NetBSD/sys/ufs/lfs/lfs_vfsops.c
pooka 8d1f899239 * nuke the nameidata parameter from VFS_MOUNT(). Nobody on tech-kern
knew what it was supposed to be used for and wrstuden gave a go-ahead
* while rototilling, convert file systems which went easily to
  use VFS_PROTOS() instead of manually prototyping the methods
2007-07-31 21:14:15 +00:00

2102 lines
57 KiB
C

/* $NetBSD: lfs_vfsops.c,v 1.244 2007/07/31 21:14:20 pooka Exp $ */
/*-
* Copyright (c) 1999, 2000, 2001, 2002, 2003, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1989, 1991, 1993, 1994
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_vfsops.c 8.20 (Berkeley) 6/10/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_vfsops.c,v 1.244 2007/07/31 21:14:20 pooka Exp $");
#if defined(_KERNEL_OPT)
#include "opt_quota.h"
#endif
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/namei.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#include <sys/vnode.h>
#include <sys/mount.h>
#include <sys/kthread.h>
#include <sys/buf.h>
#include <sys/device.h>
#include <sys/mbuf.h>
#include <sys/file.h>
#include <sys/disklabel.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/malloc.h>
#include <sys/pool.h>
#include <sys/socket.h>
#include <sys/syslog.h>
#include <uvm/uvm_extern.h>
#include <sys/sysctl.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <miscfs/specfs/specdev.h>
#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <uvm/uvm.h>
#include <uvm/uvm_stat.h>
#include <uvm/uvm_pager.h>
#include <uvm/uvm_pdaemon.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
#include <miscfs/genfs/genfs.h>
#include <miscfs/genfs/genfs_node.h>
static int lfs_gop_write(struct vnode *, struct vm_page **, int, int);
static bool lfs_issequential_hole(const struct ufsmount *,
daddr_t, daddr_t);
static int lfs_mountfs(struct vnode *, struct mount *, struct lwp *);
extern const struct vnodeopv_desc lfs_vnodeop_opv_desc;
extern const struct vnodeopv_desc lfs_specop_opv_desc;
extern const struct vnodeopv_desc lfs_fifoop_opv_desc;
pid_t lfs_writer_daemon = 0;
int lfs_do_flush = 0;
#ifdef LFS_KERNEL_RFW
int lfs_do_rfw = 0;
#endif
const struct vnodeopv_desc * const lfs_vnodeopv_descs[] = {
&lfs_vnodeop_opv_desc,
&lfs_specop_opv_desc,
&lfs_fifoop_opv_desc,
NULL,
};
struct vfsops lfs_vfsops = {
MOUNT_LFS,
sizeof (struct ufs_args),
lfs_mount,
ufs_start,
lfs_unmount,
ufs_root,
ufs_quotactl,
lfs_statvfs,
lfs_sync,
lfs_vget,
lfs_fhtovp,
lfs_vptofh,
lfs_init,
lfs_reinit,
lfs_done,
lfs_mountroot,
(int (*)(struct mount *, struct vnode *, struct timespec *)) eopnotsupp,
vfs_stdextattrctl,
(void *)eopnotsupp, /* vfs_suspendctl */
lfs_vnodeopv_descs,
0,
{ NULL, NULL },
};
VFS_ATTACH(lfs_vfsops);
const struct genfs_ops lfs_genfsops = {
.gop_size = lfs_gop_size,
.gop_alloc = ufs_gop_alloc,
.gop_write = lfs_gop_write,
.gop_markupdate = ufs_gop_markupdate,
};
static const struct ufs_ops lfs_ufsops = {
.uo_itimes = NULL,
.uo_update = lfs_update,
.uo_truncate = lfs_truncate,
.uo_valloc = lfs_valloc,
.uo_vfree = lfs_vfree,
.uo_balloc = lfs_balloc,
};
/*
* XXX Same structure as FFS inodes? Should we share a common pool?
*/
struct pool lfs_inode_pool;
struct pool lfs_dinode_pool;
struct pool lfs_inoext_pool;
struct pool lfs_lbnentry_pool;
/*
* The writer daemon. UVM keeps track of how many dirty pages we are holding
* in lfs_subsys_pages; the daemon flushes the filesystem when this value
* crosses the (user-defined) threshhold LFS_MAX_PAGES.
*/
static void
lfs_writerd(void *arg)
{
struct mount *mp, *nmp;
struct lfs *fs;
int fsflags;
int loopcount;
lfs_writer_daemon = curproc->p_pid;
simple_lock(&lfs_subsys_lock);
for (;;) {
ltsleep(&lfs_writer_daemon, PVM | PNORELOCK, "lfswriter", hz/10,
&lfs_subsys_lock);
/*
* Look through the list of LFSs to see if any of them
* have requested pageouts.
*/
simple_lock(&mountlist_slock);
for (mp = CIRCLEQ_FIRST(&mountlist); mp != (void *)&mountlist;
mp = nmp) {
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
nmp = CIRCLEQ_NEXT(mp, mnt_list);
continue;
}
if (strncmp(mp->mnt_stat.f_fstypename, MOUNT_LFS,
sizeof(mp->mnt_stat.f_fstypename)) == 0) {
fs = VFSTOUFS(mp)->um_lfs;
simple_lock(&fs->lfs_interlock);
fsflags = 0;
if ((fs->lfs_dirvcount > LFS_MAX_FSDIROP(fs) ||
lfs_dirvcount > LFS_MAX_DIROP) &&
fs->lfs_dirops == 0)
fsflags |= SEGM_CKP;
if (fs->lfs_pdflush) {
DLOG((DLOG_FLUSH, "lfs_writerd: pdflush set\n"));
fs->lfs_pdflush = 0;
lfs_flush_fs(fs, fsflags);
simple_unlock(&fs->lfs_interlock);
} else if (!TAILQ_EMPTY(&fs->lfs_pchainhd)) {
DLOG((DLOG_FLUSH, "lfs_writerd: pchain non-empty\n"));
simple_unlock(&fs->lfs_interlock);
lfs_writer_enter(fs, "wrdirop");
lfs_flush_pchain(fs);
lfs_writer_leave(fs);
} else
simple_unlock(&fs->lfs_interlock);
}
simple_lock(&mountlist_slock);
nmp = CIRCLEQ_NEXT(mp, mnt_list);
vfs_unbusy(mp);
}
simple_unlock(&mountlist_slock);
/*
* If global state wants a flush, flush everything.
*/
simple_lock(&lfs_subsys_lock);
loopcount = 0;
if (lfs_do_flush || locked_queue_count > LFS_MAX_BUFS ||
locked_queue_bytes > LFS_MAX_BYTES ||
lfs_subsys_pages > LFS_MAX_PAGES) {
if (lfs_do_flush) {
DLOG((DLOG_FLUSH, "daemon: lfs_do_flush\n"));
}
if (locked_queue_count > LFS_MAX_BUFS) {
DLOG((DLOG_FLUSH, "daemon: lqc = %d, max %d\n",
locked_queue_count, LFS_MAX_BUFS));
}
if (locked_queue_bytes > LFS_MAX_BYTES) {
DLOG((DLOG_FLUSH, "daemon: lqb = %ld, max %ld\n",
locked_queue_bytes, LFS_MAX_BYTES));
}
if (lfs_subsys_pages > LFS_MAX_PAGES) {
DLOG((DLOG_FLUSH, "daemon: lssp = %d, max %d\n",
lfs_subsys_pages, LFS_MAX_PAGES));
}
lfs_flush(NULL, SEGM_WRITERD, 0);
lfs_do_flush = 0;
}
}
/* NOTREACHED */
}
/*
* Initialize the filesystem, most work done by ufs_init.
*/
void
lfs_init()
{
malloc_type_attach(M_SEGMENT);
pool_init(&lfs_inode_pool, sizeof(struct inode), 0, 0, 0,
"lfsinopl", &pool_allocator_nointr, IPL_NONE);
pool_init(&lfs_dinode_pool, sizeof(struct ufs1_dinode), 0, 0, 0,
"lfsdinopl", &pool_allocator_nointr, IPL_NONE);
pool_init(&lfs_inoext_pool, sizeof(struct lfs_inode_ext), 8, 0, 0,
"lfsinoextpl", &pool_allocator_nointr, IPL_NONE);
pool_init(&lfs_lbnentry_pool, sizeof(struct lbnentry), 0, 0, 0,
"lfslbnpool", &pool_allocator_nointr, IPL_NONE);
ufs_init();
#ifdef DEBUG
memset(lfs_log, 0, sizeof(lfs_log));
#endif
simple_lock_init(&lfs_subsys_lock);
}
void
lfs_reinit()
{
ufs_reinit();
}
void
lfs_done()
{
ufs_done();
pool_destroy(&lfs_inode_pool);
pool_destroy(&lfs_dinode_pool);
pool_destroy(&lfs_inoext_pool);
pool_destroy(&lfs_lbnentry_pool);
malloc_type_detach(M_SEGMENT);
}
/*
* Called by main() when ufs is going to be mounted as root.
