NetBSD/sys/arch/amiga/dev/if_ed.c

1254 lines
31 KiB
C

/* $NetBSD: if_ed.c,v 1.21 1996/05/07 00:46:41 thorpej Exp $ */
/*
* Device driver for National Semiconductor DS8390/WD83C690 based ethernet
* adapters.
*
* Copyright (c) 1994, 1995 Charles M. Hannum. All rights reserved.
*
* Copyright (C) 1993, David Greenman. This software may be used, modified,
* copied, distributed, and sold, in both source and binary form provided that
* the above copyright and these terms are retained. Under no circumstances is
* the author responsible for the proper functioning of this software, nor does
* the author assume any responsibility for damages incurred with its use.
*
* Currently supports the Hydra Systems ethernet card.
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <sys/device.h>
#include <net/if.h>
#include <net/if_dl.h>
#include <net/if_types.h>
#include <net/netisr.h>
#ifdef INET
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <netinet/if_ether.h>
#endif
#ifdef NS
#include <netns/ns.h>
#include <netns/ns_if.h>
#endif
#if NBPFILTER > 0
#include <net/bpf.h>
#include <net/bpfdesc.h>
#endif
#include <machine/cpu.h>
#include <machine/mtpr.h>
#include <amiga/amiga/device.h>
#include <amiga/amiga/isr.h>
#include <amiga/dev/zbusvar.h>
#include <dev/ic/dp8390reg.h>
#include <amiga/dev/if_edreg.h>
#define HYDRA_MANID 2121
#define HYDRA_PRODID 1
#define ASDG_MANID 1023
#define ASDG_PRODID 254
/*
* ed_softc: per line info and status
*/
struct ed_softc {
struct device sc_dev;
struct isr sc_isr;
struct arpcom sc_arpcom; /* ethernet common */
u_char volatile *nic_addr; /* NIC (DS8390) I/O address */
u_char cr_proto; /* values always set in CR */
caddr_t mem_start; /* NIC memory start address */
caddr_t mem_end; /* NIC memory end address */
u_long mem_size; /* total NIC memory size */
caddr_t mem_ring; /* start of RX ring-buffer (in NIC mem) */
u_char xmit_busy; /* transmitter is busy */
u_char txb_cnt; /* number of transmit buffers */
u_char txb_inuse; /* number of TX buffers currently in-use*/
u_char txb_new; /* pointer to where new buffer will be added */
u_char txb_next_tx; /* pointer to next buffer ready to xmit */
u_short txb_len[8]; /* buffered xmit buffer lengths */
u_char tx_page_start; /* first page of TX buffer area */
u_char rec_page_start; /* first page of RX ring-buffer */
u_char rec_page_stop; /* last page of RX ring-buffer */
u_char next_packet; /* pointer to next unread RX packet */
};
int ed_zbus_match __P((struct device *, void *, void *));
void ed_zbus_attach __P((struct device *, struct device *, void *));
int edintr __P((void *));
int ed_ioctl __P((struct ifnet *, u_long, caddr_t));
void ed_start __P((struct ifnet *));
void ed_watchdog __P((struct ifnet *));
void ed_reset __P((struct ed_softc *));
void ed_init __P((struct ed_softc *));
void ed_stop __P((struct ed_softc *));
void ed_getmcaf __P((struct arpcom *, u_long *));
u_short ed_put __P((struct ed_softc *, struct mbuf *, caddr_t));
#define inline /* XXX for debugging porpoises */
void ed_get_packet __P((struct ed_softc *, caddr_t, u_short));
static inline void ed_rint __P((struct ed_softc *));
static inline void ed_xmit __P((struct ed_softc *));
static inline caddr_t ed_ring_copy __P((struct ed_softc *, caddr_t, caddr_t,
u_short));
static inline void NIC_PUT __P((struct ed_softc *, int, u_char));
static inline u_char NIC_GET __P((struct ed_softc *, int));
static inline void word_copy __P((caddr_t, caddr_t, int));
struct mbuf *ed_ring_to_mbuf __P((struct ed_softc *, caddr_t, struct mbuf *, u_short));
struct cfattach ed_zbus_ca = {
sizeof(struct ed_softc), ed_zbus_match, ed_zbus_attach
};
struct cfdriver ed_cd = {
NULL, "ed", DV_IFNET
};
#define ETHER_MIN_LEN 64
#define ETHER_MAX_LEN 1518
#define ETHER_ADDR_LEN 6
static inline void
NIC_PUT(sc, off, val)
struct ed_softc *sc;
int off;
u_char val;
{
sc->nic_addr[off * 2] = val;
#ifdef not_def
/*
* This was being used to *slow* access to the bus. I don't
* believe it is needed but I'll leave it around incase probelms
* pop-up
*/
(void)ciaa.pra;
#endif
}
static inline u_char
NIC_GET(sc, off)
struct ed_softc *sc;
int off;
{
register u_char val;
val = sc->nic_addr[off * 2];
#ifdef not_def
/*
* This was being used to *slow* access to the bus. I don't
* believe it is needed but I'll leave it around incase probelms
* pop-up
*/
(void)ciaa.pra;
#endif
return (val);
}
/*
* Memory copy, copies word at time.
