2841 lines
76 KiB
C
2841 lines
76 KiB
C
/* $NetBSD: lfs_segment.c,v 1.207 2008/01/02 11:49:11 ad Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 1999, 2000, 2001, 2002, 2003 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Konrad E. Schroder <perseant@hhhh.org>.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
/*
|
|
* Copyright (c) 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)lfs_segment.c 8.10 (Berkeley) 6/10/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: lfs_segment.c,v 1.207 2008/01/02 11:49:11 ad Exp $");
|
|
|
|
#ifdef DEBUG
|
|
# define vndebug(vp, str) do { \
|
|
if (VTOI(vp)->i_flag & IN_CLEANING) \
|
|
DLOG((DLOG_WVNODE, "not writing ino %d because %s (op %d)\n", \
|
|
VTOI(vp)->i_number, (str), op)); \
|
|
} while(0)
|
|
#else
|
|
# define vndebug(vp, str)
|
|
#endif
|
|
#define ivndebug(vp, str) \
|
|
DLOG((DLOG_WVNODE, "ino %d: %s\n", VTOI(vp)->i_number, (str)))
|
|
|
|
#if defined(_KERNEL_OPT)
|
|
#include "opt_ddb.h"
|
|
#endif
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/namei.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/resourcevar.h>
|
|
#include <sys/file.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/vnode.h>
|
|
#include <sys/mount.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/syslog.h>
|
|
|
|
#include <miscfs/specfs/specdev.h>
|
|
#include <miscfs/fifofs/fifo.h>
|
|
|
|
#include <ufs/ufs/inode.h>
|
|
#include <ufs/ufs/dir.h>
|
|
#include <ufs/ufs/ufsmount.h>
|
|
#include <ufs/ufs/ufs_extern.h>
|
|
|
|
#include <ufs/lfs/lfs.h>
|
|
#include <ufs/lfs/lfs_extern.h>
|
|
|
|
#include <uvm/uvm.h>
|
|
#include <uvm/uvm_extern.h>
|
|
|
|
MALLOC_JUSTDEFINE(M_SEGMENT, "LFS segment", "Segment for LFS");
|
|
|
|
extern int count_lock_queue(void);
|
|
extern kmutex_t vnode_free_list_lock; /* XXX */
|
|
|
|
static void lfs_generic_callback(struct buf *, void (*)(struct buf *));
|
|
static void lfs_free_aiodone(struct buf *);
|
|
static void lfs_super_aiodone(struct buf *);
|
|
static void lfs_cluster_aiodone(struct buf *);
|
|
static void lfs_cluster_callback(struct buf *);
|
|
|
|
/*
|
|
* Determine if it's OK to start a partial in this segment, or if we need
|
|
* to go on to a new segment.
|
|
*/
|
|
#define LFS_PARTIAL_FITS(fs) \
|
|
((fs)->lfs_fsbpseg - ((fs)->lfs_offset - (fs)->lfs_curseg) > \
|
|
fragstofsb((fs), (fs)->lfs_frag))
|
|
|
|
/*
|
|
* Figure out whether we should do a checkpoint write or go ahead with
|
|
* an ordinary write.
|
|
*/
|
|
#define LFS_SHOULD_CHECKPOINT(fs, flags) \
|
|
((flags & SEGM_CLEAN) == 0 && \
|
|
((fs->lfs_nactive > LFS_MAX_ACTIVE || \
|
|
(flags & SEGM_CKP) || \
|
|
fs->lfs_nclean < LFS_MAX_ACTIVE)))
|
|
|
|
int lfs_match_fake(struct lfs *, struct buf *);
|
|
void lfs_newseg(struct lfs *);
|
|
/* XXX ondisk32 */
|
|
void lfs_shellsort(struct buf **, int32_t *, int, int);
|
|
void lfs_supercallback(struct buf *);
|
|
void lfs_updatemeta(struct segment *);
|
|
void lfs_writesuper(struct lfs *, daddr_t);
|
|
int lfs_writevnodes(struct lfs *fs, struct mount *mp,
|
|
struct segment *sp, int dirops);
|
|
|
|
int lfs_allclean_wakeup; /* Cleaner wakeup address. */
|
|
int lfs_writeindir = 1; /* whether to flush indir on non-ckp */
|
|
int lfs_clean_vnhead = 0; /* Allow freeing to head of vn list */
|
|
int lfs_dirvcount = 0; /* # active dirops */
|
|
|
|
/* Statistics Counters */
|
|
int lfs_dostats = 1;
|
|
struct lfs_stats lfs_stats;
|
|
|
|
/* op values to lfs_writevnodes */
|
|
#define VN_REG 0
|
|
#define VN_DIROP 1
|
|
#define VN_EMPTY 2
|
|
#define VN_CLEAN 3
|
|
|
|
/*
|
|
* XXX KS - Set modification time on the Ifile, so the cleaner can
|
|
* read the fs mod time off of it. We don't set IN_UPDATE here,
|
|
* since we don't really need this to be flushed to disk (and in any
|
|
* case that wouldn't happen to the Ifile until we checkpoint).
|
|
*/
|
|
void
|
|
lfs_imtime(struct lfs *fs)
|
|
{
|
|
struct timespec ts;
|
|
struct inode *ip;
|
|
|
|
ASSERT_MAYBE_SEGLOCK(fs);
|
|
vfs_timestamp(&ts);
|
|
ip = VTOI(fs->lfs_ivnode);
|
|
ip->i_ffs1_mtime = ts.tv_sec;
|
|
ip->i_ffs1_mtimensec = ts.tv_nsec;
|
|
}
|
|
|
|
/*
|
|
* Ifile and meta data blocks are not marked busy, so segment writes MUST be
|
|
* single threaded. Currently, there are two paths into lfs_segwrite, sync()
|
|
* and getnewbuf(). They both mark the file system busy. Lfs_vflush()
|
|
* explicitly marks the file system busy. So lfs_segwrite is safe. I think.
|
|
*/
|
|
|
|
#define IS_FLUSHING(fs,vp) ((fs)->lfs_flushvp == (vp))
|
|
|
|
int
|
|
lfs_vflush(struct vnode *vp)
|
|
{
|
|
struct inode *ip;
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct buf *bp, *nbp, *tbp, *tnbp;
|
|
int error;
|
|
int flushed;
|
|
int relock;
|
|
int loopcount;
|
|
|
|
ip = VTOI(vp);
|
|
fs = VFSTOUFS(vp->v_mount)->um_lfs;
|
|
relock = 0;
|
|
|
|
top:
|
|
ASSERT_NO_SEGLOCK(fs);
|
|
if (ip->i_flag & IN_CLEANING) {
|
|
ivndebug(vp,"vflush/in_cleaning");
|
|
mutex_enter(&lfs_lock);
|
|
LFS_CLR_UINO(ip, IN_CLEANING);
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
mutex_exit(&lfs_lock);
|
|
|
|
/*
|
|
* Toss any cleaning buffers that have real counterparts
|
|
* to avoid losing new data.
|
|
*/
|
|
mutex_enter(&vp->v_interlock);
|
|
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
|
|
nbp = LIST_NEXT(bp, b_vnbufs);
|
|
if (!LFS_IS_MALLOC_BUF(bp))
|
|
continue;
|
|
/*
|
|
* Look for pages matching the range covered
|
|
* by cleaning blocks. It's okay if more dirty
|
|
* pages appear, so long as none disappear out
|
|
* from under us.
|
|
*/
|
|
if (bp->b_lblkno > 0 && vp->v_type == VREG &&
|
|
vp != fs->lfs_ivnode) {
|
|
struct vm_page *pg;
|
|
voff_t off;
|
|
|
|
for (off = lblktosize(fs, bp->b_lblkno);
|
|
off < lblktosize(fs, bp->b_lblkno + 1);
|
|
off += PAGE_SIZE) {
|
|
pg = uvm_pagelookup(&vp->v_uobj, off);
|
|
if (pg == NULL)
|
|
continue;
|
|
if ((pg->flags & PG_CLEAN) == 0 ||
|
|
pmap_is_modified(pg)) {
|
|
fs->lfs_avail += btofsb(fs,
|
|
bp->b_bcount);
|
|
wakeup(&fs->lfs_avail);
|
|
mutex_exit(&vp->v_interlock);
|
|
lfs_freebuf(fs, bp);
|
|
mutex_enter(&vp->v_interlock);
|
|
bp = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
for (tbp = LIST_FIRST(&vp->v_dirtyblkhd); tbp;
|
|
tbp = tnbp)
|
|
{
|
|
tnbp = LIST_NEXT(tbp, b_vnbufs);
|
|
if (tbp->b_vp == bp->b_vp
|
|
&& tbp->b_lblkno == bp->b_lblkno
|
|
&& tbp != bp)
|
|
{
|
|
fs->lfs_avail += btofsb(fs,
|
|
bp->b_bcount);
|
|
wakeup(&fs->lfs_avail);
|
|
mutex_exit(&vp->v_interlock);
|
|
lfs_freebuf(fs, bp);
|
|
mutex_enter(&vp->v_interlock);
|
|
bp = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
mutex_enter(&vp->v_interlock);
|
|
}
|
|
|
|
/* If the node is being written, wait until that is done */
|
|
while (WRITEINPROG(vp)) {
|
|
ivndebug(vp,"vflush/writeinprog");
|
|
cv_wait(&vp->v_cv, &vp->v_interlock);
|
|
}
|
|
mutex_exit(&vp->v_interlock);
|
|
|
|
/* Protect against VI_XLOCK deadlock in vinvalbuf() */
|
|
lfs_seglock(fs, SEGM_SYNC);
|
|
|
|
/* If we're supposed to flush a freed inode, just toss it */
|
|
if (ip->i_lfs_iflags & LFSI_DELETED) {
|
|
DLOG((DLOG_VNODE, "lfs_vflush: ino %d freed, not flushing\n",
|
|
ip->i_number));
|
|
/* Drain v_numoutput */
|
|
mutex_enter(&vp->v_interlock);
|
|
while (vp->v_numoutput > 0) {
|
|
cv_wait(&vp->v_cv, &vp->v_interlock);
|
|
}
|
|
KASSERT(vp->v_numoutput == 0);
|
|
mutex_exit(&vp->v_interlock);
|
|
|
|
mutex_enter(&bufcache_lock);
|
|
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
|
|
nbp = LIST_NEXT(bp, b_vnbufs);
|
|
|
|
KASSERT((bp->b_flags & B_GATHERED) == 0);
|
|
if (bp->b_oflags & BO_DELWRI) { /* XXX always true? */
|
|
fs->lfs_avail += btofsb(fs, bp->b_bcount);
|
|
wakeup(&fs->lfs_avail);
|
|
}
|
|
/* Copied from lfs_writeseg */
|
|
if (bp->b_iodone != NULL) {
|
|
mutex_exit(&bufcache_lock);
|
|
biodone(bp);
|
|
mutex_enter(&bufcache_lock);
|
|
} else {
|
|
bremfree(bp);
|
|
LFS_UNLOCK_BUF(bp);
|
|
mutex_enter(&vp->v_interlock);
|
|
bp->b_flags &= ~(B_READ | B_GATHERED);
|
|
bp->b_oflags = (bp->b_oflags & ~BO_DELWRI) | BO_DONE;
|
|
bp->b_error = 0;
|
|
reassignbuf(bp, vp);
|
|
mutex_exit(&vp->v_interlock);
|
|
brelse(bp, 0);
|
|
}
|
|
}
|
|
mutex_exit(&bufcache_lock);
|
|
LFS_CLR_UINO(ip, IN_CLEANING);
|
|
LFS_CLR_UINO(ip, IN_MODIFIED | IN_ACCESSED);
|
|
ip->i_flag &= ~IN_ALLMOD;
|
|
DLOG((DLOG_VNODE, "lfs_vflush: done not flushing ino %d\n",
|
|
ip->i_number));
|
|
lfs_segunlock(fs);
|
|
|
|
KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
fs->lfs_flushvp = vp;
|
|
if (LFS_SHOULD_CHECKPOINT(fs, fs->lfs_sp->seg_flags)) {
|
|
error = lfs_segwrite(vp->v_mount, SEGM_CKP | SEGM_SYNC);
|
|
fs->lfs_flushvp = NULL;
|
|
KASSERT(fs->lfs_flushvp_fakevref == 0);
|
|
lfs_segunlock(fs);
|
|
|
|
/* Make sure that any pending buffers get written */
|
|
mutex_enter(&vp->v_interlock);
|
|
while (vp->v_numoutput > 0) {
|
|
cv_wait(&vp->v_cv, &vp->v_interlock);
|
|
}
|
|
KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
|
|
KASSERT(vp->v_numoutput == 0);
|
|
mutex_exit(&vp->v_interlock);
|
|
|
|
return error;
|
|
}
|
|
sp = fs->lfs_sp;
|
|
|
|
flushed = 0;
|
|
if (VPISEMPTY(vp)) {
|
|
lfs_writevnodes(fs, vp->v_mount, sp, VN_EMPTY);
|
|
++flushed;
|
|
} else if ((ip->i_flag & IN_CLEANING) &&
|
|
(fs->lfs_sp->seg_flags & SEGM_CLEAN)) {
|
|
ivndebug(vp,"vflush/clean");
|
|
lfs_writevnodes(fs, vp->v_mount, sp, VN_CLEAN);
|
|
++flushed;
|
|
} else if (lfs_dostats) {
|
|
if (!VPISEMPTY(vp) || (VTOI(vp)->i_flag & IN_ALLMOD))
|
|
++lfs_stats.vflush_invoked;
|
|
ivndebug(vp,"vflush");
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
if (vp->v_uflag & VU_DIROP) {
|
|
DLOG((DLOG_VNODE, "lfs_vflush: flushing VU_DIROP\n"));
|
|
/* panic("lfs_vflush: VU_DIROP being flushed...this can\'t happen"); */
|
|
}
|
|
if (vp->v_usecount < 0) {
|
|
printf("usecount=%ld\n", (long)vp->v_usecount);
|
|
panic("lfs_vflush: usecount<0");
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
loopcount = 0;
|
|
do {
|
|
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
|
|
relock = lfs_writefile(fs, sp, vp);
|
|
if (relock) {
|
|
/*
|
|
* Might have to wait for the
|
|
* cleaner to run; but we're
|
|
* still not done with this vnode.
|
|
*/
|
|
KDASSERT(ip->i_number != LFS_IFILE_INUM);
|
|
lfs_writeinode(fs, sp, ip);
|
|
mutex_enter(&lfs_lock);
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
mutex_exit(&lfs_lock);
|
|
lfs_writeseg(fs, sp);
|
|
lfs_segunlock(fs);
|
|
lfs_segunlock_relock(fs);
|
|
goto top;
|
|
}
|
|
}
|
|
/*
|
|
* If we begin a new segment in the middle of writing
|
|
* the Ifile, it creates an inconsistent checkpoint,
|
|
* since the Ifile information for the new segment
|
|
* is not up-to-date. Take care of this here by
|
|
* sending the Ifile through again in case there
|
|
* are newly dirtied blocks. But wait, there's more!
