NetBSD/sys/netinet/in_pcb.c
ozaki-r 6fb8880601 Make the routing table and rtcaches MP-safe
See the following descriptions for details.

Proposed on tech-kern and tech-net


Overview
--------

We protect the routing table with a rwock and protect
rtcaches with another rwlock. Each rtentry is protected
from being freed or updated via reference counting and psref.

Global rwlocks
--------------

There are two rwlocks; one for the routing table (rt_lock) and
the other for rtcaches (rtcache_lock). rtcache_lock covers
all existing rtcaches; there may have room for optimizations
(future work).

The locking order is rtcache_lock first and rt_lock is next.

rtentry references
------------------

References to an rtentry is managed with reference counting
and psref. Either of the two mechanisms is used depending on
where a rtentry is obtained. Reference counting is used when
we obtain a rtentry from the routing table directly via
rtalloc1 and rtrequest{,1} while psref is used when we obtain
a rtentry from a rtcache via rtcache_* APIs. In both cases,
a caller can sleep/block with holding an obtained rtentry.

The reasons why we use two different mechanisms are (i) only
using reference counting hurts the performance due to atomic
instructions (rtcache case) (ii) ease of implementation;
applying psref to APIs such rtaloc1 and rtrequest{,1} requires
additional works (adding a local variable and an argument).

We will finally migrate to use only psref but we can do it
when we have a lockless routing table alternative.

Reference counting for rtentry
------------------------------

rt_refcnt now doesn't count permanent references such as for
rt_timers and rtcaches, instead it is used only for temporal
references when obtaining a rtentry via rtalloc1 and rtrequest{,1}.
We can do so because destroying a rtentry always involves
removing references of rt_timers and rtcaches to the rtentry
and we don't need to track such references. This also makes
it easy to wait for readers to release references on deleting
or updating a rtentry, i.e., we can simply wait until the
reference counter is 0 or 1. (If there are permanent references
the counter can be arbitrary.)

rt_ref increments a reference counter of a rtentry and rt_unref
decrements it. rt_ref is called inside APIs (rtalloc1 and
rtrequest{,1} so users don't need to care about it while
users must call rt_unref to an obtained rtentry after using it.

rtfree is removed and we use rt_unref and rt_free instead.
rt_unref now just decrements the counter of a given rtentry
and rt_free just tries to destroy a given rtentry.

See the next section for destructions of rtentries by rt_free.

Destructions of rtentries
-------------------------

We destroy a rtentry only when we call rtrequst{,1}(RTM_DELETE);
the original implementation can destroy in any rtfree where it's
the last reference. If we use reference counting or psref, it's
easy to understand if the place that a rtentry is destroyed is
fixed.

rt_free waits for references to a given rtentry to be released
before actually destroying the rtentry. rt_free uses a condition
variable (cv_wait) (and psref_target_destroy for psref) to wait.

Unfortunately rtrequst{,1}(RTM_DELETE) can be called in softint
that we cannot use cv_wait. In that case, we have to defer the
destruction to a workqueue.

rtentry#rt_cv, rtentry#rt_psref and global variables
(see rt_free_global) are added to conduct the procedure.

Updates of rtentries
--------------------

One difficulty to use refcnt/psref instead of rwlock for rtentry
is updates of rtentries. We need an additional mechanism to
prevent readers from seeing inconsistency of a rtentry being
updated.

We introduce RTF_UPDATING flag to rtentries that are updating.
While the flag is set to a rtentry, users cannot acquire the
rtentry. By doing so, we avoid users to see inconsistent
rtentries.

There are two options when a user tries to acquire a rtentry
with the RTF_UPDATING flag; if a user runs in softint context
the user fails to acquire a rtentry (NULL is returned).
Otherwise a user waits until the update completes by waiting
on cv.

The procedure of a updater is simpler to destruction of
a rtentry. Wait on cv (and psref) and after all readers left,
proceed with the update.

Global variables (see rt_update_global) are added to conduct
the procedure.

Currently we apply the mechanism to only RTM_CHANGE in
rtsock.c. We would have to apply other codes. See
"Known issues" section.

psref for rtentry
-----------------

When we obtain a rtentry from a rtcache via rtcache_* APIs,
psref is used to reference to the rtentry.

rtcache_ref acquires a reference to a rtentry with psref
and rtcache_unref releases the reference after using it.
rtcache_ref is called inside rtcache_* APIs and users don't
need to take care of it while users must call rtcache_unref
to release the reference.

struct psref and int bound that is needed for psref is
embedded into struct route. By doing so we don't need to
add local variables and additional argument to APIs.