*/
static inline void
word_copy(a, b, len)
caddr_t a, b;
int len;
{
u_short *x = (u_short *)a,
*y = (u_short *)b;
len >>= 1;
while (len--)
*y++ = *x++;
}
int
ed_zbus_match(parent, match, aux)
struct device *parent;
void *match, *aux;
{
struct zbus_args *zap = aux;
if (zap->manid == HYDRA_MANID && zap->prodid == HYDRA_PRODID)
return (1);
else if (zap->manid == ASDG_MANID && zap->prodid == ASDG_PRODID)
return (1);
return (0);
}
void
ed_zbus_attach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct ed_softc *sc = (void *)self;
struct zbus_args *zap = aux;
struct cfdata *cf = sc->sc_dev.dv_cfdata;
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_char *prom;
int i;
if (zap->manid == HYDRA_MANID) {
sc->mem_start = zap->va;
sc->mem_size = 16384;
sc->nic_addr = sc->mem_start + HYDRA_NIC_BASE;
prom = (u_char *)sc->mem_start + HYDRA_ADDRPROM;
} else {
sc->mem_start = zap->va + 0x8000;
sc->mem_size = 16384;
sc->nic_addr = zap->va + ASDG_NIC_BASE;
prom = (u_char *)sc->nic_addr + ASDG_ADDRPROM;
}
sc->cr_proto = ED_CR_RD2;
sc->tx_page_start = 0;
sc->mem_end = sc->mem_start + sc->mem_size;
/*
* Use one xmit buffer if < 16k, two buffers otherwise (if not told
* otherwise).
*/
if ((sc->mem_size < 16384) || zap->manid == ASDG_MANID
|| (cf->cf_flags & ED_FLAGS_NO_MULTI_BUFFERING))
sc->txb_cnt = 1;
else
sc->txb_cnt = 2;
sc->rec_page_start = sc->tx_page_start + sc->txb_cnt * ED_TXBUF_SIZE;
sc->rec_page_stop = sc->tx_page_start + (sc->mem_size >> ED_PAGE_SHIFT);
sc->mem_ring =
sc->mem_start + ((sc->txb_cnt * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
/*
* Interupts must be inactive when reading the prom, as the interupt
* line is shared with one of its address lines.
*/
NIC_PUT(sc, ED_P0_IMR, 0x00); /* disable ints */
NIC_PUT(sc, ED_P0_ISR, 0xff); /* clear ints */
/*
* read the ethernet address from the board
*/
for (i = 0; i < ETHER_ADDR_LEN; i++)
sc->sc_arpcom.ac_enaddr[i] = *(prom + 2 * i);
/* Set interface to stopped condition (reset). */
ed_stop(sc);
/* Initialize ifnet structure. */
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
ifp->if_softc = sc;
ifp->if_start = ed_start;
ifp->if_ioctl = ed_ioctl;
ifp->if_watchdog = ed_watchdog;
ifp->if_flags =
IFF_BROADCAST | IFF_SIMPLEX | IFF_NOTRAILERS | IFF_MULTICAST;
/* Attach the interface. */
if_attach(ifp);
ether_ifattach(ifp);
/* Print additional info when attached. */
printf(": address %s\n", ether_sprintf(sc->sc_arpcom.ac_enaddr));
#if NBPFILTER > 0
bpfattach(&ifp->if_bpf, ifp, DLT_EN10MB, sizeof(struct ether_header));
#endif
sc->sc_isr.isr_intr = edintr;
sc->sc_isr.isr_arg = sc;
sc->sc_isr.isr_ipl = 2;
add_isr(&sc->sc_isr);
}
/*
* Reset interface.
*/
void
ed_reset(sc)
struct ed_softc *sc;
{
int s;
s = splnet();
ed_stop(sc);
ed_init(sc);
splx(s);
log(LOG_ERR, "%s: reset\n", sc->sc_dev.dv_xname);
}
/*
* Take interface offline.
