NetBSD/sys/arch/sparc64/include/ctlreg.h

1171 lines
35 KiB
C

/* $NetBSD: ctlreg.h,v 1.42 2006/02/20 19:00:27 cdi Exp $ */
/*
* Copyright (c) 1996-2002 Eduardo Horvath
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*/
#ifndef _SPARC_CTLREG_H_
#define _SPARC_CTLREG_H_
/*
* Sun 4u control registers. (includes address space definitions
* and some registers in control space).
*/
/*
* The Alternate address spaces.
*
* 0x00-0x7f are privileged
* 0x80-0xff can be used by users
*/
#define ASI_LITTLE 0x08 /* This bit should make an ASI little endian */
#define ASI_NUCLEUS 0x04 /* [4u] kernel address space */
#define ASI_NUCLEUS_LITTLE 0x0c /* [4u] kernel address space, little endian */
#define ASI_AS_IF_USER_PRIMARY 0x10 /* [4u] primary user address space */
#define ASI_AS_IF_USER_SECONDARY 0x11 /* [4u] secondary user address space */
#define ASI_PHYS_CACHED 0x14 /* [4u] MMU bypass to main memory */
#define ASI_PHYS_NON_CACHED 0x15 /* [4u] MMU bypass to I/O location */
#define ASI_AS_IF_USER_PRIMARY_LITTLE 0x18 /* [4u] primary user address space, little endian */
#define ASI_AS_IF_USER_SECONDARY_LITTLE 0x19 /* [4u] secondary user address space, little endian */
#define ASI_PHYS_CACHED_LITTLE 0x1c /* [4u] MMU bypass to main memory, little endian */
#define ASI_PHYS_NON_CACHED_LITTLE 0x1d /* [4u] MMU bypass to I/O location, little endian */
#define ASI_NUCLEUS_QUAD_LDD 0x24 /* [4u] use w/LDDA to load 128-bit item */
#define ASI_NUCLEUS_QUAD_LDD_LITTLE 0x2c /* [4u] use w/LDDA to load 128-bit item, little endian */
#define ASI_FLUSH_D_PAGE_PRIMARY 0x38 /* [4u] flush D-cache page using primary context */
#define ASI_FLUSH_D_PAGE_SECONDARY 0x39 /* [4u] flush D-cache page using secondary context */
#define ASI_FLUSH_D_CTX_PRIMARY 0x3a /* [4u] flush D-cache context using primary context */
#define ASI_FLUSH_D_CTX_SECONDARY 0x3b /* [4u] flush D-cache context using secondary context */
#define ASI_LSU_CONTROL_REGISTER 0x45 /* [4u] load/store unit control register */
#define ASI_DCACHE_DATA 0x46 /* [4u] diagnostic access to D-cache data RAM */
#define ASI_DCACHE_TAG 0x47 /* [4u] diagnostic access to D-cache tag RAM */
#define ASI_INTR_DISPATCH_STATUS 0x48 /* [4u] interrupt dispatch status register */
#define ASI_INTR_RECEIVE 0x49 /* [4u] interrupt receive status register */
#define ASI_MID_REG 0x4a /* [4u] hardware config and MID */
#define ASI_ERROR_EN_REG 0x4b /* [4u] asynchronous error enables */
#define ASI_AFSR 0x4c /* [4u] asynchronous fault status register */
#define ASI_AFAR 0x4d /* [4u] asynchronous fault address register */
#define ASI_ICACHE_DATA 0x66 /* [4u] diagnostic access to D-cache data RAM */
#define ASI_ICACHE_TAG 0x67 /* [4u] diagnostic access to D-cache tag RAM */
#define ASI_FLUSH_I_PAGE_PRIMARY 0x68 /* [4u] flush D-cache page using primary context */
#define ASI_FLUSH_I_PAGE_SECONDARY 0x69 /* [4u] flush D-cache page using secondary context */
#define ASI_FLUSH_I_CTX_PRIMARY 0x6a /* [4u] flush D-cache context using primary context */
#define ASI_FLUSH_I_CTX_SECONDARY 0x6b /* [4u] flush D-cache context using secondary context */
#define ASI_BLOCK_AS_IF_USER_PRIMARY 0x70 /* [4u] primary user address space, block loads/stores */
#define ASI_BLOCK_AS_IF_USER_SECONDARY 0x71 /* [4u] secondary user address space, block loads/stores */
#define ASI_ECACHE_DIAG 0x76 /* [4u] diag access to E-cache tag and data */
#define ASI_DATAPATH_ERR_REG_WRITE 0x77 /* [4u] ASI is reused */
#define ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE 0x78 /* [4u] primary user address space, block loads/stores */