However this adds another constraint to psref other than
reference counting one's; holding a reference of an rtentry
via a rtcache is allowed by just one caller at the same time.
So we must not acquire a rtentry via a rtcache twice and
avoid a recursive use of a rtcache. And also a rtcache must
be arranged to be used by a LWP/softint at the same time
somehow. For IP forwarding case, we have per-CPU rtcaches
used in softint so the constraint is guaranteed. For a h
rtcache of a PCB case, the constraint is guaranteed by the
solock of each PCB. Any other cases (pf, ipf, stf and ipsec)
are currently guaranteed by only the existence of the global
locks (softnet_lock and/or KERNEL_LOCK). If we've found the
cases that we cannot guarantee the constraint, we would need
to introduce other rtcache APIs that use simple reference
counting.

psref of rtcache is created with IPL_SOFTNET and so rtcache
shouldn't used at an IPL higher than IPL_SOFTNET.

Note that rtcache_free is used to invalidate a given rtcache.
We don't need another care by my change; just keep them as
they are.

Performance impact
------------------

When NET_MPSAFE is disabled the performance drop is 3% while
when it's enabled the drop is increased to 11%. The difference
comes from that currently we don't take any global locks and
don't use psref if NET_MPSAFE is disabled.

We can optimize the performance of the case of NET_MPSAFE
on by reducing lookups of rtcache that uses psref;
currently we do two lookups but we should be able to trim
one of two. This is a future work.

Known issues
------------

There are two known issues to be solved; one is that
a caller of rtrequest(RTM_ADD) may change rtentry (see rtinit).
We need to prevent new references during the update. Or
we may be able to remove the code (perhaps, need more
investigations).

The other is rtredirect that updates a rtentry. We need
to apply our update mechanism, however it's not easy because
rtredirect is called in softint and we cannot apply our
mechanism simply. One solution is to defer rtredirect to
a workqueue but it requires some code restructuring.
2016-12-12 03:55:57 +00:00