*/
int
lfs_mountroot()
{
extern struct vnode *rootvp;
struct mount *mp;
struct lwp *l = curlwp; /* XXX */
int error;
if (device_class(root_device) != DV_DISK)
return (ENODEV);
if (rootdev == NODEV)
return (ENODEV);
if ((error = vfs_rootmountalloc(MOUNT_LFS, "root_device", &mp))) {
vrele(rootvp);
return (error);
}
if ((error = lfs_mountfs(rootvp, mp, l))) {
mp->mnt_op->vfs_refcount--;
vfs_unbusy(mp);
free(mp, M_MOUNT);
return (error);
}
simple_lock(&mountlist_slock);
CIRCLEQ_INSERT_TAIL(&mountlist, mp, mnt_list);
simple_unlock(&mountlist_slock);
(void)lfs_statvfs(mp, &mp->mnt_stat, l);
vfs_unbusy(mp);
setrootfstime((time_t)(VFSTOUFS(mp)->um_lfs->lfs_tstamp));
return (0);
}
/*
* VFS Operations.
*
* mount system call
*/
int
lfs_mount(struct mount *mp, const char *path, void *data, size_t *data_len,
struct lwp *l)
{
struct nameidata nd;
struct vnode *devvp;
struct ufs_args *args = data;
struct ufsmount *ump = NULL;
struct lfs *fs = NULL; /* LFS */
int error = 0, update;
mode_t accessmode;
if (*data_len < sizeof *args)
return EINVAL;
if (mp->mnt_flag & MNT_GETARGS) {
ump = VFSTOUFS(mp);
if (ump == NULL)
return EIO;
args->fspec = NULL;
*data_len = sizeof *args;
return 0;
}
update = mp->mnt_flag & MNT_UPDATE;
/* Check arguments */
if (args->fspec != NULL) {
/*
* Look up the name and verify that it's sane.
*/
NDINIT(&nd, LOOKUP, FOLLOW, UIO_USERSPACE, args->fspec, l);
if ((error = namei(&nd)) != 0)
return (error);
devvp = nd.ni_vp;
if (!update) {
/*
* Be sure this is a valid block device
*/
if (devvp->v_type != VBLK)
error = ENOTBLK;
else if (bdevsw_lookup(devvp->v_rdev) == NULL)
error = ENXIO;
} else {
/*
* Be sure we're still naming the same device
* used for our initial mount
*/
ump = VFSTOUFS(mp);
if (devvp != ump->um_devvp)
error = EINVAL;
}
} else {
if (!update) {
/* New mounts must have a filename for the device */
return (EINVAL);
} else {
/* Use the extant mount */
ump = VFSTOUFS(mp);
devvp = ump->um_devvp;
vref(devvp);
}
}
/*
* If mount by non-root, then verify that user has necessary
* permissions on the device.
*/
if (error == 0 && kauth_authorize_generic(l->l_cred,
KAUTH_GENERIC_ISSUSER, NULL) != 0) {
accessmode = VREAD;
if (update ?
(mp->mnt_iflag & IMNT_WANTRDWR) != 0 :
(mp->mnt_flag & MNT_RDONLY) == 0)
accessmode |= VWRITE;
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_ACCESS(devvp, accessmode, l->l_cred, l);
VOP_UNLOCK(devvp, 0);
}
if (error) {
vrele(devvp);
return (error);
}
if (!update) {
int flags;
/*
* Disallow multiple mounts of the same device.
* Disallow mounting of a device that is currently in use
* (except for root, which might share swap device for
* miniroot).
*/
error = vfs_mountedon(devvp);
if (error)
goto fail;
if (vcount(devvp) > 1 && devvp != rootvp) {
error = EBUSY;
goto fail;
}
if (mp->mnt_flag & MNT_RDONLY)
flags = FREAD;
else
flags = FREAD|FWRITE;
error = VOP_OPEN(devvp, flags, FSCRED, l);
if (error)
goto fail;
error = lfs_mountfs(devvp, mp, l); /* LFS */
if (error) {
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
(void)VOP_CLOSE(devvp, flags, NOCRED, l);
VOP_UNLOCK(devvp, 0);
goto fail;
}
ump = VFSTOUFS(mp);
fs = ump->um_lfs;
} else {
/*
* Update the mount.
*/
/*
* The initial mount got a reference on this
* device, so drop the one obtained via
* namei(), above.
*/
vrele(devvp);
ump = VFSTOUFS(mp);
fs = ump->um_lfs;
if (fs->lfs_ronly && (mp->mnt_iflag & IMNT_WANTRDWR)) {
/*
* Changing from read-only to read/write.
* Note in the superblocks that we're writing.
*/
fs->lfs_ronly = 0;
if (fs->lfs_pflags & LFS_PF_CLEAN) {
fs->lfs_pflags &= ~LFS_PF_CLEAN;
lfs_writesuper(fs, fs->lfs_sboffs[0]);
lfs_writesuper(fs, fs->lfs_sboffs[1]);
}
}
if (args->fspec == NULL)
return EINVAL;
}
error = set_statvfs_info(path, UIO_USERSPACE, args->fspec,
UIO_USERSPACE, mp->mnt_op->vfs_name, mp, l);
if (error == 0)
(void)strncpy(fs->lfs_fsmnt, mp->mnt_stat.f_mntonname,
sizeof(fs->lfs_fsmnt));
return error;
fail:
vrele(devvp);
return (error);
}
/*
* Common code for mount and mountroot
* LFS specific
*/
int
lfs_mountfs(struct vnode *devvp, struct mount *mp, struct lwp *l)
{
struct dlfs *tdfs, *dfs, *adfs;
struct lfs *fs;
struct ufsmount *ump;
struct vnode *vp;
struct buf *bp, *abp;
struct partinfo dpart;
dev_t dev;
int error, i, ronly, secsize, fsbsize;
kauth_cred_t cred;
CLEANERINFO *cip;
SEGUSE *sup;
daddr_t sb_addr;
cred = l ? l->l_cred : NOCRED;
/*
* Flush out any old buffers remaining from a previous use.
*/
vn_lock(devvp, LK_EXCLUSIVE | LK_RETRY);
error = vinvalbuf(devvp, V_SAVE, cred, l, 0, 0);
VOP_UNLOCK(devvp, 0);
if (error)
return (error);
ronly = (mp->mnt_flag & MNT_RDONLY) != 0;
if (VOP_IOCTL(devvp, DIOCGPART, &dpart, FREAD, cred, l) != 0)
secsize = DEV_BSIZE;
else
secsize = dpart.disklab->d_secsize;
/* Don't free random space on error. */
bp = NULL;
abp = NULL;
ump = NULL;
sb_addr = LFS_LABELPAD / secsize;
while (1) {
/* Read in the superblock. */
error = bread(devvp, sb_addr, LFS_SBPAD, cred, &bp);
if (error)
goto out;
dfs = (struct dlfs *)bp->b_data;
/* Check the basics. */
if (dfs->dlfs_magic != LFS_MAGIC || dfs->dlfs_bsize > MAXBSIZE ||
dfs->dlfs_version > LFS_VERSION ||
dfs->dlfs_bsize < sizeof(struct dlfs)) {
DLOG((DLOG_MOUNT, "lfs_mountfs: primary superblock sanity failed\n"));
error = EINVAL; /* XXX needs translation */
goto out;
}
if (dfs->dlfs_inodefmt > LFS_MAXINODEFMT) {
DLOG((DLOG_MOUNT, "lfs_mountfs: unknown inode format %d\n",
dfs->dlfs_inodefmt));
error = EINVAL;
goto out;
}
if (dfs->dlfs_version == 1)
fsbsize = secsize;
else {
fsbsize = 1 << (dfs->dlfs_bshift - dfs->dlfs_blktodb +
dfs->dlfs_fsbtodb);
/*
* Could be, if the frag size is large enough, that we
* don't have the "real" primary superblock. If that's
* the case, get the real one, and try again.
*/
if (sb_addr != dfs->dlfs_sboffs[0] <<
dfs->dlfs_fsbtodb) {
DLOG((DLOG_MOUNT, "lfs_mountfs: sb daddr"
" 0x%llx is not right, trying 0x%llx\n",
(long long)sb_addr,
(long long)(dfs->dlfs_sboffs[0] <<
dfs->dlfs_fsbtodb)));
sb_addr = dfs->dlfs_sboffs[0] <<
dfs->dlfs_fsbtodb;
brelse(bp);
continue;
}
}
break;
}
/*
* Check the second superblock to see which is newer; then mount
* using the older of the two. This is necessary to ensure that
* the filesystem is valid if it was not unmounted cleanly.
