NetBSD/sys/arch/amiga/dev/sfas.c

1786 lines
44 KiB
C

/* $NetBSD: sfas.c,v 1.11 1996/10/10 23:56:33 christos Exp $ */
/*
* Copyright (c) 1995 Daniel Widenfalk
* Copyright (c) 1994 Christian E. Hopps
* Copyright (c) 1990 The Regents of the University of California.
* All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* Van Jacobson of Lawrence Berkeley Laboratory.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)scsi.c 7.5 (Berkeley) 5/4/91
*/
/*
* AMIGA Emulex FAS216 scsi adaptor driver
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <scsi/scsi_all.h>
#include <scsi/scsiconf.h>
#include <vm/vm.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <machine/pmap.h>
#include <machine/cpu.h>
#include <amiga/amiga/device.h>
#include <amiga/amiga/cc.h>
#include <amiga/amiga/custom.h>
#include <amiga/amiga/isr.h>
#include <amiga/dev/sfasreg.h>
#include <amiga/dev/sfasvar.h>
#include <amiga/dev/zbusvar.h>
void sfasinitialize __P((struct sfas_softc *));
void sfas_minphys __P((struct buf *bp));
int sfas_scsicmd __P((struct scsi_xfer *xs));
void sfas_donextcmd __P((struct sfas_softc *dev, struct sfas_pending *pendp));
void sfas_scsidone __P((struct sfas_softc *dev, struct scsi_xfer *xs,
int stat));
void sfasiwait __P((struct sfas_softc *dev));
void sfasreset __P((struct sfas_softc *dev, int how));
int sfasselect __P((struct sfas_softc *dev, struct sfas_pending *pendp,
unsigned char *cbuf, int clen,
unsigned char *buf, int len, int mode));
void sfasicmd __P((struct sfas_softc *dev, struct sfas_pending *pendp));
int sfas_postaction __P((struct sfas_softc *dev, sfas_regmap_p rp,
struct nexus *nexus));
int sfas_midaction __P((struct sfas_softc *dev, sfas_regmap_p rp,
struct nexus *nexus));
void sfas_init_nexus __P((struct sfas_softc *dev, struct nexus *nexus));
int sfasgo __P((struct sfas_softc *dev, struct sfas_pending *pendp));
void sfas_save_pointers __P((struct sfas_softc *dev));
void sfas_restore_pointers __P((struct sfas_softc *dev));
void sfas_ixfer __P((struct sfas_softc *dev));
void sfas_build_sdtrm __P((struct sfas_softc *dev, int period, int offset));
int sfas_select_unit __P((struct sfas_softc *dev, short target));
struct nexus *sfas_arbitate_target __P((struct sfas_softc *dev, int target));
void sfas_setup_nexus __P((struct sfas_softc *dev, struct nexus *nexus,
struct sfas_pending *pendp, unsigned char *cbuf,
int clen, unsigned char *buf, int len, int mode));
void sfas_request_sense __P((struct sfas_softc *dev, struct nexus *nexus));
int sfas_pretests __P((struct sfas_softc *dev, sfas_regmap_p rp));
#ifdef SFAS_NEED_VM_PATCH
void sfas_unlink_vm_link __P((struct sfas_softc *dev));
void sfas_link_vm_link __P((struct sfas_softc *dev,
struct vm_link_data *vm_link_data));
#endif
/*
* Initialize these to make 'em patchable. Defaults to enable sync and discon.
*/
u_char sfas_inhibit_sync[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
u_char sfas_inhibit_disc[8] = { 0, 0, 0, 0, 0, 0, 0, 0 };
#ifdef DEBUG
#define QPRINTF(a) if (sfas_debug > 1) kprintf a
int sfas_debug = 0;
#else
#define QPRINTF(a)
#endif
/*
* default minphys routine for sfas based controllers
*/
void
sfas_minphys(bp)
struct buf *bp;
{
/*
* No max transfer at this level.
*/
minphys(bp);
}
/*
* Initialize the nexus structs.