|
|
* This second Ifile write could *also* cross a segment
|
|
* boundary, if the first one was large. The second
|
|
* one is guaranteed to be no more than 8 blocks,
|
|
* though (two segment blocks and supporting indirects)
|
|
* so the third write *will not* cross the boundary.
|
|
*/
|
|
if (vp == fs->lfs_ivnode) {
|
|
lfs_writefile(fs, sp, vp);
|
|
lfs_writefile(fs, sp, vp);
|
|
}
|
|
#ifdef DEBUG
|
|
if (++loopcount > 2)
|
|
log(LOG_NOTICE, "lfs_vflush: looping count=%d\n", loopcount);
|
|
#endif
|
|
} while (lfs_writeinode(fs, sp, ip));
|
|
} while (lfs_writeseg(fs, sp) && ip->i_number == LFS_IFILE_INUM);
|
|
|
|
if (lfs_dostats) {
|
|
++lfs_stats.nwrites;
|
|
if (sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.nsync_writes;
|
|
if (sp->seg_flags & SEGM_CKP)
|
|
++lfs_stats.ncheckpoints;
|
|
}
|
|
/*
|
|
* If we were called from somewhere that has already held the seglock
|
|
* (e.g., lfs_markv()), the lfs_segunlock will not wait for
|
|
* the write to complete because we are still locked.
|
|
* Since lfs_vflush() must return the vnode with no dirty buffers,
|
|
* we must explicitly wait, if that is the case.
|
|
*
|
|
* We compare the iocount against 1, not 0, because it is
|
|
* artificially incremented by lfs_seglock().
|
|
*/
|
|
mutex_enter(&lfs_lock);
|
|
if (fs->lfs_seglock > 1) {
|
|
while (fs->lfs_iocount > 1)
|
|
(void)mtsleep(&fs->lfs_iocount, PRIBIO + 1,
|
|
"lfs_vflush", 0, &lfs_lock);
|
|
}
|
|
mutex_exit(&lfs_lock);
|
|
|
|
lfs_segunlock(fs);
|
|
|
|
/* Wait for these buffers to be recovered by aiodoned */
|
|
mutex_enter(&vp->v_interlock);
|
|
while (vp->v_numoutput > 0) {
|
|
cv_wait(&vp->v_cv, &vp->v_interlock);
|
|
}
|
|
KASSERT(LIST_FIRST(&vp->v_dirtyblkhd) == NULL);
|
|
KASSERT(vp->v_numoutput == 0);
|
|
mutex_exit(&vp->v_interlock);
|
|
|
|
fs->lfs_flushvp = NULL;
|
|
KASSERT(fs->lfs_flushvp_fakevref == 0);
|
|
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lfs_writevnodes(struct lfs *fs, struct mount *mp, struct segment *sp, int op)
|
|
{
|
|
struct inode *ip;
|
|
struct vnode *vp;
|
|
int inodes_written = 0, only_cleaning;
|
|
int error = 0;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
loop:
|
|
/* start at last (newest) vnode. */
|
|
mutex_enter(&mntvnode_lock);
|
|
TAILQ_FOREACH_REVERSE(vp, &mp->mnt_vnodelist, vnodelst, v_mntvnodes) {
|
|
/*
|
|
* If the vnode that we are about to sync is no longer
|
|
* associated with this mount point, start over.
|
|
*/
|
|
if (vp->v_mount != mp) {
|
|
DLOG((DLOG_VNODE, "lfs_writevnodes: starting over\n"));
|
|
/*
|
|
* After this, pages might be busy
|
|
* due to our own previous putpages.
|
|
* Start actual segment write here to avoid deadlock.
|
|
*/
|
|
mutex_exit(&mntvnode_lock);
|
|
(void)lfs_writeseg(fs, sp);
|
|
goto loop;
|
|
}
|
|
|
|
mutex_enter(&vp->v_interlock);
|
|
if (vp->v_type == VNON || vismarker(vp) ||
|
|
(vp->v_iflag & VI_CLEAN) != 0) {
|
|
mutex_exit(&vp->v_interlock);
|
|
continue;
|
|
}
|
|
|
|
ip = VTOI(vp);
|
|
if ((op == VN_DIROP && !(vp->v_uflag & VU_DIROP)) ||
|
|
(op != VN_DIROP && op != VN_CLEAN &&
|
|
(vp->v_uflag & VU_DIROP))) {
|
|
mutex_exit(&vp->v_interlock);
|
|
vndebug(vp,"dirop");
|
|
continue;
|
|
}
|
|
|
|
if (op == VN_EMPTY && !VPISEMPTY(vp)) {
|
|
mutex_exit(&vp->v_interlock);
|
|
vndebug(vp,"empty");
|
|
continue;
|
|
}
|
|
|
|
if (op == VN_CLEAN && ip->i_number != LFS_IFILE_INUM
|
|
&& vp != fs->lfs_flushvp
|
|
&& !(ip->i_flag & IN_CLEANING)) {
|
|
mutex_exit(&vp->v_interlock);
|
|
vndebug(vp,"cleaning");
|
|
continue;
|
|
}
|
|
|
|
mutex_exit(&mntvnode_lock);
|
|
if (lfs_vref(vp)) {
|
|
vndebug(vp,"vref");
|
|
mutex_enter(&mntvnode_lock);
|
|
continue;
|
|
}
|
|
|
|
only_cleaning = 0;
|
|
/*
|
|
* Write the inode/file if dirty and it's not the IFILE.
|
|
*/
|
|
if ((ip->i_flag & IN_ALLMOD) || !VPISEMPTY(vp)) {
|
|
only_cleaning =
|
|
((ip->i_flag & IN_ALLMOD) == IN_CLEANING);
|
|
|
|
if (ip->i_number != LFS_IFILE_INUM) {
|
|
error = lfs_writefile(fs, sp, vp);
|
|
if (error) {
|
|
lfs_vunref(vp);
|
|
if (error == EAGAIN) {
|
|
/*
|
|
* This error from lfs_putpages
|
|
* indicates we need to drop
|
|
* the segment lock and start
|
|
* over after the cleaner has
|
|
* had a chance to run.
|
|
*/
|
|
lfs_writeinode(fs, sp, ip);
|
|
lfs_writeseg(fs, sp);
|
|
if (!VPISEMPTY(vp) &&
|
|
!WRITEINPROG(vp) &&
|
|
!(ip->i_flag & IN_ALLMOD)) {
|
|
mutex_enter(&lfs_lock);
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
mutex_exit(&lfs_lock);
|
|
}
|
|
mutex_enter(&mntvnode_lock);
|
|
break;
|
|
}
|
|
error = 0; /* XXX not quite right */
|
|
mutex_enter(&mntvnode_lock);
|
|
continue;
|
|
}
|
|
|
|
if (!VPISEMPTY(vp)) {
|
|
if (WRITEINPROG(vp)) {
|
|
ivndebug(vp,"writevnodes/write2");
|
|
} else if (!(ip->i_flag & IN_ALLMOD)) {
|
|
mutex_enter(&lfs_lock);
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
mutex_exit(&lfs_lock);
|
|
}
|
|
}
|
|
(void) lfs_writeinode(fs, sp, ip);
|
|
inodes_written++;
|
|
}
|
|
}
|
|
|
|
if (lfs_clean_vnhead && only_cleaning)
|
|
lfs_vunref_head(vp);
|
|
else
|
|
lfs_vunref(vp);
|
|
|
|
mutex_enter(&mntvnode_lock);
|
|
}
|
|
mutex_exit(&mntvnode_lock);
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Do a checkpoint.
|
|
*/
|
|
int
|
|
lfs_segwrite(struct mount *mp, int flags)
|
|
{
|
|
struct buf *bp;
|
|
struct inode *ip;
|
|
struct lfs *fs;
|
|
struct segment *sp;
|
|
struct vnode *vp;
|
|
SEGUSE *segusep;
|
|
int do_ckp, did_ckp, error;
|
|
unsigned n, segleft, maxseg, sn, i, curseg;
|
|
int writer_set = 0;
|
|
int dirty;
|
|
int redo;
|
|
int um_error;
|
|
int loopcount;
|
|
|
|
fs = VFSTOUFS(mp)->um_lfs;
|
|
ASSERT_MAYBE_SEGLOCK(fs);
|
|
|
|
if (fs->lfs_ronly)
|
|
return EROFS;
|
|
|
|
lfs_imtime(fs);
|
|
|
|
/*
|
|
* Allocate a segment structure and enough space to hold pointers to
|
|
* the maximum possible number of buffers which can be described in a
|
|
* single summary block.
|
|
*/
|
|
do_ckp = LFS_SHOULD_CHECKPOINT(fs, flags);
|
|
|
|
lfs_seglock(fs, flags | (do_ckp ? SEGM_CKP : 0));
|
|
sp = fs->lfs_sp;
|
|
if (sp->seg_flags & (SEGM_CLEAN | SEGM_CKP))
|
|
do_ckp = 1;
|
|
|
|
/*
|
|
* If lfs_flushvp is non-NULL, we are called from lfs_vflush,
|
|
* in which case we have to flush *all* buffers off of this vnode.
|
|
* We don't care about other nodes, but write any non-dirop nodes
|
|
* anyway in anticipation of another getnewvnode().
|
|
*
|
|
* If we're cleaning we only write cleaning and ifile blocks, and
|
|
* no dirops, since otherwise we'd risk corruption in a crash.
|
|
*/
|
|
if (sp->seg_flags & SEGM_CLEAN)
|
|
lfs_writevnodes(fs, mp, sp, VN_CLEAN);
|
|
else if (!(sp->seg_flags & SEGM_FORCE_CKP)) {
|
|
do {
|
|
um_error = lfs_writevnodes(fs, mp, sp, VN_REG);
|
|
|
|
if (do_ckp || fs->lfs_dirops == 0) {
|
|
if (!writer_set) {
|
|
lfs_writer_enter(fs, "lfs writer");
|
|
writer_set = 1;
|
|
}
|
|
error = lfs_writevnodes(fs, mp, sp, VN_DIROP);
|
|
if (um_error == 0)
|
|
um_error = error;
|
|
/* In case writevnodes errored out */
|
|
lfs_flush_dirops(fs);
|
|
((SEGSUM *)(sp->segsum))->ss_flags &= ~(SS_CONT);
|
|
lfs_finalize_fs_seguse(fs);
|
|
}
|
|
if (do_ckp && um_error) {
|
|
lfs_segunlock_relock(fs);
|
|
sp = fs->lfs_sp;
|
|
}
|
|
} while (do_ckp && um_error != 0);
|
|
}
|
|
|
|
/*
|
|
* If we are doing a checkpoint, mark everything since the
|
|
* last checkpoint as no longer ACTIVE.
|
|
*/
|
|
if (do_ckp || fs->lfs_doifile) {
|
|
segleft = fs->lfs_nseg;
|
|
curseg = 0;
|
|
for (n = 0; n < fs->lfs_segtabsz; n++) {
|
|
dirty = 0;
|
|
if (bread(fs->lfs_ivnode,
|
|
fs->lfs_cleansz + n, fs->lfs_bsize, NOCRED, &bp))
|
|
panic("lfs_segwrite: ifile read");
|
|
segusep = (SEGUSE *)bp->b_data;
|
|
maxseg = min(segleft, fs->lfs_sepb);
|
|
for (i = 0; i < maxseg; i++) {
|
|
sn = curseg + i;
|
|
if (sn != dtosn(fs, fs->lfs_curseg) &&
|
|
segusep->su_flags & SEGUSE_ACTIVE) {
|
|
segusep->su_flags &= ~SEGUSE_ACTIVE;
|
|
--fs->lfs_nactive;
|
|
++dirty;
|
|
}
|
|
fs->lfs_suflags[fs->lfs_activesb][sn] =
|
|
segusep->su_flags;
|
|
if (fs->lfs_version > 1)
|
|
++segusep;
|
|
else
|
|
segusep = (SEGUSE *)
|
|
((SEGUSE_V1 *)segusep + 1);
|
|
}
|
|
|
|
if (dirty)
|
|
error = LFS_BWRITE_LOG(bp); /* Ifile */
|
|
else
|
|
brelse(bp, 0);
|
|
segleft -= fs->lfs_sepb;
|
|
curseg += fs->lfs_sepb;
|
|
}
|
|
}
|
|
|
|
KASSERT(LFS_SEGLOCK_HELD(fs));
|
|
|
|
did_ckp = 0;
|
|
if (do_ckp || fs->lfs_doifile) {
|
|
vp = fs->lfs_ivnode;
|
|
vn_lock(vp, LK_EXCLUSIVE);
|
|
loopcount = 0;
|
|
do {
|
|
#ifdef DEBUG
|
|
LFS_ENTER_LOG("pretend", __FILE__, __LINE__, 0, 0, curproc->p_pid);
|
|
#endif
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_flags &= ~LFS_IFDIRTY;
|
|
mutex_exit(&lfs_lock);
|
|
|
|
ip = VTOI(vp);
|
|
|
|
if (LIST_FIRST(&vp->v_dirtyblkhd) != NULL) {
|
|
/*
|
|
* Ifile has no pages, so we don't need
|
|
* to check error return here.
|
|
*/
|
|
lfs_writefile(fs, sp, vp);
|
|
/*
|
|
* Ensure the Ifile takes the current segment
|
|
* into account. See comment in lfs_vflush.
|
|
*/
|
|
lfs_writefile(fs, sp, vp);
|
|
lfs_writefile(fs, sp, vp);
|
|
}
|
|
|
|
if (ip->i_flag & IN_ALLMOD)
|
|
++did_ckp;
|
|
#if 0
|
|
redo = (do_ckp ? lfs_writeinode(fs, sp, ip) : 0);
|
|
#else
|
|
redo = lfs_writeinode(fs, sp, ip);
|
|
#endif
|
|
redo += lfs_writeseg(fs, sp);
|
|
mutex_enter(&lfs_lock);
|
|
redo += (fs->lfs_flags & LFS_IFDIRTY);
|
|
mutex_exit(&lfs_lock);
|
|
#ifdef DEBUG
|
|
if (++loopcount > 2)
|
|
log(LOG_NOTICE, "lfs_segwrite: looping count=%d\n",
|
|
loopcount);
|
|
#endif
|
|
} while (redo && do_ckp);
|
|
|
|
/*
|
|
* Unless we are unmounting, the Ifile may continue to have
|
|
* dirty blocks even after a checkpoint, due to changes to
|
|
* inodes' atime. If we're checkpointing, it's "impossible"
|
|
* for other parts of the Ifile to be dirty after the loop
|
|
* above, since we hold the segment lock.
