NetBSD/sys/kern/kern_synch.c
rmind 7c0340a739 - Migrate all threads when the state of CPU is changed to offline;
- Fix inverted logic with r_mcount in M2;
- setrunnable: perform sched_takecpu() when making the LWP runnable;
- setrunnable: l_mutex cannot be spc_mutex here;

This makes cpuctl(8) work with SCHED_M2.

OK by <ad>.
2007-11-04 11:43:07 +00:00

972 lines
25 KiB
C

/* $NetBSD: kern_synch.c,v 1.203 2007/11/04 11:43:07 rmind Exp $ */
/*-
* Copyright (c) 1999, 2000, 2004, 2006, 2007 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jason R. Thorpe of the Numerical Aerospace Simulation Facility,
* NASA Ames Research Center, by Charles M. Hannum, Andrew Doran and
* Daniel Sieger.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*-
* Copyright (c) 1982, 1986, 1990, 1991, 1993
* The Regents of the University of California. All rights reserved.
* (c) UNIX System Laboratories, Inc.
* All or some portions of this file are derived from material licensed
* to the University of California by American Telephone and Telegraph
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
* the permission of UNIX System Laboratories, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)kern_synch.c 8.9 (Berkeley) 5/19/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: kern_synch.c,v 1.203 2007/11/04 11:43:07 rmind Exp $");
#include "opt_kstack.h"
#include "opt_lockdebug.h"
#include "opt_multiprocessor.h"
#include "opt_perfctrs.h"
#include "opt_sched.h"
#define __MUTEX_PRIVATE
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/kernel.h>
#if defined(PERFCTRS)
#include <sys/pmc.h>
#endif
#include <sys/cpu.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/syscall_stats.h>
#include <sys/sleepq.h>
#include <sys/lockdebug.h>
#include <sys/evcnt.h>
#include <sys/intr.h>
#include <uvm/uvm_extern.h>
callout_t sched_pstats_ch;
unsigned int sched_pstats_ticks;
kcondvar_t lbolt; /* once a second sleep address */
static void sched_unsleep(struct lwp *);
static void sched_changepri(struct lwp *, pri_t);
static void sched_lendpri(struct lwp *, pri_t);
syncobj_t sleep_syncobj = {
SOBJ_SLEEPQ_SORTED,
sleepq_unsleep,
sleepq_changepri,
sleepq_lendpri,
syncobj_noowner,
};
syncobj_t sched_syncobj = {
SOBJ_SLEEPQ_SORTED,
sched_unsleep,
sched_changepri,
sched_lendpri,
syncobj_noowner,
};
/*
* During autoconfiguration or after a panic, a sleep will simply lower the
* priority briefly to allow interrupts, then return. The priority to be
* used (safepri) is machine-dependent, thus this value is initialized and
* maintained in the machine-dependent layers. This priority will typically
* be 0, or the lowest priority that is safe for use on the interrupt stack;
* it can be made higher to block network software interrupts after panics.
*/
int safepri;
/*
* OBSOLETE INTERFACE
*
* General sleep call. Suspends the current process until a wakeup is
* performed on the specified identifier. The process will then be made
* runnable with the specified priority. Sleeps at most timo/hz seconds (0
* means no timeout). If pri includes PCATCH flag, signals are checked
* before and after sleeping, else signals are not checked. Returns 0 if
* awakened, EWOULDBLOCK if the timeout expires. If PCATCH is set and a
* signal needs to be delivered, ERESTART is returned if the current system
* call should be restarted if possible, and EINTR is returned if the system
* call should be interrupted by the signal (return EINTR).
*
* The interlock is held until we are on a sleep queue. The interlock will
* be locked before returning back to the caller unless the PNORELOCK flag
* is specified, in which case the interlock will always be unlocked upon
* return.