#define ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE 0x79 /* [4u] secondary user address space, block loads/stores */
#define ASI_INTERRUPT_RECEIVE_DATA 0x7f /* [4u] interrupt receive data registers {0,1,2} */
#define ASI_DATAPATH_ERR_REG_READ 0x7f /* [4u] read access to datapath error registers (ASI reused) */
#define ASI_PRIMARY 0x80 /* [4u] primary address space */
#define ASI_SECONDARY 0x81 /* [4u] secondary address space */
#define ASI_PRIMARY_NOFAULT 0x82 /* [4u] primary address space, no fault */
#define ASI_SECONDARY_NOFAULT 0x83 /* [4u] secondary address space, no fault */
#define ASI_PRIMARY_LITTLE 0x88 /* [4u] primary address space, little endian */
#define ASI_SECONDARY_LITTLE 0x89 /* [4u] secondary address space, little endian */
#define ASI_PRIMARY_NOFAULT_LITTLE 0x8a /* [4u] primary address space, no fault, little endian */
#define ASI_SECONDARY_NOFAULT_LITTLE 0x8b /* [4u] secondary address space, no fault, little endian */
#define ASI_PST8_PRIMARY 0xc0 /* [VIS] Eight 8-bit partial store, primary */
#define ASI_PST8_SECONDARY 0xc1 /* [VIS] Eight 8-bit partial store, secondary */
#define ASI_PST16_PRIMARY 0xc2 /* [VIS] Four 16-bit partial store, primary */
#define ASI_PST16_SECONDARY 0xc3 /* [VIS] Fout 16-bit partial store, secondary */
#define ASI_PST32_PRIMARY 0xc4 /* [VIS] Two 32-bit partial store, primary */
#define ASI_PST32_SECONDARY 0xc5 /* [VIS] Two 32-bit partial store, secondary */
#define ASI_PST8_PRIMARY_LITTLE 0xc8 /* [VIS] Eight 8-bit partial store, primary, little endian */
#define ASI_PST8_SECONDARY_LITTLE 0xc9 /* [VIS] Eight 8-bit partial store, secondary, little endian */
#define ASI_PST16_PRIMARY_LITTLE 0xca /* [VIS] Four 16-bit partial store, primary, little endian */
#define ASI_PST16_SECONDARY_LITTLE 0xcb /* [VIS] Fout 16-bit partial store, secondary, little endian */
#define ASI_PST32_PRIMARY_LITTLE 0xcc /* [VIS] Two 32-bit partial store, primary, little endian */
#define ASI_PST32_SECONDARY_LITTLE 0xcd /* [VIS] Two 32-bit partial store, secondary, little endian */
#define ASI_FL8_PRIMARY 0xd0 /* [VIS] One 8-bit load/store floating, primary */
#define ASI_FL8_SECONDARY 0xd1 /* [VIS] One 8-bit load/store floating, secondary */
#define ASI_FL16_PRIMARY 0xd2 /* [VIS] One 16-bit load/store floating, primary */
#define ASI_FL16_SECONDARY 0xd3 /* [VIS] One 16-bit load/store floating, secondary */
#define ASI_FL8_PRIMARY_LITTLE 0xd8 /* [VIS] One 8-bit load/store floating, primary, little endian */
#define ASI_FL8_SECONDARY_LITTLE 0xd9 /* [VIS] One 8-bit load/store floating, secondary, little endian */
#define ASI_FL16_PRIMARY_LITTLE 0xda /* [VIS] One 16-bit load/store floating, primary, little endian */
#define ASI_FL16_SECONDARY_LITTLE 0xdb /* [VIS] One 16-bit load/store floating, secondary, little endian */
#define ASI_BLOCK_COMMIT_PRIMARY 0xe0 /* [4u] block store with commit, primary */
#define ASI_BLOCK_COMMIT_SECONDARY 0xe1 /* [4u] block store with commit, secondary */
#define ASI_BLOCK_PRIMARY 0xf0 /* [4u] block load/store, primary */
#define ASI_BLOCK_SECONDARY 0xf1 /* [4u] block load/store, secondary */
#define ASI_BLOCK_PRIMARY_LITTLE 0xf8 /* [4u] block load/store, primary, little endian */
#define ASI_BLOCK_SECONDARY_LITTLE 0xf9 /* [4u] block load/store, secondary, little endian */
/*
* These are the shorter names used by Solaris
*/
#define ASI_N ASI_NUCLEUS
#define ASI_NL ASI_NUCLEUS_LITTLE
#define ASI_AIUP ASI_AS_IF_USER_PRIMARY
#define ASI_AIUS ASI_AS_IF_USER_SECONDARY
#define ASI_AIUPL ASI_AS_IF_USER_PRIMARY_LITTLE