*/
void
ed_stop(sc)
struct ed_softc *sc;
{
int n = 5000;
/* Stop everything on the interface, and select page 0 registers. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Wait for interface to enter stopped state, but limit # of checks to
* 'n' (about 5ms). It shouldn't even take 5us on modern DS8390's, but
* just in case it's an old one.
*/
while (((NIC_GET(sc, ED_P0_ISR) & ED_ISR_RST) == 0) && --n);
}
/*
* Device timeout/watchdog routine. Entered if the device neglects to generate
* an interrupt after a transmit has been started on it.
*/
void
ed_watchdog(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = ifp->if_softc;
log(LOG_ERR, "%s: device timeout\n", sc->sc_dev.dv_xname);
++sc->sc_arpcom.ac_if.if_oerrors;
ed_reset(sc);
}
/*
* Initialize device.
*/
void
ed_init(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
int i, s;
u_long mcaf[2];
/*
* Initialize the NIC in the exact order outlined in the NS manual.
* This init procedure is "mandatory"...don't change what or when
* things happen.
*/
s = splnet();
/* Reset transmitter flags. */
sc->xmit_busy = 0;
sc->sc_arpcom.ac_if.if_timer = 0;
sc->txb_inuse = 0;
sc->txb_new = 0;
sc->txb_next_tx = 0;
/* Set interface for page 0, remote DMA complete, stopped. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
/*
* Set FIFO threshold to 8, No auto-init Remote DMA, byte
* order=68k, word-wide DMA xfers,
* XXX changed to use 2 word threshhold
*/
NIC_PUT(sc, ED_P0_DCR,
ED_DCR_FT0 | ED_DCR_WTS | ED_DCR_LS | ED_DCR_BOS);
/* Clear remote byte count registers. */
NIC_PUT(sc, ED_P0_RBCR0, 0);
NIC_PUT(sc, ED_P0_RBCR1, 0);
/* Tell RCR to do nothing for now. */
NIC_PUT(sc, ED_P0_RCR, ED_RCR_MON);
/* Place NIC in internal loopback mode. */
NIC_PUT(sc, ED_P0_TCR, ED_TCR_LB0);
/* Initialize receive buffer ring. */
NIC_PUT(sc, ED_P0_BNRY, sc->rec_page_start);
NIC_PUT(sc, ED_P0_PSTART, sc->rec_page_start);
NIC_PUT(sc, ED_P0_PSTOP, sc->rec_page_stop);
/*
* Clear all interrupts. A '1' in each bit position clears the
* corresponding flag.
*/
NIC_PUT(sc, ED_P0_ISR, 0xff);
/*
* Enable the following interrupts: receive/transmit complete,
* receive/transmit error, and Receiver OverWrite.
*
* Counter overflow and Remote DMA complete are *not* enabled.
*/
NIC_PUT(sc, ED_P0_IMR,
ED_IMR_PRXE | ED_IMR_PTXE | ED_IMR_RXEE | ED_IMR_TXEE |
ED_IMR_OVWE);
/* Program command register for page 1. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STP);
/* Copy out our station address. */
for (i = 0; i < ETHER_ADDR_LEN; ++i)
NIC_PUT(sc, ED_P1_PAR0 + i, sc->sc_arpcom.ac_enaddr[i]);
/* Set multicast filter on chip. */
ed_getmcaf(&sc->sc_arpcom, mcaf);
for (i = 0; i < 8; i++)
NIC_PUT(sc, ED_P1_MAR0 + i, ((u_char *)mcaf)[i]);
/*
* Set current page pointer to one page after the boundary pointer, as
* recommended in the National manual.
*/
sc->next_packet = sc->rec_page_start + 1;
NIC_PUT(sc, ED_P1_CURR, sc->next_packet);
/* Program command register for page 0. */
NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STP);
i = ED_RCR_AB | ED_RCR_AM;
if (ifp->if_flags & IFF_PROMISC) {
/*
* Set promiscuous mode. Multicast filter was set earlier so
* that we should receive all multicast packets.
*/
i |= ED_RCR_PRO | ED_RCR_AR | ED_RCR_SEP;
}
NIC_PUT(sc, ED_P0_RCR, i);
/* Take interface out of loopback. */
NIC_PUT(sc, ED_P0_TCR, 0);
/* Fire up the interface. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set 'running' flag, and clear output active flag. */
ifp->if_flags |= IFF_RUNNING;
ifp->if_flags &= ~IFF_OACTIVE;
/* ...and attempt to start output. */
ed_start(ifp);
splx(s);
}
/*
* This routine actually starts the transmission on the interface.