*/
int
ltsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
volatile struct simplelock *interlock)
{
struct lwp *l = curlwp;
sleepq_t *sq;
int error;
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(NULL, 0);
if ((priority & PNORELOCK) != 0)
simple_unlock(interlock);
return 0;
}
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_enter(sq, l);
sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
if (interlock != NULL) {
LOCK_ASSERT(simple_lock_held(interlock));
simple_unlock(interlock);
}
error = sleepq_block(timo, priority & PCATCH);
if (interlock != NULL && (priority & PNORELOCK) == 0)
simple_lock(interlock);
return error;
}
int
mtsleep(wchan_t ident, pri_t priority, const char *wmesg, int timo,
kmutex_t *mtx)
{
struct lwp *l = curlwp;
sleepq_t *sq;
int error;
if (sleepq_dontsleep(l)) {
(void)sleepq_abort(mtx, (priority & PNORELOCK) != 0);
return 0;
}
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_enter(sq, l);
sleepq_enqueue(sq, priority & PRIMASK, ident, wmesg, &sleep_syncobj);
mutex_exit(mtx);
error = sleepq_block(timo, priority & PCATCH);
if ((priority & PNORELOCK) == 0)
mutex_enter(mtx);
return error;
}
/*
* General sleep call for situations where a wake-up is not expected.
*/
int
kpause(const char *wmesg, bool intr, int timo, kmutex_t *mtx)
{
struct lwp *l = curlwp;
sleepq_t *sq;
int error;
if (sleepq_dontsleep(l))
return sleepq_abort(NULL, 0);
if (mtx != NULL)
mutex_exit(mtx);
sq = sleeptab_lookup(&sleeptab, l);
sleepq_enter(sq, l);
sleepq_enqueue(sq, sched_kpri(l), l, wmesg, &sleep_syncobj);
error = sleepq_block(timo, intr);
if (mtx != NULL)
mutex_enter(mtx);
return error;
}
/*
* OBSOLETE INTERFACE
*
* Make all processes sleeping on the specified identifier runnable.
*/
void
wakeup(wchan_t ident)
{
sleepq_t *sq;
if (cold)
return;
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_wake(sq, ident, (u_int)-1);
}
/*
* OBSOLETE INTERFACE
*
* Make the highest priority process first in line on the specified
* identifier runnable.
*/
void
wakeup_one(wchan_t ident)
{
sleepq_t *sq;
if (cold)
return;
sq = sleeptab_lookup(&sleeptab, ident);
sleepq_wake(sq, ident, 1);
}
/*
* General yield call. Puts the current process back on its run queue and
* performs a voluntary context switch. Should only be called when the
* current process explicitly requests it (eg sched_yield(2)).
*/
void
yield(void)
{
struct lwp *l = curlwp;
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
lwp_lock(l);
KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
KASSERT(l->l_stat == LSONPROC);
/* XXX Only do this for timeshared threads. */
l->l_priority = MAXPRI;
(void)mi_switch(l);
KERNEL_LOCK(l->l_biglocks, l);
}
/*
* General preemption call. Puts the current process back on its run queue
* and performs an involuntary context switch.
*/
void
preempt(void)
{
struct lwp *l = curlwp;
KERNEL_UNLOCK_ALL(l, &l->l_biglocks);
lwp_lock(l);
KASSERT(lwp_locked(l, &l->l_cpu->ci_schedstate.spc_lwplock));
KASSERT(l->l_stat == LSONPROC);
l->l_priority = l->l_usrpri;
l->l_nivcsw++;
(void)mi_switch(l);
KERNEL_LOCK(l->l_biglocks, l);
}
/*
* Compute the amount of time during which the current lwp was running.
*
* - update l_rtime unless it's an idle lwp.
*/
void
updatertime(lwp_t *l, const struct timeval *tv)
{
long s, u;
if ((l->l_flag & LW_IDLE) != 0)
return;
u = l->l_rtime.tv_usec + (tv->tv_usec - l->l_stime.tv_usec);
s = l->l_rtime.tv_sec + (tv->tv_sec - l->l_stime.tv_sec);
if (u < 0) {
u += 1000000;
s--;
} else if (u >= 1000000) {
u -= 1000000;
s++;
}
l->l_rtime.tv_usec = u;
l->l_rtime.tv_sec = s;
}
/*
* The machine independent parts of context switch.
*
* Returns 1 if another LWP was actually run.
*/
int
mi_switch(lwp_t *l)
{
struct schedstate_percpu *spc;
struct lwp *newl;
int retval, oldspl;
struct cpu_info *ci;
struct timeval tv;
bool returning;
KASSERT(lwp_locked(l, NULL));
LOCKDEBUG_BARRIER(l->l_mutex, 1);
#ifdef KSTACK_CHECK_MAGIC
kstack_check_magic(l);
#endif
microtime(&tv);
/*
* It's safe to read the per CPU schedstate unlocked here, as all we
* are after is the run time and that's guarenteed to have been last
* updated by this CPU.