#define ASI_AIUSL ASI_AS_IF_USER_SECONDARY_LITTLE
#define ASI_P ASI_PRIMARY
#define ASI_S ASI_SECONDARY
#define ASI_PNF ASI_PRIMARY_NOFAULT
#define ASI_SNF ASI_SECONDARY_NOFAULT
#define ASI_PL ASI_PRIMARY_LITTLE
#define ASI_SL ASI_SECONDARY_LITTLE
#define ASI_PNFL ASI_PRIMARY_NOFAULT_LITTLE
#define ASI_SNFL ASI_SECONDARY_NOFAULT_LITTLE
#define ASI_FL8_P ASI_FL8_PRIMARY
#define ASI_FL8_S ASI_FL8_SECONDARY
#define ASI_FL16_P ASI_FL16_PRIMARY
#define ASI_FL16_S ASI_FL16_SECONDARY
#define ASI_FL8_PL ASI_FL8_PRIMARY_LITTLE
#define ASI_FL8_SL ASI_FL8_SECONDARY_LITTLE
#define ASI_FL16_PL ASI_FL16_PRIMARY_LITTLE
#define ASI_FL16_SL ASI_FL16_SECONDARY_LITTLE
#define ASI_BLK_AIUP ASI_BLOCK_AS_IF_USER_PRIMARY
#define ASI_BLK_AIUPL ASI_BLOCK_AS_IF_USER_PRIMARY_LITTLE
#define ASI_BLK_AIUS ASI_BLOCK_AS_IF_USER_SECONDARY
#define ASI_BLK_AIUSL ASI_BLOCK_AS_IF_USER_SECONDARY_LITTLE
#define ASI_BLK_COMMIT_P ASI_BLOCK_COMMIT_PRIMARY
#define ASI_BLK_COMMIT_PRIMARY ASI_BLOCK_COMMIT_PRIMARY
#define ASI_BLK_COMMIT_S ASI_BLOCK_COMMIT_SECONDARY
#define ASI_BLK_COMMIT_SECONDARY ASI_BLOCK_COMMIT_SECONDARY
#define ASI_BLK_P ASI_BLOCK_PRIMARY
#define ASI_BLK_PL ASI_BLOCK_PRIMARY_LITTLE
#define ASI_BLK_S ASI_BLOCK_SECONDARY
#define ASI_BLK_SL ASI_BLOCK_SECONDARY_LITTLE
/* Alternative spellings */
#define ASI_PRIMARY_NO_FAULT ASI_PRIMARY_NOFAULT
#define ASI_PRIMARY_NO_FAULT_LITTLE ASI_PRIMARY_NOFAULT_LITTLE
#define ASI_SECONDARY_NO_FAULT ASI_SECONDARY_NOFAULT
#define ASI_SECONDARY_NO_FAULT_LITTLE ASI_SECONDARY_NOFAULT_LITTLE
#define PHYS_ASI(x) (((x) | 0x09) == 0x1d)
#define LITTLE_ASI(x) ((x) & ASI_LITTLE)
/*
* The following are 4u control registers
*/
/* Get the CPU's UPAID */
#define UPA_CR_MID_SHIFT (17)
#define UPA_CR_MID_SIZE (5)
#define UPA_CR_MID_MASK \
(((1 << UPA_CR_MID_SIZE) - 1) << UPA_CR_MID_SHIFT)
#define UPA_CR_MID(x) (((x)>>UPA_CR_MID_SHIFT)&((1 << UPA_CR_MID_SIZE) - 1))
#ifdef _LOCORE
#define UPA_GET_MID(r1) \
ldxa [%g0] ASI_MID_REG, r1 ; \
srlx r1, UPA_CR_MID_SHIFT, r1 ; \
and r1, (1 << UPA_CR_MID_SIZE) - 1, r1
#else
#define CPU_UPAID UPA_CR_MID(ldxa(0, ASI_MID_REG))
#endif
/*
* [4u] MMU and Cache Control Register (MCCR)
* use ASI = 0x45
*/
#define ASI_MCCR ASI_LSU_CONTROL_REGISTER
#define MCCR 0x00
/* MCCR Bits and their meanings */
#define MCCR_DMMU_EN 0x08
#define MCCR_IMMU_EN 0x04
#define MCCR_DCACHE_EN 0x02
#define MCCR_ICACHE_EN 0x01
/*
* MMU control registers
*/
/* Choose an MMU */
#define ASI_DMMU 0x58
#define ASI_IMMU 0x50
/* Other assorted MMU ASIs */
#define ASI_IMMU_8KPTR 0x51
#define ASI_IMMU_64KPTR 0x52
#define ASI_IMMU_DATA_IN 0x54
#define ASI_IMMU_TLB_DATA 0x55
#define ASI_IMMU_TLB_TAG 0x56
#define ASI_DMMU_8KPTR 0x59
#define ASI_DMMU_64KPTR 0x5a
#define ASI_DMMU_DATA_IN 0x5c
#define ASI_DMMU_TLB_DATA 0x5d
#define ASI_DMMU_TLB_TAG 0x5e
/*
* The following are the control registers
* They work on both MMUs unless noted.
*
* Register contents are defined later on individual registers.
*/
#define TSB_TAG_TARGET 0x0
#define TLB_DATA_IN 0x0
#define CTX_PRIMARY 0x08 /* primary context -- DMMU only */
#define CTX_SECONDARY 0x10 /* secondary context -- DMMU only */
#define SFSR 0x18
#define SFAR 0x20 /* fault address -- DMMU only */
#define TSB 0x28
#define TLB_TAG_ACCESS 0x30
#define VIRTUAL_WATCHPOINT 0x38
#define PHYSICAL_WATCHPOINT 0x40
/* Tag Target bits */
#define TAG_TARGET_VA_MASK 0x03ffffffffffffffffLL
#define TAG_TARGET_VA(x) (((x)<<22)&TAG_TARGET_VA_MASK)
#define TAG_TARGET_CONTEXT(x) ((x)>>48)
#define TAG_TARGET(c,v) ((((uint64_t)c)<<48)|(((uint64_t)v)&TAG_TARGET_VA_MASK))
/* SFSR bits for both D_SFSR and I_SFSR */