|
|
*/
|
|
mutex_enter(&vp->v_interlock);
|
|
if (LIST_EMPTY(&vp->v_dirtyblkhd)) {
|
|
LFS_CLR_UINO(ip, IN_ALLMOD);
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
else if (do_ckp) {
|
|
int do_panic = 0;
|
|
LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
|
|
if (bp->b_lblkno < fs->lfs_cleansz +
|
|
fs->lfs_segtabsz &&
|
|
!(bp->b_flags & B_GATHERED)) {
|
|
printf("ifile lbn %ld still dirty (flags %lx)\n",
|
|
(long)bp->b_lblkno,
|
|
(long)bp->b_flags);
|
|
++do_panic;
|
|
}
|
|
}
|
|
if (do_panic)
|
|
panic("dirty blocks");
|
|
}
|
|
#endif
|
|
mutex_exit(&vp->v_interlock);
|
|
VOP_UNLOCK(vp, 0);
|
|
} else {
|
|
(void) lfs_writeseg(fs, sp);
|
|
}
|
|
|
|
/* Note Ifile no longer needs to be written */
|
|
fs->lfs_doifile = 0;
|
|
if (writer_set)
|
|
lfs_writer_leave(fs);
|
|
|
|
/*
|
|
* If we didn't write the Ifile, we didn't really do anything.
|
|
* That means that (1) there is a checkpoint on disk and (2)
|
|
* nothing has changed since it was written.
|
|
*
|
|
* Take the flags off of the segment so that lfs_segunlock
|
|
* doesn't have to write the superblock either.
|
|
*/
|
|
if (do_ckp && !did_ckp) {
|
|
sp->seg_flags &= ~SEGM_CKP;
|
|
}
|
|
|
|
if (lfs_dostats) {
|
|
++lfs_stats.nwrites;
|
|
if (sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.nsync_writes;
|
|
if (sp->seg_flags & SEGM_CKP)
|
|
++lfs_stats.ncheckpoints;
|
|
}
|
|
lfs_segunlock(fs);
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Write the dirty blocks associated with a vnode.
|
|
*/
|
|
int
|
|
lfs_writefile(struct lfs *fs, struct segment *sp, struct vnode *vp)
|
|
{
|
|
struct finfo *fip;
|
|
struct inode *ip;
|
|
int i, frag;
|
|
int error;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
error = 0;
|
|
ip = VTOI(vp);
|
|
|
|
fip = sp->fip;
|
|
lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
|
|
|
|
if (vp->v_uflag & VU_DIROP)
|
|
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
|
|
|
|
if (sp->seg_flags & SEGM_CLEAN) {
|
|
lfs_gather(fs, sp, vp, lfs_match_fake);
|
|
/*
|
|
* For a file being flushed, we need to write *all* blocks.
|
|
* This means writing the cleaning blocks first, and then
|
|
* immediately following with any non-cleaning blocks.
|
|
* The same is true of the Ifile since checkpoints assume
|
|
* that all valid Ifile blocks are written.
|
|
*/
|
|
if (IS_FLUSHING(fs, vp) || vp == fs->lfs_ivnode) {
|
|
lfs_gather(fs, sp, vp, lfs_match_data);
|
|
/*
|
|
* Don't call VOP_PUTPAGES: if we're flushing,
|
|
* we've already done it, and the Ifile doesn't
|
|
* use the page cache.
|
|
*/
|
|
}
|
|
} else {
|
|
lfs_gather(fs, sp, vp, lfs_match_data);
|
|
/*
|
|
* If we're flushing, we've already called VOP_PUTPAGES
|
|
* so don't do it again. Otherwise, we want to write
|
|
* everything we've got.
|
|
*/
|
|
if (!IS_FLUSHING(fs, vp)) {
|
|
mutex_enter(&vp->v_interlock);
|
|
error = VOP_PUTPAGES(vp, 0, 0,
|
|
PGO_CLEANIT | PGO_ALLPAGES | PGO_LOCKED);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* It may not be necessary to write the meta-data blocks at this point,
|
|
* as the roll-forward recovery code should be able to reconstruct the
|
|
* list.
|
|
*
|
|
* We have to write them anyway, though, under two conditions: (1) the
|
|
* vnode is being flushed (for reuse by vinvalbuf); or (2) we are
|
|
* checkpointing.
|
|
*
|
|
* BUT if we are cleaning, we might have indirect blocks that refer to
|
|
* new blocks not being written yet, in addition to fragments being
|
|
* moved out of a cleaned segment. If that is the case, don't
|
|
* write the indirect blocks, or the finfo will have a small block
|
|
* in the middle of it!
|
|
* XXX in this case isn't the inode size wrong too?
|
|
*/
|
|
frag = 0;
|
|
if (sp->seg_flags & SEGM_CLEAN) {
|
|
for (i = 0; i < NDADDR; i++)
|
|
if (ip->i_lfs_fragsize[i] > 0 &&
|
|
ip->i_lfs_fragsize[i] < fs->lfs_bsize)
|
|
++frag;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (frag > 1)
|
|
panic("lfs_writefile: more than one fragment!");
|
|
#endif
|
|
if (IS_FLUSHING(fs, vp) ||
|
|
(frag == 0 && (lfs_writeindir || (sp->seg_flags & SEGM_CKP)))) {
|
|
lfs_gather(fs, sp, vp, lfs_match_indir);
|
|
lfs_gather(fs, sp, vp, lfs_match_dindir);
|
|
lfs_gather(fs, sp, vp, lfs_match_tindir);
|
|
}
|
|
fip = sp->fip;
|
|
lfs_release_finfo(fs);
|
|
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* Update segment accounting to reflect this inode's change of address.
|
|
*/
|
|
static int
|
|
lfs_update_iaddr(struct lfs *fs, struct segment *sp, struct inode *ip, daddr_t ndaddr)
|
|
{
|
|
struct buf *bp;
|
|
daddr_t daddr;
|
|
IFILE *ifp;
|
|
SEGUSE *sup;
|
|
ino_t ino;
|
|
int redo_ifile, error;
|
|
u_int32_t sn;
|
|
|
|
redo_ifile = 0;
|
|
|
|
/*
|
|
* If updating the ifile, update the super-block. Update the disk
|
|
* address and access times for this inode in the ifile.
|
|
*/
|
|
ino = ip->i_number;
|
|
if (ino == LFS_IFILE_INUM) {
|
|
daddr = fs->lfs_idaddr;
|
|
fs->lfs_idaddr = dbtofsb(fs, ndaddr);
|
|
} else {
|
|
LFS_IENTRY(ifp, fs, ino, bp);
|
|
daddr = ifp->if_daddr;
|
|
ifp->if_daddr = dbtofsb(fs, ndaddr);
|
|
error = LFS_BWRITE_LOG(bp); /* Ifile */
|
|
}
|
|
|
|
/*
|
|
* If this is the Ifile and lfs_offset is set to the first block
|
|
* in the segment, dirty the new segment's accounting block
|
|
* (XXX should already be dirty?) and tell the caller to do it again.
|
|
*/
|
|
if (ip->i_number == LFS_IFILE_INUM) {
|
|
sn = dtosn(fs, fs->lfs_offset);
|
|
if (sntod(fs, sn) + btofsb(fs, fs->lfs_sumsize) ==
|
|
fs->lfs_offset) {
|
|
LFS_SEGENTRY(sup, fs, sn, bp);
|
|
KASSERT(bp->b_oflags & BO_DELWRI);
|
|
LFS_WRITESEGENTRY(sup, fs, sn, bp);
|
|
/* fs->lfs_flags |= LFS_IFDIRTY; */
|
|
redo_ifile |= 1;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The inode's last address should not be in the current partial
|
|
* segment, except under exceptional circumstances (lfs_writevnodes
|
|
* had to start over, and in the meantime more blocks were written
|
|
* to a vnode). Both inodes will be accounted to this segment
|
|
* in lfs_writeseg so we need to subtract the earlier version
|
|
* here anyway. The segment count can temporarily dip below
|
|
* zero here; keep track of how many duplicates we have in
|
|
* "dupino" so we don't panic below.
|
|
*/
|
|
if (daddr >= fs->lfs_lastpseg && daddr <= fs->lfs_offset) {
|
|
++sp->ndupino;
|
|
DLOG((DLOG_SEG, "lfs_writeinode: last inode addr in current pseg "
|
|
"(ino %d daddr 0x%llx) ndupino=%d\n", ino,
|
|
(long long)daddr, sp->ndupino));
|
|
}
|
|
/*
|
|
* Account the inode: it no longer belongs to its former segment,
|
|
* though it will not belong to the new segment until that segment
|
|
* is actually written.
|
|
*/
|
|
if (daddr != LFS_UNUSED_DADDR) {
|
|
u_int32_t oldsn = dtosn(fs, daddr);
|
|
#ifdef DIAGNOSTIC
|
|
int ndupino = (sp->seg_number == oldsn) ? sp->ndupino : 0;
|
|
#endif
|
|
LFS_SEGENTRY(sup, fs, oldsn, bp);
|
|
#ifdef DIAGNOSTIC
|
|
if (sup->su_nbytes +
|
|
sizeof (struct ufs1_dinode) * ndupino
|
|
< sizeof (struct ufs1_dinode)) {
|
|
printf("lfs_writeinode: negative bytes "
|
|
"(segment %" PRIu32 " short by %d, "
|
|
"oldsn=%" PRIu32 ", cursn=%" PRIu32
|
|
", daddr=%" PRId64 ", su_nbytes=%u, "
|
|
"ndupino=%d)\n",
|
|
dtosn(fs, daddr),
|
|
(int)sizeof (struct ufs1_dinode) *
|
|
(1 - sp->ndupino) - sup->su_nbytes,
|
|
oldsn, sp->seg_number, daddr,
|
|
(unsigned int)sup->su_nbytes,
|
|
sp->ndupino);
|
|
panic("lfs_writeinode: negative bytes");
|
|
sup->su_nbytes = sizeof (struct ufs1_dinode);
|
|
}
|
|
#endif
|
|
DLOG((DLOG_SU, "seg %d -= %d for ino %d inode\n",
|
|
dtosn(fs, daddr), sizeof (struct ufs1_dinode), ino));
|
|
sup->su_nbytes -= sizeof (struct ufs1_dinode);
|
|
redo_ifile |=
|
|
(ino == LFS_IFILE_INUM && !(bp->b_flags & B_GATHERED));
|
|
if (redo_ifile) {
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_flags |= LFS_IFDIRTY;
|
|
mutex_exit(&lfs_lock);
|
|
/* Don't double-account */
|
|
fs->lfs_idaddr = 0x0;
|
|
}
|
|
LFS_WRITESEGENTRY(sup, fs, oldsn, bp); /* Ifile */
|
|
}
|
|
|
|
return redo_ifile;
|
|
}
|
|
|
|
int
|
|
lfs_writeinode(struct lfs *fs, struct segment *sp, struct inode *ip)
|
|
{
|
|
struct buf *bp;
|
|
struct ufs1_dinode *cdp;
|
|
daddr_t daddr;
|
|
int32_t *daddrp; /* XXX ondisk32 */
|
|
int i, ndx;
|
|
int redo_ifile = 0;
|
|
int gotblk = 0;
|
|
int count;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
if (!(ip->i_flag & IN_ALLMOD))
|
|
return (0);
|
|
|
|
/* Can't write ifile when writer is not set */
|
|
KASSERT(ip->i_number != LFS_IFILE_INUM || fs->lfs_writer > 0 ||
|
|
(sp->seg_flags & SEGM_CLEAN));
|
|
|
|
/*
|
|
* If this is the Ifile, see if writing it here will generate a
|
|
* temporary misaccounting. If it will, do the accounting and write
|
|
* the blocks, postponing the inode write until the accounting is
|
|
* solid.
|
|
*/
|
|
count = 0;
|
|
while (ip->i_number == LFS_IFILE_INUM) {
|
|
int redo = 0;
|
|
|
|
if (sp->idp == NULL && sp->ibp == NULL &&
|
|
(sp->seg_bytes_left < fs->lfs_ibsize ||
|
|
sp->sum_bytes_left < sizeof(int32_t))) {
|
|
(void) lfs_writeseg(fs, sp);
|
|
continue;
|
|
}
|
|
|
|
/* Look for dirty Ifile blocks */
|
|
LIST_FOREACH(bp, &fs->lfs_ivnode->v_dirtyblkhd, b_vnbufs) {
|
|
if (!(bp->b_flags & B_GATHERED)) {
|
|
redo = 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (redo == 0)
|
|
redo = lfs_update_iaddr(fs, sp, ip, 0x0);
|
|
if (redo == 0)
|
|
break;
|
|
|
|
if (sp->idp) {
|
|
sp->idp->di_inumber = 0;
|
|
sp->idp = NULL;
|
|
}
|
|
++count;
|
|
if (count > 2)
|
|
log(LOG_NOTICE, "lfs_writeinode: looping count=%d\n", count);
|
|
lfs_writefile(fs, sp, fs->lfs_ivnode);
|
|
}
|
|
|
|
/* Allocate a new inode block if necessary. */
|
|
if ((ip->i_number != LFS_IFILE_INUM || sp->idp == NULL) &&
|
|
sp->ibp == NULL) {
|
|
/* Allocate a new segment if necessary. */
|
|
if (sp->seg_bytes_left < fs->lfs_ibsize ||
|
|
sp->sum_bytes_left < sizeof(int32_t))
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
/* Get next inode block. */
|
|
daddr = fs->lfs_offset;
|
|
fs->lfs_offset += btofsb(fs, fs->lfs_ibsize);
|
|
sp->ibp = *sp->cbpp++ =
|
|
getblk(VTOI(fs->lfs_ivnode)->i_devvp,
|
|
fsbtodb(fs, daddr), fs->lfs_ibsize, 0, 0);
|
|
gotblk++;
|
|
|
|
/* Zero out inode numbers */
|
|
for (i = 0; i < INOPB(fs); ++i)
|
|
((struct ufs1_dinode *)sp->ibp->b_data)[i].di_inumber =
|
|
0;
|
|
|
|
++sp->start_bpp;
|
|
fs->lfs_avail -= btofsb(fs, fs->lfs_ibsize);
|
|
/* Set remaining space counters. */
|
|
sp->seg_bytes_left -= fs->lfs_ibsize;
|
|
sp->sum_bytes_left -= sizeof(int32_t);
|
|
ndx = fs->lfs_sumsize / sizeof(int32_t) -
|
|
sp->ninodes / INOPB(fs) - 1;
|
|
((int32_t *)(sp->segsum))[ndx] = daddr;
|
|
}
|
|
|
|
/* Check VU_DIROP in case there is a new file with no data blocks */
|
|
if (ITOV(ip)->v_uflag & VU_DIROP)
|
|
((SEGSUM *)(sp->segsum))->ss_flags |= (SS_DIROP|SS_CONT);
|
|
|
|
/* Update the inode times and copy the inode onto the inode page. */
|
|
/* XXX kludge --- don't redirty the ifile just to put times on it */
|
|
if (ip->i_number != LFS_IFILE_INUM)
|
|
LFS_ITIMES(ip, NULL, NULL, NULL);
|
|
|
|
/*
|
|
* If this is the Ifile, and we've already written the Ifile in this
|
|
* partial segment, just overwrite it (it's not on disk yet) and
|
|
* continue.