*/
static inline void
ed_xmit(sc)
struct ed_softc *sc;
{
struct ifnet *ifp = &sc->sc_arpcom.ac_if;
u_short len;
len = sc->txb_len[sc->txb_next_tx];
/* Set NIC for page 0 register access. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/* Set TX buffer start page. */
NIC_PUT(sc, ED_P0_TPSR, sc->tx_page_start +
sc->txb_next_tx * ED_TXBUF_SIZE);
/* Set TX length. */
NIC_PUT(sc, ED_P0_TBCR0, len);
NIC_PUT(sc, ED_P0_TBCR1, len >> 8);
/* Set page 0, remote DMA complete, transmit packet, and *start*. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_TXP | ED_CR_STA);
sc->xmit_busy = 1;
/* Point to next transmit buffer slot and wrap if necessary. */
sc->txb_next_tx++;
if (sc->txb_next_tx == sc->txb_cnt)
sc->txb_next_tx = 0;
/* Set a timer just in case we never hear from the board again. */
ifp->if_timer = 2;
}
/*
* Start output on interface.
* We make two assumptions here:
* 1) that the current priority is set to splnet _before_ this code
* is called *and* is returned to the appropriate priority after
* return
* 2) that the IFF_OACTIVE flag is checked before this code is called
* (i.e. that the output part of the interface is idle)
*/
void
ed_start(ifp)
struct ifnet *ifp;
{
struct ed_softc *sc = ifp->if_softc;
struct mbuf *m0, *m;
caddr_t buffer;
int len;
outloop:
/*
* First, see if there are buffered packets and an idle transmitter -
* should never happen at this point.
*/
if (sc->txb_inuse && (sc->xmit_busy == 0)) {
printf("%s: packets buffered, but transmitter idle\n",
sc->sc_dev.dv_xname);
ed_xmit(sc);
}
/* See if there is room to put another packet in the buffer. */
if (sc->txb_inuse == sc->txb_cnt) {
/* No room. Indicate this to the outside world and exit. */
ifp->if_flags |= IFF_OACTIVE;
return;
}
IF_DEQUEUE(&sc->sc_arpcom.ac_if.if_snd, m);
if (m == 0) {
/*
* We are using the !OACTIVE flag to indicate to the outside
* world that we can accept an additional packet rather than
* that the transmitter is _actually_ active. Indeed, the
* transmitter may be active, but if we haven't filled all the
* buffers with data then we still want to accept more.
*/
ifp->if_flags &= ~IFF_OACTIVE;
return;
}
/* Copy the mbuf chain into the transmit buffer. */
m0 = m;
/* txb_new points to next open buffer slot. */
buffer = sc->mem_start + ((sc->txb_new * ED_TXBUF_SIZE) << ED_PAGE_SHIFT);
len = ed_put(sc, m, buffer);
sc->txb_len[sc->txb_new] = max(len, ETHER_MIN_LEN);
sc->txb_inuse++;
/* Point to next buffer slot and wrap if necessary. */
if (++sc->txb_new == sc->txb_cnt)
sc->txb_new = 0;
if (sc->xmit_busy == 0)
ed_xmit(sc);
#if NBPFILTER > 0
/* Tap off here if there is a BPF listener. */
if (sc->sc_arpcom.ac_if.if_bpf)
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m0);
#endif
m_freem(m0);
/* Loop back to the top to possibly buffer more packets. */
goto outloop;
}
/*
* Ethernet interface receiver interrupt.
*/
static inline void
ed_rint(sc)
struct ed_softc *sc;
{
u_char boundary, current;
u_short len;
u_char nlen;
struct ed_ring packet_hdr;
caddr_t packet_ptr;
loop:
/* Set NIC to page 1 registers to get 'current' pointer. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_1 | ED_CR_STA);
/*
* 'sc->next_packet' is the logical beginning of the ring-buffer - i.e.
* it points to where new data has been buffered. The 'CURR' (current)
* register points to the logical end of the ring-buffer - i.e. it
* points to where additional new data will be added. We loop here
* until the logical beginning equals the logical end (or in other
* words, until the ring-buffer is empty).
*/
current = NIC_GET(sc, ED_P1_CURR);
if (sc->next_packet == current)
return;
/* Set NIC to page 0 registers to update boundary register. */
NIC_PUT(sc, ED_P1_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
do {
/* Get pointer to this buffer's header structure. */
packet_ptr = sc->mem_ring +
((sc->next_packet - sc->rec_page_start) << ED_PAGE_SHIFT);
/*
* The byte count includes a 4 byte header that was added by
* the NIC.