*/
if (dfs->dlfs_sboffs[1] &&
dfs->dlfs_sboffs[1] - LFS_LABELPAD / fsbsize > LFS_SBPAD / fsbsize)
{
error = bread(devvp, dfs->dlfs_sboffs[1] * (fsbsize / secsize),
LFS_SBPAD, cred, &abp);
if (error)
goto out;
adfs = (struct dlfs *)abp->b_data;
if (dfs->dlfs_version == 1) {
/* 1s resolution comparison */
if (adfs->dlfs_tstamp < dfs->dlfs_tstamp)
tdfs = adfs;
else
tdfs = dfs;
} else {
/* monotonic infinite-resolution comparison */
if (adfs->dlfs_serial < dfs->dlfs_serial)
tdfs = adfs;
else
tdfs = dfs;
}
/* Check the basics. */
if (tdfs->dlfs_magic != LFS_MAGIC ||
tdfs->dlfs_bsize > MAXBSIZE ||
tdfs->dlfs_version > LFS_VERSION ||
tdfs->dlfs_bsize < sizeof(struct dlfs)) {
DLOG((DLOG_MOUNT, "lfs_mountfs: alt superblock"
" sanity failed\n"));
error = EINVAL; /* XXX needs translation */
goto out;
}
} else {
DLOG((DLOG_MOUNT, "lfs_mountfs: invalid alt superblock"
" daddr=0x%x\n", dfs->dlfs_sboffs[1]));
error = EINVAL;
goto out;
}
/* Allocate the mount structure, copy the superblock into it. */
fs = malloc(sizeof(struct lfs), M_UFSMNT, M_WAITOK | M_ZERO);
memcpy(&fs->lfs_dlfs, tdfs, sizeof(struct dlfs));
/* Compatibility */
if (fs->lfs_version < 2) {
fs->lfs_sumsize = LFS_V1_SUMMARY_SIZE;
fs->lfs_ibsize = fs->lfs_bsize;
fs->lfs_start = fs->lfs_sboffs[0];
fs->lfs_tstamp = fs->lfs_otstamp;
fs->lfs_fsbtodb = 0;
}
if (fs->lfs_resvseg == 0)
fs->lfs_resvseg = MIN(fs->lfs_minfreeseg - 1, \
MAX(MIN_RESV_SEGS, fs->lfs_minfreeseg / 2 + 1));
/*
* If we aren't going to be able to write meaningfully to this
* filesystem, and were not mounted readonly, bomb out now.
*/
if (fsbtob(fs, LFS_NRESERVE(fs)) > LFS_MAX_BYTES && !ronly) {
DLOG((DLOG_MOUNT, "lfs_mount: to mount this filesystem read/write,"
" we need BUFPAGES >= %lld\n",
(long long)((bufmem_hiwater / bufmem_lowater) *
LFS_INVERSE_MAX_BYTES(
fsbtob(fs, LFS_NRESERVE(fs))) >> PAGE_SHIFT)));
free(fs, M_UFSMNT);
error = EFBIG; /* XXX needs translation */
goto out;
}
/* Before rolling forward, lock so vget will sleep for other procs */
if (l != NULL) {
fs->lfs_flags = LFS_NOTYET;
fs->lfs_rfpid = l->l_proc->p_pid;
}
ump = malloc(sizeof *ump, M_UFSMNT, M_WAITOK | M_ZERO);
ump->um_lfs = fs;
ump->um_ops = &lfs_ufsops;
ump->um_fstype = UFS1;
if (sizeof(struct lfs) < LFS_SBPAD) { /* XXX why? */
bp->b_flags |= B_INVAL;
abp->b_flags |= B_INVAL;
}
brelse(bp);
bp = NULL;
brelse(abp);
abp = NULL;
/* Set up the I/O information */
fs->lfs_devbsize = secsize;
fs->lfs_iocount = 0;
fs->lfs_diropwait = 0;
fs->lfs_activesb = 0;
fs->lfs_uinodes = 0;
fs->lfs_ravail = 0;
fs->lfs_favail = 0;
fs->lfs_sbactive = 0;
/* Set up the ifile and lock aflags */
fs->lfs_doifile = 0;
fs->lfs_writer = 0;
fs->lfs_dirops = 0;
fs->lfs_nadirop = 0;
fs->lfs_seglock = 0;
fs->lfs_pdflush = 0;
fs->lfs_sleepers = 0;
fs->lfs_pages = 0;
simple_lock_init(&fs->lfs_interlock);
rw_init(&fs->lfs_fraglock);
lockinit(&fs->lfs_iflock, PINOD, "lfs_iflock", 0, 0);
lockinit(&fs->lfs_stoplock, PINOD, "lfs_stoplock", 0, 0);
/* Set the file system readonly/modify bits. */
fs->lfs_ronly = ronly;
if (ronly == 0)
fs->lfs_fmod = 1;
/* Initialize the mount structure. */
dev = devvp->v_rdev;
mp->mnt_data = ump;
mp->mnt_stat.f_fsidx.__fsid_val[0] = (long)dev;
mp->mnt_stat.f_fsidx.__fsid_val[1] = makefstype(MOUNT_LFS);
mp->mnt_stat.f_fsid = mp->mnt_stat.f_fsidx.__fsid_val[0];
mp->mnt_stat.f_namemax = LFS_MAXNAMLEN;
mp->mnt_stat.f_iosize = fs->lfs_bsize;
mp->mnt_flag |= MNT_LOCAL;
mp->mnt_fs_bshift = fs->lfs_bshift;
ump->um_flags = 0;
ump->um_mountp = mp;
ump->um_dev = dev;
ump->um_devvp = devvp;
ump->um_bptrtodb = fs->lfs_fsbtodb;
ump->um_seqinc = fragstofsb(fs, fs->lfs_frag);
ump->um_nindir = fs->lfs_nindir;
ump->um_lognindir = ffs(fs->lfs_nindir) - 1;
for (i = 0; i < MAXQUOTAS; i++)
ump->um_quotas[i] = NULLVP;
ump->um_maxsymlinklen = fs->lfs_maxsymlinklen;
ump->um_dirblksiz = DIRBLKSIZ;
ump->um_maxfilesize = fs->lfs_maxfilesize;
if (ump->um_maxsymlinklen > 0)
mp->mnt_iflag |= IMNT_DTYPE;
devvp->v_specmountpoint = mp;
/* Set up reserved memory for pageout */
lfs_setup_resblks(fs);
/* Set up vdirop tailq */
TAILQ_INIT(&fs->lfs_dchainhd);
/* and paging tailq */
TAILQ_INIT(&fs->lfs_pchainhd);
/* and delayed segment accounting for truncation list */
LIST_INIT(&fs->lfs_segdhd);
/*
* We use the ifile vnode for almost every operation. Instead of
* retrieving it from the hash table each time we retrieve it here,
* artificially increment the reference count and keep a pointer
* to it in the incore copy of the superblock.
*/
if ((error = VFS_VGET(mp, LFS_IFILE_INUM, &vp)) != 0) {
DLOG((DLOG_MOUNT, "lfs_mountfs: ifile vget failed, error=%d\n", error));
goto out;
}
fs->lfs_ivnode = vp;
VREF(vp);
/* Set up inode bitmap and order free list */
lfs_order_freelist(fs);
/* Set up segment usage flags for the autocleaner. */
fs->lfs_nactive = 0;
fs->lfs_suflags = (u_int32_t **)malloc(2 * sizeof(u_int32_t *),
M_SEGMENT, M_WAITOK);
fs->lfs_suflags[0] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
M_SEGMENT, M_WAITOK);
fs->lfs_suflags[1] = (u_int32_t *)malloc(fs->lfs_nseg * sizeof(u_int32_t),
M_SEGMENT, M_WAITOK);
memset(fs->lfs_suflags[1], 0, fs->lfs_nseg * sizeof(u_int32_t));
for (i = 0; i < fs->lfs_nseg; i++) {
int changed;
LFS_SEGENTRY(sup, fs, i, bp);
changed = 0;
if (!ronly) {
if (sup->su_nbytes == 0 &&
!(sup->su_flags & SEGUSE_EMPTY)) {
sup->su_flags |= SEGUSE_EMPTY;
++changed;
} else if (!(sup->su_nbytes == 0) &&
(sup->su_flags & SEGUSE_EMPTY)) {
sup->su_flags &= ~SEGUSE_EMPTY;
++changed;
}
if (sup->su_flags & (SEGUSE_ACTIVE|SEGUSE_INVAL)) {
sup->su_flags &= ~(SEGUSE_ACTIVE|SEGUSE_INVAL);
++changed;
}
}
fs->lfs_suflags[0][i] = sup->su_flags;
if (changed)
LFS_WRITESEGENTRY(sup, fs, i, bp);
else
brelse(bp);
}
#ifdef LFS_KERNEL_RFW
lfs_roll_forward(fs, mp, l);
#endif
/* If writing, sb is not clean; record in case of immediate crash */
if (!fs->lfs_ronly) {
fs->lfs_pflags &= ~LFS_PF_CLEAN;
lfs_writesuper(fs, fs->lfs_sboffs[0]);
lfs_writesuper(fs, fs->lfs_sboffs[1]);
}
/* Allow vget now that roll-forward is complete */
fs->lfs_flags &= ~(LFS_NOTYET);
wakeup(&fs->lfs_flags);
/*
* Initialize the ifile cleaner info with information from
* the superblock.