|
|
*
|
|
* XXX we know that the bp that we get the second time around has
|
|
* already been gathered.
|
|
*/
|
|
if (ip->i_number == LFS_IFILE_INUM && sp->idp) {
|
|
*(sp->idp) = *ip->i_din.ffs1_din;
|
|
ip->i_lfs_osize = ip->i_size;
|
|
return 0;
|
|
}
|
|
|
|
bp = sp->ibp;
|
|
cdp = ((struct ufs1_dinode *)bp->b_data) + (sp->ninodes % INOPB(fs));
|
|
*cdp = *ip->i_din.ffs1_din;
|
|
|
|
/*
|
|
* If cleaning, link counts and directory file sizes cannot change,
|
|
* since those would be directory operations---even if the file
|
|
* we are writing is marked VU_DIROP we should write the old values.
|
|
* If we're not cleaning, of course, update the values so we get
|
|
* current values the next time we clean.
|
|
*/
|
|
if (sp->seg_flags & SEGM_CLEAN) {
|
|
if (ITOV(ip)->v_uflag & VU_DIROP) {
|
|
cdp->di_nlink = ip->i_lfs_odnlink;
|
|
/* if (ITOV(ip)->v_type == VDIR) */
|
|
cdp->di_size = ip->i_lfs_osize;
|
|
}
|
|
} else {
|
|
ip->i_lfs_odnlink = cdp->di_nlink;
|
|
ip->i_lfs_osize = ip->i_size;
|
|
}
|
|
|
|
|
|
/* We can finish the segment accounting for truncations now */
|
|
lfs_finalize_ino_seguse(fs, ip);
|
|
|
|
/*
|
|
* If we are cleaning, ensure that we don't write UNWRITTEN disk
|
|
* addresses to disk; possibly change the on-disk record of
|
|
* the inode size, either by reverting to the previous size
|
|
* (in the case of cleaning) or by verifying the inode's block
|
|
* holdings (in the case of files being allocated as they are being
|
|
* written).
|
|
* XXX By not writing UNWRITTEN blocks, we are making the lfs_avail
|
|
* XXX count on disk wrong by the same amount. We should be
|
|
* XXX able to "borrow" from lfs_avail and return it after the
|
|
* XXX Ifile is written. See also in lfs_writeseg.
|
|
*/
|
|
|
|
/* Check file size based on highest allocated block */
|
|
if (((ip->i_ffs1_mode & IFMT) == IFREG ||
|
|
(ip->i_ffs1_mode & IFMT) == IFDIR) &&
|
|
ip->i_size > ((ip->i_lfs_hiblk + 1) << fs->lfs_bshift)) {
|
|
cdp->di_size = (ip->i_lfs_hiblk + 1) << fs->lfs_bshift;
|
|
DLOG((DLOG_SEG, "lfs_writeinode: ino %d size %" PRId64 " -> %"
|
|
PRId64 "\n", (int)ip->i_number, ip->i_size, cdp->di_size));
|
|
}
|
|
if (ip->i_lfs_effnblks != ip->i_ffs1_blocks) {
|
|
DLOG((DLOG_SEG, "lfs_writeinode: cleansing ino %d eff %d != nblk %d)"
|
|
" at %x\n", ip->i_number, ip->i_lfs_effnblks,
|
|
ip->i_ffs1_blocks, fs->lfs_offset));
|
|
for (daddrp = cdp->di_db; daddrp < cdp->di_ib + NIADDR;
|
|
daddrp++) {
|
|
if (*daddrp == UNWRITTEN) {
|
|
DLOG((DLOG_SEG, "lfs_writeinode: wiping UNWRITTEN\n"));
|
|
*daddrp = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#ifdef DIAGNOSTIC
|
|
/*
|
|
* Check dinode held blocks against dinode size.
|
|
* This should be identical to the check in lfs_vget().
|
|
*/
|
|
for (i = (cdp->di_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
|
|
i < NDADDR; i++) {
|
|
KASSERT(i >= 0);
|
|
if ((cdp->di_mode & IFMT) == IFLNK)
|
|
continue;
|
|
if (((cdp->di_mode & IFMT) == IFBLK ||
|
|
(cdp->di_mode & IFMT) == IFCHR) && i == 0)
|
|
continue;
|
|
if (cdp->di_db[i] != 0) {
|
|
# ifdef DEBUG
|
|
lfs_dump_dinode(cdp);
|
|
# endif
|
|
panic("writing inconsistent inode");
|
|
}
|
|
}
|
|
#endif /* DIAGNOSTIC */
|
|
|
|
if (ip->i_flag & IN_CLEANING)
|
|
LFS_CLR_UINO(ip, IN_CLEANING);
|
|
else {
|
|
/* XXX IN_ALLMOD */
|
|
LFS_CLR_UINO(ip, IN_ACCESSED | IN_ACCESS | IN_CHANGE |
|
|
IN_UPDATE | IN_MODIFY);
|
|
if (ip->i_lfs_effnblks == ip->i_ffs1_blocks)
|
|
LFS_CLR_UINO(ip, IN_MODIFIED);
|
|
else {
|
|
DLOG((DLOG_VNODE, "lfs_writeinode: ino %d: real "
|
|
"blks=%d, eff=%d\n", ip->i_number,
|
|
ip->i_ffs1_blocks, ip->i_lfs_effnblks));
|
|
}
|
|
}
|
|
|
|
if (ip->i_number == LFS_IFILE_INUM) {
|
|
/* We know sp->idp == NULL */
|
|
sp->idp = ((struct ufs1_dinode *)bp->b_data) +
|
|
(sp->ninodes % INOPB(fs));
|
|
|
|
/* Not dirty any more */
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_flags &= ~LFS_IFDIRTY;
|
|
mutex_exit(&lfs_lock);
|
|
}
|
|
|
|
if (gotblk) {
|
|
mutex_enter(&bufcache_lock);
|
|
LFS_LOCK_BUF(bp);
|
|
brelsel(bp, 0);
|
|
mutex_exit(&bufcache_lock);
|
|
}
|
|
|
|
/* Increment inode count in segment summary block. */
|
|
++((SEGSUM *)(sp->segsum))->ss_ninos;
|
|
|
|
/* If this page is full, set flag to allocate a new page. */
|
|
if (++sp->ninodes % INOPB(fs) == 0)
|
|
sp->ibp = NULL;
|
|
|
|
redo_ifile = lfs_update_iaddr(fs, sp, ip, bp->b_blkno);
|
|
|
|
KASSERT(redo_ifile == 0);
|
|
return (redo_ifile);
|
|
}
|
|
|
|
int
|
|
lfs_gatherblock(struct segment *sp, struct buf *bp, kmutex_t *mptr)
|
|
{
|
|
struct lfs *fs;
|
|
int vers;
|
|
int j, blksinblk;
|
|
|
|
ASSERT_SEGLOCK(sp->fs);
|
|
/*
|
|
* If full, finish this segment. We may be doing I/O, so
|
|
* release and reacquire the splbio().
|
|
*/
|
|
#ifdef DIAGNOSTIC
|
|
if (sp->vp == NULL)
|
|
panic ("lfs_gatherblock: Null vp in segment");
|
|
#endif
|
|
fs = sp->fs;
|
|
blksinblk = howmany(bp->b_bcount, fs->lfs_bsize);
|
|
if (sp->sum_bytes_left < sizeof(int32_t) * blksinblk ||
|
|
sp->seg_bytes_left < bp->b_bcount) {
|
|
if (mptr)
|
|
mutex_exit(mptr);
|
|
lfs_updatemeta(sp);
|
|
|
|
vers = sp->fip->fi_version;
|
|
(void) lfs_writeseg(fs, sp);
|
|
|
|
/* Add the current file to the segment summary. */
|
|
lfs_acquire_finfo(fs, VTOI(sp->vp)->i_number, vers);
|
|
|
|
if (mptr)
|
|
mutex_enter(mptr);
|
|
return (1);
|
|
}
|
|
|
|
if (bp->b_flags & B_GATHERED) {
|
|
DLOG((DLOG_SEG, "lfs_gatherblock: already gathered! Ino %d,"
|
|
" lbn %" PRId64 "\n",
|
|
sp->fip->fi_ino, bp->b_lblkno));
|
|
return (0);
|
|
}
|
|
|
|
/* Insert into the buffer list, update the FINFO block. */
|
|
bp->b_flags |= B_GATHERED;
|
|
|
|
*sp->cbpp++ = bp;
|
|
for (j = 0; j < blksinblk; j++) {
|
|
sp->fip->fi_blocks[sp->fip->fi_nblocks++] = bp->b_lblkno + j;
|
|
/* This block's accounting moves from lfs_favail to lfs_avail */
|
|
lfs_deregister_block(sp->vp, bp->b_lblkno + j);
|
|
}
|
|
|
|
sp->sum_bytes_left -= sizeof(int32_t) * blksinblk;
|
|
sp->seg_bytes_left -= bp->b_bcount;
|
|
return (0);
|
|
}
|
|
|
|
int
|
|
lfs_gather(struct lfs *fs, struct segment *sp, struct vnode *vp,
|
|
int (*match)(struct lfs *, struct buf *))
|
|
{
|
|
struct buf *bp, *nbp;
|
|
int count = 0;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
if (vp->v_type == VBLK)
|
|
return 0;
|
|
KASSERT(sp->vp == NULL);
|
|
sp->vp = vp;
|
|
mutex_enter(&bufcache_lock);
|
|
|
|
#ifndef LFS_NO_BACKBUF_HACK
|
|
/* This is a hack to see if ordering the blocks in LFS makes a difference. */
|
|
# define BUF_OFFSET \
|
|
(((char *)&LIST_NEXT(bp, b_vnbufs)) - (char *)bp)
|
|
# define BACK_BUF(BP) \
|
|
((struct buf *)(((char *)(BP)->b_vnbufs.le_prev) - BUF_OFFSET))
|
|
# define BEG_OF_LIST \
|
|
((struct buf *)(((char *)&LIST_FIRST(&vp->v_dirtyblkhd)) - BUF_OFFSET))
|
|
|
|
loop:
|
|
/* Find last buffer. */
|
|
for (bp = LIST_FIRST(&vp->v_dirtyblkhd);
|
|
bp && LIST_NEXT(bp, b_vnbufs) != NULL;
|
|
bp = LIST_NEXT(bp, b_vnbufs))
|
|
/* nothing */;
|
|
for (; bp && bp != BEG_OF_LIST; bp = nbp) {
|
|
nbp = BACK_BUF(bp);
|
|
#else /* LFS_NO_BACKBUF_HACK */
|
|
loop:
|
|
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
|
|
nbp = LIST_NEXT(bp, b_vnbufs);
|
|
#endif /* LFS_NO_BACKBUF_HACK */
|
|
if ((bp->b_cflags & BC_BUSY) != 0 ||
|
|
(bp->b_flags & B_GATHERED) != 0 || !match(fs, bp)) {
|
|
#ifdef DEBUG
|
|
if (vp == fs->lfs_ivnode &&
|
|
(bp->b_cflags & BC_BUSY) != 0 &&
|
|
(bp->b_flags & B_GATHERED) == 0)
|
|
log(LOG_NOTICE, "lfs_gather: ifile lbn %"
|
|
PRId64 " busy (%x) at 0x%x",
|
|
bp->b_lblkno, bp->b_flags,
|
|
(unsigned)fs->lfs_offset);
|
|
#endif
|
|
continue;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
# ifdef LFS_USE_B_INVAL
|
|
if ((bp->b_flags & BC_INVAL) != 0 && bp->b_iodone == NULL) {
|
|
DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
|
|
" is BC_INVAL\n", bp->b_lblkno));
|
|
VOP_PRINT(bp->b_vp);
|
|
}
|
|
# endif /* LFS_USE_B_INVAL */
|
|
if (!(bp->b_oflags & BO_DELWRI))
|
|
panic("lfs_gather: bp not BO_DELWRI");
|
|
if (!(bp->b_cflags & BC_LOCKED)) {
|
|
DLOG((DLOG_SEG, "lfs_gather: lbn %" PRId64
|
|
" blk %" PRId64 " not BC_LOCKED\n",
|
|
bp->b_lblkno,
|
|
dbtofsb(fs, bp->b_blkno)));
|
|
VOP_PRINT(bp->b_vp);
|
|
panic("lfs_gather: bp not BC_LOCKED");
|
|
}
|
|
#endif
|
|
if (lfs_gatherblock(sp, bp, &bufcache_lock)) {
|
|
goto loop;
|
|
}
|
|
count++;
|
|
}
|
|
mutex_exit(&bufcache_lock);
|
|
lfs_updatemeta(sp);
|
|
KASSERT(sp->vp == vp);
|
|
sp->vp = NULL;
|
|
return count;
|
|
}
|
|
|
|
#if DEBUG
|
|
# define DEBUG_OOFF(n) do { \
|
|
if (ooff == 0) { \
|
|
DLOG((DLOG_SEG, "lfs_updatemeta[%d]: warning: writing " \
|
|
"ino %d lbn %" PRId64 " at 0x%" PRIx32 \
|
|
", was 0x0 (or %" PRId64 ")\n", \
|
|
(n), ip->i_number, lbn, ndaddr, daddr)); \
|
|
} \
|
|
} while (0)
|
|
#else
|
|
# define DEBUG_OOFF(n)
|
|
#endif
|
|
|
|
/*
|
|
* Change the given block's address to ndaddr, finding its previous
|
|
* location using ufs_bmaparray().
|
|
*
|
|
* Account for this change in the segment table.
|
|
*
|
|
* called with sp == NULL by roll-forwarding code.