*/
packet_hdr = *(struct ed_ring *)packet_ptr;
packet_hdr.count = ((packet_hdr.count >> 8) & 0xff)
| ((packet_hdr.count & 0xff) << 8);
len = packet_hdr.count;
/*
* Try do deal with old, buggy chips that sometimes duplicate
* the low byte of the length into the high byte. We do this
* by simply ignoring the high byte of the length and always
* recalculating it.
*
* NOTE: sc->next_packet is pointing at the current packet.
*/
if (packet_hdr.next_packet >= sc->next_packet)
nlen = (packet_hdr.next_packet - sc->next_packet);
else
nlen = ((packet_hdr.next_packet - sc->rec_page_start) +
(sc->rec_page_stop - sc->next_packet));
--nlen;
if ((len & ED_PAGE_MASK) + sizeof(packet_hdr) > ED_PAGE_SIZE)
--nlen;
len = (len & ED_PAGE_MASK) | (nlen << ED_PAGE_SHIFT);
#ifdef DIAGNOSTIC
if (len != packet_hdr.count) {
printf("%s: length does not match next packet pointer\n",
sc->sc_dev.dv_xname);
printf("%s: len %04x nlen %04x start %02x first %02x curr %02x next %02x stop %02x\n",
sc->sc_dev.dv_xname, packet_hdr.count, len,
sc->rec_page_start, sc->next_packet, current,
packet_hdr.next_packet, sc->rec_page_stop);
}
#endif
/*
* Be fairly liberal about what we allow as a "reasonable"
* length so that a [crufty] packet will make it to BPF (and
* can thus be analyzed). Note that all that is really
* important is that we have a length that will fit into one
* mbuf cluster or less; the upper layer protocols can then
* figure out the length from their own length field(s).
*
* MCLBYTES may be less than a valid packet len. Thus
* we use a constant that is large enough.
*/
if (len <= 2048 &&
packet_hdr.next_packet >= sc->rec_page_start &&
packet_hdr.next_packet < sc->rec_page_stop) {
/* Go get packet. */
ed_get_packet(sc, packet_ptr + sizeof(struct ed_ring),
len - sizeof(struct ed_ring));
++sc->sc_arpcom.ac_if.if_ipackets;
} else {
/* Really BAD. The ring pointers are corrupted. */
log(LOG_ERR,
"%s: NIC memory corrupt - invalid packet length %d\n",
sc->sc_dev.dv_xname, len);
++sc->sc_arpcom.ac_if.if_ierrors;
ed_reset(sc);
return;
}
/* Update next packet pointer. */
sc->next_packet = packet_hdr.next_packet;
/*
* Update NIC boundary pointer - being careful to keep it one
* buffer behind (as recommended by NS databook).
*/
boundary = sc->next_packet - 1;
if (boundary < sc->rec_page_start)
boundary = sc->rec_page_stop - 1;
NIC_PUT(sc, ED_P0_BNRY, boundary);
} while (sc->next_packet != current);
goto loop;
}
/* Ethernet interface interrupt processor. */
int
edintr(arg)
void *arg;
{
struct ed_softc *sc = arg;
u_char isr;
/* Set NIC to page 0 registers. */
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
isr = NIC_GET(sc, ED_P0_ISR);
if (!isr)
return (0);
/* Loop until there are no more new interrupts. */
for (;;) {
/*
* Reset all the bits that we are 'acknowledging' by writing a
* '1' to each bit position that was set.
* (Writing a '1' *clears* the bit.)
*/
NIC_PUT(sc, ED_P0_ISR, isr);
/*
* Handle transmitter interrupts. Handle these first because
* the receiver will reset the board under some conditions.
*/
if (isr & (ED_ISR_PTX | ED_ISR_TXE)) {
u_char collisions = NIC_GET(sc, ED_P0_NCR) & 0x0f;
/*
* Check for transmit error. If a TX completed with an
* error, we end up throwing the packet away. Really
* the only error that is possible is excessive
* collisions, and in this case it is best to allow the
* automatic mechanisms of TCP to backoff the flow. Of
* course, with UDP we're screwed, but this is expected
* when a network is heavily loaded.
*/
(void) NIC_GET(sc, ED_P0_TSR);
if (isr & ED_ISR_TXE) {
/*
* Excessive collisions (16).
*/
if ((NIC_GET(sc, ED_P0_TSR) & ED_TSR_ABT)
&& (collisions == 0)) {
/*
* When collisions total 16, the P0_NCR
* will indicate 0, and the TSR_ABT is
* set.
*/
collisions = 16;
}
/* Update output errors counter. */
++sc->sc_arpcom.ac_if.if_oerrors;
} else {
/*
* Update total number of successfully
* transmitted packets.