*/
void
sfas_init_nexus(dev, nexus)
struct sfas_softc *dev;
struct nexus *nexus;
{
bzero(nexus, sizeof(struct nexus));
nexus->state = SFAS_NS_IDLE;
nexus->period = 200;
nexus->offset = 0;
nexus->syncper = 5;
nexus->syncoff = 0;
nexus->config3 = dev->sc_config3 & ~SFAS_CFG3_FASTSCSI;
}
void
sfasinitialize(dev)
struct sfas_softc *dev;
{
u_int *pte, page;
int i;
u_int inhibit_sync;
extern u_long scsi_nosync;
extern int shift_nosync;
dev->sc_led_status = 0;
TAILQ_INIT(&dev->sc_xs_pending);
TAILQ_INIT(&dev->sc_xs_free);
/*
* Initialize the sfas_pending structs and link them into the free list. We
* have to set vm_link_data.pages to 0 or the vm FIX won't work.
*/
for(i=0; i<MAXPENDING; i++) {
#ifdef SFAS_NEED_VM_PATCH
dev->sc_xs_store[i].vm_link_data.pages = 0;
#endif
TAILQ_INSERT_TAIL(&dev->sc_xs_free, &dev->sc_xs_store[i],
link);
}
/*
* Calculate the correct clock conversion factor 2 <= factor <= 8, i.e. set
* the factor to clock_freq / 5 (int).
*/
if (dev->sc_clock_freq <= 10)
dev->sc_clock_conv_fact = 2;
if (dev->sc_clock_freq <= 40)
dev->sc_clock_conv_fact = 2+((dev->sc_clock_freq-10)/5);
else
panic("sfasinitialize: Clock frequence too high");
/* Setup and save the basic configuration registers */
dev->sc_config1 = (dev->sc_host_id & SFAS_CFG1_BUS_ID_MASK);
dev->sc_config2 = SFAS_CFG2_FEATURES_ENABLE;
dev->sc_config3 = (dev->sc_clock_freq > 25 ? SFAS_CFG3_FASTCLK : 0);
#if 0 /* don't use floating point */
dev->sc_timeout_val = 1+dev->sc_timeout*dev->sc_clock_freq/
(7.682*dev->sc_clock_conv_fact);
#endif
/* Precalculate timeout value and clock period. */
dev->sc_timeout_val = 1 +
(dev->sc_timeout * dev->sc_clock_freq * 1000)
/ (7682 * dev->sc_clock_conv_fact);
dev->sc_clock_period = 1000/dev->sc_clock_freq;
sfasreset(dev, 1 | 2); /* Reset Chip and Bus */
dev->sc_units_disconnected = 0;
dev->sc_msg_in_len = 0;
dev->sc_msg_out_len = 0;
dev->sc_flags = 0;
if (scsi_nosync) {
inhibit_sync = (scsi_nosync >> shift_nosync) & 0xff;
shift_nosync += 8;
for (i = 0; i < 8; ++i)
if (inhibit_sync & (1 << i))
sfas_inhibit_sync[i] = 1;
}
for(i=0; i<8; i++)
sfas_init_nexus(dev, &dev->sc_nexus[i]);
/*
* Setup bump buffer. If dev->sc_bump_pa has the upper bits set, we should
* allocate z2-mem else we can allocate "any" memory. This code should check
* that the bump-buffer is LW aligned, but I think alloc_z2mem/kmem_alloc
* does that.
*/
if (dev->sc_bump_pa & 0xFF000000) {
dev->sc_bump_va = (u_char *)alloc_z2mem(dev->sc_bump_sz);
if (isztwomem(dev->sc_bump_va))
dev->sc_bump_pa = kvtop(dev->sc_bump_va);
else
dev->sc_bump_pa = (vm_offset_t)
PREP_DMA_MEM(dev->sc_bump_va);
} else {
dev->sc_bump_va = (u_char *)kmem_alloc(kernel_map,
dev->sc_bump_sz);
dev->sc_bump_pa = kvtop(dev->sc_bump_va);
}
/*
* Setup pages to noncachable, that way we don't have to flush the cache
* every time we need "bumped" transfer.
*/
pte = kvtopte(dev->sc_bump_va);
page= (u_int)dev->sc_bump_pa & PG_FRAME;
*pte = PG_V | PG_RW | PG_CI | page;
TBIAS();
kprintf(": dmabuf 0x%lx", dev->sc_bump_pa);
/*
* FIX
* The scsi drivers tend to allocate buffers from the kernel stacks. When the
* kernel goes to sleep, it does a contect-switch thus removing the mapping
* to the stack. To work around this we allocate MAXPHYS+alignment bytes
* of virtual memory to which we can later map physical memory to.