|
|
*/
|
|
void
|
|
lfs_update_single(struct lfs *fs, struct segment *sp,
|
|
struct vnode *vp, daddr_t lbn, int32_t ndaddr, int size)
|
|
{
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
struct indir a[NIADDR + 2], *ap;
|
|
struct inode *ip;
|
|
daddr_t daddr, ooff;
|
|
int num, error;
|
|
int bb, osize, obb;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
KASSERT(sp == NULL || sp->vp == vp);
|
|
ip = VTOI(vp);
|
|
|
|
error = ufs_bmaparray(vp, lbn, &daddr, a, &num, NULL, NULL);
|
|
if (error)
|
|
panic("lfs_updatemeta: ufs_bmaparray returned %d", error);
|
|
|
|
daddr = (daddr_t)((int32_t)daddr); /* XXX ondisk32 */
|
|
KASSERT(daddr <= LFS_MAX_DADDR);
|
|
if (daddr > 0)
|
|
daddr = dbtofsb(fs, daddr);
|
|
|
|
bb = fragstofsb(fs, numfrags(fs, size));
|
|
switch (num) {
|
|
case 0:
|
|
ooff = ip->i_ffs1_db[lbn];
|
|
DEBUG_OOFF(0);
|
|
if (ooff == UNWRITTEN)
|
|
ip->i_ffs1_blocks += bb;
|
|
else {
|
|
/* possible fragment truncation or extension */
|
|
obb = btofsb(fs, ip->i_lfs_fragsize[lbn]);
|
|
ip->i_ffs1_blocks += (bb - obb);
|
|
}
|
|
ip->i_ffs1_db[lbn] = ndaddr;
|
|
break;
|
|
case 1:
|
|
ooff = ip->i_ffs1_ib[a[0].in_off];
|
|
DEBUG_OOFF(1);
|
|
if (ooff == UNWRITTEN)
|
|
ip->i_ffs1_blocks += bb;
|
|
ip->i_ffs1_ib[a[0].in_off] = ndaddr;
|
|
break;
|
|
default:
|
|
ap = &a[num - 1];
|
|
if (bread(vp, ap->in_lbn, fs->lfs_bsize, NOCRED, &bp))
|
|
panic("lfs_updatemeta: bread bno %" PRId64,
|
|
ap->in_lbn);
|
|
|
|
/* XXX ondisk32 */
|
|
ooff = ((int32_t *)bp->b_data)[ap->in_off];
|
|
DEBUG_OOFF(num);
|
|
if (ooff == UNWRITTEN)
|
|
ip->i_ffs1_blocks += bb;
|
|
/* XXX ondisk32 */
|
|
((int32_t *)bp->b_data)[ap->in_off] = ndaddr;
|
|
(void) VOP_BWRITE(bp);
|
|
}
|
|
|
|
KASSERT(ooff == 0 || ooff == UNWRITTEN || ooff == daddr);
|
|
|
|
/* Update hiblk when extending the file */
|
|
if (lbn > ip->i_lfs_hiblk)
|
|
ip->i_lfs_hiblk = lbn;
|
|
|
|
/*
|
|
* Though we'd rather it couldn't, this *can* happen right now
|
|
* if cleaning blocks and regular blocks coexist.
|
|
*/
|
|
/* KASSERT(daddr < fs->lfs_lastpseg || daddr > ndaddr); */
|
|
|
|
/*
|
|
* Update segment usage information, based on old size
|
|
* and location.
|
|
*/
|
|
if (daddr > 0) {
|
|
u_int32_t oldsn = dtosn(fs, daddr);
|
|
#ifdef DIAGNOSTIC
|
|
int ndupino;
|
|
|
|
if (sp && sp->seg_number == oldsn) {
|
|
ndupino = sp->ndupino;
|
|
} else {
|
|
ndupino = 0;
|
|
}
|
|
#endif
|
|
KASSERT(oldsn < fs->lfs_nseg);
|
|
if (lbn >= 0 && lbn < NDADDR)
|
|
osize = ip->i_lfs_fragsize[lbn];
|
|
else
|
|
osize = fs->lfs_bsize;
|
|
LFS_SEGENTRY(sup, fs, oldsn, bp);
|
|
#ifdef DIAGNOSTIC
|
|
if (sup->su_nbytes + sizeof (struct ufs1_dinode) * ndupino
|
|
< osize) {
|
|
printf("lfs_updatemeta: negative bytes "
|
|
"(segment %" PRIu32 " short by %" PRId64
|
|
")\n", dtosn(fs, daddr),
|
|
(int64_t)osize -
|
|
(sizeof (struct ufs1_dinode) * ndupino +
|
|
sup->su_nbytes));
|
|
printf("lfs_updatemeta: ino %llu, lbn %" PRId64
|
|
", addr = 0x%" PRIx64 "\n",
|
|
(unsigned long long)ip->i_number, lbn, daddr);
|
|
printf("lfs_updatemeta: ndupino=%d\n", ndupino);
|
|
panic("lfs_updatemeta: negative bytes");
|
|
sup->su_nbytes = osize -
|
|
sizeof (struct ufs1_dinode) * ndupino;
|
|
}
|
|
#endif
|
|
DLOG((DLOG_SU, "seg %" PRIu32 " -= %d for ino %d lbn %" PRId64
|
|
" db 0x%" PRIx64 "\n",
|
|
dtosn(fs, daddr), osize,
|
|
ip->i_number, lbn, daddr));
|
|
sup->su_nbytes -= osize;
|
|
if (!(bp->b_flags & B_GATHERED)) {
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_flags |= LFS_IFDIRTY;
|
|
mutex_exit(&lfs_lock);
|
|
}
|
|
LFS_WRITESEGENTRY(sup, fs, oldsn, bp);
|
|
}
|
|
/*
|
|
* Now that this block has a new address, and its old
|
|
* segment no longer owns it, we can forget about its
|
|
* old size.
|
|
*/
|
|
if (lbn >= 0 && lbn < NDADDR)
|
|
ip->i_lfs_fragsize[lbn] = size;
|
|
}
|
|
|
|
/*
|
|
* Update the metadata that points to the blocks listed in the FINFO
|
|
* array.
|
|
*/
|
|
void
|
|
lfs_updatemeta(struct segment *sp)
|
|
{
|
|
struct buf *sbp;
|
|
struct lfs *fs;
|
|
struct vnode *vp;
|
|
daddr_t lbn;
|
|
int i, nblocks, num;
|
|
int bb;
|
|
int bytesleft, size;
|
|
|
|
ASSERT_SEGLOCK(sp->fs);
|
|
vp = sp->vp;
|
|
nblocks = &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp;
|
|
KASSERT(nblocks >= 0);
|
|
KASSERT(vp != NULL);
|
|
if (nblocks == 0)
|
|
return;
|
|
|
|
/*
|
|
* This count may be high due to oversize blocks from lfs_gop_write.
|
|
* Correct for this. (XXX we should be able to keep track of these.)
|
|
*/
|
|
fs = sp->fs;
|
|
for (i = 0; i < nblocks; i++) {
|
|
if (sp->start_bpp[i] == NULL) {
|
|
DLOG((DLOG_SEG, "lfs_updatemeta: nblocks = %d, not %d\n", i, nblocks));
|
|
nblocks = i;
|
|
break;
|
|
}
|
|
num = howmany(sp->start_bpp[i]->b_bcount, fs->lfs_bsize);
|
|
KASSERT(sp->start_bpp[i]->b_lblkno >= 0 || num == 1);
|
|
nblocks -= num - 1;
|
|
}
|
|
|
|
KASSERT(vp->v_type == VREG ||
|
|
nblocks == &sp->fip->fi_blocks[sp->fip->fi_nblocks] - sp->start_lbp);
|
|
KASSERT(nblocks == sp->cbpp - sp->start_bpp);
|
|
|
|
/*
|
|
* Sort the blocks.
|
|
*
|
|
* We have to sort even if the blocks come from the
|
|
* cleaner, because there might be other pending blocks on the
|
|
* same inode...and if we don't sort, and there are fragments
|
|
* present, blocks may be written in the wrong place.
|
|
*/
|
|
lfs_shellsort(sp->start_bpp, sp->start_lbp, nblocks, fs->lfs_bsize);
|
|
|
|
/*
|
|
* Record the length of the last block in case it's a fragment.
|
|
* If there are indirect blocks present, they sort last. An
|
|
* indirect block will be lfs_bsize and its presence indicates
|
|
* that you cannot have fragments.
|
|
*
|
|
* XXX This last is a lie. A cleaned fragment can coexist with
|
|
* XXX a later indirect block. This will continue to be
|
|
* XXX true until lfs_markv is fixed to do everything with
|
|
* XXX fake blocks (including fake inodes and fake indirect blocks).
|
|
*/
|
|
sp->fip->fi_lastlength = ((sp->start_bpp[nblocks - 1]->b_bcount - 1) &
|
|
fs->lfs_bmask) + 1;
|
|
|
|
/*
|
|
* Assign disk addresses, and update references to the logical
|
|
* block and the segment usage information.
|
|
*/
|
|
for (i = nblocks; i--; ++sp->start_bpp) {
|
|
sbp = *sp->start_bpp;
|
|
lbn = *sp->start_lbp;
|
|
KASSERT(sbp->b_lblkno == lbn);
|
|
|
|
sbp->b_blkno = fsbtodb(fs, fs->lfs_offset);
|
|
|
|
/*
|
|
* If we write a frag in the wrong place, the cleaner won't
|
|
* be able to correctly identify its size later, and the
|
|
* segment will be uncleanable. (Even worse, it will assume
|
|
* that the indirect block that actually ends the list
|
|
* is of a smaller size!)
|
|
*/
|
|
if ((sbp->b_bcount & fs->lfs_bmask) && i != 0)
|
|
panic("lfs_updatemeta: fragment is not last block");
|
|
|
|
/*
|
|
* For each subblock in this possibly oversized block,
|
|
* update its address on disk.
|
|
*/
|
|
KASSERT(lbn >= 0 || sbp->b_bcount == fs->lfs_bsize);
|
|
KASSERT(vp == sbp->b_vp);
|
|
for (bytesleft = sbp->b_bcount; bytesleft > 0;
|
|
bytesleft -= fs->lfs_bsize) {
|
|
size = MIN(bytesleft, fs->lfs_bsize);
|
|
bb = fragstofsb(fs, numfrags(fs, size));
|
|
lbn = *sp->start_lbp++;
|
|
lfs_update_single(fs, sp, sp->vp, lbn, fs->lfs_offset,
|
|
size);
|
|
fs->lfs_offset += bb;
|
|
}
|
|
|
|
}
|
|
|
|
/* This inode has been modified */
|
|
LFS_SET_UINO(VTOI(vp), IN_MODIFIED);
|
|
}
|
|
|
|
/*
|
|
* Move lfs_offset to a segment earlier than sn.
|
|
*/
|
|
int
|
|
lfs_rewind(struct lfs *fs, int newsn)
|
|
{
|
|
int sn, osn, isdirty;
|
|
struct buf *bp;
|
|
SEGUSE *sup;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
|
|
osn = dtosn(fs, fs->lfs_offset);
|
|
if (osn < newsn)
|
|
return 0;
|
|
|
|
/* lfs_avail eats the remaining space in this segment */
|
|
fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset - fs->lfs_curseg);
|
|
|
|
/* Find a low-numbered segment */
|
|
for (sn = 0; sn < fs->lfs_nseg; ++sn) {
|
|
LFS_SEGENTRY(sup, fs, sn, bp);
|
|
isdirty = sup->su_flags & SEGUSE_DIRTY;
|
|
brelse(bp, 0);
|
|
|
|
if (!isdirty)
|
|
break;
|
|
}
|
|
if (sn == fs->lfs_nseg)
|
|
panic("lfs_rewind: no clean segments");
|
|
if (newsn >= 0 && sn >= newsn)
|
|
return ENOENT;
|
|
fs->lfs_nextseg = sn;
|
|
lfs_newseg(fs);
|
|
fs->lfs_offset = fs->lfs_curseg;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Start a new partial segment.
|
|
*
|
|
* Return 1 when we entered to a new segment.
|
|
* Otherwise, return 0.
|
|
*/
|
|
int
|
|
lfs_initseg(struct lfs *fs)
|
|
{
|
|
struct segment *sp = fs->lfs_sp;
|
|
SEGSUM *ssp;
|
|
struct buf *sbp; /* buffer for SEGSUM */
|
|
int repeat = 0; /* return value */
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
/* Advance to the next segment. */
|
|
if (!LFS_PARTIAL_FITS(fs)) {
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
|
|
/* lfs_avail eats the remaining space */
|
|
fs->lfs_avail -= fs->lfs_fsbpseg - (fs->lfs_offset -
|
|
fs->lfs_curseg);
|
|
/* Wake up any cleaning procs waiting on this file system. */
|
|
lfs_wakeup_cleaner(fs);
|
|
lfs_newseg(fs);
|
|
repeat = 1;
|
|
fs->lfs_offset = fs->lfs_curseg;
|
|
|
|
sp->seg_number = dtosn(fs, fs->lfs_curseg);
|
|
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg);
|
|
|
|
/*
|
|
* If the segment contains a superblock, update the offset
|
|
* and summary address to skip over it.