*/
ci = l->l_cpu;
KDASSERT(ci == curcpu());
/*
* Process is about to yield the CPU; clear the appropriate
* scheduling flags.
*/
spc = &ci->ci_schedstate;
returning = false;
newl = NULL;
/*
* If we have been asked to switch to a specific LWP, then there
* is no need to inspect the run queues. If a soft interrupt is
* blocking, then return to the interrupted thread without adjusting
* VM context or its start time: neither have been changed in order
* to take the interrupt.
*/
if (l->l_switchto != NULL) {
if ((l->l_flag & LW_INTR) != 0) {
returning = true;
softint_block(l);
if ((l->l_flag & LW_TIMEINTR) != 0)
updatertime(l, &tv);
}
newl = l->l_switchto;
l->l_switchto = NULL;
}
/* Count time spent in current system call */
if (!returning) {
SYSCALL_TIME_SLEEP(l);
/*
* XXXSMP If we are using h/w performance counters,
* save context.
*/
#if PERFCTRS
if (PMC_ENABLED(l->l_proc)) {
pmc_save_context(l->l_proc);
}
#endif
updatertime(l, &tv);
}
/*
* If on the CPU and we have gotten this far, then we must yield.
*/
mutex_spin_enter(spc->spc_mutex);
KASSERT(l->l_stat != LSRUN);
if (l->l_stat == LSONPROC) {
KASSERT(lwp_locked(l, &spc->spc_lwplock));
if ((l->l_flag & LW_IDLE) == 0) {
l->l_stat = LSRUN;
lwp_setlock(l, spc->spc_mutex);
sched_enqueue(l, true);
} else
l->l_stat = LSIDL;
}
/*
* Let sched_nextlwp() select the LWP to run the CPU next.
* If no LWP is runnable, switch to the idle LWP.
* Note that spc_lwplock might not necessary be held.
*/
if (newl == NULL) {
newl = sched_nextlwp();
if (newl != NULL) {
sched_dequeue(newl);
KASSERT(lwp_locked(newl, spc->spc_mutex));
newl->l_stat = LSONPROC;
newl->l_cpu = ci;
newl->l_flag |= LW_RUNNING;
lwp_setlock(newl, &spc->spc_lwplock);
} else {
newl = ci->ci_data.cpu_idlelwp;
newl->l_stat = LSONPROC;
newl->l_flag |= LW_RUNNING;
}
ci->ci_want_resched = 0;
spc->spc_flags &= ~SPCF_SWITCHCLEAR;
}
/* Update the new LWP's start time while it is still locked. */
if (!returning) {
newl->l_stime = tv;
/*
* XXX The following may be done unlocked if newl != NULL
* above.
*/
newl->l_priority = newl->l_usrpri;
}
spc->spc_curpriority = newl->l_usrpri;
if (l != newl) {
struct lwp *prevlwp;
/*
* If the old LWP has been moved to a run queue above,
* drop the general purpose LWP lock: it's now locked
* by the scheduler lock.
*
* Otherwise, drop the scheduler lock. We're done with
* the run queues for now.
*/
if (l->l_mutex == spc->spc_mutex) {
mutex_spin_exit(&spc->spc_lwplock);
} else {
mutex_spin_exit(spc->spc_mutex);
}
/* Unlocked, but for statistics only. */
uvmexp.swtch++;
/*
* Save old VM context, unless a soft interrupt
* handler is blocking.
*/
if (!returning)
pmap_deactivate(l);
/* Switch to the new LWP.. */
l->l_ncsw++;
l->l_flag &= ~LW_RUNNING;
oldspl = MUTEX_SPIN_OLDSPL(ci);
prevlwp = cpu_switchto(l, newl);
/*
* .. we have switched away and are now back so we must
* be the new curlwp. prevlwp is who we replaced.