*/
++sc->sc_arpcom.ac_if.if_opackets;
}
/* Reset TX busy and output active flags. */
sc->xmit_busy = 0;
sc->sc_arpcom.ac_if.if_flags &= ~IFF_OACTIVE;
/* Clear watchdog timer. */
sc->sc_arpcom.ac_if.if_timer = 0;
/*
* Add in total number of collisions on last
* transmission.
*/
sc->sc_arpcom.ac_if.if_collisions += collisions;
/*
* Decrement buffer in-use count if not zero (can only
* be zero if a transmitter interrupt occured while not
* actually transmitting).
* If data is ready to transmit, start it transmitting,
* otherwise defer until after handling receiver.
*/
if (sc->txb_inuse && --sc->txb_inuse)
ed_xmit(sc);
}
/* Handle receiver interrupts. */
if (isr & (ED_ISR_PRX | ED_ISR_RXE | ED_ISR_OVW)) {
/*
* Overwrite warning. In order to make sure that a
* lockup of the local DMA hasn't occurred, we reset
* and re-init the NIC. The NSC manual suggests only a
* partial reset/re-init is necessary - but some chips
* seem to want more. The DMA lockup has been seen
* only with early rev chips - Methinks this bug was
* fixed in later revs. -DG
*/
if (isr & ED_ISR_OVW) {
++sc->sc_arpcom.ac_if.if_ierrors;
#ifdef DIAGNOSTIC
log(LOG_WARNING,
"%s: warning - receiver ring buffer overrun\n",
sc->sc_dev.dv_xname);
#endif
/* Stop/reset/re-init NIC. */
ed_reset(sc);
} else {
/*
* Receiver Error. One or more of: CRC error,
* frame alignment error FIFO overrun, or
* missed packet.
*/
if (isr & ED_ISR_RXE) {
++sc->sc_arpcom.ac_if.if_ierrors;
#ifdef ED_DEBUG
printf("%s: receive error %x\n",
sc->sc_dev.dv_xname,
NIC_GET(sc, ED_P0_RSR));
#endif
}
/*
* Go get the packet(s).
* XXX - Doing this on an error is dubious
* because there shouldn't be any data to get
* (we've configured the interface to not
* accept packets with errors).
*/
ed_rint(sc);
}
}
/*
* If it looks like the transmitter can take more data, attempt
* to start output on the interface. This is done after
* handling the receiver to give the receiver priority.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_OACTIVE) == 0)
ed_start(&sc->sc_arpcom.ac_if);
/*
* Return NIC CR to standard state: page 0, remote DMA
* complete, start (toggling the TXP bit off, even if was just
* set in the transmit routine, is *okay* - it is 'edge'
* triggered from low to high).
*/
NIC_PUT(sc, ED_P0_CR, sc->cr_proto | ED_CR_PAGE_0 | ED_CR_STA);
/*
* If the Network Talley Counters overflow, read them to reset
* them. It appears that old 8390's won't clear the ISR flag
* otherwise - resulting in an infinite loop.
*/
if (isr & ED_ISR_CNT) {
(void) NIC_GET(sc, ED_P0_CNTR0);
(void) NIC_GET(sc, ED_P0_CNTR1);
(void) NIC_GET(sc, ED_P0_CNTR2);
}
isr = NIC_GET(sc, ED_P0_ISR);
if (!isr)
return (1);
}
}
/*
* Process an ioctl request. This code needs some work - it looks pretty ugly.
*/
int
ed_ioctl(ifp, command, data)
register struct ifnet *ifp;
u_long command;
caddr_t data;
{
struct ed_softc *sc = ifp->if_softc;
register struct ifaddr *ifa = (struct ifaddr *)data;
struct ifreq *ifr = (struct ifreq *)data;
int s, error = 0;
s = splnet();
switch (command) {
case SIOCSIFADDR:
ifp->if_flags |= IFF_UP;
switch (ifa->ifa_addr->sa_family) {
#ifdef INET
case AF_INET:
ed_init(sc);
arp_ifinit(&sc->sc_arpcom, ifa);
break;
#endif
#ifdef NS
/* XXX - This code is probably wrong. */
case AF_NS:
{
register struct ns_addr *ina = &IA_SNS(ifa)->sns_addr;
if (ns_nullhost(*ina))
ina->x_host =
*(union ns_host *)(sc->sc_arpcom.ac_enaddr);
else
bcopy(ina->x_host.c_host,
sc->sc_arpcom.ac_enaddr,
sizeof(sc->sc_arpcom.ac_enaddr));
/* Set new address. */
ed_init(sc);
break;
}
#endif
default:
ed_init(sc);
break;
}
break;
case SIOCSIFFLAGS:
if ((ifp->if_flags & IFF_UP) == 0 &&
(ifp->if_flags & IFF_RUNNING) != 0) {
/*
* If interface is marked down and it is running, then
* stop it.