*/
#ifdef SFAS_NEED_VM_PATCH
vm_map_lock(kernel_map);
/* Locate available space. */
if (vm_map_findspace(kernel_map, 0, MAXPHYS+NBPG,
(vm_offset_t *)&dev->sc_vm_link)) {
vm_map_unlock(kernel_map);
panic("SFAS_SCSICMD: No VM space available.");
} else {
int offset;
/*
* Map space to virtual memory in kernel_map. This vm will always be available
* to us during interrupt time.
*/
offset = (vm_offset_t)dev->sc_vm_link - VM_MIN_KERNEL_ADDRESS;
kprintf(" vmlnk %p", dev->sc_vm_link);
vm_object_reference(kernel_object);
vm_map_insert(kernel_map, kernel_object, offset,
(vm_offset_t)dev->sc_vm_link,
(vm_offset_t)dev->sc_vm_link+(MAXPHYS+NBPG));
vm_map_unlock(kernel_map);
}
dev->sc_vm_link_pages = 0;
#endif
}
#ifdef SFAS_NEED_VM_PATCH
/*
* Remove our memory-FIX mapping
*/
void
sfas_unlink_vm_link(dev)
struct sfas_softc *dev;
{
if (dev->sc_flags & SFAS_HAS_VM_LINK) {
physunaccess(dev->sc_vm_link, dev->sc_vm_link_pages*NBPG);
dev->sc_vm_link_pages = 0;
dev->sc_flags &= ~SFAS_HAS_VM_LINK;
}
}
/*
* Setup a physical-to-virtual mapping to work around the above mentioned
* bug in the scsi drivers
*/
void
sfas_link_vm_link(dev, vm_link_data)
struct sfas_softc *dev;
struct vm_link_data *vm_link_data;
{
int i;
if (dev->sc_flags & SFAS_HAS_VM_LINK)
sfas_unlink_vm_link(dev);
dev->sc_vm_link_pages = vm_link_data->pages;
if (vm_link_data->pages) {
for(i=0; i<vm_link_data->pages; i++)
physaccess(dev->sc_vm_link+i*NBPG, (caddr_t)vm_link_data->pa[i],
NBPG, PG_CI);
dev->sc_flags |= SFAS_HAS_VM_LINK;
}
}
#endif
/*
* used by specific sfas controller
*/
int
sfas_scsicmd(struct scsi_xfer *xs)
{
struct sfas_softc *dev;
struct scsi_link *slp;
struct sfas_pending *pendp;
int flags, s, target;
slp = xs->sc_link;
dev = slp->adapter_softc;
flags = xs->flags;
target = slp->target;
if (flags & SCSI_DATA_UIO)
panic("sfas: scsi data uio requested");
if ((flags & SCSI_POLL) && (dev->sc_flags & SFAS_ACTIVE))
panic("sfas_scsicmd: busy");
/* Get hold of a sfas_pending block. */
s = splbio();
pendp = dev->sc_xs_free.tqh_first;
if (pendp == NULL) {
splx(s);
return(TRY_AGAIN_LATER);
}
TAILQ_REMOVE(&dev->sc_xs_free, pendp, link);
pendp->xs = xs;
splx(s);
#ifdef SFAS_NEED_VM_PATCH
pendp->vm_link_data.offset = 0;
pendp->vm_link_data.pages = 0;
/*
* We need our FIX vm-link if:
* 1) We are NOT using polled IO.
* 2) Out data source/destination is not in the u-stack area.
*/
if (!(flags & SCSI_POLL) && (
#if defined(M68040) || defined(M68060)
((mmutype == MMU_68040) && ((vm_offset_t)xs->data >= 0xFFFC0000)) &&
#endif
((vm_offset_t)xs->data >= 0xFF000000))) {
vm_offset_t sva;
short n;
/* Extract and store the physical adresses of the data block */
sva = (vm_offset_t)xs->data & PG_FRAME;
pendp->vm_link_data.offset = (vm_offset_t)xs->data & PGOFSET;
pendp->vm_link_data.pages = round_page(xs->data+xs->datalen-
sva)/NBPG;
for(n=0; n<pendp->vm_link_data.pages; n++)
pendp->vm_link_data.pa[n] = kvtop((caddr_t)(sva + n*NBPG));
}
#endif
/* If the chip if busy OR the unit is busy, we have to wait for out turn. */
if ((dev->sc_flags & SFAS_ACTIVE) ||
(dev->sc_nexus[target].flags & SFAS_NF_UNIT_BUSY)) {
s = splbio();
TAILQ_INSERT_TAIL(&dev->sc_xs_pending, pendp, link);
splx(s);
} else
sfas_donextcmd(dev, pendp);
return((flags & SCSI_POLL) ? COMPLETE : SUCCESSFULLY_QUEUED);
}
/*
* Actually select the unit, whereby the whole scsi-process is started.