1108 lines
28 KiB
C

/* $NetBSD: in_pcb.c,v 1.172 2016/12/12 03:55:57 ozaki-r Exp $ */
/*
* Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the project nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*-
* Copyright (c) 1998, 2011 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Coyote Point Systems, Inc.
* This code is derived from software contributed to The NetBSD Foundation
* by Public Access Networks Corporation ("Panix"). It was developed under
* contract to Panix by Eric Haszlakiewicz and Thor Lancelot Simon.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1982, 1986, 1991, 1993, 1995
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.4 (Berkeley) 5/24/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: in_pcb.c,v 1.172 2016/12/12 03:55:57 ozaki-r Exp $");
#ifdef _KERNEL_OPT
#include "opt_inet.h"
#include "opt_ipsec.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/once.h>
#include <sys/pool.h>
#include <sys/proc.h>
#include <sys/kauth.h>
#include <sys/uidinfo.h>
#include <sys/domain.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
#include <netinet/portalgo.h>
#ifdef INET6
#include <netinet/ip6.h>
#include <netinet6/ip6_var.h>
#include <netinet6/in6_pcb.h>
#endif
#ifdef IPSEC
#include <netipsec/ipsec.h>
#include <netipsec/key.h>
#endif /* IPSEC */
#include <netinet/tcp_vtw.h>
struct in_addr zeroin_addr;
#define INPCBHASH_PORT(table, lport) \
&(table)->inpt_porthashtbl[ntohs(lport) & (table)->inpt_porthash]
#define INPCBHASH_BIND(table, laddr, lport) \
&(table)->inpt_bindhashtbl[ \
((ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_bindhash]
#define INPCBHASH_CONNECT(table, faddr, fport, laddr, lport) \
&(table)->inpt_connecthashtbl[ \
((ntohl((faddr).s_addr) + ntohs(fport)) + \
(ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_connecthash]
int anonportmin = IPPORT_ANONMIN;
int anonportmax = IPPORT_ANONMAX;
int lowportmin = IPPORT_RESERVEDMIN;
int lowportmax = IPPORT_RESERVEDMAX;
static struct pool inpcb_pool;
static int
inpcb_poolinit(void)
{
pool_init(&inpcb_pool, sizeof(struct inpcb), 0, 0, 0, "inpcbpl", NULL,
IPL_NET);
return 0;
}
void
in_pcbinit(struct inpcbtable *table, int bindhashsize, int connecthashsize)
{
static ONCE_DECL(control);
TAILQ_INIT(&table->inpt_queue);
table->inpt_porthashtbl = hashinit(bindhashsize, HASH_LIST, true,
&table->inpt_porthash);
table->inpt_bindhashtbl = hashinit(bindhashsize, HASH_LIST, true,
&table->inpt_bindhash);
table->inpt_connecthashtbl = hashinit(connecthashsize, HASH_LIST, true,
&table->inpt_connecthash);
table->inpt_lastlow = IPPORT_RESERVEDMAX;
table->inpt_lastport = (u_int16_t)anonportmax;
RUN_ONCE(&control, inpcb_poolinit);
}
int
in_pcballoc(struct socket *so, void *v)
{
struct inpcbtable *table = v;
struct inpcb *inp;
int s;
s = splnet();
inp = pool_get(&inpcb_pool, PR_NOWAIT);
splx(s);
if (inp == NULL)
return (ENOBUFS);
memset(inp, 0, sizeof(*inp));
inp->inp_af = AF_INET;
inp->inp_table = table;
inp->inp_socket = so;
inp->inp_errormtu = -1;
inp->inp_portalgo = PORTALGO_DEFAULT;
inp->inp_bindportonsend = false;
#if defined(IPSEC)
if (ipsec_enabled) {
int error = ipsec_init_pcbpolicy(so, &inp->inp_sp);
if (error != 0) {
s = splnet();
pool_put(&inpcb_pool, inp);
splx(s);
return error;
}
}
#endif
so->so_pcb = inp;
s = splnet();
TAILQ_INSERT_HEAD(&table->inpt_queue, &inp->inp_head, inph_queue);
LIST_INSERT_HEAD(INPCBHASH_PORT(table, inp->inp_lport), &inp->inp_head,
inph_lhash);
in_pcbstate(inp, INP_ATTACHED);
splx(s);
return (0);
}
static int
in_pcbsetport(struct sockaddr_in *sin, struct inpcb *inp, kauth_cred_t cred)
{
struct inpcbtable *table = inp->inp_table;
