NetBSD/sys/kern/vfs_subr.c
blymn 8387760ed1 Rototill of the verified exec functionality.
* We now use hash tables instead of a list to store the in kernel
    fingerprints.
  * Fingerprint methods handling has been made more flexible, it is now
    even simpler to add new methods.
  * the loader no longer passes in magic numbers representing the
    fingerprint method so veriexecctl is not longer kernel specific.
  * fingerprint methods can be tailored out using options in the kernel
    config file.
  * more fingerprint methods added - rmd160, sha256/384/512
  * veriexecctl can now report the fingerprint methods supported by the
    running kernel.
  * regularised the naming of some portions of veriexec.
2005-04-20 13:44:45 +00:00

3294 lines
78 KiB
C

/* $NetBSD: vfs_subr.c,v 1.244 2005/04/20 13:44:46 blymn Exp $ */
/*-
* Copyright (c) 1997, 1998, 2004, 2005 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center.
* This code is derived from software contributed to The NetBSD Foundation
* by Charles M. Hannum.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1989, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)vfs_subr.c 8.13 (Berkeley) 4/18/94
*/
/*
* External virtual filesystem routines
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: vfs_subr.c,v 1.244 2005/04/20 13:44:46 blymn Exp $");
#include "opt_inet.h"
#include "opt_ddb.h"
#include "opt_compat_netbsd.h"
#include "opt_compat_43.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/mount.h>
#include <sys/time.h>
#include <sys/event.h>
#include <sys/fcntl.h>
#include <sys/vnode.h>
#include <sys/stat.h>
#include <sys/namei.h>
#include <sys/ucred.h>
#include <sys/buf.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/domain.h>
#include <sys/mbuf.h>
#include <sys/sa.h>
#include <sys/syscallargs.h>
#include <sys/device.h>
#include <sys/extattr.h>
#include <sys/dirent.h>
#include <sys/filedesc.h>
#include <miscfs/specfs/specdev.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/syncfs/syncfs.h>
#include <netinet/in.h>
#include <uvm/uvm.h>
#include <uvm/uvm_ddb.h>
#include <netinet/in.h>
#include <sys/sysctl.h>
const enum vtype iftovt_tab[16] = {
VNON, VFIFO, VCHR, VNON, VDIR, VNON, VBLK, VNON,
VREG, VNON, VLNK, VNON, VSOCK, VNON, VNON, VBAD,
};
const int vttoif_tab[9] = {
0, S_IFREG, S_IFDIR, S_IFBLK, S_IFCHR, S_IFLNK,
S_IFSOCK, S_IFIFO, S_IFMT,
};
int doforce = 1; /* 1 => permit forcible unmounting */
int prtactive = 0; /* 1 => print out reclaim of active vnodes */
extern int dovfsusermount; /* 1 => permit any user to mount filesystems */
/*
* Insq/Remq for the vnode usage lists.
*/
#define bufinsvn(bp, dp) LIST_INSERT_HEAD(dp, bp, b_vnbufs)
#define bufremvn(bp) { \
LIST_REMOVE(bp, b_vnbufs); \
(bp)->b_vnbufs.le_next = NOLIST; \
}
/* TAILQ_HEAD(freelst, vnode) vnode_free_list = vnode free list (in vnode.h) */
struct freelst vnode_free_list = TAILQ_HEAD_INITIALIZER(vnode_free_list);
struct freelst vnode_hold_list = TAILQ_HEAD_INITIALIZER(vnode_hold_list);
struct mntlist mountlist = /* mounted filesystem list */
CIRCLEQ_HEAD_INITIALIZER(mountlist);
struct vfs_list_head vfs_list = /* vfs list */
LIST_HEAD_INITIALIZER(vfs_list);
struct nfs_public nfs_pub; /* publicly exported FS */
struct simplelock mountlist_slock = SIMPLELOCK_INITIALIZER;
static struct simplelock mntid_slock = SIMPLELOCK_INITIALIZER;
struct simplelock mntvnode_slock = SIMPLELOCK_INITIALIZER;
struct simplelock vnode_free_list_slock = SIMPLELOCK_INITIALIZER;
struct simplelock spechash_slock = SIMPLELOCK_INITIALIZER;
/* XXX - gross; single global lock to protect v_numoutput */
struct simplelock global_v_numoutput_slock = SIMPLELOCK_INITIALIZER;
/*
* These define the root filesystem and device.
*/
struct mount *rootfs;
struct vnode *rootvnode;
struct device *root_device; /* root device */
POOL_INIT(vnode_pool, sizeof(struct vnode), 0, 0, 0, "vnodepl",
&pool_allocator_nointr);
MALLOC_DEFINE(M_VNODE, "vnodes", "Dynamically allocated vnodes");
/*
* Local declarations.
*/
void insmntque(struct vnode *, struct mount *);
int getdevvp(dev_t, struct vnode **, enum vtype);
void vclean(struct vnode *, int, struct proc *);
static int vfs_hang_addrlist(struct mount *, struct netexport *,
struct export_args *);
static int vfs_free_netcred(struct radix_node *, void *);
static void vfs_free_addrlist(struct netexport *);
static struct vnode *getcleanvnode(struct proc *);
#ifdef DEBUG
void printlockedvnodes(void);
#endif
/*
* Initialize the vnode management data structures.
*/
void
vntblinit()
{
/*
* Initialize the filesystem syncer.
*/
vn_initialize_syncerd();
}
int
vfs_drainvnodes(long target, struct proc *p)
{
simple_lock(&vnode_free_list_slock);
while (numvnodes > target) {
struct vnode *vp;
vp = getcleanvnode(p);
if (vp == NULL)
return EBUSY; /* give up */
pool_put(&vnode_pool, vp);
simple_lock(&vnode_free_list_slock);
numvnodes--;
}
simple_unlock(&vnode_free_list_slock);
return 0;
}
/*
* grab a vnode from freelist and clean it.
*/
struct vnode *
getcleanvnode(p)
struct proc *p;
{
struct vnode *vp;
struct mount *mp;
struct freelst *listhd;
LOCK_ASSERT(simple_lock_held(&vnode_free_list_slock));
listhd = &vnode_free_list;
try_nextlist:
TAILQ_FOREACH(vp, listhd, v_freelist) {
if (!simple_lock_try(&vp->v_interlock))
continue;
/*
* as our lwp might hold the underlying vnode locked,
* don't try to reclaim the VLAYER vnode if it's locked.
*/
if ((vp->v_flag & VXLOCK) == 0 &&
((vp->v_flag & VLAYER) == 0 || VOP_ISLOCKED(vp) == 0)) {
if (vn_start_write(vp, &mp, V_NOWAIT) == 0)
break;
}
mp = NULL;
simple_unlock(&vp->v_interlock);
}
if (vp == NULLVP) {
if (listhd == &vnode_free_list) {
listhd = &vnode_hold_list;
goto try_nextlist;
}
simple_unlock(&vnode_free_list_slock);
return NULLVP;
}
if (vp->v_usecount)
panic("free vnode isn't, vp %p", vp);
TAILQ_REMOVE(listhd, vp, v_freelist);
/* see comment on why 0xdeadb is set at end of vgone (below) */
vp->v_freelist.tqe_prev = (struct vnode **)0xdeadb;
simple_unlock(&vnode_free_list_slock);
vp->v_lease = NULL;
if (vp->v_type != VBAD)
vgonel(vp, p);
else
simple_unlock(&vp->v_interlock);
vn_finished_write(mp, 0);
#ifdef DIAGNOSTIC
if (vp->v_data || vp->v_uobj.uo_npages ||
TAILQ_FIRST(&vp->v_uobj.memq))
panic("cleaned vnode isn't, vp %p", vp);
if (vp->v_numoutput)
panic("clean vnode has pending I/O's, vp %p", vp);
#endif
KASSERT((vp->v_flag & VONWORKLST) == 0);
return vp;
}
/*
* Mark a mount point as busy. Used to synchronize access and to delay
* unmounting. Interlock is not released on failure.
*/
int
vfs_busy(mp, flags, interlkp)
struct mount *mp;
int flags;
struct simplelock *interlkp;
{
int lkflags;
while (mp->mnt_iflag & IMNT_UNMOUNT) {
int gone, n;
if (flags & LK_NOWAIT)
return (ENOENT);
if ((flags & LK_RECURSEFAIL) && mp->mnt_unmounter != NULL
&& mp->mnt_unmounter == curproc)
return (EDEADLK);
if (interlkp)
simple_unlock(interlkp);
/*
* Since all busy locks are shared except the exclusive
* lock granted when unmounting, the only place that a
* wakeup needs to be done is at the release of the
* exclusive lock at the end of dounmount.
*/
simple_lock(&mp->mnt_slock);
mp->mnt_wcnt++;
ltsleep((caddr_t)mp, PVFS, "vfs_busy", 0, &mp->mnt_slock);
n = --mp->mnt_wcnt;
simple_unlock(&mp->mnt_slock);
gone = mp->mnt_iflag & IMNT_GONE;
if (n == 0)
wakeup(&mp->mnt_wcnt);
if (interlkp)
simple_lock(interlkp);
if (gone)
return (ENOENT);
}
lkflags = LK_SHARED;
if (interlkp)
lkflags |= LK_INTERLOCK;
if (lockmgr(&mp->mnt_lock, lkflags, interlkp))
panic("vfs_busy: unexpected lock failure");
return (0);
}
/*
* Free a busy filesystem.
*/
void
vfs_unbusy(mp)
struct mount *mp;
{
lockmgr(&mp->mnt_lock, LK_RELEASE, NULL);
}
/*
* Lookup a filesystem type, and if found allocate and initialize
* a mount structure for it.
*
* Devname is usually updated by mount(8) after booting.
*/
int
vfs_rootmountalloc(fstypename, devname, mpp)
char *fstypename;
char *devname;
struct mount **mpp;
{
struct vfsops *vfsp = NULL;
struct mount *mp;
LIST_FOREACH(vfsp, &vfs_list, vfs_list)
if (!strncmp(vfsp->vfs_name, fstypename, MFSNAMELEN))
break;
if (vfsp == NULL)
return (ENODEV);
mp = malloc((u_long)sizeof(struct mount), M_MOUNT, M_WAITOK);
memset((char *)mp, 0, (u_long)sizeof(struct mount));
lockinit(&mp->mnt_lock, PVFS, "vfslock", 0, 0);
simple_lock_init(&mp->mnt_slock);
(void)vfs_busy(mp, LK_NOWAIT, 0);
LIST_INIT(&mp->mnt_vnodelist);
mp->mnt_op = vfsp;
mp->mnt_flag = MNT_RDONLY;
mp->mnt_vnodecovered = NULLVP;
mp->mnt_leaf = mp;
vfsp->vfs_refcount++;
strncpy(mp->mnt_stat.f_fstypename, vfsp->vfs_name, MFSNAMELEN);
mp->mnt_stat.f_mntonname[0] = '/';
(void) copystr(devname, mp->mnt_stat.f_mntfromname, MNAMELEN - 1, 0);
*mpp = mp;
return (0);
}
/*
* Lookup a mount point by filesystem identifier.