#define SFSR_ASI(x) ((x)>>16)
#define SFSR_FT_VA_OOR_2 0x02000 /* IMMU: jumpl or return to unsupportd VA */
#define SFSR_FT_VA_OOR_1 0x01000 /* fault at unsupported VA */
#define SFSR_FT_NFO 0x00800 /* DMMU: Access to page marked NFO */
#define SFSR_ILL_ASI 0x00400 /* DMMU: Illegal (unsupported) ASI */
#define SFSR_FT_IO_ATOMIC 0x00200 /* DMMU: Atomic access to noncacheable page */
#define SFSR_FT_ILL_NF 0x00100 /* DMMU: NF load or flush to page marked E (has side effects) */
#define SFSR_FT_PRIV 0x00080 /* Privilege violation */
#define SFSR_FT_E 0x00040 /* DMUU: value of E bit associated address */
#define SFSR_CTXT(x) (((x)>>4)&0x3)
#define SFSR_CTXT_IS_PRIM(x) (SFSR_CTXT(x)==0x00)
#define SFSR_CTXT_IS_SECOND(x) (SFSR_CTXT(x)==0x01)
#define SFSR_CTXT_IS_NUCLEUS(x) (SFSR_CTXT(x)==0x02)
#define SFSR_PRIV 0x00008 /* value of PSTATE.PRIV for faulting access */
#define SFSR_W 0x00004 /* DMMU: attempted write */
#define SFSR_OW 0x00002 /* Overwrite; prev vault was still valid */
#define SFSR_FV 0x00001 /* Fault is valid */
#define SFSR_FT (SFSR_FT_VA_OOR_2|SFSR_FT_VA_OOR_1|SFSR_FT_NFO| \
SFSR_ILL_ASI|SFSR_FT_IO_ATOMIC|SFSR_FT_ILL_NF|SFSR_FT_PRIV)
#define SFSR_BITS "\177\20" \
"f\20\30ASI\0" "b\16VAT\0" "b\15VAD\0" "b\14NFO\0" "b\13ASI\0" "b\12A\0" \
"b\11NF\0" "b\10PRIV\0" "b\7E\0" "b\6NUCLEUS\0" "b\5SECONDCTX\0" "b\4PRIV\0" \
"b\3W\0" "b\2OW\0" "b\1FV\0"
/* ASFR bits */
#define ASFR_ME 0x100000000LL
#define ASFR_PRIV 0x080000000LL
#define ASFR_ISAP 0x040000000LL
#define ASFR_ETP 0x020000000LL
#define ASFR_IVUE 0x010000000LL
#define ASFR_TO 0x008000000LL
#define ASFR_BERR 0x004000000LL
#define ASFR_LDP 0x002000000LL
#define ASFR_CP 0x001000000LL
#define ASFR_WP 0x000800000LL
#define ASFR_EDP 0x000400000LL
#define ASFR_UE 0x000200000LL
#define ASFR_CE 0x000100000LL
#define ASFR_ETS 0x0000f0000LL
#define ASFT_P_SYND 0x00000ffffLL
#define AFSR_BITS "\177\20" \
"b\40ME\0" "b\37PRIV\0" "b\36ISAP\0" "b\35ETP\0" \
"b\34IVUE\0" "b\33TO\0" "b\32BERR\0" "b\31LDP\0" \
"b\30CP\0" "b\27WP\0" "b\26EDP\0" "b\25UE\0" \
"b\24CE\0" "f\20\4ETS\0" "f\0\20P_SYND\0"
/*
* Here's the spitfire TSB control register bits.
*
* Each TSB entry is 16-bytes wide. The TSB must be size aligned
*/
#define TSB_SIZE_512 0x0 /* 8kB, etc. */
#define TSB_SIZE_1K 0x01
#define TSB_SIZE_2K 0x02
#define TSB_SIZE_4K 0x03
#define TSB_SIZE_8K 0x04
#define TSB_SIZE_16K 0x05
#define TSB_SIZE_32K 0x06
#define TSB_SIZE_64K 0x07
#define TSB_SPLIT 0x1000
#define TSB_BASE 0xffffffffffffe000
/* TLB Tag Access bits */
#define TLB_TAG_ACCESS_VA 0xffffffffffffe000
#define TLB_TAG_ACCESS_CTX 0x0000000000001fff
/*
* TLB demap registers. TTEs are defined in v9pte.h
*
* Use the address space to select between IMMU and DMMU.
* The address of the register selects which context register
* to read the ASI from.
*
* The data stored in the register is interpreted as the VA to
* use. The DEMAP_CTX_<> registers ignore the address and demap the
* entire ASI.
*
*/
#define ASI_IMMU_DEMAP 0x57 /* [4u] IMMU TLB demap */
#define ASI_DMMU_DEMAP 0x5f /* [4u] IMMU TLB demap */
#define DEMAP_PAGE_NUCLEUS ((0x02)<<4) /* Demap page from kernel AS */
#define DEMAP_PAGE_PRIMARY ((0x00)<<4) /* Demap a page from primary CTXT */
#define DEMAP_PAGE_SECONDARY ((0x01)<<4) /* Demap page from secondary CTXT (DMMU only) */
#define DEMAP_CTX_NUCLEUS ((0x06)<<4) /* Demap all of kernel CTXT */
#define DEMAP_CTX_PRIMARY ((0x04)<<4) /* Demap all of primary CTXT */
#define DEMAP_CTX_SECONDARY ((0x05)<<4) /* Demap all of secondary CTXT */
/*
* Interrupt registers. This really gets hairy.