struct socket *so = inp->inp_socket;
u_int16_t *lastport;
u_int16_t lport = 0;
enum kauth_network_req req;
int error;
if (inp->inp_flags & INP_LOWPORT) {
#ifndef IPNOPRIVPORTS
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
#else
req = KAUTH_REQ_NETWORK_BIND_PORT;
#endif
lastport = &table->inpt_lastlow;
} else {
req = KAUTH_REQ_NETWORK_BIND_PORT;
lastport = &table->inpt_lastport;
}
/* XXX-kauth: KAUTH_REQ_NETWORK_BIND_AUTOASSIGN_{,PRIV}PORT */
error = kauth_authorize_network(cred, KAUTH_NETWORK_BIND, req, so, sin,
NULL);
if (error)
return (EACCES);
/*
* Use RFC6056 randomized port selection
*/
error = portalgo_randport(&lport, &inp->inp_head, cred);
if (error)
return error;
inp->inp_flags |= INP_ANONPORT;
*lastport = lport;
lport = htons(lport);
inp->inp_lport = lport;
in_pcbstate(inp, INP_BOUND);
return (0);
}
static int
in_pcbbind_addr(struct inpcb *inp, struct sockaddr_in *sin, kauth_cred_t cred)
{
int error = EADDRNOTAVAIL;
struct ifaddr *ifa = NULL;
int s;
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
s = pserialize_read_enter();
if (IN_MULTICAST(sin->sin_addr.s_addr)) {
/* Always succeed; port reuse handled in in_pcbbind_port(). */
} else if (!in_nullhost(sin->sin_addr)) {
struct in_ifaddr *ia;
ia = in_get_ia(sin->sin_addr);
/* check for broadcast addresses */
if (ia == NULL) {
ifa = ifa_ifwithaddr(sintosa(sin));
if (ifa != NULL)
ia = ifatoia(ifa);
}
if (ia == NULL)
goto error;
if (ia->ia4_flags & IN_IFF_DUPLICATED)
goto error;
}
pserialize_read_exit(s);
inp->inp_laddr = sin->sin_addr;
return (0);
error:
pserialize_read_exit(s);
return error;
}
static int
in_pcbbind_port(struct inpcb *inp, struct sockaddr_in *sin, kauth_cred_t cred)
{
struct inpcbtable *table = inp->inp_table;
struct socket *so = inp->inp_socket;
int reuseport = (so->so_options & SO_REUSEPORT);
int wild = 0, error;
if (IN_MULTICAST(sin->sin_addr.s_addr)) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & (SO_REUSEADDR | SO_REUSEPORT))
reuseport = SO_REUSEADDR|SO_REUSEPORT;
}
if (sin->sin_port == 0) {
error = in_pcbsetport(sin, inp, cred);
if (error)
return (error);
} else {
struct inpcb *t;
vestigial_inpcb_t vestige;
#ifdef INET6
struct in6pcb *t6;
struct in6_addr mapped;
#endif
enum kauth_network_req req;
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0)
wild = 1;
#ifndef IPNOPRIVPORTS
if (ntohs(sin->sin_port) < IPPORT_RESERVED)
req = KAUTH_REQ_NETWORK_BIND_PRIVPORT;
else
#endif /* !IPNOPRIVPORTS */
req = KAUTH_REQ_NETWORK_BIND_PORT;
error = kauth_authorize_network(cred, KAUTH_NETWORK_BIND, req,
so, sin, NULL);
if (error)
return (EACCES);
#ifdef INET6
in6_in_2_v4mapin6(&sin->sin_addr, &mapped);
t6 = in6_pcblookup_port(table, &mapped, sin->sin_port, wild, &vestige);
if (t6 && (reuseport & t6->in6p_socket->so_options) == 0)
return (EADDRINUSE);
if (!t6 && vestige.valid) {
if (!!reuseport != !!vestige.reuse_port) {
return EADDRINUSE;
}
}
#endif
/* XXX-kauth */
if (so->so_uidinfo->ui_uid && !IN_MULTICAST(sin->sin_addr.s_addr)) {
t = in_pcblookup_port(table, sin->sin_addr, sin->sin_port, 1, &vestige);
/*
* XXX: investigate ramifications of loosening this
* restriction so that as long as both ports have
* SO_REUSEPORT allow the bind
*/
if (t &&
(!in_nullhost(sin->sin_addr) ||
!in_nullhost(t->inp_laddr) ||
(t->inp_socket->so_options & SO_REUSEPORT) == 0)
&& (so->so_uidinfo->ui_uid != t->inp_socket->so_uidinfo->ui_uid)) {
return (EADDRINUSE);
}
if (!t && vestige.valid) {
if ((!in_nullhost(sin->sin_addr)
|| !in_nullhost(vestige.laddr.v4)
|| !vestige.reuse_port)
&& so->so_uidinfo->ui_uid != vestige.uid) {
return EADDRINUSE;
}
}
}
t = in_pcblookup_port(table, sin->sin_addr, sin->sin_port, wild, &vestige);