*/
struct mount *
vfs_getvfs(fsid)
fsid_t *fsid;
{
struct mount *mp;
simple_lock(&mountlist_slock);
CIRCLEQ_FOREACH(mp, &mountlist, mnt_list) {
if (mp->mnt_stat.f_fsidx.__fsid_val[0] == fsid->__fsid_val[0] &&
mp->mnt_stat.f_fsidx.__fsid_val[1] == fsid->__fsid_val[1]) {
simple_unlock(&mountlist_slock);
return (mp);
}
}
simple_unlock(&mountlist_slock);
return ((struct mount *)0);
}
/*
* Get a new unique fsid
*/
void
vfs_getnewfsid(mp)
struct mount *mp;
{
static u_short xxxfs_mntid;
fsid_t tfsid;
int mtype;
simple_lock(&mntid_slock);
mtype = makefstype(mp->mnt_op->vfs_name);
mp->mnt_stat.f_fsidx.__fsid_val[0] = makedev(mtype, 0);
mp->mnt_stat.f_fsidx.__fsid_val[1] = mtype;
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
if (xxxfs_mntid == 0)
++xxxfs_mntid;
tfsid.__fsid_val[0] = makedev(mtype & 0xff, xxxfs_mntid);
tfsid.__fsid_val[1] = mtype;
if (!CIRCLEQ_EMPTY(&mountlist)) {
while (vfs_getvfs(&tfsid)) {
tfsid.__fsid_val[0]++;
xxxfs_mntid++;
}
}
mp->mnt_stat.f_fsidx.__fsid_val[0] = tfsid.__fsid_val[0];
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
simple_unlock(&mntid_slock);
}
/*
* Make a 'unique' number from a mount type name.
*/
long
makefstype(type)
const char *type;
{
long rv;
for (rv = 0; *type; type++) {
rv <<= 2;
rv ^= *type;
}
return rv;
}
/*
* Set vnode attributes to VNOVAL
*/
void
vattr_null(vap)
struct vattr *vap;
{
vap->va_type = VNON;
/*
* Assign individually so that it is safe even if size and
* sign of each member are varied.
*/
vap->va_mode = VNOVAL;
vap->va_nlink = VNOVAL;
vap->va_uid = VNOVAL;
vap->va_gid = VNOVAL;
vap->va_fsid = VNOVAL;
vap->va_fileid = VNOVAL;
vap->va_size = VNOVAL;
vap->va_blocksize = VNOVAL;
vap->va_atime.tv_sec =
vap->va_mtime.tv_sec =
vap->va_ctime.tv_sec =
vap->va_birthtime.tv_sec = VNOVAL;
vap->va_atime.tv_nsec =
vap->va_mtime.tv_nsec =
vap->va_ctime.tv_nsec =
vap->va_birthtime.tv_nsec = VNOVAL;
vap->va_gen = VNOVAL;
vap->va_flags = VNOVAL;
vap->va_rdev = VNOVAL;
vap->va_bytes = VNOVAL;
vap->va_vaflags = 0;
}
/*
* Routines having to do with the management of the vnode table.
*/
extern int (**dead_vnodeop_p)(void *);
long numvnodes;
/*
* Return the next vnode from the free list.
*/
int
getnewvnode(tag, mp, vops, vpp)
enum vtagtype tag;
struct mount *mp;
int (**vops)(void *);
struct vnode **vpp;
{
extern struct uvm_pagerops uvm_vnodeops;
struct uvm_object *uobj;
struct proc *p = curproc; /* XXX */
static int toggle;
struct vnode *vp;
int error = 0, tryalloc;
try_again:
if (mp) {
/*
* Mark filesystem busy while we're creating a vnode.
* If unmount is in progress, this will wait; if the
* unmount succeeds (only if umount -f), this will
* return an error. If the unmount fails, we'll keep
* going afterwards.
* (This puts the per-mount vnode list logically under
* the protection of the vfs_busy lock).
*/
error = vfs_busy(mp, LK_RECURSEFAIL, 0);
if (error && error != EDEADLK)
return error;
}
/*
* We must choose whether to allocate a new vnode or recycle an
* existing one. The criterion for allocating a new one is that
* the total number of vnodes is less than the number desired or
* there are no vnodes on either free list. Generally we only
* want to recycle vnodes that have no buffers associated with
* them, so we look first on the vnode_free_list. If it is empty,
* we next consider vnodes with referencing buffers on the
* vnode_hold_list. The toggle ensures that half the time we
* will use a buffer from the vnode_hold_list, and half the time
* we will allocate a new one unless the list has grown to twice
* the desired size. We are reticent to recycle vnodes from the
* vnode_hold_list because we will lose the identity of all its
* referencing buffers.
*/
vp = NULL;
simple_lock(&vnode_free_list_slock);
toggle ^= 1;
if (numvnodes > 2 * desiredvnodes)
toggle = 0;
tryalloc = numvnodes < desiredvnodes ||
(TAILQ_FIRST(&vnode_free_list) == NULL &&
(TAILQ_FIRST(&vnode_hold_list) == NULL || toggle));
if (tryalloc &&
(vp = pool_get(&vnode_pool, PR_NOWAIT)) != NULL) {
numvnodes++;
simple_unlock(&vnode_free_list_slock);
memset(vp, 0, sizeof(*vp));
simple_lock_init(&vp->v_interlock);
uobj = &vp->v_uobj;
uobj->pgops = &uvm_vnodeops;
TAILQ_INIT(&uobj->memq);
/*
* done by memset() above.
* uobj->uo_npages = 0;
* LIST_INIT(&vp->v_nclist);
* LIST_INIT(&vp->v_dnclist);
*/
} else {
vp = getcleanvnode(p);
/*
* Unless this is a bad time of the month, at most
* the first NCPUS items on the free list are
* locked, so this is close enough to being empty.
*/
if (vp == NULLVP) {
if (mp && error != EDEADLK)
vfs_unbusy(mp);
if (tryalloc) {
printf("WARNING: unable to allocate new "
"vnode, retrying...\n");
(void) tsleep(&lbolt, PRIBIO, "newvn", hz);
goto try_again;
}
tablefull("vnode", "increase kern.maxvnodes or NVNODE");
*vpp = 0;
return (ENFILE);
}
vp->v_flag = 0;
vp->v_socket = NULL;
#ifdef VERIFIED_EXEC
vp->fp_status = FINGERPRINT_NOTEVAL;
#endif
}
vp->v_type = VNON;
vp->v_vnlock = &vp->v_lock;
lockinit(vp->v_vnlock, PVFS, "vnlock", 0, 0);
KASSERT(LIST_EMPTY(&vp->v_nclist));
KASSERT(LIST_EMPTY(&vp->v_dnclist));
vp->v_tag = tag;
vp->v_op = vops;
insmntque(vp, mp);
*vpp = vp;
vp->v_usecount = 1;
vp->v_data = 0;
simple_lock_init(&vp->v_interlock);
/*
* initialize uvm_object within vnode.
*/
uobj = &vp->v_uobj;
KASSERT(uobj->pgops == &uvm_vnodeops);
KASSERT(uobj->uo_npages == 0);
KASSERT(TAILQ_FIRST(&uobj->memq) == NULL);
vp->v_size = VSIZENOTSET;
if (mp && error != EDEADLK)
vfs_unbusy(mp);
return (0);
}
/*
* This is really just the reverse of getnewvnode(). Needed for
* VFS_VGET functions who may need to push back a vnode in case
* of a locking race.
*/
void
ungetnewvnode(vp)
struct vnode *vp;
{
#ifdef DIAGNOSTIC
if (vp->v_usecount != 1)
panic("ungetnewvnode: busy vnode");
#endif
vp->v_usecount--;
insmntque(vp, NULL);
vp->v_type = VBAD;
simple_lock(&vp->v_interlock);
/*
* Insert at head of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_HEAD(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_HEAD(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}
/*
* Move a vnode from one mount queue to another.
*/
void
insmntque(vp, mp)
struct vnode *vp;
struct mount *mp;
{
#ifdef DIAGNOSTIC
if ((mp != NULL) &&
(mp->mnt_iflag & IMNT_UNMOUNT) &&
!(mp->mnt_flag & MNT_SOFTDEP) &&
vp->v_tag != VT_VFS) {
panic("insmntque into dying filesystem");
}
#endif
simple_lock(&mntvnode_slock);
/*
* Delete from old mount point vnode list, if on one.
*/
if (vp->v_mount != NULL)
LIST_REMOVE(vp, v_mntvnodes);
/*
* Insert into list of vnodes for the new mount point, if available.
*/
if ((vp->v_mount = mp) != NULL)
LIST_INSERT_HEAD(&mp->mnt_vnodelist, vp, v_mntvnodes);
simple_unlock(&mntvnode_slock);
}
/*
* Update outstanding I/O count and do wakeup if requested.
*/
void
vwakeup(bp)
struct buf *bp;
{
struct vnode *vp;
if ((vp = bp->b_vp) != NULL) {
/* XXX global lock hack
* can't use v_interlock here since this is called
* in interrupt context from biodone().
*/
simple_lock(&global_v_numoutput_slock);
if (--vp->v_numoutput < 0)
panic("vwakeup: neg numoutput, vp %p", vp);
if ((vp->v_flag & VBWAIT) && vp->v_numoutput <= 0) {
vp->v_flag &= ~VBWAIT;
wakeup((caddr_t)&vp->v_numoutput);
}
simple_unlock(&global_v_numoutput_slock);
}
}
/*
* Flush out and invalidate all buffers associated with a vnode.
* Called with the underlying vnode locked, which should prevent new dirty
* buffers from being queued.
*/
int
vinvalbuf(vp, flags, cred, p, slpflag, slptimeo)
struct vnode *vp;
int flags;
struct ucred *cred;
struct proc *p;
int slpflag, slptimeo;
{
struct buf *bp, *nbp;
int s, error;
int flushflags = PGO_ALLPAGES | PGO_FREE | PGO_SYNCIO |
(flags & V_SAVE ? PGO_CLEANIT : 0);
/* XXXUBC this doesn't look at flags or slp* */
simple_lock(&vp->v_interlock);
error = VOP_PUTPAGES(vp, 0, 0, flushflags);
if (error) {
return error;
}
if (flags & V_SAVE) {
error = VOP_FSYNC(vp, cred, FSYNC_WAIT|FSYNC_RECLAIM, 0, 0, p);
if (error)
return (error);
#ifdef DIAGNOSTIC
s = splbio();
if (vp->v_numoutput > 0 || !LIST_EMPTY(&vp->v_dirtyblkhd))
panic("vinvalbuf: dirty bufs, vp %p", vp);
splx(s);
#endif
}
s = splbio();
restart:
for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
simple_lock(&bp->b_interlock);
if (bp->b_flags & B_BUSY) {
bp->b_flags |= B_WANTED;
error = ltsleep((caddr_t)bp,
slpflag | (PRIBIO + 1) | PNORELOCK,
"vinvalbuf", slptimeo, &bp->b_interlock);
if (error) {
splx(s);
return (error);
}
goto restart;
}
bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH;
simple_unlock(&bp->b_interlock);
brelse(bp);
}
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
simple_lock(&bp->b_interlock);
if (bp->b_flags & B_BUSY) {
bp->b_flags |= B_WANTED;
error = ltsleep((caddr_t)bp,
slpflag | (PRIBIO + 1) | PNORELOCK,
"vinvalbuf", slptimeo, &bp->b_interlock);
if (error) {
splx(s);
return (error);
}
goto restart;
}
/*
* XXX Since there are no node locks for NFS, I believe
* there is a slight chance that a delayed write will
* occur while sleeping just above, so check for it.
*/
if ((bp->b_flags & B_DELWRI) && (flags & V_SAVE)) {
#ifdef DEBUG
printf("buffer still DELWRI\n");
#endif
bp->b_flags |= B_BUSY | B_VFLUSH;
simple_unlock(&bp->b_interlock);
VOP_BWRITE(bp);
goto restart;
}
bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH;
simple_unlock(&bp->b_interlock);
brelse(bp);
}
#ifdef DIAGNOSTIC
if (!LIST_EMPTY(&vp->v_cleanblkhd) || !LIST_EMPTY(&vp->v_dirtyblkhd))
panic("vinvalbuf: flush failed, vp %p", vp);
#endif
splx(s);
return (0);
}
/*
* Destroy any in core blocks past the truncation length.