*/
/* IRSR -- Interrupt Receive Status Ragister */
#define ASI_IRSR 0x49
#define IRSR 0x00
#define IRSR_BUSY 0x020
#define IRSR_MID(x) (x&0x1f)
/* IRDR -- Interrupt Receive Data Registers */
#define ASI_IRDR 0x7f
#define IRDR_0H 0x40
#define IRDR_0L 0x48 /* unimplemented */
#define IRDR_1H 0x50
#define IRDR_1L 0x58 /* unimplemented */
#define IRDR_2H 0x60
#define IRDR_2L 0x68 /* unimplemented */
#define IRDR_3H 0x70 /* unimplemented */
#define IRDR_3L 0x78 /* unimplemented */
/* SOFTINT ASRs */
#define SET_SOFTINT %asr20 /* Sets these bits */
#define CLEAR_SOFTINT %asr21 /* Clears these bits */
#define SOFTINT %asr22 /* Reads the register */
#define TICK_CMPR %asr23
#define TICK_INT 0x01 /* level-14 clock tick */
#define SOFTINT1 (0x1<<1)
#define SOFTINT2 (0x1<<2)
#define SOFTINT3 (0x1<<3)
#define SOFTINT4 (0x1<<4)
#define SOFTINT5 (0x1<<5)
#define SOFTINT6 (0x1<<6)
#define SOFTINT7 (0x1<<7)
#define SOFTINT8 (0x1<<8)
#define SOFTINT9 (0x1<<9)
#define SOFTINT10 (0x1<<10)
#define SOFTINT11 (0x1<<11)
#define SOFTINT12 (0x1<<12)
#define SOFTINT13 (0x1<<13)
#define SOFTINT14 (0x1<<14)
#define SOFTINT15 (0x1<<15)
/* Interrupt Dispatch -- usually reserved for cross-calls */
#define ASR_IDSR 0x48 /* Interrupt dispatch status reg */
#define IDSR 0x00
#define IDSR_NACK 0x02
#define IDSR_BUSY 0x01
#define ASI_INTERRUPT_DISPATCH 0x77 /* [4u] spitfire interrupt dispatch regs */
/* Interrupt delivery initiation */
#define IDCR(x) ((((uint64_t)(x)) << 14) | 0x70)
#define IDDR_0H 0x40 /* Store data to send in these regs */
#define IDDR_0L 0x48 /* unimplemented */
#define IDDR_1H 0x50
#define IDDR_1L 0x58 /* unimplemented */
#define IDDR_2H 0x60
#define IDDR_2L 0x68 /* unimplemented */
#define IDDR_3H 0x70 /* unimplemented */
#define IDDR_3L 0x78 /* unimplemented */
/*
* Error registers
*/
/* Since we won't try to fix async errs, we don't care about the bits in the regs */
#define ASI_AFAR 0x4d /* Asynchronous fault address register */
#define AFAR 0x00
#define ASI_AFSR 0x4c /* Asynchronous fault status register */
#define AFSR 0x00
#define ASI_P_EER 0x4b /* Error enable register */
#define P_EER 0x00
#define P_EER_ISAPEN 0x04 /* Enable fatal on ISAP */
#define P_EER_NCEEN 0x02 /* Enable trap on uncorrectable errs */
#define P_EER_CEEN 0x01 /* Enable trap on correctable errs */
#define ASI_DATAPATH_READ 0x7f /* Read the regs */
#define ASI_DATAPATH_WRITE 0x77 /* Write to the regs */
#define P_DPER_0 0x00 /* Datapath err reg 0 */
#define P_DPER_1 0x18 /* Datapath err reg 1 */
#define P_DCR_0 0x20 /* Datapath control reg 0 */
#define P_DCR_1 0x38 /* Datapath control reg 0 */
/* From sparc64/asm.h which I think I'll deprecate since it makes bus.h a pain. */
#ifndef _LOCORE
/*
* GCC __asm constructs for doing assembly stuff.
*/
/*
* ``Routines'' to load and store from/to alternate address space.
* The location can be a variable, the asi value (address space indicator)
* must be a constant.
*
* N.B.: You can put as many special functions here as you like, since
* they cost no kernel space or time if they are not used.
*
* These were static inline functions, but gcc screws up the constraints
* on the address space identifiers (the "n"umeric value part) because
* it inlines too late, so we have to use the funny valued-macro syntax.
*/
/*
* Apparently the definition of bypass ASIs is that they all use the
* D$ so we need to flush the D$ to make sure we don't get data pollution.