if (t && (reuseport & t->inp_socket->so_options) == 0)
return (EADDRINUSE);
if (!t
&& vestige.valid
&& !(reuseport && vestige.reuse_port))
return EADDRINUSE;
inp->inp_lport = sin->sin_port;
in_pcbstate(inp, INP_BOUND);
}
LIST_REMOVE(&inp->inp_head, inph_lhash);
LIST_INSERT_HEAD(INPCBHASH_PORT(table, inp->inp_lport), &inp->inp_head,
inph_lhash);
return (0);
}
int
in_pcbbind(void *v, struct sockaddr_in *sin, struct lwp *l)
{
struct inpcb *inp = v;
struct sockaddr_in lsin;
int error;
if (inp->inp_af != AF_INET)
return (EINVAL);
if (IN_ADDRLIST_READER_EMPTY())
return (EADDRNOTAVAIL);
if (inp->inp_lport || !in_nullhost(inp->inp_laddr))
return (EINVAL);
if (NULL != sin) {
if (sin->sin_len != sizeof(*sin))
return (EINVAL);
} else {
lsin = *((const struct sockaddr_in *)
inp->inp_socket->so_proto->pr_domain->dom_sa_any);
sin = &lsin;
}
/* Bind address. */
error = in_pcbbind_addr(inp, sin, l->l_cred);
if (error)
return (error);
/* Bind port. */
error = in_pcbbind_port(inp, sin, l->l_cred);
if (error) {
inp->inp_laddr.s_addr = INADDR_ANY;
return (error);
}
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(void *v, struct sockaddr_in *sin, struct lwp *l)
{
struct inpcb *inp = v;
vestigial_inpcb_t vestige;
int error;
struct in_addr laddr;
if (inp->inp_af != AF_INET)
return (EINVAL);
if (sin->sin_len != sizeof (*sin))
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
if (IN_MULTICAST(sin->sin_addr.s_addr) &&
inp->inp_socket->so_type == SOCK_STREAM)
return EADDRNOTAVAIL;
if (!IN_ADDRLIST_READER_EMPTY()) {
/*
* If the destination address is INADDR_ANY,
* use any local address (likely loopback).
* If the supplied address is INADDR_BROADCAST,
* use the broadcast address of an interface
* which supports broadcast. (loopback does not)
*/
if (in_nullhost(sin->sin_addr)) {
/* XXX racy */
sin->sin_addr =
IN_ADDRLIST_READER_FIRST()->ia_addr.sin_addr;
} else if (sin->sin_addr.s_addr == INADDR_BROADCAST) {
struct in_ifaddr *ia;
int s = pserialize_read_enter();
IN_ADDRLIST_READER_FOREACH(ia) {
if (ia->ia_ifp->if_flags & IFF_BROADCAST) {
sin->sin_addr =
ia->ia_broadaddr.sin_addr;
break;
}
}
pserialize_read_exit(s);
}
}
/*
* If we haven't bound which network number to use as ours,
* we will use the number of the outgoing interface.
* This depends on having done a routing lookup, which
* we will probably have to do anyway, so we might
* as well do it now. On the other hand if we are
* sending to multiple destinations we may have already
* done the lookup, so see if we can use the route
* from before. In any case, we only
* chose a port number once, even if sending to multiple
* destinations.
*/
if (in_nullhost(inp->inp_laddr)) {
int xerror;
struct in_ifaddr *ia, *_ia;
int s;
struct psref psref;
int bound;
bound = curlwp_bind();
ia = in_selectsrc(sin, &inp->inp_route,
inp->inp_socket->so_options, inp->inp_moptions, &xerror,
&psref);
if (ia == NULL) {
curlwp_bindx(bound);
if (xerror == 0)
xerror = EADDRNOTAVAIL;
return xerror;
}
s = pserialize_read_enter();
_ia = in_get_ia(IA_SIN(ia)->sin_addr);
if (_ia == NULL) {
pserialize_read_exit(s);
ia4_release(ia, &psref);
curlwp_bindx(bound);
return (EADDRNOTAVAIL);
}
pserialize_read_exit(s);
laddr = IA_SIN(ia)->sin_addr;
ia4_release(ia, &psref);
curlwp_bindx(bound);
} else
laddr = inp->inp_laddr;
if (in_pcblookup_connect(inp->inp_table, sin->sin_addr, sin->sin_port,
laddr, inp->inp_lport, &vestige) != NULL ||
vestige.valid) {
return (EADDRINUSE);
}
if (in_nullhost(inp->inp_laddr)) {
if (inp->inp_lport == 0) {
error = in_pcbbind(inp, NULL, l);
/*
* This used to ignore the return value
* completely, but we need to check for