* Called with the underlying vnode locked, which should prevent new dirty
* buffers from being queued.
*/
int
vtruncbuf(vp, lbn, slpflag, slptimeo)
struct vnode *vp;
daddr_t lbn;
int slpflag, slptimeo;
{
struct buf *bp, *nbp;
int s, error;
voff_t off;
off = round_page((voff_t)lbn << vp->v_mount->mnt_fs_bshift);
simple_lock(&vp->v_interlock);
error = VOP_PUTPAGES(vp, off, 0, PGO_FREE | PGO_SYNCIO);
if (error) {
return error;
}
s = splbio();
restart:
for (bp = LIST_FIRST(&vp->v_cleanblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_lblkno < lbn)
continue;
simple_lock(&bp->b_interlock);
if (bp->b_flags & B_BUSY) {
bp->b_flags |= B_WANTED;
error = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
"vtruncbuf", slptimeo, &bp->b_interlock);
if (error) {
splx(s);
return (error);
}
goto restart;
}
bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH;
simple_unlock(&bp->b_interlock);
brelse(bp);
}
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
if (bp->b_lblkno < lbn)
continue;
simple_lock(&bp->b_interlock);
if (bp->b_flags & B_BUSY) {
bp->b_flags |= B_WANTED;
error = ltsleep(bp, slpflag | (PRIBIO + 1) | PNORELOCK,
"vtruncbuf", slptimeo, &bp->b_interlock);
if (error) {
splx(s);
return (error);
}
goto restart;
}
bp->b_flags |= B_BUSY | B_INVAL | B_VFLUSH;
simple_unlock(&bp->b_interlock);
brelse(bp);
}
splx(s);
return (0);
}
void
vflushbuf(vp, sync)
struct vnode *vp;
int sync;
{
struct buf *bp, *nbp;
int flags = PGO_CLEANIT | PGO_ALLPAGES | (sync ? PGO_SYNCIO : 0);
int s;
simple_lock(&vp->v_interlock);
(void) VOP_PUTPAGES(vp, 0, 0, flags);
loop:
s = splbio();
for (bp = LIST_FIRST(&vp->v_dirtyblkhd); bp; bp = nbp) {
nbp = LIST_NEXT(bp, b_vnbufs);
simple_lock(&bp->b_interlock);
if ((bp->b_flags & B_BUSY)) {
simple_unlock(&bp->b_interlock);
continue;
}
if ((bp->b_flags & B_DELWRI) == 0)
panic("vflushbuf: not dirty, bp %p", bp);
bp->b_flags |= B_BUSY | B_VFLUSH;
simple_unlock(&bp->b_interlock);
splx(s);
/*
* Wait for I/O associated with indirect blocks to complete,
* since there is no way to quickly wait for them below.
*/
if (bp->b_vp == vp || sync == 0)
(void) bawrite(bp);
else
(void) bwrite(bp);
goto loop;
}
if (sync == 0) {
splx(s);
return;
}
simple_lock(&global_v_numoutput_slock);
while (vp->v_numoutput) {
vp->v_flag |= VBWAIT;
ltsleep((caddr_t)&vp->v_numoutput, PRIBIO + 1, "vflushbuf", 0,
&global_v_numoutput_slock);
}
simple_unlock(&global_v_numoutput_slock);
splx(s);
if (!LIST_EMPTY(&vp->v_dirtyblkhd)) {
vprint("vflushbuf: dirty", vp);
goto loop;
}
}
/*
* Associate a buffer with a vnode.
*/
void
bgetvp(vp, bp)
struct vnode *vp;
struct buf *bp;
{
int s;
if (bp->b_vp)
panic("bgetvp: not free, bp %p", bp);
VHOLD(vp);
s = splbio();
bp->b_vp = vp;
if (vp->v_type == VBLK || vp->v_type == VCHR)
bp->b_dev = vp->v_rdev;
else
bp->b_dev = NODEV;
/*
* Insert onto list for new vnode.
*/
bufinsvn(bp, &vp->v_cleanblkhd);
splx(s);
}
/*
* Disassociate a buffer from a vnode.
*/
void
brelvp(bp)
struct buf *bp;
{
struct vnode *vp;
int s;
if (bp->b_vp == NULL)
panic("brelvp: vp NULL, bp %p", bp);
s = splbio();
vp = bp->b_vp;
/*
* Delete from old vnode list, if on one.
*/
if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
bufremvn(bp);
if (TAILQ_EMPTY(&vp->v_uobj.memq) && (vp->v_flag & VONWORKLST) &&
LIST_FIRST(&vp->v_dirtyblkhd) == NULL) {
vp->v_flag &= ~VONWORKLST;
LIST_REMOVE(vp, v_synclist);
}
bp->b_vp = NULL;
HOLDRELE(vp);
splx(s);
}
/*
* Reassign a buffer from one vnode to another.
* Used to assign file specific control information
* (indirect blocks) to the vnode to which they belong.
*
* This function must be called at splbio().
*/
void
reassignbuf(bp, newvp)
struct buf *bp;
struct vnode *newvp;
{
struct buflists *listheadp;
int delay;
/*
* Delete from old vnode list, if on one.
*/
if (LIST_NEXT(bp, b_vnbufs) != NOLIST)
bufremvn(bp);
/*
* If dirty, put on list of dirty buffers;
* otherwise insert onto list of clean buffers.
*/
if ((bp->b_flags & B_DELWRI) == 0) {
listheadp = &newvp->v_cleanblkhd;
if (TAILQ_EMPTY(&newvp->v_uobj.memq) &&
(newvp->v_flag & VONWORKLST) &&
LIST_FIRST(&newvp->v_dirtyblkhd) == NULL) {
newvp->v_flag &= ~VONWORKLST;
LIST_REMOVE(newvp, v_synclist);
}
} else {
listheadp = &newvp->v_dirtyblkhd;
if ((newvp->v_flag & VONWORKLST) == 0) {
switch (newvp->v_type) {
case VDIR:
delay = dirdelay;
break;
case VBLK:
if (newvp->v_specmountpoint != NULL) {
delay = metadelay;
break;
}
/* fall through */
default:
delay = filedelay;
break;
}
if (!newvp->v_mount ||
(newvp->v_mount->mnt_flag & MNT_ASYNC) == 0)
vn_syncer_add_to_worklist(newvp, delay);
}
}
bufinsvn(bp, listheadp);
}
/*
* Create a vnode for a block device.
* Used for root filesystem and swap areas.
* Also used for memory file system special devices.
*/
int
bdevvp(dev, vpp)
dev_t dev;
struct vnode **vpp;
{
return (getdevvp(dev, vpp, VBLK));
}
/*
* Create a vnode for a character device.
* Used for kernfs and some console handling.
*/
int
cdevvp(dev, vpp)
dev_t dev;
struct vnode **vpp;
{
return (getdevvp(dev, vpp, VCHR));
}
/*
* Create a vnode for a device.
* Used by bdevvp (block device) for root file system etc.,
* and by cdevvp (character device) for console and kernfs.
*/
int
getdevvp(dev, vpp, type)
dev_t dev;
struct vnode **vpp;
enum vtype type;
{
struct vnode *vp;
struct vnode *nvp;
int error;
if (dev == NODEV) {
*vpp = NULLVP;
return (0);
}
error = getnewvnode(VT_NON, NULL, spec_vnodeop_p, &nvp);
if (error) {
*vpp = NULLVP;
return (error);
}
vp = nvp;
vp->v_type = type;
if ((nvp = checkalias(vp, dev, NULL)) != 0) {
vput(vp);
vp = nvp;
}
*vpp = vp;
return (0);
}
/*
* Check to see if the new vnode represents a special device
* for which we already have a vnode (either because of
* bdevvp() or because of a different vnode representing
* the same block device). If such an alias exists, deallocate
* the existing contents and return the aliased vnode. The
* caller is responsible for filling it with its new contents.
*/
struct vnode *
checkalias(nvp, nvp_rdev, mp)
struct vnode *nvp;
dev_t nvp_rdev;
struct mount *mp;
{
struct proc *p = curproc; /* XXX */
struct vnode *vp;
struct vnode **vpp;
if (nvp->v_type != VBLK && nvp->v_type != VCHR)
return (NULLVP);
vpp = &speclisth[SPECHASH(nvp_rdev)];
loop:
simple_lock(&spechash_slock);
for (vp = *vpp; vp; vp = vp->v_specnext) {
if (nvp_rdev != vp->v_rdev || nvp->v_type != vp->v_type)
continue;
/*
* Alias, but not in use, so flush it out.
*/
simple_lock(&vp->v_interlock);
simple_unlock(&spechash_slock);
if (vp->v_usecount == 0) {
vgonel(vp, p);
goto loop;
}
/*
* What we're interested to know here is if someone else has
* removed this vnode from the device hash list while we were
* waiting. This can only happen if vclean() did it, and
* this requires the vnode to be locked. Therefore, we use
* LK_SLEEPFAIL and retry.
*/
if (vget(vp, LK_EXCLUSIVE | LK_INTERLOCK | LK_SLEEPFAIL))
goto loop;
simple_lock(&spechash_slock);
break;
}
if (vp == NULL || vp->v_tag != VT_NON || vp->v_type != VBLK) {
MALLOC(nvp->v_specinfo, struct specinfo *,
sizeof(struct specinfo), M_VNODE, M_NOWAIT);
/* XXX Erg. */
if (nvp->v_specinfo == NULL) {
simple_unlock(&spechash_slock);
uvm_wait("checkalias");
goto loop;
}
nvp->v_rdev = nvp_rdev;
nvp->v_hashchain = vpp;
nvp->v_specnext = *vpp;
nvp->v_specmountpoint = NULL;
simple_unlock(&spechash_slock);
nvp->v_speclockf = NULL;
simple_lock_init(&nvp->v_spec_cow_slock);
SLIST_INIT(&nvp->v_spec_cow_head);
nvp->v_spec_cow_req = 0;
nvp->v_spec_cow_count = 0;
*vpp = nvp;
if (vp != NULLVP) {
nvp->v_flag |= VALIASED;
vp->v_flag |= VALIASED;
vput(vp);
}
return (NULLVP);
}
simple_unlock(&spechash_slock);
VOP_UNLOCK(vp, 0);
simple_lock(&vp->v_interlock);
vclean(vp, 0, p);
vp->v_op = nvp->v_op;
vp->v_tag = nvp->v_tag;
vp->v_vnlock = &vp->v_lock;
lockinit(vp->v_vnlock, PVFS, "vnlock", 0, 0);
nvp->v_type = VNON;
insmntque(vp, mp);
return (vp);
}
/*
* Grab a particular vnode from the free list, increment its
* reference count and lock it. If the vnode lock bit is set the
* vnode is being eliminated in vgone. In that case, we can not
* grab the vnode, so the process is awakened when the transition is
* completed, and an error returned to indicate that the vnode is no
* longer usable (possibly having been changed to a new file system type).
*/
int
vget(vp, flags)
struct vnode *vp;
int flags;
{
int error;
/*
* If the vnode is in the process of being cleaned out for
* another use, we wait for the cleaning to finish and then
* return failure. Cleaning is determined by checking that
* the VXLOCK flag is set.