*/
if (prevlwp != NULL) {
curcpu()->ci_mtx_oldspl = oldspl;
lwp_unlock(prevlwp);
} else {
splx(oldspl);
}
/* Restore VM context. */
pmap_activate(l);
retval = 1;
} else {
/* Nothing to do - just unlock and return. */
mutex_spin_exit(spc->spc_mutex);
lwp_unlock(l);
retval = 0;
}
KASSERT(l == curlwp);
KASSERT(l->l_stat == LSONPROC);
KASSERT(l->l_cpu == curcpu());
/*
* XXXSMP If we are using h/w performance counters, restore context.
*/
#if PERFCTRS
if (PMC_ENABLED(l->l_proc)) {
pmc_restore_context(l->l_proc);
}
#endif
/*
* We're running again; record our new start time. We might
* be running on a new CPU now, so don't use the cached
* schedstate_percpu pointer.
*/
SYSCALL_TIME_WAKEUP(l);
KASSERT(curlwp == l);
KDASSERT(l->l_cpu == curcpu());
LOCKDEBUG_BARRIER(NULL, 1);
return retval;
}
/*
* Change process state to be runnable, placing it on the run queue if it is
* in memory, and awakening the swapper if it isn't in memory.
*
* Call with the process and LWP locked. Will return with the LWP unlocked.
*/
void
setrunnable(struct lwp *l)
{
struct proc *p = l->l_proc;
struct cpu_info *ci;
sigset_t *ss;
KASSERT((l->l_flag & LW_IDLE) == 0);
KASSERT(mutex_owned(&p->p_smutex));
KASSERT(lwp_locked(l, NULL));
KASSERT(l->l_mutex != l->l_cpu->ci_schedstate.spc_mutex);
switch (l->l_stat) {
case LSSTOP:
/*
* If we're being traced (possibly because someone attached us
* while we were stopped), check for a signal from the debugger.
*/
if ((p->p_slflag & PSL_TRACED) != 0 && p->p_xstat != 0) {
if ((sigprop[p->p_xstat] & SA_TOLWP) != 0)
ss = &l->l_sigpend.sp_set;
else
ss = &p->p_sigpend.sp_set;
sigaddset(ss, p->p_xstat);
signotify(l);
}
p->p_nrlwps++;
break;
case LSSUSPENDED:
l->l_flag &= ~LW_WSUSPEND;
p->p_nrlwps++;
cv_broadcast(&p->p_lwpcv);
break;
case LSSLEEP:
KASSERT(l->l_wchan != NULL);
break;
default:
panic("setrunnable: lwp %p state was %d", l, l->l_stat);
}
/*
* If the LWP was sleeping interruptably, then it's OK to start it
* again. If not, mark it as still sleeping.
*/
if (l->l_wchan != NULL) {
l->l_stat = LSSLEEP;
/* lwp_unsleep() will release the lock. */
lwp_unsleep(l);
return;
}
/*
* If the LWP is still on the CPU, mark it as LSONPROC. It may be
* about to call mi_switch(), in which case it will yield.
*/
if ((l->l_flag & LW_RUNNING) != 0) {
l->l_stat = LSONPROC;
l->l_slptime = 0;
lwp_unlock(l);
return;
}
/*
* Look for a CPU to run.
* Set the LWP runnable.
*/
ci = sched_takecpu(l);
ci = l->l_cpu;
spc_lock(ci);
l->l_cpu = ci;
lwp_unlock_to(l, ci->ci_schedstate.spc_mutex);
sched_setrunnable(l);
l->l_stat = LSRUN;
l->l_slptime = 0;
/*
* If thread is swapped out - wake the swapper to bring it back in.
* Otherwise, enter it into a run queue.
*/
if (l->l_flag & LW_INMEM) {
sched_enqueue(l, false);
resched_cpu(l);
lwp_unlock(l);
} else {
lwp_unlock(l);
uvm_kick_scheduler();
}
}
/*
* suspendsched:
*
* Convert all non-L_SYSTEM LSSLEEP or LSRUN LWPs to LSSUSPENDED.
*/
void
suspendsched(void)
{
CPU_INFO_ITERATOR cii;
struct cpu_info *ci;
struct lwp *l;
struct proc *p;
/*
* We do this by process in order not to violate the locking rules.