*/
#ifdef __arch64__
static __inline u_char
lduba(paddr_t loc, int asi)
{
register unsigned int _lduba_v;
__asm volatile(
"wr %2, %%g0, %%asi; "
"lduba [%1]%%asi, %0 "
: "=r" (_lduba_v)
: "r" ((unsigned long)(loc)), "r" (asi));
return (_lduba_v);
}
#else
static __inline u_char
lduba(paddr_t loc, int asi)
{
register unsigned int _lduba_v, _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"rdpr %%pstate,%1; "
"or %0,%2,%0; "
"wrpr %1,8,%%pstate; "
"membar #Sync; "
"lduba [%0]%%asi,%0; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lduba_v), "=&r" (_pstate)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %3,%%g0,%%asi; "
"sllx %2,32,%0; "
"or %0,%1,%0; "
"lduba [%0]%%asi,%0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lduba_v)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
return (_lduba_v);
}
#endif
#ifdef __arch64__
/* load half-word from alternate address space */
static __inline u_short
lduha(paddr_t loc, int asi)
{
register unsigned int _lduha_v;
__asm volatile(
"wr %2, %%g0, %%asi; "
"lduha [%1]%%asi, %0 "
: "=r" (_lduha_v)
: "r" ((unsigned long)(loc)), "r" (asi));
return (_lduha_v);
}
#else
/* load half-word from alternate address space */
static __inline u_short
lduha(paddr_t loc, int asi) {
register unsigned int _lduha_v, _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"rdpr %%pstate,%1; "
"wrpr %1,8,%%pstate; "
"or %0,%2,%0; "
"membar #Sync; "
"lduha [%0]%%asi,%0; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lduha_v), "=&r" (_pstate)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %3,%%g0,%%asi; "
"sllx %2,32,%0; "
"or %0,%1,%0; "
"lduha [%0]%%asi,%0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lduha_v)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
return (_lduha_v);
}
#endif
#ifdef __arch64__
/* load unsigned int from alternate address space */
static __inline u_int
lda(paddr_t loc, int asi)
{
register unsigned int _lda_v;
__asm volatile(
"wr %2,%%g0,%%asi; "
"lda [%1]%%asi,%0 "
: "=r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (asi));
return (_lda_v);
}
/* load signed int from alternate address space */
static __inline int
ldswa(paddr_t loc, int asi)
{
register int _lda_v;
__asm volatile(
"wr %2,%%g0,%%asi; "
"ldswa [%1]%%asi,%0; "
: "=r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (asi));
return (_lda_v);
}
#else /* __arch64__ */
/* load unsigned int from alternate address space */
static __inline u_int
lda(paddr_t loc, int asi)
{
register unsigned int _lda_v, _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %4,%%g0,%%asi; "
"rdpr %%pstate,%1; "
"sllx %3,32,%0; "
"wrpr %1,8,%%pstate; "
"or %0,%2,%0; "
"membar #Sync; "
"lda [%0]%%asi,%0; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lda_v), "=&r" (_pstate)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %3,%%g0,%%asi; "
"sllx %2,32,%0; "
"or %0,%1,%0; "
"lda [%0]%%asi,%0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
return (_lda_v);
}
/* load signed int from alternate address space */
static __inline int
ldswa(paddr_t loc, int asi)
{
register int _lda_v, _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %4,%%g0,%%asi; "
"rdpr %%pstate,%1; "
"wrpr %1,8,%%pstate; "
"sllx %3,32,%0; "
" or %0,%2,%0; "
"membar #Sync; "
"ldswa [%0]%%asi,%0; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lda_v), "=&r" (_pstate)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %3,%%g0,%%asi; "
"sllx %2,32,%0; "
"or %0,%1,%0; "
"ldswa [%0]%%asi,%0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
return (_lda_v);
}
#endif /* __arch64__ */
#ifdef __arch64__
/* load 64-bit int from alternate address space -- these should never be used */
static __inline uint64_t
ldda(paddr_t loc, int asi)
{
register long long _lda_v;
__asm volatile(
"wr %2,%%g0,%%asi; "
"ldda [%1]%%asi,%0 "
: "=r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (asi));
return (_lda_v);
}
#else
/* load 64-bit int from alternate address space */
static __inline uint64_t
ldda(paddr_t loc, int asi)
{
register long long _lda_v, _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %4,%%g0,%%asi; "
"rdpr %%pstate,%1; "
"wrpr %1,8,%%pstate; "
"sllx %3,32,%0; "
"or %0,%2,%0; "
"membar #Sync; "
"ldda [%0]%%asi,%0; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lda_v), "=&r" (_pstate)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %3,%%g0,%%asi; "
"sllx %2,32,%0; "
" or %0,%1,%0; "
"ldda [%0]%%asi,%0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
return (_lda_v);
}
#endif
#ifdef __arch64__
/* native load 64-bit int from alternate address space w/64-bit compiler*/
static __inline uint64_t
ldxa(paddr_t loc, int asi)
{
register unsigned long _lda_v;
__asm volatile(
"wr %2,%%g0,%%asi; "
"ldxa [%1]%%asi,%0 "
: "=r" (_lda_v)
: "r" ((unsigned long)(loc)), "r" (asi));
return (_lda_v);
}
#else
/* native load 64-bit int from alternate address space w/32-bit compiler*/
static __inline uint64_t
ldxa(paddr_t loc, int asi)
{
register unsigned long _ldxa_lo, _ldxa_hi, _loc_hi;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %4,%%g0,%%asi; "
"rdpr %%pstate,%1; "
"sllx %3,32,%0; "
"wrpr %1,8,%%pstate; "
"or %0, %2, %0; "
"membar #Sync; "
"ldxa [%0]%%asi,%0; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"srlx %0, 32, %1; "
"srl %0, 0, %0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_ldxa_lo), "=&r" (_ldxa_hi)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"or %0,%2,%0; "
"ldxa [%0]%%asi,%0; "
"srlx %0,32,%1; "
"srl %0, 0, %0; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_ldxa_lo), "=&r" (_ldxa_hi)
: "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
return ((((int64_t)_ldxa_hi)<<32)|_ldxa_lo);
}
#endif
/* store byte to alternate address space */
#ifdef __arch64__
static __inline void
stba(paddr_t loc, int asi, u_char value)
{
__asm volatile(
"wr %2, %%g0, %%asi; "
"stba %0, [%1]%%asi "