*/
if ((flags & LK_INTERLOCK) == 0)
simple_lock(&vp->v_interlock);
if (vp->v_flag & VXLOCK) {
if (flags & LK_NOWAIT) {
simple_unlock(&vp->v_interlock);
return EBUSY;
}
vp->v_flag |= VXWANT;
ltsleep(vp, PINOD|PNORELOCK, "vget", 0, &vp->v_interlock);
return (ENOENT);
}
if (vp->v_usecount == 0) {
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_REMOVE(&vnode_hold_list, vp, v_freelist);
else
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
}
vp->v_usecount++;
#ifdef DIAGNOSTIC
if (vp->v_usecount == 0) {
vprint("vget", vp);
panic("vget: usecount overflow, vp %p", vp);
}
#endif
if (flags & LK_TYPE_MASK) {
if ((error = vn_lock(vp, flags | LK_INTERLOCK))) {
/*
* must expand vrele here because we do not want
* to call VOP_INACTIVE if the reference count
* drops back to zero since it was never really
* active. We must remove it from the free list
* before sleeping so that multiple processes do
* not try to recycle it.
*/
simple_lock(&vp->v_interlock);
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return (error);
}
/*
* insert at tail of LRU list
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp,
v_freelist);
else
TAILQ_INSERT_TAIL(&vnode_free_list, vp,
v_freelist);
simple_unlock(&vnode_free_list_slock);
simple_unlock(&vp->v_interlock);
}
return (error);
}
simple_unlock(&vp->v_interlock);
return (0);
}
/*
* vput(), just unlock and vrele()
*/
void
vput(vp)
struct vnode *vp;
{
struct proc *p = curproc; /* XXX */
#ifdef DIAGNOSTIC
if (vp == NULL)
panic("vput: null vp");
#endif
simple_lock(&vp->v_interlock);
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
VOP_UNLOCK(vp, 0);
return;
}
#ifdef DIAGNOSTIC
if (vp->v_usecount < 0 || vp->v_writecount != 0) {
vprint("vput: bad ref count", vp);
panic("vput: ref cnt");
}
#endif
/*
* Insert at tail of LRU list.
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
if (vp->v_flag & VEXECMAP) {
uvmexp.execpages -= vp->v_uobj.uo_npages;
uvmexp.filepages += vp->v_uobj.uo_npages;
}
vp->v_flag &= ~(VTEXT|VEXECMAP);
simple_unlock(&vp->v_interlock);
VOP_INACTIVE(vp, p);
}
/*
* Vnode release.
* If count drops to zero, call inactive routine and return to freelist.
*/
void
vrele(vp)
struct vnode *vp;
{
struct proc *p = curproc; /* XXX */
#ifdef DIAGNOSTIC
if (vp == NULL)
panic("vrele: null vp");
#endif
simple_lock(&vp->v_interlock);
vp->v_usecount--;
if (vp->v_usecount > 0) {
simple_unlock(&vp->v_interlock);
return;
}
#ifdef DIAGNOSTIC
if (vp->v_usecount < 0 || vp->v_writecount != 0) {
vprint("vrele: bad ref count", vp);
panic("vrele: ref cnt vp %p", vp);
}
#endif
/*
* Insert at tail of LRU list.
*/
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
else
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
if (vp->v_flag & VEXECMAP) {
uvmexp.execpages -= vp->v_uobj.uo_npages;
uvmexp.filepages += vp->v_uobj.uo_npages;
}
vp->v_flag &= ~(VTEXT|VEXECMAP);
if (vn_lock(vp, LK_EXCLUSIVE | LK_INTERLOCK) == 0)
VOP_INACTIVE(vp, p);
}
#ifdef DIAGNOSTIC
/*
* Page or buffer structure gets a reference.
*/
void
vholdl(vp)
struct vnode *vp;
{
/*
* If it is on the freelist and the hold count is currently
* zero, move it to the hold list. The test of the back
* pointer and the use reference count of zero is because
* it will be removed from a free list by getnewvnode,
* but will not have its reference count incremented until
* after calling vgone. If the reference count were
* incremented first, vgone would (incorrectly) try to
* close the previous instance of the underlying object.
* So, the back pointer is explicitly set to `0xdeadb' in
* getnewvnode after removing it from a freelist to ensure
* that we do not try to move it here.
*/
if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb) &&
vp->v_holdcnt == 0 && vp->v_usecount == 0) {
simple_lock(&vnode_free_list_slock);
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
TAILQ_INSERT_TAIL(&vnode_hold_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
}
vp->v_holdcnt++;
}
/*
* Page or buffer structure frees a reference.
*/
void
holdrelel(vp)
struct vnode *vp;
{
if (vp->v_holdcnt <= 0)
panic("holdrelel: holdcnt vp %p", vp);
vp->v_holdcnt--;
/*
* If it is on the holdlist and the hold count drops to
* zero, move it to the free list. The test of the back
* pointer and the use reference count of zero is because
* it will be removed from a free list by getnewvnode,
* but will not have its reference count incremented until
* after calling vgone. If the reference count were
* incremented first, vgone would (incorrectly) try to
* close the previous instance of the underlying object.
* So, the back pointer is explicitly set to `0xdeadb' in
* getnewvnode after removing it from a freelist to ensure
* that we do not try to move it here.
*/
if ((vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb) &&
vp->v_holdcnt == 0 && vp->v_usecount == 0) {
simple_lock(&vnode_free_list_slock);
TAILQ_REMOVE(&vnode_hold_list, vp, v_freelist);
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
}
}
/*
* Vnode reference.
*/
void
vref(vp)
struct vnode *vp;
{
simple_lock(&vp->v_interlock);
if (vp->v_usecount <= 0)
panic("vref used where vget required, vp %p", vp);
vp->v_usecount++;
#ifdef DIAGNOSTIC
if (vp->v_usecount == 0) {
vprint("vref", vp);
panic("vref: usecount overflow, vp %p", vp);
}
#endif
simple_unlock(&vp->v_interlock);
}
#endif /* DIAGNOSTIC */
/*
* Remove any vnodes in the vnode table belonging to mount point mp.
*
* If FORCECLOSE is not specified, there should not be any active ones,
* return error if any are found (nb: this is a user error, not a
* system error). If FORCECLOSE is specified, detach any active vnodes
* that are found.
*
* If WRITECLOSE is set, only flush out regular file vnodes open for
* writing.
*
* SKIPSYSTEM causes any vnodes marked V_SYSTEM to be skipped.
*/
#ifdef DEBUG
int busyprt = 0; /* print out busy vnodes */
struct ctldebug debug1 = { "busyprt", &busyprt };
#endif
int
vflush(mp, skipvp, flags)
struct mount *mp;
struct vnode *skipvp;
int flags;
{
struct proc *p = curproc; /* XXX */
struct vnode *vp, *nvp;
int busy = 0;
simple_lock(&mntvnode_slock);
loop:
for (vp = LIST_FIRST(&mp->mnt_vnodelist); vp; vp = nvp) {
if (vp->v_mount != mp)
goto loop;
nvp = LIST_NEXT(vp, v_mntvnodes);
/*
* Skip over a selected vnode.
*/
if (vp == skipvp)
continue;
simple_lock(&vp->v_interlock);
/*
* Skip over a vnodes marked VSYSTEM.
*/
if ((flags & SKIPSYSTEM) && (vp->v_flag & VSYSTEM)) {
simple_unlock(&vp->v_interlock);
continue;
}
/*
* If WRITECLOSE is set, only flush out regular file
* vnodes open for writing.
*/
if ((flags & WRITECLOSE) &&
(vp->v_writecount == 0 || vp->v_type != VREG)) {
simple_unlock(&vp->v_interlock);
continue;
}
/*
* With v_usecount == 0, all we need to do is clear
* out the vnode data structures and we are done.
*/
if (vp->v_usecount == 0) {
simple_unlock(&mntvnode_slock);
vgonel(vp, p);
simple_lock(&mntvnode_slock);
continue;
}
/*
* If FORCECLOSE is set, forcibly close the vnode.
* For block or character devices, revert to an
* anonymous device. For all other files, just kill them.
*/
if (flags & FORCECLOSE) {
simple_unlock(&mntvnode_slock);
if (vp->v_type != VBLK && vp->v_type != VCHR) {
vgonel(vp, p);
} else {
vclean(vp, 0, p);
vp->v_op = spec_vnodeop_p;
insmntque(vp, (struct mount *)0);
}
simple_lock(&mntvnode_slock);
continue;
}
#ifdef DEBUG
if (busyprt)
vprint("vflush: busy vnode", vp);
#endif
simple_unlock(&vp->v_interlock);
busy++;
}
simple_unlock(&mntvnode_slock);
if (busy)
return (EBUSY);
return (0);
}
/*
* Disassociate the underlying file system from a vnode.
*/
void
vclean(vp, flags, p)
struct vnode *vp;
int flags;
struct proc *p;
{
struct mount *mp;
int active;
LOCK_ASSERT(simple_lock_held(&vp->v_interlock));
/*
* Check to see if the vnode is in use.
* If so we have to reference it before we clean it out
* so that its count cannot fall to zero and generate a
* race against ourselves to recycle it.
*/
if ((active = vp->v_usecount) != 0) {
vp->v_usecount++;
#ifdef DIAGNOSTIC
if (vp->v_usecount == 0) {
vprint("vclean", vp);
panic("vclean: usecount overflow");
}
#endif
}
/*
* Prevent the vnode from being recycled or
* brought into use while we clean it out.
*/
if (vp->v_flag & VXLOCK)
panic("vclean: deadlock, vp %p", vp);
vp->v_flag |= VXLOCK;
if (vp->v_flag & VEXECMAP) {
uvmexp.execpages -= vp->v_uobj.uo_npages;
uvmexp.filepages += vp->v_uobj.uo_npages;
}
vp->v_flag &= ~(VTEXT|VEXECMAP);
/*
* Even if the count is zero, the VOP_INACTIVE routine may still
* have the object locked while it cleans it out. The VOP_LOCK
* ensures that the VOP_INACTIVE routine is done with its work.
* For active vnodes, it ensures that no other activity can
* occur while the underlying object is being cleaned out.
*/
VOP_LOCK(vp, LK_DRAIN | LK_INTERLOCK);
/*
* Clean out any cached data associated with the vnode.
* If special device, remove it from special device alias list.
* if it is on one.
*/
if (flags & DOCLOSE) {
int error;
struct vnode *vq, *vx;
vn_start_write(vp, &mp, V_WAIT | V_LOWER);
error = vinvalbuf(vp, V_SAVE, NOCRED, p, 0, 0);
vn_finished_write(mp, V_LOWER);
if (error)
error = vinvalbuf(vp, 0, NOCRED, p, 0, 0);
KASSERT(error == 0);
KASSERT((vp->v_flag & VONWORKLST) == 0);
if (active)
VOP_CLOSE(vp, FNONBLOCK, NOCRED, NULL);
if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
vp->v_specinfo != 0) {
simple_lock(&spechash_slock);
if (vp->v_hashchain != NULL) {
if (*vp->v_hashchain == vp) {
*vp->v_hashchain = vp->v_specnext;
} else {
for (vq = *vp->v_hashchain; vq;
vq = vq->v_specnext) {
if (vq->v_specnext != vp)
continue;
vq->v_specnext = vp->v_specnext;
break;
}
if (vq == NULL)
panic("missing bdev");
}
if (vp->v_flag & VALIASED) {
vx = NULL;
for (vq = *vp->v_hashchain; vq;
vq = vq->v_specnext) {
if (vq->v_rdev != vp->v_rdev ||
vq->v_type != vp->v_type)
continue;
if (vx)
break;
vx = vq;
}
if (vx == NULL)
panic("missing alias");
if (vq == NULL)
vx->v_flag &= ~VALIASED;
vp->v_flag &= ~VALIASED;
}
}
simple_unlock(&spechash_slock);
FREE(vp->v_specinfo, M_VNODE);
vp->v_specinfo = NULL;
}
}
LOCK_ASSERT(!simple_lock_held(&vp->v_interlock));
/*
* If purging an active vnode, it must be closed and
* deactivated before being reclaimed. Note that the
* VOP_INACTIVE will unlock the vnode.