*/
LFS_CLEANERINFO(cip, fs, bp);
cip->clean = fs->lfs_nclean;
cip->dirty = fs->lfs_nseg - fs->lfs_nclean;
cip->avail = fs->lfs_avail;
cip->bfree = fs->lfs_bfree;
(void) LFS_BWRITE_LOG(bp); /* Ifile */
/*
* Mark the current segment as ACTIVE, since we're going to
* be writing to it.
*/
LFS_SEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp);
sup->su_flags |= SEGUSE_DIRTY | SEGUSE_ACTIVE;
fs->lfs_nactive++;
LFS_WRITESEGENTRY(sup, fs, dtosn(fs, fs->lfs_offset), bp); /* Ifile */
/* Now that roll-forward is done, unlock the Ifile */
vput(vp);
/* Start the pagedaemon-anticipating daemon */
if (lfs_writer_daemon == 0 &&
kthread_create(PRI_NONE, 0, NULL, lfs_writerd, NULL, NULL,
"lfs_writer") != 0)
panic("fork lfs_writer");
return (0);
out:
if (bp)
brelse(bp);
if (abp)
brelse(abp);
if (ump) {
free(ump->um_lfs, M_UFSMNT);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
}
return (error);
}
/*
* unmount system call
*/
int
lfs_unmount(struct mount *mp, int mntflags, struct lwp *l)
{
struct ufsmount *ump;
struct lfs *fs;
int error, flags, ronly;
int s;
flags = 0;
if (mntflags & MNT_FORCE)
flags |= FORCECLOSE;
ump = VFSTOUFS(mp);
fs = ump->um_lfs;
/* Two checkpoints */
lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
lfs_segwrite(mp, SEGM_CKP | SEGM_SYNC);
/* wake up the cleaner so it can die */
lfs_wakeup_cleaner(fs);
simple_lock(&fs->lfs_interlock);
while (fs->lfs_sleepers)
ltsleep(&fs->lfs_sleepers, PRIBIO + 1, "lfs_sleepers", 0,
&fs->lfs_interlock);
simple_unlock(&fs->lfs_interlock);
#ifdef QUOTA
if (mp->mnt_flag & MNT_QUOTA) {
int i;
error = vflush(mp, fs->lfs_ivnode, SKIPSYSTEM|flags);
if (error)
return (error);
for (i = 0; i < MAXQUOTAS; i++) {
if (ump->um_quotas[i] == NULLVP)
continue;
quotaoff(l, mp, i);
}
/*
* Here we fall through to vflush again to ensure
* that we have gotten rid of all the system vnodes.
*/
}
#endif
if ((error = vflush(mp, fs->lfs_ivnode, flags)) != 0)
return (error);
if ((error = VFS_SYNC(mp, 1, l->l_cred, l)) != 0)
return (error);
s = splbio();
if (LIST_FIRST(&fs->lfs_ivnode->v_dirtyblkhd))
panic("lfs_unmount: still dirty blocks on ifile vnode");
splx(s);
/* Explicitly write the superblock, to update serial and pflags */
fs->lfs_pflags |= LFS_PF_CLEAN;
lfs_writesuper(fs, fs->lfs_sboffs[0]);
lfs_writesuper(fs, fs->lfs_sboffs[1]);
simple_lock(&fs->lfs_interlock);
while (fs->lfs_iocount)
ltsleep(&fs->lfs_iocount, PRIBIO + 1, "lfs_umount", 0,
&fs->lfs_interlock);
simple_unlock(&fs->lfs_interlock);
/* Finish with the Ifile, now that we're done with it */
vrele(fs->lfs_ivnode);
vgone(fs->lfs_ivnode);
ronly = !fs->lfs_ronly;
if (ump->um_devvp->v_type != VBAD)
ump->um_devvp->v_specmountpoint = NULL;
vn_lock(ump->um_devvp, LK_EXCLUSIVE | LK_RETRY);
error = VOP_CLOSE(ump->um_devvp,
ronly ? FREAD : FREAD|FWRITE, NOCRED, l);
vput(ump->um_devvp);
/* Complain about page leakage */
if (fs->lfs_pages > 0)
printf("lfs_unmount: still claim %d pages (%d in subsystem)\n",
fs->lfs_pages, lfs_subsys_pages);
/* Free per-mount data structures */
free(fs->lfs_ino_bitmap, M_SEGMENT);
free(fs->lfs_suflags[0], M_SEGMENT);
free(fs->lfs_suflags[1], M_SEGMENT);
free(fs->lfs_suflags, M_SEGMENT);
lfs_free_resblks(fs);
rw_destroy(&fs->lfs_fraglock);
free(fs, M_UFSMNT);
free(ump, M_UFSMNT);
mp->mnt_data = NULL;
mp->mnt_flag &= ~MNT_LOCAL;
return (error);
}
/*
* Get file system statistics.
*
* NB: We don't lock to access the superblock here, because it's not
* really that important if we get it wrong.
*/
int
lfs_statvfs(struct mount *mp, struct statvfs *sbp, struct lwp *l)
{
struct lfs *fs;
struct ufsmount *ump;
ump = VFSTOUFS(mp);
fs = ump->um_lfs;
if (fs->lfs_magic != LFS_MAGIC)
panic("lfs_statvfs: magic");
sbp->f_bsize = fs->lfs_bsize;
sbp->f_frsize = fs->lfs_fsize;
sbp->f_iosize = fs->lfs_bsize;
sbp->f_blocks = fsbtofrags(fs, LFS_EST_NONMETA(fs) - VTOI(fs->lfs_ivnode)->i_lfs_effnblks);
sbp->f_bfree = fsbtofrags(fs, LFS_EST_BFREE(fs));
KASSERT(sbp->f_bfree <= fs->lfs_dsize);
#if 0
if (sbp->f_bfree < 0)
sbp->f_bfree = 0;
#endif
sbp->f_bresvd = fsbtofrags(fs, LFS_EST_RSVD(fs));
if (sbp->f_bfree > sbp->f_bresvd)
sbp->f_bavail = sbp->f_bfree - sbp->f_bresvd;
else
sbp->f_bavail = 0;
sbp->f_files = fs->lfs_bfree / btofsb(fs, fs->lfs_ibsize) * INOPB(fs);
sbp->f_ffree = sbp->f_files - fs->lfs_nfiles;
sbp->f_favail = sbp->f_ffree;
sbp->f_fresvd = 0;
copy_statvfs_info(sbp, mp);
return (0);
}
/*
* Go through the disk queues to initiate sandbagged IO;
* go through the inodes to write those that have been modified;
* initiate the writing of the super block if it has been modified.
*
* Note: we are always called with the filesystem marked `MPBUSY'.
*/
int
lfs_sync(struct mount *mp, int waitfor, kauth_cred_t cred,
struct lwp *l)
{
int error;
struct lfs *fs;
fs = VFSTOUFS(mp)->um_lfs;
if (fs->lfs_ronly)
return 0;
/* Snapshots should not hose the syncer */
/*
* XXX Sync can block here anyway, since we don't have a very
* XXX good idea of how much data is pending. If it's more
* XXX than a segment and lfs_nextseg is close to the end of
* XXX the log, we'll likely block.
*/
simple_lock(&fs->lfs_interlock);
if (fs->lfs_nowrap && fs->lfs_nextseg < fs->lfs_curseg) {
simple_unlock(&fs->lfs_interlock);
return 0;
}
simple_unlock(&fs->lfs_interlock);
lfs_writer_enter(fs, "lfs_dirops");
/* All syncs must be checkpoints until roll-forward is implemented. */
DLOG((DLOG_FLUSH, "lfs_sync at 0x%x\n", fs->lfs_offset));
error = lfs_segwrite(mp, SEGM_CKP | (waitfor ? SEGM_SYNC : 0));
lfs_writer_leave(fs);
#ifdef QUOTA
qsync(mp);
#endif
return (error);
}
extern kmutex_t ufs_hashlock;
/*
* Look up an LFS dinode number to find its incore vnode. If not already
* in core, read it in from the specified device. Return the inode locked.
* Detection and handling of mount points must be done by the calling routine.
*/
int
lfs_vget(struct mount *mp, ino_t ino, struct vnode **vpp)
{
struct lfs *fs;
struct ufs1_dinode *dip;
struct inode *ip;
struct buf *bp;
struct ifile *ifp;
struct vnode *vp;
struct ufsmount *ump;
daddr_t daddr;
dev_t dev;
int error, retries;
struct timespec ts;
memset(&ts, 0, sizeof ts); /* XXX gcc */
ump = VFSTOUFS(mp);
dev = ump->um_dev;
fs = ump->um_lfs;
/*
* If the filesystem is not completely mounted yet, suspend
* any access requests (wait for roll-forward to complete).
