
|
|
|
|
/*
|
|
* Attach the PCI bus.
|
|
*/
|
|
pba.pba_iot = &sc->sc_pci_iot;
|
|
pba.pba_memt = &sc->sc_pci_memt;
|
|
pba.pba_dmat = &sc->sc_pci_dmat;
|
|
pba.pba_dmat64 = NULL;
|
|
pba.pba_pc = &sc->sc_pci_chipset;
|
|
pba.pba_bus = 0;
|
|
pba.pba_bridgetag = NULL;
|
|
pba.pba_intrswiz = 0;
|
|
pba.pba_intrtag = 0;
|
|
pba.pba_flags = PCI_FLAGS_IO_ENABLED | PCI_FLAGS_MEM_ENABLED |
|
|
PCI_FLAGS_MRL_OKAY | PCI_FLAGS_MRM_OKAY | PCI_FLAGS_MWI_OKAY;
|
|
(void) config_found_ia(&sc->sc_dev, "pcibus", &pba, pcibusprint);
|
|
}
|
|
|
|
/*
|
|
* becc_search:
|
|
*
|
|
* Indirect autoconfiguration glue for BECC.
|
|
*/
|
|
static int
|
|
becc_search(struct device *parent, struct cfdata *cf,
|
|
const int *ldesc, void *aux)
|
|
{
|
|
struct becc_softc *sc = (void *) parent;
|
|
struct becc_attach_args ba;
|
|
|
|
ba.ba_dmat = &sc->sc_local_dmat;
|
|
|
|
if (config_match(parent, cf, &ba) > 0)
|
|
config_attach(parent, cf, &ba, becc_print);
|
|
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* becc_print:
|
|
*
|
|
* Autoconfiguration cfprint routine when attaching
|
|
* to the BECC.
|
|
*/
|
|
static int
|
|
becc_print(void *aux, const char *pnp)
|
|
{
|
|
|
|
return (UNCONF);
|
|
}
|
|
|
|
/*
|
|
* becc_pci_dma_init:
|
|
*
|
|
* Initialize the PCI DMA tag.
|
|
*/
|
|
static void
|
|
becc_pci_dma_init(struct becc_softc *sc)
|
|
{
|
|
bus_dma_tag_t dmat = &sc->sc_pci_dmat;
|
|
struct arm32_dma_range *dr = sc->sc_pci_dma_range;
|
|
int i = 0;
|
|
|
|
/*
|
|
* If we have the 128MB window, put it first, since it
|
|
* will always cover the entire memory range.
|
|
*/
|
|
if (becc_rev >= BECC_REV_V8) {
|
|
dr[i].dr_sysbase = sc->sc_iwin[2].iwin_xlate;
|
|
dr[i].dr_busbase = sc->sc_iwin[2].iwin_base;
|
|
dr[i].dr_len = (128U * 1024 * 1024);
|
|
i++;
|
|
}
|
|
|
|
dr[i].dr_sysbase = sc->sc_iwin[0].iwin_xlate;
|
|
dr[i].dr_busbase = sc->sc_iwin[0].iwin_base;
|
|
dr[i].dr_len = (32U * 1024 * 1024);
|
|
i++;
|
|
|
|
dr[i].dr_sysbase = sc->sc_iwin[1].iwin_xlate;
|
|
dr[i].dr_busbase = sc->sc_iwin[1].iwin_base;
|
|
dr[i].dr_len = (32U * 1024 * 1024);
|
|
i++;
|
|
|
|
dmat->_ranges = dr;
|
|
dmat->_nranges = i;
|
|
|
|
dmat->_dmamap_create = _bus_dmamap_create;
|
|
dmat->_dmamap_destroy = _bus_dmamap_destroy;
|
|
dmat->_dmamap_load = _bus_dmamap_load;
|
|
dmat->_dmamap_load_mbuf = _bus_dmamap_load_mbuf;
|
|
dmat->_dmamap_load_uio = _bus_dmamap_load_uio;
|
|
dmat->_dmamap_load_raw = _bus_dmamap_load_raw;
|
|
dmat->_dmamap_unload = _bus_dmamap_unload;
|
|
dmat->_dmamap_sync_pre = _bus_dmamap_sync;
|
|
dmat->_dmamap_sync_post = NULL;
|
|
|
|
dmat->_dmamem_alloc = _bus_dmamem_alloc;
|
|
dmat->_dmamem_free = _bus_dmamem_free;
|
|
dmat->_dmamem_map = _bus_dmamem_map;
|
|
dmat->_dmamem_unmap = _bus_dmamem_unmap;
|
|
dmat->_dmamem_mmap = _bus_dmamem_mmap;
|
|
}
|
|
|
|
/*
|
|
* becc_local_dma_init:
|
|
*
|
|
* Initialize the local DMA tag.
|
|
*/
|
|
static void
|
|
becc_local_dma_init(struct becc_softc *sc)
|
|
{
|
|
bus_dma_tag_t dmat = &sc->sc_local_dmat;
|
|
|
|
dmat->_ranges = NULL;
|
|
dmat->_nranges = 0;
|
|
|
|
dmat->_dmamap_create = _bus_dmamap_create;
|
|
dmat->_dmamap_destroy = _bus_dmamap_destroy;
|
|
dmat->_dmamap_load = _bus_dmamap_load;
|
|
dmat->_dmamap_load_mbuf = _bus_dmamap_load_mbuf;
|
|
dmat->_dmamap_load_uio = _bus_dmamap_load_uio;
|
|
dmat->_dmamap_load_raw = _bus_dmamap_load_raw;
|
|
dmat->_dmamap_unload = _bus_dmamap_unload;
|
|
dmat->_dmamap_sync_pre = _bus_dmamap_sync;
|
|
dmat->_dmamap_sync_post = NULL;
|
|
|
|
dmat->_dmamem_alloc = _bus_dmamem_alloc;
|
|
dmat->_dmamem_free = _bus_dmamem_free;
|
|
dmat->_dmamem_map = _bus_dmamem_map;
|
|
dmat->_dmamem_unmap = _bus_dmamem_unmap;
|
|
dmat->_dmamem_mmap = _bus_dmamem_mmap;
|
|
}
|
|
|
|
uint32_t
|
|
becc_pcicore_read(struct becc_softc *sc, bus_addr_t reg)
|
|
{
|
|
vaddr_t va = sc->sc_pci_cfg_base | (1U << BECC_IDSEL_BIT) | reg;
|
|
|
|
return (*(volatile uint32_t *) va);
|
|
}
|
|
|
|
void
|
|
becc_pcicore_write(struct becc_softc *sc, bus_addr_t reg, uint32_t val)
|
|
{
|
|
vaddr_t va = sc->sc_pci_cfg_base | (1U << BECC_IDSEL_BIT) | reg;
|
|
|
|
*(volatile uint32_t *) va = val;
|
|
}
|