*/
if (active) {
VOP_INACTIVE(vp, p);
} else {
/*
* Any other processes trying to obtain this lock must first
* wait for VXLOCK to clear, then call the new lock operation.
*/
VOP_UNLOCK(vp, 0);
}
/*
* Reclaim the vnode.
*/
if (VOP_RECLAIM(vp, p))
panic("vclean: cannot reclaim, vp %p", vp);
if (active) {
/*
* Inline copy of vrele() since VOP_INACTIVE
* has already been called.
*/
simple_lock(&vp->v_interlock);
if (--vp->v_usecount <= 0) {
#ifdef DIAGNOSTIC
if (vp->v_usecount < 0 || vp->v_writecount != 0) {
vprint("vclean: bad ref count", vp);
panic("vclean: ref cnt");
}
#endif
/*
* Insert at tail of LRU list.
*/
simple_unlock(&vp->v_interlock);
simple_lock(&vnode_free_list_slock);
#ifdef DIAGNOSTIC
if (vp->v_holdcnt > 0)
panic("vclean: not clean, vp %p", vp);
#endif
TAILQ_INSERT_TAIL(&vnode_free_list, vp, v_freelist);
simple_unlock(&vnode_free_list_slock);
} else
simple_unlock(&vp->v_interlock);
}
KASSERT(vp->v_uobj.uo_npages == 0);
cache_purge(vp);
/*
* Done with purge, notify sleepers of the grim news.
*/
vp->v_op = dead_vnodeop_p;
vp->v_tag = VT_NON;
simple_lock(&vp->v_interlock);
VN_KNOTE(vp, NOTE_REVOKE); /* FreeBSD has this in vn_pollgone() */
vp->v_flag &= ~(VXLOCK|VLOCKSWORK);
if (vp->v_flag & VXWANT) {
vp->v_flag &= ~VXWANT;
simple_unlock(&vp->v_interlock);
wakeup((caddr_t)vp);
} else
simple_unlock(&vp->v_interlock);
}
/*
* Recycle an unused vnode to the front of the free list.
* Release the passed interlock if the vnode will be recycled.
*/
int
vrecycle(vp, inter_lkp, p)
struct vnode *vp;
struct simplelock *inter_lkp;
struct proc *p;
{
simple_lock(&vp->v_interlock);
if (vp->v_usecount == 0) {
if (inter_lkp)
simple_unlock(inter_lkp);
vgonel(vp, p);
return (1);
}
simple_unlock(&vp->v_interlock);
return (0);
}
/*
* Eliminate all activity associated with a vnode
* in preparation for reuse.
*/
void
vgone(vp)
struct vnode *vp;
{
struct proc *p = curproc; /* XXX */
simple_lock(&vp->v_interlock);
vgonel(vp, p);
}
/*
* vgone, with the vp interlock held.
*/
void
vgonel(vp, p)
struct vnode *vp;
struct proc *p;
{
LOCK_ASSERT(simple_lock_held(&vp->v_interlock));
/*
* If a vgone (or vclean) is already in progress,
* wait until it is done and return.
*/
if (vp->v_flag & VXLOCK) {
vp->v_flag |= VXWANT;
ltsleep(vp, PINOD | PNORELOCK, "vgone", 0, &vp->v_interlock);
return;
}
/*
* Clean out the filesystem specific data.
*/
vclean(vp, DOCLOSE, p);
KASSERT((vp->v_flag & VONWORKLST) == 0);
/*
* Delete from old mount point vnode list, if on one.
*/
if (vp->v_mount != NULL)
insmntque(vp, (struct mount *)0);
/*
* The test of the back pointer and the reference count of
* zero is because it will be removed from the free list by
* getcleanvnode, but will not have its reference count
* incremented until after calling vgone. If the reference
* count were incremented first, vgone would (incorrectly)
* try to close the previous instance of the underlying object.
* So, the back pointer is explicitly set to `0xdeadb' in
* getnewvnode after removing it from the freelist to ensure
* that we do not try to move it here.
*/
vp->v_type = VBAD;
if (vp->v_usecount == 0) {
boolean_t dofree;
simple_lock(&vnode_free_list_slock);
if (vp->v_holdcnt > 0)
panic("vgonel: not clean, vp %p", vp);
/*
* if it isn't on the freelist, we're called by getcleanvnode
* and vnode is being re-used. otherwise, we'll free it.
*/
dofree = vp->v_freelist.tqe_prev != (struct vnode **)0xdeadb;
if (dofree) {
TAILQ_REMOVE(&vnode_free_list, vp, v_freelist);
numvnodes--;
}
simple_unlock(&vnode_free_list_slock);
if (dofree)
pool_put(&vnode_pool, vp);
}
}
/*
* Lookup a vnode by device number.
*/
int
vfinddev(dev, type, vpp)
dev_t dev;
enum vtype type;
struct vnode **vpp;
{
struct vnode *vp;
int rc = 0;
simple_lock(&spechash_slock);
for (vp = speclisth[SPECHASH(dev)]; vp; vp = vp->v_specnext) {
if (dev != vp->v_rdev || type != vp->v_type)
continue;
*vpp = vp;
rc = 1;
break;
}
simple_unlock(&spechash_slock);
return (rc);
}
/*
* Revoke all the vnodes corresponding to the specified minor number
* range (endpoints inclusive) of the specified major.
*/
void
vdevgone(maj, minl, minh, type)
int maj, minl, minh;
enum vtype type;
{
struct vnode *vp;
int mn;
for (mn = minl; mn <= minh; mn++)
if (vfinddev(makedev(maj, mn), type, &vp))
VOP_REVOKE(vp, REVOKEALL);
}
/*
* Calculate the total number of references to a special device.
*/
int
vcount(vp)
struct vnode *vp;
{
struct vnode *vq, *vnext;
int count;
loop:
if ((vp->v_flag & VALIASED) == 0)
return (vp->v_usecount);
simple_lock(&spechash_slock);
for (count = 0, vq = *vp->v_hashchain; vq; vq = vnext) {
vnext = vq->v_specnext;
if (vq->v_rdev != vp->v_rdev || vq->v_type != vp->v_type)
continue;
/*
* Alias, but not in use, so flush it out.
*/
if (vq->v_usecount == 0 && vq != vp &&
(vq->v_flag & VXLOCK) == 0) {
simple_unlock(&spechash_slock);
vgone(vq);
goto loop;
}
count += vq->v_usecount;
}
simple_unlock(&spechash_slock);
return (count);
}
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof(arr[0]))
#define ARRAY_PRINT(idx, arr) \
((idx) > 0 && (idx) < ARRAY_SIZE(arr) ? (arr)[(idx)] : "UNKNOWN")
const char * const vnode_tags[] = { VNODE_TAGS };
const char * const vnode_types[] = { VNODE_TYPES };
const char vnode_flagbits[] = VNODE_FLAGBITS;
/*
* Print out a description of a vnode.
*/
void
vprint(label, vp)
char *label;
struct vnode *vp;
{
char buf[96];
if (label != NULL)
printf("%s: ", label);
printf("tag %s(%d) type %s(%d), usecount %d, writecount %ld, "
"refcount %ld,", ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
vp->v_usecount, vp->v_writecount, vp->v_holdcnt);
bitmask_snprintf(vp->v_flag, vnode_flagbits, buf, sizeof(buf));
if (buf[0] != '\0')
printf(" flags (%s)", &buf[1]);
if (vp->v_data == NULL) {
printf("\n");
} else {
printf("\n\t");
VOP_PRINT(vp);
}
}
#ifdef DEBUG
/*
* List all of the locked vnodes in the system.
* Called when debugging the kernel.
*/
void
printlockedvnodes()
{
struct mount *mp, *nmp;
struct vnode *vp;
printf("Locked vnodes\n");
simple_lock(&mountlist_slock);
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = nmp) {
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
nmp = CIRCLEQ_NEXT(mp, mnt_list);
continue;
}
LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (VOP_ISLOCKED(vp))
vprint(NULL, vp);
}
simple_lock(&mountlist_slock);
nmp = CIRCLEQ_NEXT(mp, mnt_list);
vfs_unbusy(mp);
}
simple_unlock(&mountlist_slock);
}
#endif
/*
* sysctl helper routine for vfs.generic.conf lookups.
*/
#if defined(COMPAT_09) || defined(COMPAT_43) || defined(COMPAT_44)
static int
sysctl_vfs_generic_conf(SYSCTLFN_ARGS)
{
struct vfsconf vfc;
extern const char * const mountcompatnames[];
extern int nmountcompatnames;
struct sysctlnode node;
struct vfsops *vfsp;
u_int vfsnum;
if (namelen != 1)
return (ENOTDIR);
vfsnum = name[0];
if (vfsnum >= nmountcompatnames ||
mountcompatnames[vfsnum] == NULL)
return (EOPNOTSUPP);
vfsp = vfs_getopsbyname(mountcompatnames[vfsnum]);
if (vfsp == NULL)
return (EOPNOTSUPP);
vfc.vfc_vfsops = vfsp;
strncpy(vfc.vfc_name, vfsp->vfs_name, MFSNAMELEN);
vfc.vfc_typenum = vfsnum;
vfc.vfc_refcount = vfsp->vfs_refcount;
vfc.vfc_flags = 0;
vfc.vfc_mountroot = vfsp->vfs_mountroot;
vfc.vfc_next = NULL;
node = *rnode;
node.sysctl_data = &vfc;
return (sysctl_lookup(SYSCTLFN_CALL(&node)));
}
#endif
/*
* sysctl helper routine to return list of supported fstypes
*/
static int
sysctl_vfs_generic_fstypes(SYSCTLFN_ARGS)
{
char buf[MFSNAMELEN];
char *where = oldp;
struct vfsops *v;
size_t needed, left, slen;
int error, first;
if (newp != NULL)
return (EPERM);
if (namelen != 0)
return (EINVAL);
first = 1;
error = 0;
needed = 0;
left = *oldlenp;
LIST_FOREACH(v, &vfs_list, vfs_list) {
if (where == NULL)
needed += strlen(v->vfs_name) + 1;
else {
memset(buf, 0, sizeof(buf));
if (first) {
strncpy(buf, v->vfs_name, sizeof(buf));
first = 0;
} else {
buf[0] = ' ';
strncpy(buf + 1, v->vfs_name, sizeof(buf) - 1);
}
buf[sizeof(buf)-1] = '\0';
slen = strlen(buf);
if (left < slen + 1)
break;
/* +1 to copy out the trailing NUL byte */
error = copyout(buf, where, slen + 1);
if (error)
break;
where += slen;
needed += slen;
left -= slen;
}
}
*oldlenp = needed;
return (error);
}
/*
* Top level filesystem related information gathering.
*/
SYSCTL_SETUP(sysctl_vfs_setup, "sysctl vfs subtree setup")
{
#if defined(COMPAT_09) || defined(COMPAT_43) || defined(COMPAT_44)
extern int nmountcompatnames;
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vfs", NULL,
NULL, 0, NULL, 0,
CTL_VFS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "generic",
SYSCTL_DESCR("Non-specific vfs related information"),
NULL, 0, NULL, 0,
CTL_VFS, VFS_GENERIC, CTL_EOL);
#if defined(COMPAT_09) || defined(COMPAT_43) || defined(COMPAT_44)
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_IMMEDIATE,
CTLTYPE_INT, "maxtypenum",
SYSCTL_DESCR("Highest valid filesystem type number"),
NULL, nmountcompatnames, NULL, 0,
CTL_VFS, VFS_GENERIC, VFS_MAXTYPENUM, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "usermount",
SYSCTL_DESCR("Whether unprivileged users may mount "
"filesystems"),
NULL, 0, &dovfsusermount, 0,
CTL_VFS, VFS_GENERIC, VFS_USERMOUNT, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRING, "fstypes",
SYSCTL_DESCR("List of file systems present"),
sysctl_vfs_generic_fstypes, 0, NULL, 0,
CTL_VFS, VFS_GENERIC, CTL_CREATE, CTL_EOL);
#if defined(COMPAT_09) || defined(COMPAT_43) || defined(COMPAT_44)
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_STRUCT, "conf",
SYSCTL_DESCR("Filesystem configuration information"),
sysctl_vfs_generic_conf, 0, NULL,
sizeof(struct vfsconf),
CTL_VFS, VFS_GENERIC, VFS_CONF, CTL_EOL);
#endif
}
int kinfo_vdebug = 1;
int kinfo_vgetfailed;
#define KINFO_VNODESLOP 10
/*
* Dump vnode list (via sysctl).