: : "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (asi));
}
#else
static __inline void
stba(paddr_t loc, int asi, u_char value)
{
register int _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %5,%%g0,%%asi; "
"sllx %4,32,%0; "
"rdpr %%pstate,%1; "
"or %3,%0,%0; "
"wrpr %1,8,%%pstate; "
"stba %2,[%0]%%asi; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "=&r" (_pstate)
: "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
} else {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"or %2,%0,%0; "
"stba %1,[%0]%%asi; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi)
: "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi));
}
}
#endif
/* store half-word to alternate address space */
#ifdef __arch64__
static __inline void
stha(paddr_t loc, int asi, u_short value)
{
__asm volatile(
"wr %2,%%g0,%%asi; "
"stha %0,[%1]%%asi "
: : "r" ((int)(value)), "r" ((unsigned long)(loc)),
"r" (asi) : "memory");
}
#else
static __inline void
stha(paddr_t loc, int asi, u_short value)
{
register int _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %5,%%g0,%%asi; "
"sllx %4,32,%0; "
"rdpr %%pstate,%1; "
"or %3,%0,%0; "
"wrpr %1,8,%%pstate; "
"stha %2,[%0]%%asi; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "=&r" (_pstate)
: "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)
: "memory");
} else {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"or %2,%0,%0; "
"stha %1,[%0]%%asi; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi)
: "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)
: "memory");
}
}
#endif
/* store int to alternate address space */
#ifdef __arch64__
static __inline void
sta(paddr_t loc, int asi, u_int value)
{
__asm volatile(
"wr %2,%%g0,%%asi; "
"sta %0,[%1]%%asi "
: : "r" ((int)(value)), "r" ((unsigned long)(loc)),
"r" (asi) : "memory");
}
#else
static __inline void
sta(paddr_t loc, int asi, u_int value)
{
register int _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %5,%%g0,%%asi; "
"sllx %4,32,%0; "
"rdpr %%pstate,%1; "
"or %3,%0,%0; "
"wrpr %1,8,%%pstate; "
"sta %2,[%0]%%asi; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "=&r" (_pstate)
: "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)
: "memory");
} else {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"or %2,%0,%0; "
"sta %1,[%0]%%asi; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi)
: "r" ((int)(value)), "r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)
: "memory");
}
}
#endif
/* store 64-bit int to alternate address space */
#ifdef __arch64__
static __inline void
stda(paddr_t loc, int asi, uint64_t value)
{
__asm volatile(
"wr %2,%%g0,%%asi; "
"stda %0,[%1]%%asi "
: : "r" ((long long)(value)), "r" ((unsigned long)(loc)), "r" (asi)
: "memory");
}
#else
static __inline void
stda(paddr_t loc, int asi, uint64_t value)
{
register int _loc_hi, _pstate;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %5,%%g0,%%asi; "
"sllx %4,32,%0; "
"rdpr %%pstate,%1; "
"or %3,%0,%0; "
"wrpr %1,8,%%pstate; "
"stda %2,[%0]%%asi; "
"wrpr %1,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "=&r" (_pstate)
: "r" ((long long)(value)), "r" ((unsigned long)(loc)),
"r" (_loc_hi), "r" (asi)
: "memory");
} else {
__asm volatile(
"wr %4,%%g0,%%asi; "
"sllx %3,32,%0; "
"or %2,%0,%0; "
"stda %1,[%0]%%asi; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi)
: "r" ((long long)(value)), "r" ((unsigned long)(loc)),
"r" (_loc_hi), "r" (asi)
: "memory");
}
}
#endif
#ifdef __arch64__
/* native store 64-bit int to alternate address space w/64-bit compiler*/
static __inline void
stxa(paddr_t loc, int asi, uint64_t value)
{
__asm volatile(
"wr %2,%%g0,%%asi; "
"stxa %0,[%1]%%asi "
: : "r" ((unsigned long)(value)),
"r" ((unsigned long)(loc)), "r" (asi)
: "memory");
}
#else
/* native store 64-bit int to alternate address space w/32-bit compiler*/
static __inline void
stxa(paddr_t loc, int asi, uint64_t value)
{
int _stxa_lo, _stxa_hi, _loc_hi;
_stxa_lo = value;
_stxa_hi = ((uint64_t)value)>>32;
_loc_hi = (((uint64_t)loc)>>32);
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %7,%%g0,%%asi; "
"sllx %4,32,%1; "
"sllx %6,32,%0; "
"or %1,%3,%1; "
"rdpr %%pstate,%2; "
"or %0,%5,%0; "
"wrpr %2,8,%%pstate; "
"stxa %1,[%0]%%asi; "
"wrpr %2,0,%%pstate; "
"membar #Sync; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "=&r" (_stxa_hi), "=&r" ((int)(_stxa_lo))
: "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)
: "memory");
} else {
__asm volatile(
"wr %6,%%g0,%%asi; "
"sllx %3,32,%1; "
"sllx %5,32,%0; "
"or %1,%2,%1; "
"or %0,%4,%0; "
"stxa %1,[%0]%%asi; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "=&r" (_stxa_hi)
: "r" ((int)(_stxa_lo)), "r" ((int)(_stxa_hi)),
"r" ((unsigned long)(loc)), "r" (_loc_hi), "r" (asi)
: "memory");
}
}
#endif
#ifdef __arch64__
/* native store 32-bit int to alternate address space w/64-bit compiler*/
static __inline uint32_t
casa(paddr_t loc, int asi, uint32_t value, uint32_t oldvalue)
{
__asm volatile(
"wr %3,%%g0,%%asi; "
"casa [%1]%%asi,%2,%0 "
: "+r" (value)
: "r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi)
: "memory");
return (value);
}
/* native store 64-bit int to alternate address space w/64-bit compiler*/
static __inline uint64_t
casxa(paddr_t loc, int asi, uint64_t value, uint64_t oldvalue)
{
__asm volatile(
"wr %3,%%g0,%%asi; "
"casxa [%1]%%asi,%2,%0 "
: "+r" (value)
: "r" ((unsigned long)(loc)), "r" (oldvalue), "r" (asi)
: "memory");
return (value);
}
#else
#if 0
/* native store 64-bit int to alternate address space w/32-bit compiler*/
static __inline uint64_t
casxa(paddr_t loc, int asi, uint64_t value, uint64_t oldvalue)
{
int _casxa_lo, _casxa_hi, _loc_hi, _oval_hi;
_casxa_lo = value;
_casxa_hi = ((uint64_t)value)>>32;
_oval_hi = ((uint64_t)oldvalue)>>32;
_loc_hi = (((uint64_t)loc)>>32);
#ifdef __notyet
/*
* gcc cannot handle this since it thinks it has >10 asm operands.