*/
void
sfas_donextcmd(dev, pendp)
struct sfas_softc *dev;
struct sfas_pending *pendp;
{
int s;
/*
* Special case for scsi unit reset. I think this is waterproof. We first
* select the unit during splbio. We then cycle through the generated
* interrupts until the interrupt routine signals that the unit has
* acknowledged the reset. After that we have to wait a reset to select
* delay before anything else can happend.
*/
if (pendp->xs->flags & SCSI_RESET) {
struct nexus *nexus;
s = splbio();
while(!sfasselect(dev, pendp, 0, 0, 0, 0, SFAS_SELECT_K)) {
splx(s);
delay(10);
s = splbio();
}
nexus = dev->sc_cur_nexus;
while(nexus->flags & SFAS_NF_UNIT_BUSY) {
sfasiwait(dev);
sfasintr(dev);
}
nexus->flags |= SFAS_NF_UNIT_BUSY;
splx(s);
sfasreset(dev, 0);
s = splbio();
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
splx(s);
}
/*
* If we are polling, go to splbio and perform the command, else we poke
* the scsi-bus via sfasgo to get the interrupt machine going.
*/
if (pendp->xs->flags & SCSI_POLL) {
s = splbio();
sfasicmd(dev, pendp);
TAILQ_INSERT_TAIL(&dev->sc_xs_free, pendp, link);
splx(s);
} else {
sfasgo(dev, pendp);
return;
}
}
void
sfas_scsidone(dev, xs, stat)
struct sfas_softc *dev;
struct scsi_xfer *xs;
int stat;
{
struct sfas_pending *pendp;
int s;
xs->status = stat;
if (stat == 0)
xs->resid = 0;
else {
switch(stat) {
case SCSI_CHECK:
/* If we get here we have valid sense data. Faults during
* sense is handeled elsewhere and will generate a
* XS_DRIVER_STUFFUP. */
xs->error = XS_SENSE;
break;
case SCSI_BUSY:
xs->error = XS_BUSY;
break;
case -1:
xs->error = XS_DRIVER_STUFFUP;
QPRINTF(("sfas_scsicmd() bad %x\n", stat));
break;
default:
xs->error = XS_TIMEOUT;
break;
}
}
xs->flags |= ITSDONE;
/* Steal the next command from the queue so that one unit can't hog the bus. */
s = splbio();
pendp = dev->sc_xs_pending.tqh_first;
while(pendp) {
if (!(dev->sc_nexus[pendp->xs->sc_link->target].flags &
SFAS_NF_UNIT_BUSY))
break;
pendp = pendp->link.tqe_next;
}
if (pendp != NULL) {
TAILQ_REMOVE(&dev->sc_xs_pending, pendp, link);
}
splx(s);
scsi_done(xs);
if (pendp)
sfas_donextcmd(dev, pendp);
}
/*
* There are two kinds of reset:
* 1) CHIP-bus reset. This also implies a SCSI-bus reset.
* 2) SCSI-bus reset.
* After the appropriate resets have been performed we wait a reset to select
* delay time.