* Copyout address of vnode followed by vnode.
*/
/* ARGSUSED */
int
sysctl_kern_vnode(SYSCTLFN_ARGS)
{
char *where = oldp;
size_t *sizep = oldlenp;
struct mount *mp, *nmp;
struct vnode *nvp, *vp;
char *bp = where, *savebp;
char *ewhere;
int error;
if (namelen != 0)
return (EOPNOTSUPP);
if (newp != NULL)
return (EPERM);
#define VPTRSZ sizeof(struct vnode *)
#define VNODESZ sizeof(struct vnode)
if (where == NULL) {
*sizep = (numvnodes + KINFO_VNODESLOP) * (VPTRSZ + VNODESZ);
return (0);
}
ewhere = where + *sizep;
simple_lock(&mountlist_slock);
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = nmp) {
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
nmp = CIRCLEQ_NEXT(mp, mnt_list);
continue;
}
savebp = bp;
again:
simple_lock(&mntvnode_slock);
for (vp = LIST_FIRST(&mp->mnt_vnodelist);
vp != NULL;
vp = nvp) {
/*
* Check that the vp is still associated with
* this filesystem. RACE: could have been
* recycled onto the same filesystem.
*/
if (vp->v_mount != mp) {
simple_unlock(&mntvnode_slock);
if (kinfo_vdebug)
printf("kinfo: vp changed\n");
bp = savebp;
goto again;
}
nvp = LIST_NEXT(vp, v_mntvnodes);
if (bp + VPTRSZ + VNODESZ > ewhere) {
simple_unlock(&mntvnode_slock);
*sizep = bp - where;
return (ENOMEM);
}
simple_unlock(&mntvnode_slock);
if ((error = copyout((caddr_t)&vp, bp, VPTRSZ)) ||
(error = copyout((caddr_t)vp, bp + VPTRSZ, VNODESZ)))
return (error);
bp += VPTRSZ + VNODESZ;
simple_lock(&mntvnode_slock);
}
simple_unlock(&mntvnode_slock);
simple_lock(&mountlist_slock);
nmp = CIRCLEQ_NEXT(mp, mnt_list);
vfs_unbusy(mp);
}
simple_unlock(&mountlist_slock);
*sizep = bp - where;
return (0);
}
/*
* Check to see if a filesystem is mounted on a block device.
*/
int
vfs_mountedon(vp)
struct vnode *vp;
{
struct vnode *vq;
int error = 0;
if (vp->v_specmountpoint != NULL)
return (EBUSY);
if (vp->v_flag & VALIASED) {
simple_lock(&spechash_slock);
for (vq = *vp->v_hashchain; vq; vq = vq->v_specnext) {
if (vq->v_rdev != vp->v_rdev ||
vq->v_type != vp->v_type)
continue;
if (vq->v_specmountpoint != NULL) {
error = EBUSY;
break;
}
}
simple_unlock(&spechash_slock);
}
return (error);
}
static int
sacheck(struct sockaddr *sa)
{
switch (sa->sa_family) {
#ifdef INET
case AF_INET: {
struct sockaddr_in *sin = (struct sockaddr_in *)sa;
char *p = (char *)sin->sin_zero;
size_t i;
if (sin->sin_len != sizeof(*sin))
return -1;
if (sin->sin_port != 0)
return -1;
for (i = 0; i < sizeof(sin->sin_zero); i++)
if (*p++ != '\0')
return -1;
return 0;
}
#endif
#ifdef INET6
case AF_INET6: {
struct sockaddr_in6 *sin6 = (struct sockaddr_in6 *)sa;
if (sin6->sin6_len != sizeof(*sin6))
return -1;
if (sin6->sin6_port != 0)
return -1;
return 0;
}
#endif
default:
return -1;
}
}
/*
* Build hash lists of net addresses and hang them off the mount point.
* Called by ufs_mount() to set up the lists of export addresses.
*/
static int
vfs_hang_addrlist(mp, nep, argp)
struct mount *mp;
struct netexport *nep;
struct export_args *argp;
{
struct netcred *np, *enp;
struct radix_node_head *rnh;
int i;
struct sockaddr *saddr, *smask = 0;
struct domain *dom;
int error;
if (argp->ex_addrlen == 0) {
if (mp->mnt_flag & MNT_DEFEXPORTED)
return (EPERM);
np = &nep->ne_defexported;
np->netc_exflags = argp->ex_flags;
crcvt(&np->netc_anon, &argp->ex_anon);
np->netc_anon.cr_ref = 1;
mp->mnt_flag |= MNT_DEFEXPORTED;
return (0);
}
if (argp->ex_addrlen > MLEN || argp->ex_masklen > MLEN)
return (EINVAL);
i = sizeof(struct netcred) + argp->ex_addrlen + argp->ex_masklen;
np = (struct netcred *)malloc(i, M_NETADDR, M_WAITOK);
memset((caddr_t)np, 0, i);
saddr = (struct sockaddr *)(np + 1);
error = copyin(argp->ex_addr, (caddr_t)saddr, argp->ex_addrlen);
if (error)
goto out;
if (saddr->sa_len > argp->ex_addrlen)
saddr->sa_len = argp->ex_addrlen;
if (sacheck(saddr) == -1)
return EINVAL;
if (argp->ex_masklen) {
smask = (struct sockaddr *)((caddr_t)saddr + argp->ex_addrlen);
error = copyin(argp->ex_mask, (caddr_t)smask, argp->ex_masklen);
if (error)
goto out;
if (smask->sa_len > argp->ex_masklen)
smask->sa_len = argp->ex_masklen;
if (smask->sa_family != saddr->sa_family)
return EINVAL;
if (sacheck(smask) == -1)
return EINVAL;
}
i = saddr->sa_family;
if ((rnh = nep->ne_rtable[i]) == 0) {
/*
* Seems silly to initialize every AF when most are not
* used, do so on demand here
*/
DOMAIN_FOREACH(dom) {
if (dom->dom_family == i && dom->dom_rtattach) {
dom->dom_rtattach((void **)&nep->ne_rtable[i],
dom->dom_rtoffset);
break;
}
}
if ((rnh = nep->ne_rtable[i]) == 0) {
error = ENOBUFS;
goto out;
}
}
enp = (struct netcred *)(*rnh->rnh_addaddr)(saddr, smask, rnh,
np->netc_rnodes);
if (enp != np) {
if (enp == NULL) {
enp = (struct netcred *)(*rnh->rnh_lookup)(saddr,
smask, rnh);
if (enp == NULL) {
error = EPERM;
goto out;
}
} else
enp->netc_refcnt++;
goto check;
} else
enp->netc_refcnt = 1;
np->netc_exflags = argp->ex_flags;
crcvt(&np->netc_anon, &argp->ex_anon);
np->netc_anon.cr_ref = 1;
return 0;
check:
if (enp->netc_exflags != argp->ex_flags ||
crcmp(&enp->netc_anon, &argp->ex_anon) != 0)
error = EPERM;
else
error = 0;
out:
free(np, M_NETADDR);
return error;
}
/* ARGSUSED */
static int
vfs_free_netcred(rn, w)
struct radix_node *rn;
void *w;
{
struct radix_node_head *rnh = (struct radix_node_head *)w;
struct netcred *np = (struct netcred *)(void *)rn;
(*rnh->rnh_deladdr)(rn->rn_key, rn->rn_mask, rnh);
if (--(np->netc_refcnt) <= 0)
free(np, M_NETADDR);
return (0);
}
/*
* Free the net address hash lists that are hanging off the mount points.
*/
static void
vfs_free_addrlist(nep)
struct netexport *nep;
{
int i;
struct radix_node_head *rnh;
for (i = 0; i <= AF_MAX; i++)
if ((rnh = nep->ne_rtable[i]) != NULL) {
(*rnh->rnh_walktree)(rnh, vfs_free_netcred, rnh);
free((caddr_t)rnh, M_RTABLE);
nep->ne_rtable[i] = 0;
}
}
int
vfs_export(mp, nep, argp)
struct mount *mp;
struct netexport *nep;
struct export_args *argp;
{
int error;
if (argp->ex_flags & MNT_DELEXPORT) {
if (mp->mnt_flag & MNT_EXPUBLIC) {
vfs_setpublicfs(NULL, NULL, NULL);
mp->mnt_flag &= ~MNT_EXPUBLIC;
}
vfs_free_addrlist(nep);
mp->mnt_flag &= ~(MNT_EXPORTED | MNT_DEFEXPORTED);
}
if (argp->ex_flags & MNT_EXPORTED) {
if (argp->ex_flags & MNT_EXPUBLIC) {
if ((error = vfs_setpublicfs(mp, nep, argp)) != 0)
return (error);
mp->mnt_flag |= MNT_EXPUBLIC;
}
if ((error = vfs_hang_addrlist(mp, nep, argp)) != 0)
return (error);
mp->mnt_flag |= MNT_EXPORTED;
}
return (0);
}
/*
* Set the publicly exported filesystem (WebNFS). Currently, only
* one public filesystem is possible in the spec (RFC 2054 and 2055)
*/
int
vfs_setpublicfs(mp, nep, argp)
struct mount *mp;
struct netexport *nep;
struct export_args *argp;
{
int error;
struct vnode *rvp;
char *cp;
/*
* mp == NULL -> invalidate the current info, the FS is
* no longer exported. May be called from either vfs_export
* or unmount, so check if it hasn't already been done.
*/
if (mp == NULL) {
if (nfs_pub.np_valid) {
nfs_pub.np_valid = 0;
if (nfs_pub.np_index != NULL) {
FREE(nfs_pub.np_index, M_TEMP);
nfs_pub.np_index = NULL;
}
}
return (0);
}
/*
* Only one allowed at a time.
*/
if (nfs_pub.np_valid != 0 && mp != nfs_pub.np_mount)
return (EBUSY);
/*
* Get real filehandle for root of exported FS.
*/
memset((caddr_t)&nfs_pub.np_handle, 0, sizeof(nfs_pub.np_handle));
nfs_pub.np_handle.fh_fsid = mp->mnt_stat.f_fsidx;
if ((error = VFS_ROOT(mp, &rvp)))
return (error);
if ((error = VFS_VPTOFH(rvp, &nfs_pub.np_handle.fh_fid)))
return (error);
vput(rvp);
/*
* If an indexfile was specified, pull it in.
*/
if (argp->ex_indexfile != NULL) {
MALLOC(nfs_pub.np_index, char *, MAXNAMLEN + 1, M_TEMP,
M_WAITOK);
error = copyinstr(argp->ex_indexfile, nfs_pub.np_index,
MAXNAMLEN, (size_t *)0);
if (!error) {
/*
* Check for illegal filenames.