* ephemeral port shortage.
* And attempts to request low ports if not root.
*/
if (error != 0)
return (error);
}
inp->inp_laddr = laddr;
}
inp->inp_faddr = sin->sin_addr;
inp->inp_fport = sin->sin_port;
/* Late bind, if needed */
if (inp->inp_bindportonsend) {
struct sockaddr_in lsin = *((const struct sockaddr_in *)
inp->inp_socket->so_proto->pr_domain->dom_sa_any);
lsin.sin_addr = inp->inp_laddr;
lsin.sin_port = 0;
if ((error = in_pcbbind_port(inp, &lsin, l->l_cred)) != 0)
return error;
}
in_pcbstate(inp, INP_CONNECTED);
#if defined(IPSEC)
if (ipsec_enabled && inp->inp_socket->so_type == SOCK_STREAM)
ipsec_pcbconn(inp->inp_sp);
#endif
return (0);
}
void
in_pcbdisconnect(void *v)
{
struct inpcb *inp = v;
if (inp->inp_af != AF_INET)
return;
inp->inp_faddr = zeroin_addr;
inp->inp_fport = 0;
in_pcbstate(inp, INP_BOUND);
#if defined(IPSEC)
if (ipsec_enabled)
ipsec_pcbdisconn(inp->inp_sp);
#endif
if (inp->inp_socket->so_state & SS_NOFDREF)
in_pcbdetach(inp);
}
void
in_pcbdetach(void *v)
{
struct inpcb *inp = v;
struct socket *so = inp->inp_socket;
int s;
if (inp->inp_af != AF_INET)
return;
#if defined(IPSEC)
if (ipsec_enabled)
ipsec4_delete_pcbpolicy(inp);
#endif
so->so_pcb = NULL;
s = splnet();
in_pcbstate(inp, INP_ATTACHED);
LIST_REMOVE(&inp->inp_head, inph_lhash);
TAILQ_REMOVE(&inp->inp_table->inpt_queue, &inp->inp_head, inph_queue);
splx(s);
if (inp->inp_options) {
m_free(inp->inp_options);
}
rtcache_free(&inp->inp_route);
ip_freemoptions(inp->inp_moptions);
sofree(so); /* drops the socket's lock */
pool_put(&inpcb_pool, inp);
mutex_enter(softnet_lock); /* reacquire the softnet_lock */
}
void
in_setsockaddr(struct inpcb *inp, struct sockaddr_in *sin)
{
if (inp->inp_af != AF_INET)
return;
sockaddr_in_init(sin, &inp->inp_laddr, inp->inp_lport);
}
void
in_setpeeraddr(struct inpcb *inp, struct sockaddr_in *sin)
{
if (inp->inp_af != AF_INET)
return;
sockaddr_in_init(sin, &inp->inp_faddr, inp->inp_fport);
}
/*
* Pass some notification to all connections of a protocol
* associated with address dst. The local address and/or port numbers
* may be specified to limit the search. The "usual action" will be
* taken, depending on the ctlinput cmd. The caller must filter any
* cmds that are uninteresting (e.g., no error in the map).
* Call the protocol specific routine (if any) to report
* any errors for each matching socket.
*
* Must be called at splsoftnet.
*/
int
in_pcbnotify(struct inpcbtable *table, struct in_addr faddr, u_int fport_arg,
struct in_addr laddr, u_int lport_arg, int errno,
void (*notify)(struct inpcb *, int))
{
struct inpcbhead *head;
struct inpcb *inp, *ninp;
u_int16_t fport = fport_arg, lport = lport_arg;
int nmatch;
if (in_nullhost(faddr) || notify == 0)
return (0);
nmatch = 0;
head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport);
for (inp = (struct inpcb *)LIST_FIRST(head); inp != NULL; inp = ninp) {
ninp = (struct inpcb *)LIST_NEXT(inp, inp_hash);
if (inp->inp_af != AF_INET)
continue;
if (in_hosteq(inp->inp_faddr, faddr) &&
inp->inp_fport == fport &&
inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, laddr)) {
(*notify)(inp, errno);
nmatch++;
}
}
return (nmatch);
}
void
in_pcbnotifyall(struct inpcbtable *table, struct in_addr faddr, int errno,
void (*notify)(struct inpcb *, int))
{
struct inpcb_hdr *inph, *ninph;
if (in_nullhost(faddr) || notify == 0)
return;
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
struct inpcb *inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if (in_hosteq(inp->inp_faddr, faddr))
(*notify)(inp, errno);
}
}
void
in_purgeifmcast(struct ip_moptions *imo, struct ifnet *ifp)
{
int i, gap;