*/
void
sfasreset(dev, how)
struct sfas_softc *dev;
int how;
{
sfas_regmap_p rp;
int i, s;
rp = dev->sc_fas;
if (how & 1) {
for(i=0; i<8; i++)
sfas_init_nexus(dev, &dev->sc_nexus[i]);
*rp->sfas_command = SFAS_CMD_RESET_CHIP;
delay(1);
*rp->sfas_command = SFAS_CMD_NOP;
*rp->sfas_config1 = dev->sc_config1;
*rp->sfas_config2 = dev->sc_config2;
*rp->sfas_config3 = dev->sc_config3;
*rp->sfas_timeout = dev->sc_timeout_val;
*rp->sfas_clkconv = dev->sc_clock_conv_fact &
SFAS_CLOCK_CONVERSION_MASK;
}
if (how & 2) {
for(i=0; i<8; i++)
sfas_init_nexus(dev, &dev->sc_nexus[i]);
s = splbio();
*rp->sfas_command = SFAS_CMD_RESET_SCSI_BUS;
delay(100);
/* Skip interrupt generated by RESET_SCSI_BUS */
while(*rp->sfas_status & SFAS_STAT_INTERRUPT_PENDING) {
dev->sc_status = *rp->sfas_status;
dev->sc_interrupt = *rp->sfas_interrupt;
delay(100);
}
dev->sc_status = *rp->sfas_status;
dev->sc_interrupt = *rp->sfas_interrupt;
splx(s);
}
if (dev->sc_config_flags & SFAS_SLOW_START)
delay(4*250000); /* RESET to SELECT DELAY*4 for slow devices */
else
delay(250000); /* RESET to SELECT DELAY */
}
/*
* Save active data pointers to the nexus block currently active.
*/
void
sfas_save_pointers(dev)
struct sfas_softc *dev;
{
struct nexus *nx;
nx = dev->sc_cur_nexus;
if (nx) {
nx->cur_link = dev->sc_cur_link;
nx->max_link = dev->sc_max_link;
nx->buf = dev->sc_buf;
nx->len = dev->sc_len;
nx->dma_len = dev->sc_dma_len;
nx->dma_buf = dev->sc_dma_buf;
nx->dma_blk_flg = dev->sc_dma_blk_flg;
nx->dma_blk_len = dev->sc_dma_blk_len;
nx->dma_blk_ptr = dev->sc_dma_blk_ptr;
}
}
/*
* Restore data pointers from the currently active nexus block.
*/
void
sfas_restore_pointers(dev)
struct sfas_softc *dev;
{
struct nexus *nx;
nx = dev->sc_cur_nexus;
if (nx) {
dev->sc_cur_link = nx->cur_link;
dev->sc_max_link = nx->max_link;
dev->sc_buf = nx->buf;
dev->sc_len = nx->len;
dev->sc_dma_len = nx->dma_len;
dev->sc_dma_buf = nx->dma_buf;
dev->sc_dma_blk_flg = nx->dma_blk_flg;
dev->sc_dma_blk_len = nx->dma_blk_len;
dev->sc_dma_blk_ptr = nx->dma_blk_ptr;
dev->sc_chain = nx->dma;
dev->sc_unit = (nx->lun_unit & 0x0F);
dev->sc_lun = (nx->lun_unit & 0xF0) >> 4;
}
}
/*
* sfasiwait is used during interrupt and polled IO to wait for an event from
* the FAS chip. This function MUST NOT BE CALLED without interrupt disabled.
*/
void
sfasiwait(dev)
struct sfas_softc *dev;
{
sfas_regmap_p rp;
/*
* If SFAS_DONT_WAIT is set, we have already grabbed the interrupt info
* elsewhere. So we don't have to wait for it.
*/
if (dev->sc_flags & SFAS_DONT_WAIT) {
dev->sc_flags &= ~SFAS_DONT_WAIT;
return;
}
rp = dev->sc_fas;
/* Wait for FAS chip to signal an interrupt. */
while(!(*rp->sfas_status & SFAS_STAT_INTERRUPT_PENDING))
delay(1);
/* Grab interrupt info from chip. */
dev->sc_status = *rp->sfas_status;
dev->sc_interrupt = *rp->sfas_interrupt;
if (dev->sc_interrupt & SFAS_INT_RESELECTED) {
dev->sc_resel[0] = *rp->sfas_fifo;
dev->sc_resel[1] = *rp->sfas_fifo;
}
}
/*
* Transfer info to/from device. sfas_ixfer uses polled IO+sfasiwait so the
* rules that apply to sfasiwait also applies here.
*/
void
sfas_ixfer(dev)
struct sfas_softc *dev;
{
sfas_regmap_p rp;
u_char *buf;
int len, mode, phase;
rp = dev->sc_fas;
buf = dev->sc_buf;
len = dev->sc_len;
/*
* Decode the scsi phase to determine whether we are reading or writing.