*/
ed_stop(sc);
ifp->if_flags &= ~IFF_RUNNING;
} else if ((ifp->if_flags & IFF_UP) != 0 &&
(ifp->if_flags & IFF_RUNNING) == 0) {
/*
* If interface is marked up and it is stopped, then
* start it.
*/
ed_init(sc);
} else {
/*
* Reset the interface to pick up changes in any other
* flags that affect hardware registers.
*/
ed_stop(sc);
ed_init(sc);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* Update our multicast list. */
error = (command == SIOCADDMULTI) ?
ether_addmulti(ifr, &sc->sc_arpcom) :
ether_delmulti(ifr, &sc->sc_arpcom);
if (error == ENETRESET) {
/*
* Multicast list has changed; set the hardware filter
* accordingly.
*/
ed_stop(sc); /* XXX for ds_setmcaf? */
ed_init(sc);
error = 0;
}
break;
default:
error = EINVAL;
}
splx(s);
return (error);
}
/*
* Retreive packet from shared memory and send to the next level up via
* ether_input(). If there is a BPF listener, give a copy to BPF, too.
*/
void
ed_get_packet(sc, buf, len)
struct ed_softc *sc;
caddr_t buf;
u_short len;
{
struct ether_header *eh;
struct mbuf *m;
/* round length to word boundry */
len = (len + 1) & ~1;
/* Allocate a header mbuf. */
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return;
m->m_pkthdr.rcvif = &sc->sc_arpcom.ac_if;
m->m_pkthdr.len = len;
m->m_len = 0;
/* The following silliness is to make NFS happy. */
#define EROUND ((sizeof(struct ether_header) + 3) & ~3)
#define EOFF (EROUND - sizeof(struct ether_header))
/*
* The following assumes there is room for the ether header in the
* header mbuf.
*/
m->m_data += EOFF;
eh = mtod(m, struct ether_header *);
word_copy(buf, mtod(m, caddr_t), sizeof(struct ether_header));
buf += sizeof(struct ether_header);
m->m_len += sizeof(struct ether_header);
len -= sizeof(struct ether_header);
/* Pull packet off interface. */
if (ed_ring_to_mbuf(sc, buf, m, len) == 0) {
m_freem(m);
return;
}
#if NBPFILTER > 0
/*
* Check if there's a BPF listener on this interface. If so, hand off
* the raw packet to bpf.
*/
if (sc->sc_arpcom.ac_if.if_bpf) {
bpf_mtap(sc->sc_arpcom.ac_if.if_bpf, m);
/*
* Note that the interface cannot be in promiscuous mode if
* there are no BPF listeners. And if we are in promiscuous
* mode, we have to check if this packet is really ours.
*/
if ((sc->sc_arpcom.ac_if.if_flags & IFF_PROMISC) &&
(eh->ether_dhost[0] & 1) == 0 && /* !mcast and !bcast */
bcmp(eh->ether_dhost, sc->sc_arpcom.ac_enaddr,
sizeof(eh->ether_dhost)) != 0) {
m_freem(m);
return;
}
}
#endif
/* Fix up data start offset in mbuf to point past ether header. */
m_adj(m, sizeof(struct ether_header));
ether_input(&sc->sc_arpcom.ac_if, eh, m);
}
/*
* Supporting routines.
*/
/*
* Given a source and destination address, copy 'amount' of a packet from the
* ring buffer into a linear destination buffer. Takes into account ring-wrap.
*/
static inline caddr_t
ed_ring_copy(sc, src, dst, amount)
struct ed_softc *sc;
caddr_t src, dst;
u_short amount;
{
u_short tmp_amount;
/* Does copy wrap to lower addr in ring buffer? */
if (src + amount > sc->mem_end) {
tmp_amount = sc->mem_end - src;
/* Copy amount up to end of NIC memory. */
word_copy(src, dst, tmp_amount);
amount -= tmp_amount;
src = sc->mem_ring;
dst += tmp_amount;
}
word_copy(src, dst, amount);
return (src + amount);
}
/*
* Copy data from receive buffer to end of mbuf chain allocate additional mbufs
* as needed. Return pointer to last mbuf in chain.