*/
if (PHYS_ASI(asi)) {
__asm volatile(
"wr %6,%%g0,%%asi; "
"sllx %1,32,%1; "
"rdpr %%pstate,%2; "
"sllx %0,32,%0; "
"or %1,%2,%1; "
"sllx %3,32,%3; "
"or %0,%4,%0; "
"or %3,%5,%3; "
"wrpr %2,8,%%pstate; "
"casxa [%0]%%asi,%3,%1; "
"wrpr %2,0,%%pstate; "
"andn %0,0x1f,%3; "
"membar #Sync; "
"sll %1,0,%2; "
"srax %1,32,%1; "
"wr %%g0, 0x82, %%asi "
: "+r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo), "+r" (_oval_hi)
: "r" ((unsigned long)(loc)), "r" ((unsigned int)(oldvalue)),
"r" (asi)
: "memory");
} else {
__asm volatile(
"wr %7,%%g0,%%asi; "
"sllx %1,32,%1; "
"sllx %5,32,%0; "
"or %1,%2,%1; "
"sllx %3,32,%2; "
"or %0,%4,%0; "
"or %2,%4,%2; "
"casxa [%0]%%asi,%2,%1; "
"sll %1,0,%2; "
"srax %o1,32,%o1; "
"wr %%g0, 0x82, %%asi "
: "=&r" (_loc_hi), "+r" (_casxa_hi), "+r" (_casxa_lo)
: "r" ((int)(_oval_hi)), "r" ((int)(oldvalue)),
"r" ((unsigned long)(loc)), "r" (_loc_hi),
"r" (asi)
: "memory");
}
#endif
return (((uint64_t)_casxa_hi<<32)|(uint64_t)_casxa_lo);
}
#endif
#endif
/* flush address from data cache */
#define flush(loc) ({ \
__asm volatile("flush %0" : : \
"r" ((unsigned long)(loc))); \
})
/* Flush a D$ line */
#if 0
#define flushline(loc) ({ \
stxa(((paddr_t)loc)&(~0x1f), (ASI_DCACHE_TAG), 0); \
membar_sync(); \
})
#endif
/* The following two enable or disable the dcache in the LSU control register */
#define dcenable() ({ \
int res; \
__asm volatile("ldxa [%%g0] %1,%0; or %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
})
#define dcdisable() ({ \
int res; \
__asm volatile("ldxa [%%g0] %1,%0; andn %0,%2,%0; stxa %0,[%%g0] %1; membar #Sync" \
: "r" (res) : "n" (ASI_MCCR), "n" (MCCR_DCACHE_EN)); \
})
/*
* SPARC V9 memory barrier instructions.
*/
/* Make all stores complete before next store */
#define membar_storestore() __asm volatile("membar #StoreStore" : :)
/* Make all loads complete before next store */
#define membar_loadstore() __asm volatile("membar #LoadStore" : :)
/* Make all stores complete before next load */
#define membar_storeload() __asm volatile("membar #StoreLoad" : :)
/* Make all loads complete before next load */
#define membar_loadload() __asm volatile("membar #LoadLoad" : :)
/* Complete all outstanding memory operations and exceptions */
#define membar_sync() __asm volatile("membar #Sync" : :)
/* Complete all outstanding memory operations */
#define membar_memissue() __asm volatile("membar #MemIssue" : :)
/* Complete all outstanding stores before any new loads */
#define membar_lookaside() __asm volatile("membar #Lookaside" : :)
#define membar_load() __asm volatile("membar #LoadLoad | #LoadStore" : :)
#define membar_store() __asm volatile("membar #LoadStore | #StoreStore" : :)
#ifdef __arch64__
/* read 64-bit %tick register */
#define tick() ({ \
register u_long _tick_tmp; \
__asm volatile("rdpr %%tick, %0" : "=r" (_tick_tmp) :); \
_tick_tmp; \
})
#else
/* read 64-bit %tick register on 32-bit system */
#define tick() ({ \
register u_int _tick_hi = 0, _tick_lo = 0; \
__asm volatile("rdpr %%tick, %0; srl %0,0,%1; srlx %0,32,%0 " \
: "=r" (_tick_hi), "=r" (_tick_lo) : ); \
(((uint64_t)_tick_hi)<<32)|((uint64_t)_tick_lo); \
})
#endif
extern void next_tick(long);
#endif
#endif /* _SPARC_CTLREG_H_ */