|
|
*/
|
|
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
|
|
if (sup->su_flags & SEGUSE_SUPERBLOCK) {
|
|
fs->lfs_offset += btofsb(fs, LFS_SBPAD);
|
|
sp->seg_bytes_left -= LFS_SBPAD;
|
|
}
|
|
brelse(bp, 0);
|
|
/* Segment zero could also contain the labelpad */
|
|
if (fs->lfs_version > 1 && sp->seg_number == 0 &&
|
|
fs->lfs_start < btofsb(fs, LFS_LABELPAD)) {
|
|
fs->lfs_offset +=
|
|
btofsb(fs, LFS_LABELPAD) - fs->lfs_start;
|
|
sp->seg_bytes_left -=
|
|
LFS_LABELPAD - fsbtob(fs, fs->lfs_start);
|
|
}
|
|
} else {
|
|
sp->seg_number = dtosn(fs, fs->lfs_curseg);
|
|
sp->seg_bytes_left = fsbtob(fs, fs->lfs_fsbpseg -
|
|
(fs->lfs_offset - fs->lfs_curseg));
|
|
}
|
|
fs->lfs_lastpseg = fs->lfs_offset;
|
|
|
|
/* Record first address of this partial segment */
|
|
if (sp->seg_flags & SEGM_CLEAN) {
|
|
fs->lfs_cleanint[fs->lfs_cleanind] = fs->lfs_offset;
|
|
if (++fs->lfs_cleanind >= LFS_MAX_CLEANIND) {
|
|
/* "1" is the artificial inc in lfs_seglock */
|
|
mutex_enter(&lfs_lock);
|
|
while (fs->lfs_iocount > 1) {
|
|
mtsleep(&fs->lfs_iocount, PRIBIO + 1,
|
|
"lfs_initseg", 0, &lfs_lock);
|
|
}
|
|
mutex_exit(&lfs_lock);
|
|
fs->lfs_cleanind = 0;
|
|
}
|
|
}
|
|
|
|
sp->fs = fs;
|
|
sp->ibp = NULL;
|
|
sp->idp = NULL;
|
|
sp->ninodes = 0;
|
|
sp->ndupino = 0;
|
|
|
|
sp->cbpp = sp->bpp;
|
|
|
|
/* Get a new buffer for SEGSUM */
|
|
sbp = lfs_newbuf(fs, VTOI(fs->lfs_ivnode)->i_devvp,
|
|
fsbtodb(fs, fs->lfs_offset), fs->lfs_sumsize, LFS_NB_SUMMARY);
|
|
|
|
/* ... and enter it into the buffer list. */
|
|
*sp->cbpp = sbp;
|
|
sp->cbpp++;
|
|
fs->lfs_offset += btofsb(fs, fs->lfs_sumsize);
|
|
|
|
sp->start_bpp = sp->cbpp;
|
|
|
|
/* Set point to SEGSUM, initialize it. */
|
|
ssp = sp->segsum = sbp->b_data;
|
|
memset(ssp, 0, fs->lfs_sumsize);
|
|
ssp->ss_next = fs->lfs_nextseg;
|
|
ssp->ss_nfinfo = ssp->ss_ninos = 0;
|
|
ssp->ss_magic = SS_MAGIC;
|
|
|
|
/* Set pointer to first FINFO, initialize it. */
|
|
sp->fip = (struct finfo *)((char *)sp->segsum + SEGSUM_SIZE(fs));
|
|
sp->fip->fi_nblocks = 0;
|
|
sp->start_lbp = &sp->fip->fi_blocks[0];
|
|
sp->fip->fi_lastlength = 0;
|
|
|
|
sp->seg_bytes_left -= fs->lfs_sumsize;
|
|
sp->sum_bytes_left = fs->lfs_sumsize - SEGSUM_SIZE(fs);
|
|
|
|
return (repeat);
|
|
}
|
|
|
|
/*
|
|
* Remove SEGUSE_INVAL from all segments.
|
|
*/
|
|
void
|
|
lfs_unset_inval_all(struct lfs *fs)
|
|
{
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
int i;
|
|
|
|
for (i = 0; i < fs->lfs_nseg; i++) {
|
|
LFS_SEGENTRY(sup, fs, i, bp);
|
|
if (sup->su_flags & SEGUSE_INVAL) {
|
|
sup->su_flags &= ~SEGUSE_INVAL;
|
|
LFS_WRITESEGENTRY(sup, fs, i, bp);
|
|
} else
|
|
brelse(bp, 0);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return the next segment to write.
|
|
*/
|
|
void
|
|
lfs_newseg(struct lfs *fs)
|
|
{
|
|
CLEANERINFO *cip;
|
|
SEGUSE *sup;
|
|
struct buf *bp;
|
|
int curseg, isdirty, sn, skip_inval;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
|
|
/* Honor LFCNWRAPSTOP */
|
|
mutex_enter(&lfs_lock);
|
|
while (fs->lfs_nextseg < fs->lfs_curseg && fs->lfs_nowrap) {
|
|
if (fs->lfs_wrappass) {
|
|
log(LOG_NOTICE, "%s: wrappass=%d\n",
|
|
fs->lfs_fsmnt, fs->lfs_wrappass);
|
|
fs->lfs_wrappass = 0;
|
|
break;
|
|
}
|
|
fs->lfs_wrapstatus = LFS_WRAP_WAITING;
|
|
wakeup(&fs->lfs_nowrap);
|
|
log(LOG_NOTICE, "%s: waiting at log wrap\n", fs->lfs_fsmnt);
|
|
mtsleep(&fs->lfs_wrappass, PVFS, "newseg", 10 * hz,
|
|
&lfs_lock);
|
|
}
|
|
fs->lfs_wrapstatus = LFS_WRAP_GOING;
|
|
mutex_exit(&lfs_lock);
|
|
|
|
LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
|
|
DLOG((DLOG_SU, "lfs_newseg: seg %d := 0 in newseg\n",
|
|
dtosn(fs, fs->lfs_nextseg)));
|
|
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
|
|
sup->su_nbytes = 0;
|
|
sup->su_nsums = 0;
|
|
sup->su_ninos = 0;
|
|
LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_nextseg), bp);
|
|
|
|
LFS_CLEANERINFO(cip, fs, bp);
|
|
--cip->clean;
|
|
++cip->dirty;
|
|
fs->lfs_nclean = cip->clean;
|
|
LFS_SYNC_CLEANERINFO(cip, fs, bp, 1);
|
|
|
|
fs->lfs_lastseg = fs->lfs_curseg;
|
|
fs->lfs_curseg = fs->lfs_nextseg;
|
|
skip_inval = 1;
|
|
for (sn = curseg = dtosn(fs, fs->lfs_curseg) + fs->lfs_interleave;;) {
|
|
sn = (sn + 1) % fs->lfs_nseg;
|
|
|
|
if (sn == curseg) {
|
|
if (skip_inval)
|
|
skip_inval = 0;
|
|
else
|
|
panic("lfs_nextseg: no clean segments");
|
|
}
|
|
LFS_SEGENTRY(sup, fs, sn, bp);
|
|
isdirty = sup->su_flags & (SEGUSE_DIRTY | (skip_inval ? SEGUSE_INVAL : 0));
|
|
/* Check SEGUSE_EMPTY as we go along */
|
|
if (isdirty && sup->su_nbytes == 0 &&
|
|
!(sup->su_flags & SEGUSE_EMPTY))
|
|
LFS_WRITESEGENTRY(sup, fs, sn, bp);
|
|
else
|
|
brelse(bp, 0);
|
|
|
|
if (!isdirty)
|
|
break;
|
|
}
|
|
if (skip_inval == 0)
|
|
lfs_unset_inval_all(fs);
|
|
|
|
++fs->lfs_nactive;
|
|
fs->lfs_nextseg = sntod(fs, sn);
|
|
if (lfs_dostats) {
|
|
++lfs_stats.segsused;
|
|
}
|
|
}
|
|
|
|
static struct buf *
|
|
lfs_newclusterbuf(struct lfs *fs, struct vnode *vp, daddr_t addr,
|
|
int n)
|
|
{
|
|
struct lfs_cluster *cl;
|
|
struct buf **bpp, *bp;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
cl = (struct lfs_cluster *)pool_get(&fs->lfs_clpool, PR_WAITOK);
|
|
bpp = (struct buf **)pool_get(&fs->lfs_bpppool, PR_WAITOK);
|
|
memset(cl, 0, sizeof(*cl));
|
|
cl->fs = fs;
|
|
cl->bpp = bpp;
|
|
cl->bufcount = 0;
|
|
cl->bufsize = 0;
|
|
|
|
/* If this segment is being written synchronously, note that */
|
|
if (fs->lfs_sp->seg_flags & SEGM_SYNC) {
|
|
cl->flags |= LFS_CL_SYNC;
|
|
cl->seg = fs->lfs_sp;
|
|
++cl->seg->seg_iocount;
|
|
}
|
|
|
|
/* Get an empty buffer header, or maybe one with something on it */
|
|
bp = getiobuf(vp, true);
|
|
bp->b_dev = NODEV;
|
|
bp->b_blkno = bp->b_lblkno = addr;
|
|
bp->b_iodone = lfs_cluster_callback;
|
|
bp->b_private = cl;
|
|
|
|
return bp;
|
|
}
|
|
|
|
int
|
|
lfs_writeseg(struct lfs *fs, struct segment *sp)
|
|
{
|
|
struct buf **bpp, *bp, *cbp, *newbp, *unbusybp;
|
|
SEGUSE *sup;
|
|
SEGSUM *ssp;
|
|
int i;
|
|
int do_again, nblocks, byteoffset;
|
|
size_t el_size;
|
|
struct lfs_cluster *cl;
|
|
u_short ninos;
|
|
struct vnode *devvp;
|
|
char *p = NULL;
|
|
struct vnode *vp;
|
|
int32_t *daddrp; /* XXX ondisk32 */
|
|
int changed;
|
|
u_int32_t sum;
|
|
#ifdef DEBUG
|
|
FINFO *fip;
|
|
int findex;
|
|
#endif
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
|
|
ssp = (SEGSUM *)sp->segsum;
|
|
|
|
/*
|
|
* If there are no buffers other than the segment summary to write,
|
|
* don't do anything. If we are the end of a dirop sequence, however,
|
|
* write the empty segment summary anyway, to help out the
|
|
* roll-forward agent.
|
|
*/
|
|
if ((nblocks = sp->cbpp - sp->bpp) == 1) {
|
|
if ((ssp->ss_flags & (SS_DIROP | SS_CONT)) != SS_DIROP)
|
|
return 0;
|
|
}
|
|
|
|
/* Note if partial segment is being written by the cleaner */
|
|
if (sp->seg_flags & SEGM_CLEAN)
|
|
ssp->ss_flags |= SS_CLEAN;
|
|
|
|
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
|
|
|
|
/* Update the segment usage information. */
|
|
LFS_SEGENTRY(sup, fs, sp->seg_number, bp);
|
|
|
|
/* Loop through all blocks, except the segment summary. */
|
|
for (bpp = sp->bpp; ++bpp < sp->cbpp; ) {
|
|
if ((*bpp)->b_vp != devvp) {
|
|
sup->su_nbytes += (*bpp)->b_bcount;
|
|
DLOG((DLOG_SU, "seg %" PRIu32 " += %ld for ino %d"
|
|
" lbn %" PRId64 " db 0x%" PRIx64 "\n",
|
|
sp->seg_number, (*bpp)->b_bcount,
|
|
VTOI((*bpp)->b_vp)->i_number, (*bpp)->b_lblkno,
|
|
(*bpp)->b_blkno));
|
|
}
|
|
}
|
|
|
|
#ifdef DEBUG
|
|
/* Check for zero-length and zero-version FINFO entries. */
|
|
fip = (struct finfo *)((char *)ssp + SEGSUM_SIZE(fs));
|
|
for (findex = 0; findex < ssp->ss_nfinfo; findex++) {
|
|
KDASSERT(fip->fi_nblocks > 0);
|
|
KDASSERT(fip->fi_version > 0);
|
|
fip = (FINFO *)((char *)fip + FINFOSIZE +
|
|
sizeof(int32_t) * fip->fi_nblocks);
|
|
}
|
|
#endif /* DEBUG */
|
|
|
|
ninos = (ssp->ss_ninos + INOPB(fs) - 1) / INOPB(fs);
|
|
DLOG((DLOG_SU, "seg %d += %d for %d inodes\n",
|
|
sp->seg_number, ssp->ss_ninos * sizeof (struct ufs1_dinode),
|
|
ssp->ss_ninos));
|
|
sup->su_nbytes += ssp->ss_ninos * sizeof (struct ufs1_dinode);
|
|
/* sup->su_nbytes += fs->lfs_sumsize; */
|
|
if (fs->lfs_version == 1)
|
|
sup->su_olastmod = time_second;
|
|
else
|
|
sup->su_lastmod = time_second;
|
|
sup->su_ninos += ninos;
|
|
++sup->su_nsums;
|
|
fs->lfs_avail -= btofsb(fs, fs->lfs_sumsize);
|
|
|
|
do_again = !(bp->b_flags & B_GATHERED);
|
|
LFS_WRITESEGENTRY(sup, fs, sp->seg_number, bp); /* Ifile */
|
|
|
|
/*
|
|
* Mark blocks B_BUSY, to prevent then from being changed between
|
|
* the checksum computation and the actual write.
|
|
*
|
|
* If we are cleaning, check indirect blocks for UNWRITTEN, and if
|
|
* there are any, replace them with copies that have UNASSIGNED
|
|
* instead.
|
|
*/
|
|
mutex_enter(&bufcache_lock);
|
|
for (bpp = sp->bpp, i = nblocks - 1; i--;) {
|
|
++bpp;
|
|
bp = *bpp;
|
|
if (bp->b_iodone != NULL) { /* UBC or malloced buffer */
|
|
bp->b_cflags |= BC_BUSY;
|
|
continue;
|
|
}
|
|
|
|
while (bp->b_cflags & BC_BUSY) {
|
|
DLOG((DLOG_SEG, "lfs_writeseg: avoiding potential"
|
|
" data summary corruption for ino %d, lbn %"
|
|
PRId64 "\n",
|
|
VTOI(bp->b_vp)->i_number, bp->b_lblkno));
|
|
bp->b_cflags |= BC_WANTED;
|
|
cv_wait(&bp->b_busy, &bufcache_lock);
|
|
}
|
|
bp->b_cflags |= BC_BUSY;
|
|
mutex_exit(&bufcache_lock);
|
|
unbusybp = NULL;
|
|
|
|
/*
|
|
* Check and replace indirect block UNWRITTEN bogosity.
|
|
* XXX See comment in lfs_writefile.
|
|
*/
|
|
if (bp->b_lblkno < 0 && bp->b_vp != devvp && bp->b_vp &&
|
|
VTOI(bp->b_vp)->i_ffs1_blocks !=
|
|
VTOI(bp->b_vp)->i_lfs_effnblks) {
|
|
DLOG((DLOG_VNODE, "lfs_writeseg: cleansing ino %d (%d != %d)\n",
|
|
VTOI(bp->b_vp)->i_number,
|
|
VTOI(bp->b_vp)->i_lfs_effnblks,
|
|
VTOI(bp->b_vp)->i_ffs1_blocks));
|
|
/* Make a copy we'll make changes to */
|
|
newbp = lfs_newbuf(fs, bp->b_vp, bp->b_lblkno,
|
|
bp->b_bcount, LFS_NB_IBLOCK);
|
|
newbp->b_blkno = bp->b_blkno;
|
|
memcpy(newbp->b_data, bp->b_data,
|
|
newbp->b_bcount);
|
|
|
|
changed = 0;
|
|
/* XXX ondisk32 */
|
|
for (daddrp = (int32_t *)(newbp->b_data);
|
|
daddrp < (int32_t *)((char *)newbp->b_data +
|
|
newbp->b_bcount); daddrp++) {
|
|
if (*daddrp == UNWRITTEN) {
|
|
++changed;
|
|
*daddrp = 0;
|
|
}
|
|
}
|
|
/*
|
|
* Get rid of the old buffer. Don't mark it clean,
|
|
* though, if it still has dirty data on it.