*/
simple_lock(&fs->lfs_interlock);
while ((fs->lfs_flags & LFS_NOTYET) && curproc->p_pid != fs->lfs_rfpid)
ltsleep(&fs->lfs_flags, PRIBIO+1, "lfs_notyet", 0,
&fs->lfs_interlock);
simple_unlock(&fs->lfs_interlock);
retry:
if ((*vpp = ufs_ihashget(dev, ino, LK_EXCLUSIVE)) != NULL)
return (0);
if ((error = getnewvnode(VT_LFS, mp, lfs_vnodeop_p, &vp)) != 0) {
*vpp = NULL;
return (error);
}
mutex_enter(&ufs_hashlock);
if (ufs_ihashget(dev, ino, 0) != NULL) {
mutex_exit(&ufs_hashlock);
ungetnewvnode(vp);
goto retry;
}
/* Translate the inode number to a disk address. */
if (ino == LFS_IFILE_INUM)
daddr = fs->lfs_idaddr;
else {
/* XXX bounds-check this too */
LFS_IENTRY(ifp, fs, ino, bp);
daddr = ifp->if_daddr;
if (fs->lfs_version > 1) {
ts.tv_sec = ifp->if_atime_sec;
ts.tv_nsec = ifp->if_atime_nsec;
}
brelse(bp);
if (daddr == LFS_UNUSED_DADDR) {
*vpp = NULLVP;
mutex_exit(&ufs_hashlock);
ungetnewvnode(vp);
return (ENOENT);
}
}
/* Allocate/init new vnode/inode. */
lfs_vcreate(mp, ino, vp);
/*
* Put it onto its hash chain and lock it so that other requests for
* this inode will block if they arrive while we are sleeping waiting
* for old data structures to be purged or for the contents of the
* disk portion of this inode to be read.
*/
ip = VTOI(vp);
ufs_ihashins(ip);
mutex_exit(&ufs_hashlock);
/*
* XXX
* This may not need to be here, logically it should go down with
* the i_devvp initialization.
* Ask Kirk.
*/
ip->i_lfs = ump->um_lfs;
/* Read in the disk contents for the inode, copy into the inode. */
retries = 0;
again:
error = bread(ump->um_devvp, fsbtodb(fs, daddr),
(fs->lfs_version == 1 ? fs->lfs_bsize : fs->lfs_ibsize),
NOCRED, &bp);
if (error) {
/*
* The inode does not contain anything useful, so it would
* be misleading to leave it on its hash chain. With mode
* still zero, it will be unlinked and returned to the free
* list by vput().
*/
vput(vp);
brelse(bp);
*vpp = NULL;
return (error);
}
dip = lfs_ifind(fs, ino, bp);
if (dip == NULL) {
/* Assume write has not completed yet; try again */
bp->b_flags |= B_INVAL;
brelse(bp);
++retries;
if (retries > LFS_IFIND_RETRIES) {
#ifdef DEBUG
/* If the seglock is held look at the bpp to see
what is there anyway */
simple_lock(&fs->lfs_interlock);
if (fs->lfs_seglock > 0) {
struct buf **bpp;
struct ufs1_dinode *dp;
int i;
for (bpp = fs->lfs_sp->bpp;
bpp != fs->lfs_sp->cbpp; ++bpp) {
if ((*bpp)->b_vp == fs->lfs_ivnode &&
bpp != fs->lfs_sp->bpp) {
/* Inode block */
printf("lfs_vget: block 0x%" PRIx64 ": ",
(*bpp)->b_blkno);
dp = (struct ufs1_dinode *)(*bpp)->b_data;
for (i = 0; i < INOPB(fs); i++)
if (dp[i].di_u.inumber)
printf("%d ", dp[i].di_u.inumber);
printf("\n");
}
}
}
simple_unlock(&fs->lfs_interlock);
#endif /* DEBUG */
panic("lfs_vget: dinode not found");
}
simple_lock(&fs->lfs_interlock);
if (fs->lfs_iocount) {
DLOG((DLOG_VNODE, "lfs_vget: dinode %d not found, retrying...\n", ino));
(void)ltsleep(&fs->lfs_iocount, PRIBIO + 1,
"lfs ifind", 1, &fs->lfs_interlock);
} else
retries = LFS_IFIND_RETRIES;
simple_unlock(&fs->lfs_interlock);
goto again;
}
*ip->i_din.ffs1_din = *dip;
brelse(bp);
if (fs->lfs_version > 1) {
ip->i_ffs1_atime = ts.tv_sec;
ip->i_ffs1_atimensec = ts.tv_nsec;
}
lfs_vinit(mp, &vp);
*vpp = vp;
KASSERT(VOP_ISLOCKED(vp));
return (0);
}
/*
* File handle to vnode
*/
int
lfs_fhtovp(struct mount *mp, struct fid *fhp, struct vnode **vpp)
{
struct lfid lfh;
struct buf *bp;
IFILE *ifp;
int32_t daddr;
struct lfs *fs;
if (fhp->fid_len != sizeof(struct lfid))
return EINVAL;
memcpy(&lfh, fhp, sizeof(lfh));
if (lfh.lfid_ino < LFS_IFILE_INUM)
return ESTALE;
fs = VFSTOUFS(mp)->um_lfs;
if (lfh.lfid_ident != fs->lfs_ident)
return ESTALE;
if (lfh.lfid_ino >
((VTOI(fs->lfs_ivnode)->i_ffs1_size >> fs->lfs_bshift) -
fs->lfs_cleansz - fs->lfs_segtabsz) * fs->lfs_ifpb)
return ESTALE;
if (ufs_ihashlookup(VFSTOUFS(mp)->um_dev, lfh.lfid_ino) == NULLVP) {
LFS_IENTRY(ifp, fs, lfh.lfid_ino, bp);
daddr = ifp->if_daddr;
brelse(bp);
if (daddr == LFS_UNUSED_DADDR)
return ESTALE;
}
return (ufs_fhtovp(mp, &lfh.lfid_ufid, vpp));
}
/*
* Vnode pointer to File handle
*/
/* ARGSUSED */
int
lfs_vptofh(struct vnode *vp, struct fid *fhp, size_t *fh_size)
{
struct inode *ip;
struct lfid lfh;
if (*fh_size < sizeof(struct lfid)) {
*fh_size = sizeof(struct lfid);
return E2BIG;
}
*fh_size = sizeof(struct lfid);
ip = VTOI(vp);
memset(&lfh, 0, sizeof(lfh));
lfh.lfid_len = sizeof(struct lfid);
lfh.lfid_ino = ip->i_number;
lfh.lfid_gen = ip->i_gen;
lfh.lfid_ident = ip->i_lfs->lfs_ident;
memcpy(fhp, &lfh, sizeof(lfh));
return (0);
}
static int
sysctl_lfs_dostats(SYSCTLFN_ARGS)
{
extern struct lfs_stats lfs_stats;
extern int lfs_dostats;
int error;
error = sysctl_lookup(SYSCTLFN_CALL(rnode));
if (error || newp == NULL)
return (error);
if (lfs_dostats == 0)
memset(&lfs_stats, 0, sizeof(lfs_stats));
return (0);
}
struct shortlong {
const char *sname;
const char *lname;
};
SYSCTL_SETUP(sysctl_vfs_lfs_setup, "sysctl vfs.lfs subtree setup")
{
int i;
extern int lfs_writeindir, lfs_dostats, lfs_clean_vnhead,
lfs_fs_pagetrip, lfs_ignore_lazy_sync;
#ifdef DEBUG
extern int lfs_debug_log_subsys[DLOG_MAX];
struct shortlong dlog_names[DLOG_MAX] = { /* Must match lfs.h ! */
{ "rollforward", "Debug roll-forward code" },
{ "alloc", "Debug inode allocation and free list" },
{ "avail", "Debug space-available-now accounting" },
{ "flush", "Debug flush triggers" },
{ "lockedlist", "Debug locked list accounting" },
{ "vnode_verbose", "Verbose per-vnode-written debugging" },
{ "vnode", "Debug vnode use during segment write" },
{ "segment", "Debug segment writing" },
{ "seguse", "Debug segment used-bytes accounting" },
{ "cleaner", "Debug cleaning routines" },
{ "mount", "Debug mount/unmount routines" },
{ "pagecache", "Debug UBC interactions" },
{ "dirop", "Debug directory-operation accounting" },
{ "malloc", "Debug private malloc accounting" },
};
#endif /* DEBUG */
struct shortlong stat_names[] = { /* Must match lfs.h! */
{ "segsused", "Number of new segments allocated" },
{ "psegwrites", "Number of partial-segment writes" },
{ "psyncwrites", "Number of synchronous partial-segment"
" writes" },
{ "pcleanwrites", "Number of partial-segment writes by the"
" cleaner" },
{ "blocktot", "Number of blocks written" },
{ "cleanblocks", "Number of blocks written by the cleaner" },
{ "ncheckpoints", "Number of checkpoints made" },
{ "nwrites", "Number of whole writes" },
{ "nsync_writes", "Number of synchronous writes" },
{ "wait_exceeded", "Number of times writer waited for"
" cleaner" },
{ "write_exceeded", "Number of times writer invoked flush" },
{ "flush_invoked", "Number of times flush was invoked" },
{ "vflush_invoked", "Number of time vflush was called" },
{ "clean_inlocked", "Number of vnodes skipped for VXLOCK" },
{ "clean_vnlocked", "Number of vnodes skipped for vget failure" },
{ "segs_reclaimed", "Number of segments reclaimed" },
};
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "vfs", NULL,
NULL, 0, NULL, 0,