KASSERT(ifp != NULL);
if (imo == NULL)
return;
/*
* Unselect the outgoing interface if it is being
* detached.
*/
if (imo->imo_multicast_if_index == ifp->if_index)
imo->imo_multicast_if_index = 0;
/*
* Drop multicast group membership if we joined
* through the interface being detached.
*/
for (i = 0, gap = 0; i < imo->imo_num_memberships; i++) {
if (imo->imo_membership[i]->inm_ifp == ifp) {
in_delmulti(imo->imo_membership[i]);
gap++;
} else if (gap != 0)
imo->imo_membership[i - gap] = imo->imo_membership[i];
}
imo->imo_num_memberships -= gap;
}
void
in_pcbpurgeif0(struct inpcbtable *table, struct ifnet *ifp)
{
struct inpcb_hdr *inph, *ninph;
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
struct inpcb *inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
in_purgeifmcast(inp->inp_moptions, ifp);
}
}
void
in_pcbpurgeif(struct inpcbtable *table, struct ifnet *ifp)
{
struct rtentry *rt;
struct inpcb_hdr *inph, *ninph;
TAILQ_FOREACH_SAFE(inph, &table->inpt_queue, inph_queue, ninph) {
struct inpcb *inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if ((rt = rtcache_validate(&inp->inp_route)) != NULL &&
rt->rt_ifp == ifp) {
rtcache_unref(rt, &inp->inp_route);
in_rtchange(inp, 0);
} else
rtcache_unref(rt, &inp->inp_route);
}
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in_losing(struct inpcb *inp)
{
struct rtentry *rt;
struct rt_addrinfo info;
if (inp->inp_af != AF_INET)
return;
if ((rt = rtcache_validate(&inp->inp_route)) == NULL)
return;
memset(&info, 0, sizeof(info));
info.rti_info[RTAX_DST] = rtcache_getdst(&inp->inp_route);
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
if (rt->rt_flags & RTF_DYNAMIC) {
int error;
struct rtentry *nrt;
error = rtrequest(RTM_DELETE, rt_getkey(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags, &nrt);
rtcache_unref(rt, &inp->inp_route);
if (error == 0)
rt_free(nrt);
} else
rtcache_unref(rt, &inp->inp_route);
/*
* A new route can be allocated
* the next time output is attempted.
*/
rtcache_free(&inp->inp_route);
}
/*
* After a routing change, flush old routing. A new route can be
* allocated the next time output is attempted.
*/
void
in_rtchange(struct inpcb *inp, int errno)
{
if (inp->inp_af != AF_INET)
return;
rtcache_free(&inp->inp_route);
/* XXX SHOULD NOTIFY HIGHER-LEVEL PROTOCOLS */
}
struct inpcb *
in_pcblookup_port(struct inpcbtable *table, struct in_addr laddr,
u_int lport_arg, int lookup_wildcard, vestigial_inpcb_t *vp)
{
struct inpcbhead *head;
struct inpcb_hdr *inph;
struct inpcb *match = NULL;
int matchwild = 3;
int wildcard;
u_int16_t lport = lport_arg;
if (vp)
vp->valid = 0;
head = INPCBHASH_PORT(table, lport);
LIST_FOREACH(inph, head, inph_lhash) {
struct inpcb * const inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if (inp->inp_lport != lport)
continue;
/*
* check if inp's faddr and laddr match with ours.
* our faddr is considered null.
* count the number of wildcard matches. (0 - 2)
*
* null null match
* A null wildcard match
* null B wildcard match
* A B non match
* A A match
*/
wildcard = 0;
if (!in_nullhost(inp->inp_faddr))
wildcard++;
if (in_nullhost(inp->inp_laddr)) {
if (!in_nullhost(laddr))
wildcard++;
} else {
if (in_nullhost(laddr))
wildcard++;
else {
if (!in_hosteq(inp->inp_laddr, laddr))
continue;
}
}
if (wildcard && !lookup_wildcard)
continue;
/*
* prefer an address with less wildcards.
*/
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
if (match && matchwild == 0)
return match;
if (vp && table->vestige) {
void *state = (*table->vestige->init_ports4)(laddr, lport_arg, lookup_wildcard);
vestigial_inpcb_t better;
while (table->vestige