*/
mutex_enter(&proclist_mutex);
PROCLIST_FOREACH(p, &allproc) {
mutex_enter(&p->p_smutex);
if ((p->p_flag & PK_SYSTEM) != 0) {
mutex_exit(&p->p_smutex);
continue;
}
p->p_stat = SSTOP;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if (l == curlwp)
continue;
lwp_lock(l);
/*
* Set L_WREBOOT so that the LWP will suspend itself
* when it tries to return to user mode. We want to
* try and get to get as many LWPs as possible to
* the user / kernel boundary, so that they will
* release any locks that they hold.
*/
l->l_flag |= (LW_WREBOOT | LW_WSUSPEND);
if (l->l_stat == LSSLEEP &&
(l->l_flag & LW_SINTR) != 0) {
/* setrunnable() will release the lock. */
setrunnable(l);
continue;
}
lwp_unlock(l);
}
mutex_exit(&p->p_smutex);
}
mutex_exit(&proclist_mutex);
/*
* Kick all CPUs to make them preempt any LWPs running in user mode.
* They'll trap into the kernel and suspend themselves in userret().
*/
for (CPU_INFO_FOREACH(cii, ci))
cpu_need_resched(ci, 0);
}
/*
* sched_kpri:
*
* Scale a priority level to a kernel priority level, usually
* for an LWP that is about to sleep.
*/
pri_t
sched_kpri(struct lwp *l)
{
/*
* Scale user priorities (127 -> 50) up to kernel priorities
* in the range (49 -> 8). Reserve the top 8 kernel priorities
* for high priority kthreads. Kernel priorities passed in
* are left "as is". XXX This is somewhat arbitrary.
*/
static const uint8_t kpri_tab[] = {
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13, 14, 15,
16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36, 37, 38, 39,
40, 41, 42, 43, 44, 45, 46, 47,
48, 49, 8, 8, 9, 9, 10, 10,
11, 11, 12, 12, 13, 14, 14, 15,
15, 16, 16, 17, 17, 18, 18, 19,
20, 20, 21, 21, 22, 22, 23, 23,
24, 24, 25, 26, 26, 27, 27, 28,
28, 29, 29, 30, 30, 31, 32, 32,
33, 33, 34, 34, 35, 35, 36, 36,
37, 38, 38, 39, 39, 40, 40, 41,
41, 42, 42, 43, 44, 44, 45, 45,
46, 46, 47, 47, 48, 48, 49, 49,
};
return (pri_t)kpri_tab[l->l_usrpri];
}
/*
* sched_unsleep:
*
* The is called when the LWP has not been awoken normally but instead
* interrupted: for example, if the sleep timed out. Because of this,
* it's not a valid action for running or idle LWPs.
*/
static void
sched_unsleep(struct lwp *l)
{
lwp_unlock(l);
panic("sched_unsleep");
}
inline void
resched_cpu(struct lwp *l)
{
struct cpu_info *ci;
const pri_t pri = lwp_eprio(l);
/*
* XXXSMP
* Since l->l_cpu persists across a context switch,
* this gives us *very weak* processor affinity, in
* that we notify the CPU on which the process last
* ran that it should try to switch.
*
* This does not guarantee that the process will run on
* that processor next, because another processor might
* grab it the next time it performs a context switch.
*
* This also does not handle the case where its last
* CPU is running a higher-priority process, but every
* other CPU is running a lower-priority process. There
* are ways to handle this situation, but they're not
* currently very pretty, and we also need to weigh the
* cost of moving a process from one CPU to another.
*/
ci = (l->l_cpu != NULL) ? l->l_cpu : curcpu();
if (pri < ci->ci_schedstate.spc_curpriority)
cpu_need_resched(ci, 0);
}
static void
sched_changepri(struct lwp *l, pri_t pri)
{
KASSERT(lwp_locked(l, NULL));
l->l_usrpri = pri;
if (l->l_priority < PUSER)
return;
if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
l->l_priority = pri;
return;
}
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
sched_dequeue(l);
l->l_priority = pri;
sched_enqueue(l, false);
resched_cpu(l);
}
static void
sched_lendpri(struct lwp *l, pri_t pri)
{
KASSERT(lwp_locked(l, NULL));
if (l->l_stat != LSRUN || (l->l_flag & LW_INMEM) == 0) {
l->l_inheritedprio = pri;
return;
}
KASSERT(lwp_locked(l, l->l_cpu->ci_schedstate.spc_mutex));
sched_dequeue(l);
l->l_inheritedprio = pri;
sched_enqueue(l, false);
resched_cpu(l);
}
struct lwp *
syncobj_noowner(wchan_t wchan)
{
return NULL;
}
/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
/*
* If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
* faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
* and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
*
* To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
* 1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
*
* If you dont want to bother with the faster/more-accurate formula, you
* can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
* (more general) method of calculating the %age of CPU used by a process.