CTL_VFS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "lfs",
SYSCTL_DESCR("Log-structured file system"),
NULL, 0, NULL, 0,
CTL_VFS, 5, CTL_EOL);
/*
* XXX the "5" above could be dynamic, thereby eliminating one
* more instance of the "number to vfs" mapping problem, but
* "5" is the order as taken from sys/mount.h
*/
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "flushindir", NULL,
NULL, 0, &lfs_writeindir, 0,
CTL_VFS, 5, LFS_WRITEINDIR, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "clean_vnhead", NULL,
NULL, 0, &lfs_clean_vnhead, 0,
CTL_VFS, 5, LFS_CLEAN_VNHEAD, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "dostats",
SYSCTL_DESCR("Maintain statistics on LFS operations"),
sysctl_lfs_dostats, 0, &lfs_dostats, 0,
CTL_VFS, 5, LFS_DOSTATS, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "pagetrip",
SYSCTL_DESCR("How many dirty pages in fs triggers"
" a flush"),
NULL, 0, &lfs_fs_pagetrip, 0,
CTL_VFS, 5, LFS_FS_PAGETRIP, CTL_EOL);
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "ignore_lazy_sync",
SYSCTL_DESCR("Lazy Sync is ignored entirely"),
NULL, 0, &lfs_ignore_lazy_sync, 0,
CTL_VFS, 5, LFS_IGNORE_LAZY_SYNC, CTL_EOL);
#ifdef LFS_KERNEL_RFW
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, "rfw",
SYSCTL_DESCR("Use in-kernel roll-forward on mount"),
NULL, 0, &lfs_do_rfw, 0,
CTL_VFS, 5, LFS_DO_RFW, CTL_EOL);
#endif
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "stats",
SYSCTL_DESCR("Debugging options"),
NULL, 0, NULL, 0,
CTL_VFS, 5, LFS_STATS, CTL_EOL);
for (i = 0; i < sizeof(struct lfs_stats) / sizeof(u_int); i++) {
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READONLY,
CTLTYPE_INT, stat_names[i].sname,
SYSCTL_DESCR(stat_names[i].lname),
NULL, 0, &(((u_int *)&lfs_stats.segsused)[i]),
0, CTL_VFS, 5, LFS_STATS, i, CTL_EOL);
}
#ifdef DEBUG
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT,
CTLTYPE_NODE, "debug",
SYSCTL_DESCR("Debugging options"),
NULL, 0, NULL, 0,
CTL_VFS, 5, LFS_DEBUGLOG, CTL_EOL);
for (i = 0; i < DLOG_MAX; i++) {
sysctl_createv(clog, 0, NULL, NULL,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE,
CTLTYPE_INT, dlog_names[i].sname,
SYSCTL_DESCR(dlog_names[i].lname),
NULL, 0, &(lfs_debug_log_subsys[i]), 0,
CTL_VFS, 5, LFS_DEBUGLOG, i, CTL_EOL);
}
#endif
}
/*
* ufs_bmaparray callback function for writing.
*
* Since blocks will be written to the new segment anyway,
* we don't care about current daddr of them.
*/
static bool
lfs_issequential_hole(const struct ufsmount *ump,
daddr_t daddr0, daddr_t daddr1)
{
daddr0 = (daddr_t)((int32_t)daddr0); /* XXX ondisk32 */
daddr1 = (daddr_t)((int32_t)daddr1); /* XXX ondisk32 */
KASSERT(daddr0 == UNWRITTEN ||
(0 <= daddr0 && daddr0 <= LFS_MAX_DADDR));
KASSERT(daddr1 == UNWRITTEN ||
(0 <= daddr1 && daddr1 <= LFS_MAX_DADDR));
/* NOTE: all we want to know here is 'hole or not'. */
/* NOTE: UNASSIGNED is converted to 0 by ufs_bmaparray. */
/*
* treat UNWRITTENs and all resident blocks as 'contiguous'
*/
if (daddr0 != 0 && daddr1 != 0)
return true;
/*
* both are in hole?
*/
if (daddr0 == 0 && daddr1 == 0)
return true; /* all holes are 'contiguous' for us. */
return false;
}
/*
* lfs_gop_write functions exactly like genfs_gop_write, except that
* (1) it requires the seglock to be held by its caller, and sp->fip
* to be properly initialized (it will return without re-initializing
* sp->fip, and without calling lfs_writeseg).
* (2) it uses the remaining space in the segment, rather than VOP_BMAP,
* to determine how large a block it can write at once (though it does
* still use VOP_BMAP to find holes in the file);
* (3) it calls lfs_gatherblock instead of VOP_STRATEGY on its blocks
* (leaving lfs_writeseg to deal with the cluster blocks, so we might
* now have clusters of clusters, ick.)
*/
static int
lfs_gop_write(struct vnode *vp, struct vm_page **pgs, int npages,
int flags)
{
int i, s, error, run, haveeof = 0;
int fs_bshift;
vaddr_t kva;
off_t eof, offset, startoffset = 0;
size_t bytes, iobytes, skipbytes;
daddr_t lbn, blkno;
struct vm_page *pg;
struct buf *mbp, *bp;
struct vnode *devvp = VTOI(vp)->i_devvp;
struct inode *ip = VTOI(vp);
struct lfs *fs = ip->i_lfs;
struct segment *sp = fs->lfs_sp;
UVMHIST_FUNC("lfs_gop_write"); UVMHIST_CALLED(ubchist);
ASSERT_SEGLOCK(fs);
/* The Ifile lives in the buffer cache */
KASSERT(vp != fs->lfs_ivnode);
/*
* We don't want to fill the disk before the cleaner has a chance
* to make room for us. If we're in danger of doing that, fail
* with EAGAIN. The caller will have to notice this, unlock
* so the cleaner can run, relock and try again.
*
* We must write everything, however, if our vnode is being
* reclaimed.
*/
if (LFS_STARVED_FOR_SEGS(fs) && vp != fs->lfs_flushvp)
goto tryagain;
/*
* Sometimes things slip past the filters in lfs_putpages,
* and the pagedaemon tries to write pages---problem is
* that the pagedaemon never acquires the segment lock.
*
* Alternatively, pages that were clean when we called
* genfs_putpages may have become dirty in the meantime. In this
* case the segment header is not properly set up for blocks
* to be added to it.
*
* Unbusy and unclean the pages, and put them on the ACTIVE
* queue under the hypothesis that they couldn't have got here
* unless they were modified *quite* recently.
*
* XXXUBC that last statement is an oversimplification of course.
*/
if (!LFS_SEGLOCK_HELD(fs) ||
(ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) ||
(pgs[0]->offset & fs->lfs_bmask) != 0) {
goto tryagain;
}
UVMHIST_LOG(ubchist, "vp %p pgs %p npages %d flags 0x%x",
vp, pgs, npages, flags);
GOP_SIZE(vp, vp->v_size, &eof, 0);
haveeof = 1;
if (vp->v_type == VREG)
fs_bshift = vp->v_mount->mnt_fs_bshift;
else
fs_bshift = DEV_BSHIFT;
error = 0;
pg = pgs[0];
startoffset = pg->offset;
KASSERT(eof >= 0);
if (startoffset >= eof) {
goto tryagain;
} else
bytes = MIN(npages << PAGE_SHIFT, eof - startoffset);
skipbytes = 0;
KASSERT(bytes != 0);
/* Swap PG_DELWRI for PG_PAGEOUT */
for (i = 0; i < npages; i++) {
if (pgs[i]->flags & PG_DELWRI) {
KASSERT(!(pgs[i]->flags & PG_PAGEOUT));
pgs[i]->flags &= ~PG_DELWRI;
pgs[i]->flags |= PG_PAGEOUT;
uvmexp.paging++;
uvm_lock_pageq();
uvm_pageunwire(pgs[i]);
uvm_unlock_pageq();
}
}
/*
* Check to make sure we're starting on a block boundary.
* We'll check later to make sure we always write entire
* blocks (or fragments).
*/
if (startoffset & fs->lfs_bmask)
printf("%" PRId64 " & %" PRId64 " = %" PRId64 "\n",
startoffset, fs->lfs_bmask,
startoffset & fs->lfs_bmask);
KASSERT((startoffset & fs->lfs_bmask) == 0);
if (bytes & fs->lfs_ffmask) {
printf("lfs_gop_write: asked to write %ld bytes\n", (long)bytes);
panic("lfs_gop_write: non-integer blocks");
}
/*
* We could deadlock here on pager_map with UVMPAGER_MAPIN_WAITOK.
* If we would, write what we have and try again. If we don't
* have anything to write, we'll have to sleep.
*/
if ((kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
(((SEGSUM *)(sp->segsum))->ss_nfinfo < 1 ?