*/
for (cp = nfs_pub.np_index; *cp; cp++) {
if (*cp == '/') {
error = EINVAL;
break;
}
}
}
if (error) {
FREE(nfs_pub.np_index, M_TEMP);
return (error);
}
}
nfs_pub.np_mount = mp;
nfs_pub.np_valid = 1;
return (0);
}
struct netcred *
vfs_export_lookup(mp, nep, nam)
struct mount *mp;
struct netexport *nep;
struct mbuf *nam;
{
struct netcred *np;
struct radix_node_head *rnh;
struct sockaddr *saddr;
np = NULL;
if (mp->mnt_flag & MNT_EXPORTED) {
/*
* Lookup in the export list first.
*/
if (nam != NULL) {
saddr = mtod(nam, struct sockaddr *);
rnh = nep->ne_rtable[saddr->sa_family];
if (rnh != NULL) {
np = (struct netcred *)
(*rnh->rnh_matchaddr)((caddr_t)saddr,
rnh);
if (np && np->netc_rnodes->rn_flags & RNF_ROOT)
np = NULL;
}
}
/*
* If no address match, use the default if it exists.
*/
if (np == NULL && mp->mnt_flag & MNT_DEFEXPORTED)
np = &nep->ne_defexported;
}
return (np);
}
/*
* Do the usual access checking.
* file_mode, uid and gid are from the vnode in question,
* while acc_mode and cred are from the VOP_ACCESS parameter list
*/
int
vaccess(type, file_mode, uid, gid, acc_mode, cred)
enum vtype type;
mode_t file_mode;
uid_t uid;
gid_t gid;
mode_t acc_mode;
struct ucred *cred;
{
mode_t mask;
/*
* Super-user always gets read/write access, but execute access depends
* on at least one execute bit being set.
*/
if (cred->cr_uid == 0) {
if ((acc_mode & VEXEC) && type != VDIR &&
(file_mode & (S_IXUSR|S_IXGRP|S_IXOTH)) == 0)
return (EACCES);
return (0);
}
mask = 0;
/* Otherwise, check the owner. */
if (cred->cr_uid == uid) {
if (acc_mode & VEXEC)
mask |= S_IXUSR;
if (acc_mode & VREAD)
mask |= S_IRUSR;
if (acc_mode & VWRITE)
mask |= S_IWUSR;
return ((file_mode & mask) == mask ? 0 : EACCES);
}
/* Otherwise, check the groups. */
if (cred->cr_gid == gid || groupmember(gid, cred)) {
if (acc_mode & VEXEC)
mask |= S_IXGRP;
if (acc_mode & VREAD)
mask |= S_IRGRP;
if (acc_mode & VWRITE)
mask |= S_IWGRP;
return ((file_mode & mask) == mask ? 0 : EACCES);
}
/* Otherwise, check everyone else. */
if (acc_mode & VEXEC)
mask |= S_IXOTH;
if (acc_mode & VREAD)
mask |= S_IROTH;
if (acc_mode & VWRITE)
mask |= S_IWOTH;
return ((file_mode & mask) == mask ? 0 : EACCES);
}
/*
* Unmount all file systems.
* We traverse the list in reverse order under the assumption that doing so
* will avoid needing to worry about dependencies.
*/
void
vfs_unmountall(p)
struct proc *p;
{
struct mount *mp, *nmp;
int allerror, error;
printf("unmounting file systems...");
for (allerror = 0,
mp = mountlist.cqh_last; mp != (void *)&mountlist; mp = nmp) {
nmp = mp->mnt_list.cqe_prev;
#ifdef DEBUG
printf("\nunmounting %s (%s)...",
mp->mnt_stat.f_mntonname, mp->mnt_stat.f_mntfromname);
#endif
/*
* XXX Freeze syncer. Must do this before locking the
* mount point. See dounmount() for details.
*/
lockmgr(&syncer_lock, LK_EXCLUSIVE, NULL);
if (vfs_busy(mp, 0, 0)) {
lockmgr(&syncer_lock, LK_RELEASE, NULL);
continue;
}
if ((error = dounmount(mp, MNT_FORCE, p)) != 0) {
printf("unmount of %s failed with error %d\n",
mp->mnt_stat.f_mntonname, error);
allerror = 1;
}
}
printf(" done\n");
if (allerror)
printf("WARNING: some file systems would not unmount\n");
}
extern struct simplelock bqueue_slock; /* XXX */
/*
* Sync and unmount file systems before shutting down.
*/
void
vfs_shutdown()
{
struct lwp *l = curlwp;
struct proc *p;
/* XXX we're certainly not running in proc0's context! */
if (l == NULL || (p = l->l_proc) == NULL)
p = &proc0;
printf("syncing disks... ");
/* remove user process from run queue */
suspendsched();
(void) spl0();
/* avoid coming back this way again if we panic. */
doing_shutdown = 1;
sys_sync(l, NULL, NULL);
/* Wait for sync to finish. */
if (buf_syncwait() != 0) {
#if defined(DDB) && defined(DEBUG_HALT_BUSY)
Debugger();
#endif
printf("giving up\n");
return;
} else
printf("done\n");
/*
* If we've panic'd, don't make the situation potentially
* worse by unmounting the file systems.
*/
if (panicstr != NULL)
return;
/* Release inodes held by texts before update. */
#ifdef notdef
vnshutdown();
#endif
/* Unmount file systems. */
vfs_unmountall(p);
}
/*
* Mount the root file system. If the operator didn't specify a
* file system to use, try all possible file systems until one
* succeeds.
*/
int
vfs_mountroot()
{
struct vfsops *v;
int error = ENODEV;
if (root_device == NULL)
panic("vfs_mountroot: root device unknown");
switch (root_device->dv_class) {
case DV_IFNET:
if (rootdev != NODEV)
panic("vfs_mountroot: rootdev set for DV_IFNET "
"(0x%08x -> %d,%d)", rootdev,
major(rootdev), minor(rootdev));
break;
case DV_DISK:
if (rootdev == NODEV)
panic("vfs_mountroot: rootdev not set for DV_DISK");
if (bdevvp(rootdev, &rootvp))
panic("vfs_mountroot: can't get vnode for rootdev");
error = VOP_OPEN(rootvp, FREAD, FSCRED, curproc);
if (error) {
printf("vfs_mountroot: can't open root device\n");
return (error);
}
break;
default:
printf("%s: inappropriate for root file system\n",
root_device->dv_xname);
return (ENODEV);
}
/*
* If user specified a file system, use it.
*/
if (mountroot != NULL) {
error = (*mountroot)();
goto done;
}
/*
* Try each file system currently configured into the kernel.
*/
LIST_FOREACH(v, &vfs_list, vfs_list) {
if (v->vfs_mountroot == NULL)
continue;
#ifdef DEBUG
aprint_normal("mountroot: trying %s...\n", v->vfs_name);
#endif
error = (*v->vfs_mountroot)();
if (!error) {
aprint_normal("root file system type: %s\n",
v->vfs_name);
break;
}
}
if (v == NULL) {
printf("no file system for %s", root_device->dv_xname);
if (root_device->dv_class == DV_DISK)
printf(" (dev 0x%x)", rootdev);
printf("\n");
error = EFTYPE;
}
done:
if (error && root_device->dv_class == DV_DISK) {
VOP_CLOSE(rootvp, FREAD, FSCRED, curproc);
vrele(rootvp);
}
return (error);
}
/*
* Given a file system name, look up the vfsops for that
* file system, or return NULL if file system isn't present
* in the kernel.
*/
struct vfsops *
vfs_getopsbyname(name)
const char *name;
{
struct vfsops *v;
LIST_FOREACH(v, &vfs_list, vfs_list) {
if (strcmp(v->vfs_name, name) == 0)
break;
}
return (v);
}
/*
* Establish a file system and initialize it.
*/
int
vfs_attach(vfs)
struct vfsops *vfs;
{
struct vfsops *v;
int error = 0;
/*
* Make sure this file system doesn't already exist.
*/
LIST_FOREACH(v, &vfs_list, vfs_list) {
if (strcmp(vfs->vfs_name, v->vfs_name) == 0) {
error = EEXIST;
goto out;
}
}
/*
* Initialize the vnode operations for this file system.
*/
vfs_opv_init(vfs->vfs_opv_descs);
/*
* Now initialize the file system itself.
*/
(*vfs->vfs_init)();
/*
* ...and link it into the kernel's list.
*/
LIST_INSERT_HEAD(&vfs_list, vfs, vfs_list);
/*
* Sanity: make sure the reference count is 0.
*/
vfs->vfs_refcount = 0;
out:
return (error);
}
/*
* Remove a file system from the kernel.
*/
int
vfs_detach(vfs)
struct vfsops *vfs;
{
struct vfsops *v;
/*
* Make sure no one is using the filesystem.
*/
if (vfs->vfs_refcount != 0)
return (EBUSY);
/*
* ...and remove it from the kernel's list.
*/
LIST_FOREACH(v, &vfs_list, vfs_list) {
if (v == vfs) {
LIST_REMOVE(v, vfs_list);
break;
}
}
if (v == NULL)
return (ESRCH);
/*
* Now run the file system-specific cleanups.
*/
(*vfs->vfs_done)();
/*
* Free the vnode operations vector.
*/
vfs_opv_free(vfs->vfs_opv_descs);
return (0);
}
void
vfs_reinit(void)
{
struct vfsops *vfs;
LIST_FOREACH(vfs, &vfs_list, vfs_list) {
if (vfs->vfs_reinit) {
(*vfs->vfs_reinit)();
}
}
}
/*
* Request a filesystem to suspend write operations.
*/
int
vfs_write_suspend(struct mount *mp, int slpflag, int slptimeo)
{
struct proc *p = curproc; /* XXX */
int error;
while ((mp->mnt_iflag & IMNT_SUSPEND)) {
if (slptimeo < 0)
return EWOULDBLOCK;
error = tsleep(&mp->mnt_flag, slpflag, "suspwt1", slptimeo);
if (error)
return error;
}
mp->mnt_iflag |= IMNT_SUSPEND;
simple_lock(&mp->mnt_slock);
if (mp->mnt_writeopcountupper > 0)
ltsleep(&mp->mnt_writeopcountupper, PUSER - 1, "suspwt",
0, &mp->mnt_slock);
simple_unlock(&mp->mnt_slock);
error = VFS_SYNC(mp, MNT_WAIT, p->p_ucred, p);
if (error) {
vfs_write_resume(mp);
return error;
}
mp->mnt_iflag |= IMNT_SUSPENDLOW;
simple_lock(&mp->mnt_slock);
if (mp->mnt_writeopcountlower > 0)
ltsleep(&mp->mnt_writeopcountlower, PUSER - 1, "suspwt",
0, &mp->mnt_slock);
mp->mnt_iflag |= IMNT_SUSPENDED;
simple_unlock(&mp->mnt_slock);
return 0;
}
/*
* Request a filesystem to resume write operations.