&& (*table->vestige->next_port4)(state, vp)) {
if (vp->lport != lport)
continue;
wildcard = 0;
if (!in_nullhost(vp->faddr.v4))
wildcard++;
if (in_nullhost(vp->laddr.v4)) {
if (!in_nullhost(laddr))
wildcard++;
} else {
if (in_nullhost(laddr))
wildcard++;
else {
if (!in_hosteq(vp->laddr.v4, laddr))
continue;
}
}
if (wildcard && !lookup_wildcard)
continue;
if (wildcard < matchwild) {
better = *vp;
match = (void*)&better;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
if (match) {
if (match != (void*)&better)
return match;
else {
*vp = better;
return 0;
}
}
}
return (match);
}
#ifdef DIAGNOSTIC
int in_pcbnotifymiss = 0;
#endif
struct inpcb *
in_pcblookup_connect(struct inpcbtable *table,
struct in_addr faddr, u_int fport_arg,
struct in_addr laddr, u_int lport_arg,
vestigial_inpcb_t *vp)
{
struct inpcbhead *head;
struct inpcb_hdr *inph;
struct inpcb *inp;
u_int16_t fport = fport_arg, lport = lport_arg;
if (vp)
vp->valid = 0;
head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport);
LIST_FOREACH(inph, head, inph_hash) {
inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if (in_hosteq(inp->inp_faddr, faddr) &&
inp->inp_fport == fport &&
inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, laddr))
goto out;
}
if (vp && table->vestige) {
if ((*table->vestige->lookup4)(faddr, fport_arg,
laddr, lport_arg, vp))
return 0;
}
#ifdef DIAGNOSTIC
if (in_pcbnotifymiss) {
printf("in_pcblookup_connect: faddr=%08x fport=%d laddr=%08x lport=%d\n",
ntohl(faddr.s_addr), ntohs(fport),
ntohl(laddr.s_addr), ntohs(lport));
}
#endif
return (0);
out:
/* Move this PCB to the head of hash chain. */
inph = &inp->inp_head;
if (inph != LIST_FIRST(head)) {
LIST_REMOVE(inph, inph_hash);
LIST_INSERT_HEAD(head, inph, inph_hash);
}
return (inp);
}
struct inpcb *
in_pcblookup_bind(struct inpcbtable *table,
struct in_addr laddr, u_int lport_arg)
{
struct inpcbhead *head;
struct inpcb_hdr *inph;
struct inpcb *inp;
u_int16_t lport = lport_arg;
head = INPCBHASH_BIND(table, laddr, lport);
LIST_FOREACH(inph, head, inph_hash) {
inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if (inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, laddr))
goto out;
}
head = INPCBHASH_BIND(table, zeroin_addr, lport);
LIST_FOREACH(inph, head, inph_hash) {
inp = (struct inpcb *)inph;
if (inp->inp_af != AF_INET)
continue;
if (inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, zeroin_addr))
goto out;
}
#ifdef DIAGNOSTIC
if (in_pcbnotifymiss) {
printf("in_pcblookup_bind: laddr=%08x lport=%d\n",
ntohl(laddr.s_addr), ntohs(lport));
}
#endif
return (0);
out:
/* Move this PCB to the head of hash chain. */
inph = &inp->inp_head;
if (inph != LIST_FIRST(head)) {
LIST_REMOVE(inph, inph_hash);
LIST_INSERT_HEAD(head, inph, inph_hash);
}
return (inp);
}
void
in_pcbstate(struct inpcb *inp, int state)
{
if (inp->inp_af != AF_INET)
return;
if (inp->inp_state > INP_ATTACHED)
LIST_REMOVE(&inp->inp_head, inph_hash);
switch (state) {
case INP_BOUND:
LIST_INSERT_HEAD(INPCBHASH_BIND(inp->inp_table,
inp->inp_laddr, inp->inp_lport), &inp->inp_head,
inph_hash);
break;
case INP_CONNECTED:
LIST_INSERT_HEAD(INPCBHASH_CONNECT(inp->inp_table,
inp->inp_faddr, inp->inp_fport,
inp->inp_laddr, inp->inp_lport), &inp->inp_head,
inph_hash);
break;
}
inp->inp_state = state;
}
struct rtentry *
in_pcbrtentry(struct inpcb *inp)
{
struct route *ro;
union {
struct sockaddr dst;
struct sockaddr_in dst4;
} u;
if (inp->inp_af != AF_INET)
return (NULL);
ro = &inp->inp_route;
sockaddr_in_init(&u.dst4, &inp->inp_faddr, 0);
return rtcache_lookup(ro, &u.dst);
}
void
in_pcbrtentry_unref(struct rtentry *rt, struct inpcb *inp)
{
rtcache_unref(rt, &inp->inp_route);
}