UVMPAGER_MAPIN_WAITOK : 0))) == 0x0) {
DLOG((DLOG_PAGE, "lfs_gop_write: forcing write\n"));
#if 0
" with nfinfo=%d at offset 0x%x\n",
(int)((SEGSUM *)(sp->segsum))->ss_nfinfo,
(unsigned)fs->lfs_offset));
#endif
lfs_updatemeta(sp);
lfs_release_finfo(fs);
(void) lfs_writeseg(fs, sp);
lfs_acquire_finfo(fs, ip->i_number, ip->i_gen);
/*
* Having given up all of the pager_map we were holding,
* we can now wait for aiodoned to reclaim it for us
* without fear of deadlock.
*/
kva = uvm_pagermapin(pgs, npages, UVMPAGER_MAPIN_WRITE |
UVMPAGER_MAPIN_WAITOK);
}
s = splbio();
simple_lock(&global_v_numoutput_slock);
vp->v_numoutput += 2; /* one for biodone, one for aiodone */
simple_unlock(&global_v_numoutput_slock);
splx(s);
mbp = getiobuf();
UVMHIST_LOG(ubchist, "vp %p mbp %p num now %d bytes 0x%x",
vp, mbp, vp->v_numoutput, bytes);
mbp->b_bufsize = npages << PAGE_SHIFT;
mbp->b_data = (void *)kva;
mbp->b_resid = mbp->b_bcount = bytes;
mbp->b_flags = B_BUSY|B_WRITE|B_AGE|B_CALL;
mbp->b_iodone = uvm_aio_biodone;
mbp->b_vp = vp;
bp = NULL;
for (offset = startoffset;
bytes > 0;
offset += iobytes, bytes -= iobytes) {
lbn = offset >> fs_bshift;
error = ufs_bmaparray(vp, lbn, &blkno, NULL, NULL, &run,
lfs_issequential_hole);
if (error) {
UVMHIST_LOG(ubchist, "ufs_bmaparray() -> %d",
error,0,0,0);
skipbytes += bytes;
bytes = 0;
break;
}
iobytes = MIN((((off_t)lbn + 1 + run) << fs_bshift) - offset,
bytes);
if (blkno == (daddr_t)-1) {
skipbytes += iobytes;
continue;
}
/*
* Discover how much we can really pack into this buffer.
*/
/* If no room in the current segment, finish it up */
if (sp->sum_bytes_left < sizeof(int32_t) ||
sp->seg_bytes_left < (1 << fs->lfs_bshift)) {
int vers;
lfs_updatemeta(sp);
vers = sp->fip->fi_version;
lfs_release_finfo(fs);
(void) lfs_writeseg(fs, sp);
lfs_acquire_finfo(fs, ip->i_number, vers);
}
/* Check both for space in segment and space in segsum */
iobytes = MIN(iobytes, (sp->seg_bytes_left >> fs_bshift)
<< fs_bshift);
iobytes = MIN(iobytes, (sp->sum_bytes_left / sizeof(int32_t))
<< fs_bshift);
KASSERT(iobytes > 0);
/* if it's really one i/o, don't make a second buf */
if (offset == startoffset && iobytes == bytes) {
bp = mbp;
/* correct overcount if there is no second buffer */
s = splbio();
simple_lock(&global_v_numoutput_slock);
--vp->v_numoutput;
simple_unlock(&global_v_numoutput_slock);
splx(s);
} else {
bp = getiobuf();
UVMHIST_LOG(ubchist, "vp %p bp %p num now %d",
vp, bp, vp->v_numoutput, 0);
bp->b_data = (char *)kva +
(vaddr_t)(offset - pg->offset);
bp->b_resid = bp->b_bcount = iobytes;
bp->b_flags = B_BUSY|B_WRITE|B_CALL;
bp->b_iodone = uvm_aio_biodone1;
}
/* XXX This is silly ... is this necessary? */
bp->b_vp = NULL;
s = splbio();
bgetvp(vp, bp);
splx(s);
bp->b_lblkno = lblkno(fs, offset);
bp->b_private = mbp;
if (devvp->v_type == VBLK) {
bp->b_dev = devvp->v_rdev;
}
VOP_BWRITE(bp);
while (lfs_gatherblock(sp, bp, NULL))
continue;
}
if (skipbytes) {
UVMHIST_LOG(ubchist, "skipbytes %d", skipbytes, 0,0,0);
s = splbio();
if (error) {
mbp->b_error = error;
}
mbp->b_resid -= skipbytes;
if (mbp->b_resid == 0) {
biodone(mbp);
}
splx(s);
}
UVMHIST_LOG(ubchist, "returning 0", 0,0,0,0);
return (0);
tryagain:
/*
* We can't write the pages, for whatever reason.
* Clean up after ourselves, and make the caller try again.
*/
simple_lock(&vp->v_interlock);
/* Tell why we're here, if we know */
if (ip->i_lfs_iflags & LFSI_NO_GOP_WRITE) {
DLOG((DLOG_PAGE, "lfs_gop_write: clean pages dirtied\n"));
} else if ((pgs[0]->offset & fs->lfs_bmask) != 0) {
DLOG((DLOG_PAGE, "lfs_gop_write: not on block boundary\n"));
} else if (haveeof && startoffset >= eof) {
DLOG((DLOG_PAGE, "lfs_gop_write: ino %d start 0x%" PRIx64
" eof 0x%" PRIx64 " npages=%d\n", VTOI(vp)->i_number,
pgs[0]->offset, eof, npages));
} else if (LFS_STARVED_FOR_SEGS(fs)) {
DLOG((DLOG_PAGE, "lfs_gop_write: avail too low\n"));
} else {
DLOG((DLOG_PAGE, "lfs_gop_write: seglock not held\n"));
}
uvm_lock_pageq();
for (i = 0; i < npages; i++) {
pg = pgs[i];
if (pg->flags & PG_PAGEOUT)
uvmexp.paging--;
if (pg->flags & PG_DELWRI) {
uvm_pageunwire(pg);
}
uvm_pageactivate(pg);
pg->flags &= ~(PG_CLEAN|PG_DELWRI|PG_PAGEOUT|PG_RELEASED);
DLOG((DLOG_PAGE, "pg[%d] = %p (vp %p off %" PRIx64 ")\n", i, pg,
vp, pg->offset));
DLOG((DLOG_PAGE, "pg[%d]->flags = %x\n", i, pg->flags));
DLOG((DLOG_PAGE, "pg[%d]->pqflags = %x\n", i, pg->pqflags));
DLOG((DLOG_PAGE, "pg[%d]->uanon = %p\n", i, pg->uanon));
DLOG((DLOG_PAGE, "pg[%d]->uobject = %p\n", i, pg->uobject));
DLOG((DLOG_PAGE, "pg[%d]->wire_count = %d\n", i,
pg->wire_count));
DLOG((DLOG_PAGE, "pg[%d]->loan_count = %d\n", i,
pg->loan_count));
}
/* uvm_pageunbusy takes care of PG_BUSY, PG_WANTED */
uvm_page_unbusy(pgs, npages);
uvm_unlock_pageq();
simple_unlock(&vp->v_interlock);
return EAGAIN;
}
/*
* finish vnode/inode initialization.
* used by lfs_vget and lfs_fastvget.
*/
void
lfs_vinit(struct mount *mp, struct vnode **vpp)
{
struct vnode *vp = *vpp;
struct inode *ip = VTOI(vp);
struct ufsmount *ump = VFSTOUFS(mp);
struct lfs *fs = ump->um_lfs;
int i;
ip->i_mode = ip->i_ffs1_mode;
ip->i_ffs_effnlink = ip->i_nlink = ip->i_ffs1_nlink;
ip->i_lfs_osize = ip->i_size = ip->i_ffs1_size;
ip->i_flags = ip->i_ffs1_flags;
ip->i_gen = ip->i_ffs1_gen;
ip->i_uid = ip->i_ffs1_uid;
ip->i_gid = ip->i_ffs1_gid;
ip->i_lfs_effnblks = ip->i_ffs1_blocks;
ip->i_lfs_odnlink = ip->i_ffs1_nlink;
/*
* Initialize the vnode from the inode, check for aliases. In all
* cases re-init ip, the underlying vnode/inode may have changed.
*/
ufs_vinit(mp, lfs_specop_p, lfs_fifoop_p, &vp);
ip = VTOI(vp);
memset(ip->i_lfs_fragsize, 0, NDADDR * sizeof(*ip->i_lfs_fragsize));
if (vp->v_type != VLNK || ip->i_size >= ip->i_ump->um_maxsymlinklen) {
#ifdef DEBUG
for (i = (ip->i_size + fs->lfs_bsize - 1) >> fs->lfs_bshift;
i < NDADDR; i++) {
if ((vp->v_type == VBLK || vp->v_type == VCHR) &&
i == 0)
continue;
if (ip->i_ffs1_db[i] != 0) {
inconsistent:
lfs_dump_dinode(ip->i_din.ffs1_din);
panic("inconsistent inode");
}
}
for ( ; i < NDADDR + NIADDR; i++) {
if (ip->i_ffs1_ib[i - NDADDR] != 0) {
goto inconsistent;
}
}
#endif /* DEBUG */
for (i = 0; i < NDADDR; i++)
if (ip->i_ffs1_db[i] != 0)
ip->i_lfs_fragsize[i] = blksize(fs, ip, i);
}
#ifdef DIAGNOSTIC
if (vp->v_type == VNON) {
# ifdef DEBUG
lfs_dump_dinode(ip->i_din.ffs1_din);
# endif
panic("lfs_vinit: ino %llu is type VNON! (ifmt=%o)\n",
(unsigned long long)ip->i_number,
(ip->i_mode & IFMT) >> 12);
}
#endif /* DIAGNOSTIC */
/*
* Finish inode initialization now that aliasing has been resolved.