*/
void
vfs_write_resume(struct mount *mp)
{
if ((mp->mnt_iflag & IMNT_SUSPEND) == 0)
return;
mp->mnt_iflag &= ~(IMNT_SUSPEND | IMNT_SUSPENDLOW | IMNT_SUSPENDED);
wakeup(&mp->mnt_flag);
}
void
copy_statvfs_info(struct statvfs *sbp, const struct mount *mp)
{
const struct statvfs *mbp;
if (sbp == (mbp = &mp->mnt_stat))
return;
(void)memcpy(&sbp->f_fsidx, &mbp->f_fsidx, sizeof(sbp->f_fsidx));
sbp->f_fsid = mbp->f_fsid;
sbp->f_owner = mbp->f_owner;
sbp->f_flag = mbp->f_flag;
sbp->f_syncwrites = mbp->f_syncwrites;
sbp->f_asyncwrites = mbp->f_asyncwrites;
sbp->f_syncreads = mbp->f_syncreads;
sbp->f_asyncreads = mbp->f_asyncreads;
(void)memcpy(sbp->f_spare, mbp->f_spare, sizeof(mbp->f_spare));
(void)memcpy(sbp->f_fstypename, mbp->f_fstypename,
sizeof(sbp->f_fstypename));
(void)memcpy(sbp->f_mntonname, mbp->f_mntonname,
sizeof(sbp->f_mntonname));
(void)memcpy(sbp->f_mntfromname, mp->mnt_stat.f_mntfromname,
sizeof(sbp->f_mntfromname));
sbp->f_namemax = mbp->f_namemax;
}
int
set_statvfs_info(const char *onp, int ukon, const char *fromp, int ukfrom,
struct mount *mp, struct proc *p)
{
int error;
size_t size;
struct statvfs *sfs = &mp->mnt_stat;
int (*fun)(const void *, void *, size_t, size_t *);
(void)strncpy(mp->mnt_stat.f_fstypename, mp->mnt_op->vfs_name,
sizeof(mp->mnt_stat.f_fstypename));
if (onp) {
struct cwdinfo *cwdi = p->p_cwdi;
fun = (ukon == UIO_SYSSPACE) ? copystr : copyinstr;
if (cwdi->cwdi_rdir != NULL) {
size_t len;
char *bp;
char *path = malloc(MAXPATHLEN, M_TEMP, M_WAITOK);
if (!path) /* XXX can't happen with M_WAITOK */
return ENOMEM;
bp = path + MAXPATHLEN;
*--bp = '\0';
error = getcwd_common(cwdi->cwdi_rdir, rootvnode, &bp,
path, MAXPATHLEN / 2, 0, p);
if (error) {
free(path, M_TEMP);
return error;
}
len = strlen(bp);
if (len > sizeof(sfs->f_mntonname) - 1)
len = sizeof(sfs->f_mntonname) - 1;
(void)strncpy(sfs->f_mntonname, bp, len);
free(path, M_TEMP);
if (len < sizeof(sfs->f_mntonname) - 1) {
error = (*fun)(onp, &sfs->f_mntonname[len],
sizeof(sfs->f_mntonname) - len - 1, &size);
if (error)
return error;
size += len;
} else {
size = len;
}
} else {
error = (*fun)(onp, &sfs->f_mntonname,
sizeof(sfs->f_mntonname) - 1, &size);
if (error)
return error;
}
(void)memset(sfs->f_mntonname + size, 0,
sizeof(sfs->f_mntonname) - size);
}
if (fromp) {
fun = (ukfrom == UIO_SYSSPACE) ? copystr : copyinstr;
error = (*fun)(fromp, sfs->f_mntfromname,
sizeof(sfs->f_mntfromname) - 1, &size);
if (error)
return error;
(void)memset(sfs->f_mntfromname + size, 0,
sizeof(sfs->f_mntfromname) - size);
}
return 0;
}
/*
* Default vfs_extattrctl routine for file systems that do not support
* it.
*/
/*ARGSUSED*/
int
vfs_stdextattrctl(struct mount *mp, int cmt, struct vnode *vp,
int attrnamespace, const char *attrname, struct proc *p)
{
if (vp != NULL)
VOP_UNLOCK(vp, 0);
return (EOPNOTSUPP);
}
/*
* Credential check based on process requesting service, and per-attribute
* permissions.
*
* NOTE: Vnode must be locked.
*/
int
extattr_check_cred(struct vnode *vp, int attrnamespace,
struct ucred *cred, struct proc *p, int access)
{
if (cred == NOCRED)
return (0);
switch (attrnamespace) {
case EXTATTR_NAMESPACE_SYSTEM:
/*
* Do we really want to allow this, or just require that
* these requests come from kernel code (NOCRED case above)?
*/
return (suser(cred, &p->p_acflag));
case EXTATTR_NAMESPACE_USER:
return (VOP_ACCESS(vp, access, cred, p));
default:
return (EPERM);
}
}
#ifdef DDB
const char buf_flagbits[] = BUF_FLAGBITS;
void
vfs_buf_print(bp, full, pr)
struct buf *bp;
int full;
void (*pr)(const char *, ...);
{
char buf[1024];
(*pr)(" vp %p lblkno 0x%"PRIx64" blkno 0x%"PRIx64" dev 0x%x\n",
bp->b_vp, bp->b_lblkno, bp->b_blkno, bp->b_dev);
bitmask_snprintf(bp->b_flags, buf_flagbits, buf, sizeof(buf));
(*pr)(" error %d flags 0x%s\n", bp->b_error, buf);
(*pr)(" bufsize 0x%lx bcount 0x%lx resid 0x%lx\n",
bp->b_bufsize, bp->b_bcount, bp->b_resid);
(*pr)(" data %p saveaddr %p dep %p\n",
bp->b_data, bp->b_saveaddr, LIST_FIRST(&bp->b_dep));
(*pr)(" iodone %p\n", bp->b_iodone);
}
void
vfs_vnode_print(vp, full, pr)
struct vnode *vp;
int full;
void (*pr)(const char *, ...);
{
char buf[256];
uvm_object_printit(&vp->v_uobj, full, pr);
bitmask_snprintf(vp->v_flag, vnode_flagbits, buf, sizeof(buf));
(*pr)("\nVNODE flags %s\n", buf);
(*pr)("mp %p numoutput %d size 0x%llx\n",
vp->v_mount, vp->v_numoutput, vp->v_size);
(*pr)("data %p usecount %d writecount %ld holdcnt %ld numoutput %d\n",
vp->v_data, vp->v_usecount, vp->v_writecount,
vp->v_holdcnt, vp->v_numoutput);
(*pr)("tag %s(%d) type %s(%d) mount %p typedata %p\n",
ARRAY_PRINT(vp->v_tag, vnode_tags), vp->v_tag,
ARRAY_PRINT(vp->v_type, vnode_types), vp->v_type,
vp->v_mount, vp->v_mountedhere);
if (full) {
struct buf *bp;
(*pr)("clean bufs:\n");
LIST_FOREACH(bp, &vp->v_cleanblkhd, b_vnbufs) {
(*pr)(" bp %p\n", bp);
vfs_buf_print(bp, full, pr);
}
(*pr)("dirty bufs:\n");
LIST_FOREACH(bp, &vp->v_dirtyblkhd, b_vnbufs) {
(*pr)(" bp %p\n", bp);
vfs_buf_print(bp, full, pr);
}
}
}
void
vfs_mount_print(mp, full, pr)
struct mount *mp;
int full;
void (*pr)(const char *, ...);
{
char sbuf[256];
(*pr)("vnodecovered = %p syncer = %p data = %p\n",
mp->mnt_vnodecovered,mp->mnt_syncer,mp->mnt_data);
(*pr)("fs_bshift %d dev_bshift = %d\n",
mp->mnt_fs_bshift,mp->mnt_dev_bshift);
bitmask_snprintf(mp->mnt_flag, __MNT_FLAG_BITS, sbuf, sizeof(sbuf));
(*pr)("flag = %s\n", sbuf);
bitmask_snprintf(mp->mnt_iflag, __IMNT_FLAG_BITS, sbuf, sizeof(sbuf));
(*pr)("iflag = %s\n", sbuf);
/* XXX use lockmgr_printinfo */
if (mp->mnt_lock.lk_sharecount)
(*pr)(" lock type %s: SHARED (count %d)", mp->mnt_lock.lk_wmesg,
mp->mnt_lock.lk_sharecount);
else if (mp->mnt_lock.lk_flags & LK_HAVE_EXCL) {
(*pr)(" lock type %s: EXCL (count %d) by ",
mp->mnt_lock.lk_wmesg, mp->mnt_lock.lk_exclusivecount);
if (mp->mnt_lock.lk_flags & LK_SPIN)
(*pr)("processor %lu", mp->mnt_lock.lk_cpu);
else
(*pr)("pid %d.%d", mp->mnt_lock.lk_lockholder,
mp->mnt_lock.lk_locklwp);
} else
(*pr)(" not locked");
if ((mp->mnt_lock.lk_flags & LK_SPIN) == 0 && mp->mnt_lock.lk_waitcount > 0)
(*pr)(" with %d pending", mp->mnt_lock.lk_waitcount);
(*pr)("\n");
if (mp->mnt_unmounter) {
(*pr)("unmounter pid = %d ",mp->mnt_unmounter->p_pid);
}
(*pr)("wcnt = %d, writeopcountupper = %d, writeopcountupper = %d\n",
mp->mnt_wcnt,mp->mnt_writeopcountupper,mp->mnt_writeopcountlower);
(*pr)("statvfs cache:\n");
(*pr)("\tbsize = %lu\n",mp->mnt_stat.f_bsize);
(*pr)("\tfrsize = %lu\n",mp->mnt_stat.f_frsize);
(*pr)("\tiosize = %lu\n",mp->mnt_stat.f_iosize);
(*pr)("\tblocks = "PRIu64"\n",mp->mnt_stat.f_blocks);
(*pr)("\tbfree = "PRIu64"\n",mp->mnt_stat.f_bfree);
(*pr)("\tbavail = "PRIu64"\n",mp->mnt_stat.f_bavail);
(*pr)("\tbresvd = "PRIu64"\n",mp->mnt_stat.f_bresvd);
(*pr)("\tfiles = "PRIu64"\n",mp->mnt_stat.f_files);
(*pr)("\tffree = "PRIu64"\n",mp->mnt_stat.f_ffree);
(*pr)("\tfavail = "PRIu64"\n",mp->mnt_stat.f_favail);
(*pr)("\tfresvd = "PRIu64"\n",mp->mnt_stat.f_fresvd);
(*pr)("\tf_fsidx = { 0x%"PRIx32", 0x%"PRIx32" }\n",
mp->mnt_stat.f_fsidx.__fsid_val[0],
mp->mnt_stat.f_fsidx.__fsid_val[1]);
(*pr)("\towner = %"PRIu32"\n",mp->mnt_stat.f_owner);
(*pr)("\tnamemax = %lu\n",mp->mnt_stat.f_namemax);
bitmask_snprintf(mp->mnt_stat.f_flag, __MNT_FLAG_BITS, sbuf,
sizeof(sbuf));
(*pr)("\tflag = %s\n",sbuf);
(*pr)("\tsyncwrites = " PRIu64 "\n",mp->mnt_stat.f_syncwrites);
(*pr)("\tasyncwrites = " PRIu64 "\n",mp->mnt_stat.f_asyncwrites);
(*pr)("\tsyncreads = " PRIu64 "\n",mp->mnt_stat.f_syncreads);
(*pr)("\tasyncreads = " PRIu64 "\n",mp->mnt_stat.f_asyncreads);
(*pr)("\tfstypename = %s\n",mp->mnt_stat.f_fstypename);
(*pr)("\tmntonname = %s\n",mp->mnt_stat.f_mntonname);
(*pr)("\tmntfromname = %s\n",mp->mnt_stat.f_mntfromname);
{
int cnt = 0;
struct vnode *vp;
(*pr)("locked vnodes =");
/* XXX would take mountlist lock, except ddb may not have context */
LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (VOP_ISLOCKED(vp)) {
if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", vp);
} else {
(*pr)(" %p,", vp);
}
}
}
(*pr)("\n");
}
if (full) {
int cnt = 0;
struct vnode *vp;
(*pr)("all vnodes =");
/* XXX would take mountlist lock, except ddb may not have context */
LIST_FOREACH(vp, &mp->mnt_vnodelist, v_mntvnodes) {
if (!LIST_NEXT(vp, v_mntvnodes)) {
(*pr)(" %p", vp);
} else if ((++cnt % 6) == 0) {
(*pr)(" %p,\n\t", vp);
} else {
(*pr)(" %p,", vp);
}
}
(*pr)("\n", vp);
}
}
#endif