|
|
*/
|
|
if (changed) {
|
|
DLOG((DLOG_SEG, "lfs_writeseg: replacing UNWRITTEN(%d):"
|
|
" bp = %p newbp = %p\n", changed, bp,
|
|
newbp));
|
|
*bpp = newbp;
|
|
bp->b_flags &= ~B_GATHERED;
|
|
bp->b_error = 0;
|
|
if (bp->b_iodone != NULL) {
|
|
DLOG((DLOG_SEG, "lfs_writeseg: "
|
|
"indir bp should not be B_CALL\n"));
|
|
biodone(bp);
|
|
bp = NULL;
|
|
} else {
|
|
/* Still on free list, leave it there */
|
|
unbusybp = bp;
|
|
/*
|
|
* We have to re-decrement lfs_avail
|
|
* since this block is going to come
|
|
* back around to us in the next
|
|
* segment.
|
|
*/
|
|
fs->lfs_avail -=
|
|
btofsb(fs, bp->b_bcount);
|
|
}
|
|
} else {
|
|
lfs_freebuf(fs, newbp);
|
|
}
|
|
}
|
|
mutex_enter(&bufcache_lock);
|
|
if (unbusybp != NULL) {
|
|
unbusybp->b_cflags &= ~BC_BUSY;
|
|
if (unbusybp->b_cflags & BC_WANTED)
|
|
cv_broadcast(&bp->b_busy);
|
|
}
|
|
}
|
|
mutex_exit(&bufcache_lock);
|
|
|
|
/*
|
|
* Compute checksum across data and then across summary; the first
|
|
* block (the summary block) is skipped. Set the create time here
|
|
* so that it's guaranteed to be later than the inode mod times.
|
|
*/
|
|
sum = 0;
|
|
if (fs->lfs_version == 1)
|
|
el_size = sizeof(u_long);
|
|
else
|
|
el_size = sizeof(u_int32_t);
|
|
for (bpp = sp->bpp, i = nblocks - 1; i--; ) {
|
|
++bpp;
|
|
/* Loop through gop_write cluster blocks */
|
|
for (byteoffset = 0; byteoffset < (*bpp)->b_bcount;
|
|
byteoffset += fs->lfs_bsize) {
|
|
#ifdef LFS_USE_B_INVAL
|
|
if ((*bpp)->b_cflags & BC_INVAL) != 0 &&
|
|
(*bpp)->b_iodone != NULL) {
|
|
if (copyin((void *)(*bpp)->b_saveaddr +
|
|
byteoffset, dp, el_size)) {
|
|
panic("lfs_writeseg: copyin failed [1]:"
|
|
" ino %d blk %" PRId64,
|
|
VTOI((*bpp)->b_vp)->i_number,
|
|
(*bpp)->b_lblkno);
|
|
}
|
|
} else
|
|
#endif /* LFS_USE_B_INVAL */
|
|
{
|
|
sum = lfs_cksum_part((char *)
|
|
(*bpp)->b_data + byteoffset, el_size, sum);
|
|
}
|
|
}
|
|
}
|
|
if (fs->lfs_version == 1)
|
|
ssp->ss_ocreate = time_second;
|
|
else {
|
|
ssp->ss_create = time_second;
|
|
ssp->ss_serial = ++fs->lfs_serial;
|
|
ssp->ss_ident = fs->lfs_ident;
|
|
}
|
|
ssp->ss_datasum = lfs_cksum_fold(sum);
|
|
ssp->ss_sumsum = cksum(&ssp->ss_datasum,
|
|
fs->lfs_sumsize - sizeof(ssp->ss_sumsum));
|
|
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_bfree -= (btofsb(fs, ninos * fs->lfs_ibsize) +
|
|
btofsb(fs, fs->lfs_sumsize));
|
|
fs->lfs_dmeta += (btofsb(fs, ninos * fs->lfs_ibsize) +
|
|
btofsb(fs, fs->lfs_sumsize));
|
|
mutex_exit(&lfs_lock);
|
|
|
|
/*
|
|
* When we simply write the blocks we lose a rotation for every block
|
|
* written. To avoid this problem, we cluster the buffers into a
|
|
* chunk and write the chunk. MAXPHYS is the largest size I/O
|
|
* devices can handle, use that for the size of the chunks.
|
|
*
|
|
* Blocks that are already clusters (from GOP_WRITE), however, we
|
|
* don't bother to copy into other clusters.
|
|
*/
|
|
|
|
#define CHUNKSIZE MAXPHYS
|
|
|
|
if (devvp == NULL)
|
|
panic("devvp is NULL");
|
|
for (bpp = sp->bpp, i = nblocks; i;) {
|
|
cbp = lfs_newclusterbuf(fs, devvp, (*bpp)->b_blkno, i);
|
|
cl = cbp->b_private;
|
|
|
|
cbp->b_flags |= B_ASYNC;
|
|
cbp->b_cflags |= BC_BUSY;
|
|
cbp->b_bcount = 0;
|
|
|
|
#if defined(DEBUG) && defined(DIAGNOSTIC)
|
|
if (bpp - sp->bpp > (fs->lfs_sumsize - SEGSUM_SIZE(fs))
|
|
/ sizeof(int32_t)) {
|
|
panic("lfs_writeseg: real bpp overwrite");
|
|
}
|
|
if (bpp - sp->bpp > segsize(fs) / fs->lfs_fsize) {
|
|
panic("lfs_writeseg: theoretical bpp overwrite");
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Construct the cluster.
|
|
*/
|
|
mutex_enter(&lfs_lock);
|
|
++fs->lfs_iocount;
|
|
mutex_exit(&lfs_lock);
|
|
while (i && cbp->b_bcount < CHUNKSIZE) {
|
|
bp = *bpp;
|
|
|
|
if (bp->b_bcount > (CHUNKSIZE - cbp->b_bcount))
|
|
break;
|
|
if (cbp->b_bcount > 0 && !(cl->flags & LFS_CL_MALLOC))
|
|
break;
|
|
|
|
/* Clusters from GOP_WRITE are expedited */
|
|
if (bp->b_bcount > fs->lfs_bsize) {
|
|
if (cbp->b_bcount > 0)
|
|
/* Put in its own buffer */
|
|
break;
|
|
else {
|
|
cbp->b_data = bp->b_data;
|
|
}
|
|
} else if (cbp->b_bcount == 0) {
|
|
p = cbp->b_data = lfs_malloc(fs, CHUNKSIZE,
|
|
LFS_NB_CLUSTER);
|
|
cl->flags |= LFS_CL_MALLOC;
|
|
}
|
|
#ifdef DIAGNOSTIC
|
|
if (dtosn(fs, dbtofsb(fs, bp->b_blkno +
|
|
btodb(bp->b_bcount - 1))) !=
|
|
sp->seg_number) {
|
|
printf("blk size %d daddr %" PRIx64
|
|
" not in seg %d\n",
|
|
bp->b_bcount, bp->b_blkno,
|
|
sp->seg_number);
|
|
panic("segment overwrite");
|
|
}
|
|
#endif
|
|
|
|
#ifdef LFS_USE_B_INVAL
|
|
/*
|
|
* Fake buffers from the cleaner are marked as B_INVAL.
|
|
* We need to copy the data from user space rather than
|
|
* from the buffer indicated.
|
|
* XXX == what do I do on an error?
|
|
*/
|
|
if ((bp->b_cflags & BC_INVAL) != 0 &&
|
|
bp->b_iodone != NULL) {
|
|
if (copyin(bp->b_saveaddr, p, bp->b_bcount))
|
|
panic("lfs_writeseg: "
|
|
"copyin failed [2]");
|
|
} else
|
|
#endif /* LFS_USE_B_INVAL */
|
|
if (cl->flags & LFS_CL_MALLOC) {
|
|
/* copy data into our cluster. */
|
|
memcpy(p, bp->b_data, bp->b_bcount);
|
|
p += bp->b_bcount;
|
|
}
|
|
|
|
cbp->b_bcount += bp->b_bcount;
|
|
cl->bufsize += bp->b_bcount;
|
|
|
|
bp->b_flags &= ~B_READ;
|
|
bp->b_error = 0;
|
|
cl->bpp[cl->bufcount++] = bp;
|
|
|
|
vp = bp->b_vp;
|
|
mutex_enter(&bufcache_lock);
|
|
mutex_enter(&vp->v_interlock);
|
|
bp->b_oflags &= ~(BO_DELWRI | BO_DONE);
|
|
reassignbuf(bp, vp);
|
|
vp->v_numoutput++;
|
|
mutex_exit(&vp->v_interlock);
|
|
mutex_exit(&bufcache_lock);
|
|
|
|
bpp++;
|
|
i--;
|
|
}
|
|
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
|
|
BIO_SETPRIO(cbp, BPRIO_TIMECRITICAL);
|
|
else
|
|
BIO_SETPRIO(cbp, BPRIO_TIMELIMITED);
|
|
mutex_enter(&devvp->v_interlock);
|
|
devvp->v_numoutput++;
|
|
mutex_exit(&devvp->v_interlock);
|
|
VOP_STRATEGY(devvp, cbp);
|
|
curproc->p_stats->p_ru.ru_oublock++;
|
|
}
|
|
|
|
if (lfs_dostats) {
|
|
++lfs_stats.psegwrites;
|
|
lfs_stats.blocktot += nblocks - 1;
|
|
if (fs->lfs_sp->seg_flags & SEGM_SYNC)
|
|
++lfs_stats.psyncwrites;
|
|
if (fs->lfs_sp->seg_flags & SEGM_CLEAN) {
|
|
++lfs_stats.pcleanwrites;
|
|
lfs_stats.cleanblocks += nblocks - 1;
|
|
}
|
|
}
|
|
|
|
return (lfs_initseg(fs) || do_again);
|
|
}
|
|
|
|
void
|
|
lfs_writesuper(struct lfs *fs, daddr_t daddr)
|
|
{
|
|
struct buf *bp;
|
|
struct vnode *devvp = VTOI(fs->lfs_ivnode)->i_devvp;
|
|
int s;
|
|
|
|
ASSERT_MAYBE_SEGLOCK(fs);
|
|
#ifdef DIAGNOSTIC
|
|
KASSERT(fs->lfs_magic == LFS_MAGIC);
|
|
#endif
|
|
/*
|
|
* If we can write one superblock while another is in
|
|
* progress, we risk not having a complete checkpoint if we crash.
|
|
* So, block here if a superblock write is in progress.
|
|
*/
|
|
mutex_enter(&lfs_lock);
|
|
s = splbio();
|
|
while (fs->lfs_sbactive) {
|
|
mtsleep(&fs->lfs_sbactive, PRIBIO+1, "lfs sb", 0,
|
|
&lfs_lock);
|
|
}
|
|
fs->lfs_sbactive = daddr;
|
|
splx(s);
|
|
mutex_exit(&lfs_lock);
|
|
|
|
/* Set timestamp of this version of the superblock */
|
|
if (fs->lfs_version == 1)
|
|
fs->lfs_otstamp = time_second;
|
|
fs->lfs_tstamp = time_second;
|
|
|
|
/* Checksum the superblock and copy it into a buffer. */
|
|
fs->lfs_cksum = lfs_sb_cksum(&(fs->lfs_dlfs));
|
|
bp = lfs_newbuf(fs, devvp,
|
|
fsbtodb(fs, daddr), LFS_SBPAD, LFS_NB_SBLOCK);
|
|
memset((char *)bp->b_data + sizeof(struct dlfs), 0,
|
|
LFS_SBPAD - sizeof(struct dlfs));
|
|
*(struct dlfs *)bp->b_data = fs->lfs_dlfs;
|
|
|
|
bp->b_cflags |= BC_BUSY;
|
|
bp->b_flags = (bp->b_flags & ~B_READ) | B_ASYNC;
|
|
bp->b_oflags &= ~(BO_DONE | BO_DELWRI);
|
|
bp->b_error = 0;
|
|
bp->b_iodone = lfs_supercallback;
|
|
|
|
if (fs->lfs_sp != NULL && fs->lfs_sp->seg_flags & SEGM_SYNC)
|
|
BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
|
|
else
|
|
BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
|
|
curproc->p_stats->p_ru.ru_oublock++;
|
|
|
|
mutex_enter(&devvp->v_interlock);
|
|
devvp->v_numoutput++;
|
|
mutex_exit(&devvp->v_interlock);
|
|
|
|
mutex_enter(&lfs_lock);
|
|
++fs->lfs_iocount;
|
|
mutex_exit(&lfs_lock);
|
|
VOP_STRATEGY(devvp, bp);
|
|
}
|
|
|
|
/*
|
|
* Logical block number match routines used when traversing the dirty block
|
|
* chain.
|
|
*/
|
|
int
|
|
lfs_match_fake(struct lfs *fs, struct buf *bp)
|
|
{
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
return LFS_IS_MALLOC_BUF(bp);
|
|
}
|
|
|
|
#if 0
|
|
int
|
|
lfs_match_real(struct lfs *fs, struct buf *bp)
|
|
{
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
return (lfs_match_data(fs, bp) && !lfs_match_fake(fs, bp));
|
|
}
|
|
#endif
|
|
|
|
int
|
|
lfs_match_data(struct lfs *fs, struct buf *bp)
|
|
{
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
return (bp->b_lblkno >= 0);
|
|
}
|
|
|
|
int
|
|
lfs_match_indir(struct lfs *fs, struct buf *bp)
|
|
{
|
|
daddr_t lbn;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 0);
|
|
}
|
|
|
|
int
|
|
lfs_match_dindir(struct lfs *fs, struct buf *bp)
|
|
{
|
|
daddr_t lbn;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 1);
|
|
}
|
|
|
|
int
|
|
lfs_match_tindir(struct lfs *fs, struct buf *bp)
|
|
{
|
|
daddr_t lbn;
|
|
|
|
ASSERT_SEGLOCK(fs);
|
|
lbn = bp->b_lblkno;
|
|
return (lbn < 0 && (-lbn - NDADDR) % NINDIR(fs) == 2);
|
|
}
|
|
|
|
static void
|
|
lfs_free_aiodone(struct buf *bp)
|
|
{
|
|
struct lfs *fs;
|
|
|
|
KERNEL_LOCK(1, curlwp);
|
|
fs = bp->b_private;
|
|
ASSERT_NO_SEGLOCK(fs);
|
|
lfs_freebuf(fs, bp);
|
|
KERNEL_UNLOCK_LAST(curlwp);
|
|
}
|
|
|
|
static void
|
|
lfs_super_aiodone(struct buf *bp)
|
|
{
|
|
struct lfs *fs;
|
|
|
|
KERNEL_LOCK(1, curlwp);
|
|
fs = bp->b_private;
|
|
ASSERT_NO_SEGLOCK(fs);
|
|
mutex_enter(&lfs_lock);
|
|
fs->lfs_sbactive = 0;
|
|
if (--fs->lfs_iocount <= 1)
|
|
wakeup(&fs->lfs_iocount);
|
|
wakeup(&fs->lfs_sbactive);
|
|
mutex_exit(&lfs_lock);
|
|
lfs_freebuf(fs, bp);
|
|
KERNEL_UNLOCK_LAST(curlwp);
|
|
}
|
|
|
|
static void
|
|
lfs_cluster_aiodone(struct buf *bp)
|
|
{
|
|
struct lfs_cluster *cl;
|
|
struct lfs *fs;
|
|
struct buf *tbp, *fbp;
|
|
struct vnode *vp, *devvp, *ovp;
|
|
struct inode *ip;
|
|
int error;
|
|
|
|
KERNEL_LOCK(1, curlwp);
|
|
|
|
error = bp->b_error;
|
|
cl = bp->b_private;
|
|
fs = cl->fs;
|
|
devvp = VTOI(fs->lfs_ivnode)->i_devvp;
|
|
ASSERT_NO_SEGLOCK(fs);
|
|
|
|
/* Put the pages back, and release the buffer */
|
|
while (cl->bufcount--) {
|
|
tbp = cl->bpp[cl->bufcount];
|
|
KASSERT(tbp->b_cflags & BC_BUSY);
|
|
if (error) {
|
|
tbp->b_error = error;
|
|
}
|
|
|
|
/*
|
|
* We're done with tbp. If it has not been re-dirtied since
|
|
* the cluster was written, free it. Otherwise, keep it on
|
|
* the locked list to be written again.