*/
ip->i_devvp = ump->um_devvp;
VREF(ip->i_devvp);
genfs_node_init(vp, &lfs_genfsops);
uvm_vnp_setsize(vp, ip->i_size);
/* Initialize hiblk from file size */
ip->i_lfs_hiblk = lblkno(ip->i_lfs, ip->i_size + ip->i_lfs->lfs_bsize - 1) - 1;
*vpp = vp;
}
/*
* Resize the filesystem to contain the specified number of segments.
*/
int
lfs_resize_fs(struct lfs *fs, int newnsegs)
{
SEGUSE *sup;
struct buf *bp, *obp;
daddr_t olast, nlast, ilast, noff, start, end;
struct vnode *ivp;
struct inode *ip;
int error, badnews, inc, oldnsegs;
int sbbytes, csbbytes, gain, cgain;
int i;
/* Only support v2 and up */
if (fs->lfs_version < 2)
return EOPNOTSUPP;
/* If we're doing nothing, do it fast */
oldnsegs = fs->lfs_nseg;
if (newnsegs == oldnsegs)
return 0;
/* We always have to have two superblocks */
if (newnsegs <= dtosn(fs, fs->lfs_sboffs[1]))
return EFBIG;
ivp = fs->lfs_ivnode;
ip = VTOI(ivp);
error = 0;
/* Take the segment lock so no one else calls lfs_newseg() */
lfs_seglock(fs, SEGM_PROT);
/*
* Make sure the segments we're going to be losing, if any,
* are in fact empty. We hold the seglock, so their status
* cannot change underneath us. Count the superblocks we lose,
* while we're at it.
*/
sbbytes = csbbytes = 0;
cgain = 0;
for (i = newnsegs; i < oldnsegs; i++) {
LFS_SEGENTRY(sup, fs, i, bp);
badnews = sup->su_nbytes || !(sup->su_flags & SEGUSE_INVAL);
if (sup->su_flags & SEGUSE_SUPERBLOCK)
sbbytes += LFS_SBPAD;
if (!(sup->su_flags & SEGUSE_DIRTY)) {
++cgain;
if (sup->su_flags & SEGUSE_SUPERBLOCK)
csbbytes += LFS_SBPAD;
}
brelse(bp);
if (badnews) {
error = EBUSY;
goto out;
}
}
/* Note old and new segment table endpoints, and old ifile size */
olast = fs->lfs_cleansz + fs->lfs_segtabsz;
nlast = howmany(newnsegs, fs->lfs_sepb) + fs->lfs_cleansz;
ilast = ivp->v_size >> fs->lfs_bshift;
noff = nlast - olast;
/*
* Make sure no one can use the Ifile while we change it around.
* Even after taking the iflock we need to make sure no one still
* is holding Ifile buffers, so we get each one, to drain them.
* (XXX this could be done better.)
*/
simple_lock(&fs->lfs_interlock);
lockmgr(&fs->lfs_iflock, LK_EXCLUSIVE, &fs->lfs_interlock);
simple_unlock(&fs->lfs_interlock);
vn_lock(ivp, LK_EXCLUSIVE | LK_RETRY);
for (i = 0; i < ilast; i++) {
bread(ivp, i, fs->lfs_bsize, NOCRED, &bp);
brelse(bp);
}
/* Allocate new Ifile blocks */
for (i = ilast; i < ilast + noff; i++) {
if (lfs_balloc(ivp, i * fs->lfs_bsize, fs->lfs_bsize, NOCRED, 0,
&bp) != 0)
panic("balloc extending ifile");
memset(bp->b_data, 0, fs->lfs_bsize);
VOP_BWRITE(bp);
}
/* Register new ifile size */
ip->i_size += noff * fs->lfs_bsize;
ip->i_ffs1_size = ip->i_size;
uvm_vnp_setsize(ivp, ip->i_size);
/* Copy the inode table to its new position */
if (noff != 0) {
if (noff < 0) {
start = nlast;
end = ilast + noff;
inc = 1;
} else {
start = ilast + noff - 1;
end = nlast - 1;
inc = -1;
}
for (i = start; i != end; i += inc) {
if (bread(ivp, i, fs->lfs_bsize, NOCRED, &bp) != 0)
panic("resize: bread dst blk failed");
if (bread(ivp, i - noff, fs->lfs_bsize, NOCRED, &obp))
panic("resize: bread src blk failed");
memcpy(bp->b_data, obp->b_data, fs->lfs_bsize);
VOP_BWRITE(bp);
brelse(obp);
}
}
/* If we are expanding, write the new empty SEGUSE entries */
if (newnsegs > oldnsegs) {
for (i = oldnsegs; i < newnsegs; i++) {
if ((error = bread(ivp, i / fs->lfs_sepb +
fs->lfs_cleansz,
fs->lfs_bsize, NOCRED, &bp)) != 0)
panic("lfs: ifile read: %d", error);
while ((i + 1) % fs->lfs_sepb && i < newnsegs) {
sup = &((SEGUSE *)bp->b_data)[i % fs->lfs_sepb];
memset(sup, 0, sizeof(*sup));
i++;
}
VOP_BWRITE(bp);
}
}
/* Zero out unused superblock offsets */
for (i = 2; i < LFS_MAXNUMSB; i++)
if (dtosn(fs, fs->lfs_sboffs[i]) >= newnsegs)
fs->lfs_sboffs[i] = 0x0;
/*
* Correct superblock entries that depend on fs size.
* The computations of these are as follows:
*
* size = segtod(fs, nseg)
* dsize = segtod(fs, nseg - minfreeseg) - btofsb(#super * LFS_SBPAD)
* bfree = dsize - btofsb(fs, bsize * nseg / 2) - blocks_actually_used
* avail = segtod(fs, nclean) - btofsb(#clean_super * LFS_SBPAD)
* + (segtod(fs, 1) - (offset - curseg))
* - segtod(fs, minfreeseg - (minfreeseg / 2))
*
* XXX - we should probably adjust minfreeseg as well.
*/
gain = (newnsegs - oldnsegs);
fs->lfs_nseg = newnsegs;
fs->lfs_segtabsz = nlast - fs->lfs_cleansz;
fs->lfs_size += gain * btofsb(fs, fs->lfs_ssize);
fs->lfs_dsize += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes);
fs->lfs_bfree += gain * btofsb(fs, fs->lfs_ssize) - btofsb(fs, sbbytes)
- gain * btofsb(fs, fs->lfs_bsize / 2);
if (gain > 0) {
fs->lfs_nclean += gain;
fs->lfs_avail += gain * btofsb(fs, fs->lfs_ssize);
} else {
fs->lfs_nclean -= cgain;
fs->lfs_avail -= cgain * btofsb(fs, fs->lfs_ssize) -
btofsb(fs, csbbytes);
}
/* Resize segment flag cache */
fs->lfs_suflags[0] = (u_int32_t *)realloc(fs->lfs_suflags[0],
fs->lfs_nseg * sizeof(u_int32_t),
M_SEGMENT, M_WAITOK);
fs->lfs_suflags[1] = (u_int32_t *)realloc(fs->lfs_suflags[1],
fs->lfs_nseg * sizeof(u_int32_t),
M_SEGMENT, M_WAITOK);
for (i = oldnsegs; i < newnsegs; i++)
fs->lfs_suflags[0][i] = fs->lfs_suflags[1][i] = 0x0;
/* Truncate Ifile if necessary */
if (noff < 0)
lfs_truncate(ivp, ivp->v_size + (noff << fs->lfs_bshift), 0,
NOCRED, curlwp);
/* Update cleaner info so the cleaner can die */
bread(ivp, 0, fs->lfs_bsize, NOCRED, &bp);
((CLEANERINFO *)bp->b_data)->clean = fs->lfs_nclean;
((CLEANERINFO *)bp->b_data)->dirty = fs->lfs_nseg - fs->lfs_nclean;
VOP_BWRITE(bp);
/* Let Ifile accesses proceed */
VOP_UNLOCK(ivp, 0);
simple_lock(&fs->lfs_interlock);
lockmgr(&fs->lfs_iflock, LK_RELEASE, &fs->lfs_interlock);
simple_unlock(&fs->lfs_interlock);
out:
lfs_segunlock(fs);
return error;
}