* mode == 1 => READ, mode == 0 => WRITE
*/
phase = dev->sc_status & SFAS_STAT_PHASE_MASK;
mode = (phase == SFAS_PHASE_DATA_IN);
while(len && ((dev->sc_status & SFAS_STAT_PHASE_MASK) == phase))
if (mode) {
*rp->sfas_command = SFAS_CMD_TRANSFER_INFO;
sfasiwait(dev);
*buf++ = *rp->sfas_fifo;
len--;
} else {
len--;
*rp->sfas_fifo = *buf++;
*rp->sfas_command = SFAS_CMD_TRANSFER_INFO;
sfasiwait(dev);
}
/* Update buffer pointers to reflect the sent/recieved data. */
dev->sc_buf = buf;
dev->sc_len = len;
/*
* Since the last sfasiwait will be a phase-change, we can't wait for it
* again later, so we have to signal that.
*/
dev->sc_flags |= SFAS_DONT_WAIT;
}
/*
* Build a Synchronous Data Transfer Request message
*/
void
sfas_build_sdtrm(dev, period, offset)
struct sfas_softc *dev;
int period;
int offset;
{
dev->sc_msg_out[0] = 0x01;
dev->sc_msg_out[1] = 0x03;
dev->sc_msg_out[2] = 0x01;
dev->sc_msg_out[3] = period/4;
dev->sc_msg_out[4] = offset;
dev->sc_msg_out_len= 5;
}
/*
* Arbitate the scsi bus and select the unit
*/
int
sfas_select_unit(dev, target)
struct sfas_softc *dev;
short target;
{
sfas_regmap_p rp;
struct nexus *nexus;
int s, retcode, i;
u_char cmd;
s = splbio(); /* Do this at splbio so that we won't be disturbed. */
retcode = 0;
nexus = &dev->sc_nexus[target];
/*
* Check if the chip is busy. If not the we mark it as so and hope that nobody
* reselects us until we have grabbed the bus.
*/
if (!(dev->sc_flags & SFAS_ACTIVE) && !dev->sc_sel_nexus) {
dev->sc_flags |= SFAS_ACTIVE;
rp = dev->sc_fas;
*rp->sfas_syncper = nexus->syncper;
*rp->sfas_syncoff = nexus->syncoff;
*rp->sfas_config3 = nexus->config3;
*rp->sfas_config1 = dev->sc_config1;
*rp->sfas_timeout = dev->sc_timeout_val;
*rp->sfas_dest_id = target;
/* If nobody has stolen the bus, we can send a select command to the chip. */
if (!(*rp->sfas_status & SFAS_STAT_INTERRUPT_PENDING)) {
*rp->sfas_fifo = nexus->ID;
if ((nexus->flags & (SFAS_NF_DO_SDTR | SFAS_NF_RESET))
|| (dev->sc_msg_out_len != 0))
cmd = SFAS_CMD_SEL_ATN_STOP;
else {
for(i=0; i<nexus->clen; i++)
*rp->sfas_fifo = nexus->cbuf[i];
cmd = SFAS_CMD_SEL_ATN;
}
dev->sc_sel_nexus = nexus;
*rp->sfas_command = cmd;
retcode = 1;
}
}
splx(s);
return(retcode);
}
/*
* Grab the nexus if available else return 0.
*/
struct nexus *
sfas_arbitate_target(dev, target)
struct sfas_softc *dev;
int target;
{
struct nexus *nexus;
int s;
/*
* This is realy simple. Raise interrupt level to splbio. Grab the nexus and
* leave.
*/
nexus = &dev->sc_nexus[target];
s = splbio();
if (nexus->flags & SFAS_NF_UNIT_BUSY)
nexus = 0;
else
nexus->flags |= SFAS_NF_UNIT_BUSY;
splx(s);
return(nexus);
}
/*
* Setup a nexus for use. Initializes command, buffer pointers and dma chain.
*/
void
sfas_setup_nexus(dev, nexus, pendp, cbuf, clen, buf, len, mode)
struct sfas_softc *dev;
struct nexus *nexus;
struct sfas_pending *pendp;
unsigned char *cbuf;
int clen;
unsigned char *buf;
int len;
int mode;
{
int sync, target, lun;
target = pendp->xs->sc_link->target;
lun = pendp->xs->sc_link->lun;
/*
* Adopt mode to reflect the config flags.