|
|
*/
|
|
vp = tbp->b_vp;
|
|
|
|
tbp->b_flags &= ~B_GATHERED;
|
|
|
|
LFS_BCLEAN_LOG(fs, tbp);
|
|
|
|
mutex_enter(&bufcache_lock);
|
|
if (tbp->b_iodone == NULL) {
|
|
KASSERT(tbp->b_cflags & BC_LOCKED);
|
|
bremfree(tbp);
|
|
if (vp) {
|
|
mutex_enter(&vp->v_interlock);
|
|
reassignbuf(tbp, vp);
|
|
mutex_exit(&vp->v_interlock);
|
|
}
|
|
tbp->b_flags |= B_ASYNC; /* for biodone */
|
|
}
|
|
|
|
if (((tbp->b_cflags | tbp->b_oflags) &
|
|
(BC_LOCKED | BO_DELWRI)) == BC_LOCKED)
|
|
LFS_UNLOCK_BUF(tbp);
|
|
|
|
if (tbp->b_oflags & BO_DONE) {
|
|
DLOG((DLOG_SEG, "blk %d biodone already (flags %lx)\n",
|
|
cl->bufcount, (long)tbp->b_flags));
|
|
}
|
|
|
|
if (tbp->b_iodone != NULL && !LFS_IS_MALLOC_BUF(tbp)) {
|
|
/*
|
|
* A buffer from the page daemon.
|
|
* We use the same iodone as it does,
|
|
* so we must manually disassociate its
|
|
* buffers from the vp.
|
|
*/
|
|
if ((ovp = tbp->b_vp) != NULL) {
|
|
/* This is just silly */
|
|
mutex_enter(&ovp->v_interlock);
|
|
brelvp(tbp);
|
|
mutex_exit(&ovp->v_interlock);
|
|
tbp->b_vp = vp;
|
|
tbp->b_objlock = &vp->v_interlock;
|
|
}
|
|
/* Put it back the way it was */
|
|
tbp->b_flags |= B_ASYNC;
|
|
/* Master buffers have BC_AGE */
|
|
if (tbp->b_private == tbp)
|
|
tbp->b_flags |= BC_AGE;
|
|
}
|
|
mutex_exit(&bufcache_lock);
|
|
|
|
biodone(tbp);
|
|
|
|
/*
|
|
* If this is the last block for this vnode, but
|
|
* there are other blocks on its dirty list,
|
|
* set IN_MODIFIED/IN_CLEANING depending on what
|
|
* sort of block. Only do this for our mount point,
|
|
* not for, e.g., inode blocks that are attached to
|
|
* the devvp.
|
|
* XXX KS - Shouldn't we set *both* if both types
|
|
* of blocks are present (traverse the dirty list?)
|
|
*/
|
|
mutex_enter(&lfs_lock);
|
|
mutex_enter(&vp->v_interlock);
|
|
if (vp != devvp && vp->v_numoutput == 0 &&
|
|
(fbp = LIST_FIRST(&vp->v_dirtyblkhd)) != NULL) {
|
|
ip = VTOI(vp);
|
|
DLOG((DLOG_SEG, "lfs_cluster_aiodone: mark ino %d\n",
|
|
ip->i_number));
|
|
if (LFS_IS_MALLOC_BUF(fbp))
|
|
LFS_SET_UINO(ip, IN_CLEANING);
|
|
else
|
|
LFS_SET_UINO(ip, IN_MODIFIED);
|
|
}
|
|
cv_broadcast(&vp->v_cv);
|
|
mutex_exit(&vp->v_interlock);
|
|
mutex_exit(&lfs_lock);
|
|
}
|
|
|
|
/* Fix up the cluster buffer, and release it */
|
|
if (cl->flags & LFS_CL_MALLOC)
|
|
lfs_free(fs, bp->b_data, LFS_NB_CLUSTER);
|
|
putiobuf(bp);
|
|
|
|
/* Note i/o done */
|
|
if (cl->flags & LFS_CL_SYNC) {
|
|
if (--cl->seg->seg_iocount == 0)
|
|
wakeup(&cl->seg->seg_iocount);
|
|
}
|
|
mutex_enter(&lfs_lock);
|
|
#ifdef DIAGNOSTIC
|
|
if (fs->lfs_iocount == 0)
|
|
panic("lfs_cluster_aiodone: zero iocount");
|
|
#endif
|
|
if (--fs->lfs_iocount <= 1)
|
|
wakeup(&fs->lfs_iocount);
|
|
mutex_exit(&lfs_lock);
|
|
|
|
KERNEL_UNLOCK_LAST(curlwp);
|
|
|
|
pool_put(&fs->lfs_bpppool, cl->bpp);
|
|
cl->bpp = NULL;
|
|
pool_put(&fs->lfs_clpool, cl);
|
|
}
|
|
|
|
static void
|
|
lfs_generic_callback(struct buf *bp, void (*aiodone)(struct buf *))
|
|
{
|
|
/* reset b_iodone for when this is a single-buf i/o. */
|
|
bp->b_iodone = aiodone;
|
|
|
|
workqueue_enqueue(uvm.aiodone_queue, &bp->b_work, NULL);
|
|
}
|
|
|
|
static void
|
|
lfs_cluster_callback(struct buf *bp)
|
|
{
|
|
|
|
lfs_generic_callback(bp, lfs_cluster_aiodone);
|
|
}
|
|
|
|
void
|
|
lfs_supercallback(struct buf *bp)
|
|
{
|
|
|
|
lfs_generic_callback(bp, lfs_super_aiodone);
|
|
}
|
|
|
|
/*
|
|
* The only buffers that are going to hit these functions are the
|
|
* segment write blocks, or the segment summaries, or the superblocks.
|
|
*
|
|
* All of the above are created by lfs_newbuf, and so do not need to be
|
|
* released via brelse.
|
|
*/
|
|
void
|
|
lfs_callback(struct buf *bp)
|
|
{
|
|
|
|
lfs_generic_callback(bp, lfs_free_aiodone);
|
|
}
|
|
|
|
/*
|
|
* Shellsort (diminishing increment sort) from Data Structures and
|
|
* Algorithms, Aho, Hopcraft and Ullman, 1983 Edition, page 290;
|
|
* see also Knuth Vol. 3, page 84. The increments are selected from
|
|
* formula (8), page 95. Roughly O(N^3/2).
|
|
*/
|
|
/*
|
|
* This is our own private copy of shellsort because we want to sort
|
|
* two parallel arrays (the array of buffer pointers and the array of
|
|
* logical block numbers) simultaneously. Note that we cast the array
|
|
* of logical block numbers to a unsigned in this routine so that the
|
|
* negative block numbers (meta data blocks) sort AFTER the data blocks.
|
|
*/
|
|
|
|
void
|
|
lfs_shellsort(struct buf **bp_array, int32_t *lb_array, int nmemb, int size)
|
|
{
|
|
static int __rsshell_increments[] = { 4, 1, 0 };
|
|
int incr, *incrp, t1, t2;
|
|
struct buf *bp_temp;
|
|
|
|
#ifdef DEBUG
|
|
incr = 0;
|
|
for (t1 = 0; t1 < nmemb; t1++) {
|
|
for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
|
|
if (lb_array[incr++] != bp_array[t1]->b_lblkno + t2) {
|
|
/* dump before panic */
|
|
printf("lfs_shellsort: nmemb=%d, size=%d\n",
|
|
nmemb, size);
|
|
incr = 0;
|
|
for (t1 = 0; t1 < nmemb; t1++) {
|
|
const struct buf *bp = bp_array[t1];
|
|
|
|
printf("bp[%d]: lbn=%" PRIu64 ", size=%"
|
|
PRIu64 "\n", t1,
|
|
(uint64_t)bp->b_bcount,
|
|
(uint64_t)bp->b_lblkno);
|
|
printf("lbns:");
|
|
for (t2 = 0; t2 * size < bp->b_bcount;
|
|
t2++) {
|
|
printf(" %" PRId32,
|
|
lb_array[incr++]);
|
|
}
|
|
printf("\n");
|
|
}
|
|
panic("lfs_shellsort: inconsistent input");
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
for (incrp = __rsshell_increments; (incr = *incrp++) != 0;)
|
|
for (t1 = incr; t1 < nmemb; ++t1)
|
|
for (t2 = t1 - incr; t2 >= 0;)
|
|
if ((u_int32_t)bp_array[t2]->b_lblkno >
|
|
(u_int32_t)bp_array[t2 + incr]->b_lblkno) {
|
|
bp_temp = bp_array[t2];
|
|
bp_array[t2] = bp_array[t2 + incr];
|
|
bp_array[t2 + incr] = bp_temp;
|
|
t2 -= incr;
|
|
} else
|
|
break;
|
|
|
|
/* Reform the list of logical blocks */
|
|
incr = 0;
|
|
for (t1 = 0; t1 < nmemb; t1++) {
|
|
for (t2 = 0; t2 * size < bp_array[t1]->b_bcount; t2++) {
|
|
lb_array[incr++] = bp_array[t1]->b_lblkno + t2;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Call vget with LK_NOWAIT. If we are the one who holds VI_XLOCK,
|
|
* however, we must press on. Just fake success in that case.
|
|
*/
|
|
int
|
|
lfs_vref(struct vnode *vp)
|
|
{
|
|
int error;
|
|
struct lfs *fs;
|
|
|
|
KASSERT(mutex_owned(&vp->v_interlock));
|
|
|
|
fs = VTOI(vp)->i_lfs;
|
|
|
|
ASSERT_MAYBE_SEGLOCK(fs);
|
|
|
|
/*
|
|
* If we return 1 here during a flush, we risk vinvalbuf() not
|
|
* being able to flush all of the pages from this vnode, which
|
|
* will cause it to panic. So, return 0 if a flush is in progress.
|
|
*/
|
|
error = vget(vp, LK_NOWAIT | LK_INTERLOCK);
|
|
if (error == EBUSY && IS_FLUSHING(VTOI(vp)->i_lfs, vp)) {
|
|
++fs->lfs_flushvp_fakevref;
|
|
return 0;
|
|
}
|
|
return error;
|
|
}
|
|
|
|
/*
|
|
* This is vrele except that we do not want to VOP_INACTIVE this vnode. We
|
|
* inline vrele here to avoid the vn_lock and VOP_INACTIVE call at the end.
|
|
*/
|
|
void
|
|
lfs_vunref(struct vnode *vp)
|
|
{
|
|
struct lfs *fs;
|
|
|
|
fs = VTOI(vp)->i_lfs;
|
|
ASSERT_MAYBE_SEGLOCK(fs);
|
|
|
|
/*
|
|
* Analogous to lfs_vref, if the node is flushing, fake it.
|
|
*/
|
|
if (IS_FLUSHING(fs, vp) && fs->lfs_flushvp_fakevref) {
|
|
--fs->lfs_flushvp_fakevref;
|
|
return;
|
|
}
|
|
|
|
/* does not call inactive */
|
|
vrele(vp); /* XXXAD fix later */
|
|
}
|
|
|
|
/*
|
|
* We use this when we have vnodes that were loaded in solely for cleaning.
|
|
* There is no reason to believe that these vnodes will be referenced again
|
|
* soon, since the cleaning process is unrelated to normal filesystem
|
|
* activity. Putting cleaned vnodes at the tail of the list has the effect
|
|
* of flushing the vnode LRU. So, put vnodes that were loaded only for
|
|
* cleaning at the head of the list, instead.
|
|
*/
|
|
void
|
|
lfs_vunref_head(struct vnode *vp)
|
|
{
|
|
|
|
ASSERT_SEGLOCK(VTOI(vp)->i_lfs);
|
|
|
|
/* does not call inactive, inserts non-held vnode at head of freelist */
|
|
vrele(vp); /* XXXAD fix later */
|
|
}
|
|
|
|
|
|
/*
|
|
* Set up an FINFO entry for a new file. The fip pointer is assumed to
|
|
* point at uninitialized space.
|
|
*/
|
|
void
|
|
lfs_acquire_finfo(struct lfs *fs, ino_t ino, int vers)
|
|
{
|
|
struct segment *sp = fs->lfs_sp;
|
|
|
|
KASSERT(vers > 0);
|
|
|
|
if (sp->seg_bytes_left < fs->lfs_bsize ||
|
|
sp->sum_bytes_left < sizeof(struct finfo))
|
|
(void) lfs_writeseg(fs, fs->lfs_sp);
|
|
|
|
sp->sum_bytes_left -= FINFOSIZE;
|
|
++((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
sp->fip->fi_nblocks = 0;
|
|
sp->fip->fi_ino = ino;
|
|
sp->fip->fi_version = vers;
|
|
}
|
|
|
|
/*
|
|
* Release the FINFO entry, either clearing out an unused entry or
|
|
* advancing us to the next available entry.
|
|
*/
|
|
void
|
|
lfs_release_finfo(struct lfs *fs)
|
|
{
|
|
struct segment *sp = fs->lfs_sp;
|
|
|
|
if (sp->fip->fi_nblocks != 0) {
|
|
sp->fip = (FINFO*)((char *)sp->fip + FINFOSIZE +
|
|
sizeof(int32_t) * sp->fip->fi_nblocks);
|
|
sp->start_lbp = &sp->fip->fi_blocks[0];
|
|
} else {
|
|
sp->sum_bytes_left += FINFOSIZE;
|
|
--((SEGSUM *)(sp->segsum))->ss_nfinfo;
|
|
}
|
|
}
|