*/
#define CCPU_SHIFT (FSHIFT + 1)
/*
* sched_pstats:
*
* Update process statistics and check CPU resource allocation.
* Call scheduler-specific hook to eventually adjust process/LWP
* priorities.
*/
/* ARGSUSED */
void
sched_pstats(void *arg)
{
struct rlimit *rlim;
struct lwp *l;
struct proc *p;
int minslp, sig, clkhz;
long runtm;
sched_pstats_ticks++;
mutex_enter(&proclist_mutex);
PROCLIST_FOREACH(p, &allproc) {
/*
* Increment time in/out of memory and sleep time (if
* sleeping). We ignore overflow; with 16-bit int's
* (remember them?) overflow takes 45 days.
*/
minslp = 2;
mutex_enter(&p->p_smutex);
mutex_spin_enter(&p->p_stmutex);
runtm = p->p_rtime.tv_sec;
LIST_FOREACH(l, &p->p_lwps, l_sibling) {
if ((l->l_flag & LW_IDLE) != 0)
continue;
lwp_lock(l);
runtm += l->l_rtime.tv_sec;
l->l_swtime++;
if (l->l_stat == LSSLEEP || l->l_stat == LSSTOP ||
l->l_stat == LSSUSPENDED) {
l->l_slptime++;
minslp = min(minslp, l->l_slptime);
} else
minslp = 0;
sched_pstats_hook(l);
lwp_unlock(l);
/*
* p_pctcpu is only for ps.
*/
l->l_pctcpu = (l->l_pctcpu * ccpu) >> FSHIFT;
if (l->l_slptime < 1) {
clkhz = stathz != 0 ? stathz : hz;
#if (FSHIFT >= CCPU_SHIFT)
l->l_pctcpu += (clkhz == 100) ?
((fixpt_t)l->l_cpticks) <<
(FSHIFT - CCPU_SHIFT) :
100 * (((fixpt_t) p->p_cpticks)
<< (FSHIFT - CCPU_SHIFT)) / clkhz;
#else
l->l_pctcpu += ((FSCALE - ccpu) *
(l->l_cpticks * FSCALE / clkhz)) >> FSHIFT;
#endif
l->l_cpticks = 0;
}
}
p->p_pctcpu = (p->p_pctcpu * ccpu) >> FSHIFT;
#ifdef SCHED_4BSD
/*
* XXX: Workaround - belongs to sched_4bsd.c
* If the process has slept the entire second,
* stop recalculating its priority until it wakes up.
*/
if (minslp <= 1) {
extern fixpt_t decay_cpu(fixpt_t, fixpt_t);
fixpt_t loadfac = 2 * (averunnable.ldavg[0]);
p->p_estcpu = decay_cpu(loadfac, p->p_estcpu);
}
#endif
mutex_spin_exit(&p->p_stmutex);
/*
* Check if the process exceeds its CPU resource allocation.
* If over max, kill it.
*/
rlim = &p->p_rlimit[RLIMIT_CPU];
sig = 0;
if (runtm >= rlim->rlim_cur) {
if (runtm >= rlim->rlim_max)
sig = SIGKILL;
else {
sig = SIGXCPU;
if (rlim->rlim_cur < rlim->rlim_max)
rlim->rlim_cur += 5;
}
}
mutex_exit(&p->p_smutex);
if (sig) {
psignal(p, sig);
}
}
mutex_exit(&proclist_mutex);
uvm_meter();
cv_wakeup(&lbolt);
callout_schedule(&sched_pstats_ch, hz);
}
void
sched_init(void)
{
cv_init(&lbolt, "lbolt");
callout_init(&sched_pstats_ch, 0);
callout_setfunc(&sched_pstats_ch, sched_pstats, NULL);
sched_setup();
sched_pstats(NULL);
}