* sc = ed info (softc)
* src = pointer in ed ring buffer
* dst = pointer to last mbuf in mbuf chain to copy to
* amount = amount of data to copy
*/
struct mbuf *
ed_ring_to_mbuf(sc, src, dst, total_len)
struct ed_softc *sc;
caddr_t src;
struct mbuf *dst;
u_short total_len;
{
register struct mbuf *m = dst;
/* Round the length to a word boundary. */
/* total_len = (total_len + 1) & ~1; */
while (total_len) {
register u_short amount = min(total_len, M_TRAILINGSPACE(m));
if (amount == 0) {
/*
* No more data in this mbuf; alloc another.
*
* If there is enough data for an mbuf cluster, attempt
* to allocate one of those, otherwise, a regular mbuf
* will do.
* Note that a regular mbuf is always required, even if
* we get a cluster - getting a cluster does not
* allocate any mbufs, and one is needed to assign the
* cluster to. The mbuf that has a cluster extension
* can not be used to contain data - only the cluster
* can contain data.
*/
dst = m;
MGET(m, M_DONTWAIT, MT_DATA);
if (m == 0)
return (0);
if (total_len >= MINCLSIZE)
MCLGET(m, M_DONTWAIT);
m->m_len = 0;
dst->m_next = m;
amount = min(total_len, M_TRAILINGSPACE(m));
}
src = ed_ring_copy(sc, src, mtod(m, caddr_t) + m->m_len,
amount);
m->m_len += amount;
total_len -= amount;
}
return (m);
}
/*
* Compute the multicast address filter from the list of multicast addresses we
* need to listen to.
*/
void
ed_getmcaf(ac, af)
struct arpcom *ac;
u_long *af;
{
struct ifnet *ifp = &ac->ac_if;
struct ether_multi *enm;
register u_char *cp, c;
register u_long crc;
register int i, len;
struct ether_multistep step;
/*
* Set up multicast address filter by passing all multicast addresses
* through a crc generator, and then using the high order 6 bits as an
* index into the 64 bit logical address filter. The high order bit
* selects the word, while the rest of the bits select the bit within
* the word.
*/
if (ifp->if_flags & IFF_PROMISC) {
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
af[0] = af[1] = 0;
ETHER_FIRST_MULTI(step, ac, enm);
while (enm != NULL) {
if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
sizeof(enm->enm_addrlo)) != 0) {
/*
* We must listen to a range of multicast addresses.
* For now, just accept all multicasts, rather than
* trying to set only those filter bits needed to match
* the range. (At this time, the only use of address
* ranges is for IP multicast routing, for which the
* range is big enough to require all bits set.)
*/
ifp->if_flags |= IFF_ALLMULTI;
af[0] = af[1] = 0xffffffff;
return;
}
cp = enm->enm_addrlo;
crc = 0xffffffff;
for (len = sizeof(enm->enm_addrlo); --len >= 0;) {
c = *cp++;
for (i = 8; --i >= 0;) {
if (((crc & 0x80000000) ? 1 : 0) ^ (c & 0x01)) {
crc <<= 1;
crc ^= 0x04c11db6 | 1;
} else
crc <<= 1;
c >>= 1;
}
}
/* Just want the 6 most significant bits. */
crc >>= 26;
/* Turn on the corresponding bit in the filter. */
af[crc >> 5] |= 1 << ((crc & 0x1f) ^ 0);
ETHER_NEXT_MULTI(step, enm);
}
ifp->if_flags &= ~IFF_ALLMULTI;
}
/*
* Copy packet from mbuf to the board memory
*
* Currently uses an extra buffer/extra memory copy,
* unless the whole packet fits in one mbuf.
*
*/
u_short
ed_put(sc, m, buf)
struct ed_softc *sc;
struct mbuf *m;
caddr_t buf;
{
u_char *data, savebyte[2];
int len, wantbyte;
u_short totlen;
totlen = wantbyte = 0;
for (; m != 0; m = m->m_next) {
data = mtod(m, u_char *);
len = m->m_len;
totlen += len;
if (len > 0) {
/* Finish the last word. */
if (wantbyte) {
savebyte[1] = *data;
word_copy(savebyte, buf, 2);
buf += 2;
data++;
len--;
wantbyte = 0;
}
/* Output contiguous words. */
if (len > 1) {
word_copy(data, buf, len);
buf += len & ~1;
data += len & ~1;
len &= 1;
}
/* Save last byte, if necessary. */
if (len == 1) {
savebyte[0] = *data;
wantbyte = 1;
}
}
}
if (wantbyte) {
savebyte[1] = 0;
word_copy(savebyte, buf, 2);
buf += 2;
}
return (totlen);
}