* If we can't use DMA we can't use synch transfer. Also check the
* sfas_inhibit_xxx[target] flags.
*/
if ((dev->sc_config_flags & (SFAS_NO_SYNCH | SFAS_NO_DMA)) ||
sfas_inhibit_sync[target])
mode &= ~SFAS_SELECT_S;
if ((dev->sc_config_flags & SFAS_NO_RESELECT) ||
sfas_inhibit_disc[target])
mode &= ~SFAS_SELECT_R;
nexus->xs = pendp->xs;
#ifdef SFAS_NEED_VM_PATCH
nexus->vm_link_data = pendp->vm_link_data;
#endif
/* Setup the nexus struct. */
nexus->ID = ((mode & SFAS_SELECT_R) ? 0xC0 : 0x80) | lun;
nexus->clen = clen;
bcopy(cbuf, nexus->cbuf, nexus->clen);
nexus->cbuf[1] |= lun << 5; /* Fix the lun bits */
nexus->cur_link = 0;
nexus->dma_len = 0;
nexus->dma_buf = 0;
nexus->dma_blk_len = 0;
nexus->dma_blk_ptr = 0;
nexus->len = len;
nexus->buf = buf;
nexus->lun_unit = (lun << 4) | target;
nexus->state = SFAS_NS_SELECTED;
/* We must keep these flags. All else must be zero. */
nexus->flags &= SFAS_NF_UNIT_BUSY | SFAS_NF_REQUEST_SENSE
| SFAS_NF_SYNC_TESTED | SFAS_NF_SELECT_ME;
/*
* If we are requesting sense, reflect that in the flags so that we can handle
* error in sense data correctly
*/
if (nexus->flags & SFAS_NF_REQUEST_SENSE) {
nexus->flags &= ~SFAS_NF_REQUEST_SENSE;
nexus->flags |= SFAS_NF_SENSING;
}
if (mode & SFAS_SELECT_I)
nexus->flags |= SFAS_NF_IMMEDIATE;
if (mode & SFAS_SELECT_K)
nexus->flags |= SFAS_NF_RESET;
sync = ((mode & SFAS_SELECT_S) ? 1 : 0);
/* We can't use sync during polled IO. */
if (sync && (mode & SFAS_SELECT_I))
sync = 0;
if (!sync &&
((nexus->flags & SFAS_NF_SYNC_TESTED) && (nexus->offset != 0))) {
/*
* If the scsi unit is set to synch transfer and we don't want
* that, we have to renegotiate.
*/
nexus->flags |= SFAS_NF_DO_SDTR;
nexus->period = 200;
nexus->offset = 0;
} else if (sync && !(nexus->flags & SFAS_NF_SYNC_TESTED)) {
/*
* If the scsi unit is not set to synch transfer and we want
* that, we have to negotiate. This should realy base the
* period on the clock frequence rather than just check if
* >25Mhz
*/
nexus->flags |= SFAS_NF_DO_SDTR;
nexus->period = ((dev->sc_clock_freq>25) ? 100 : 200);
nexus->offset = 8;
/* If the user has a long cable, we want to limit the period */
if ((nexus->period == 100) &&
(dev->sc_config_flags & SFAS_SLOW_CABLE))
nexus->period = 200;
}
/*
* Fake a dma-block for polled IO. This way we can use the same code to handle
* reselection. Much nicer this way.
*/
if ((mode & SFAS_SELECT_I) || (dev->sc_config_flags & SFAS_NO_DMA)) {
nexus->dma[0].ptr = (vm_offset_t)buf;
nexus->dma[0].len = len;
nexus->dma[0].flg = SFAS_CHAIN_PRG;
nexus->max_link = 1;
} else {
#ifdef SFAS_NEED_VM_PATCH
if (nexus->vm_link_data.pages)
sfas_link_vm_link(dev, &nexus->vm_link_data);
#endif
nexus->max_link = dev->sc_build_dma_chain(dev, nexus->dma,
buf, len);
}
/* Flush the caches. (If needed) */
if ((mmutype == MMU_68040) && len && !(mode & SFAS_SELECT_I))
dma_cachectl(buf, len);
}
int
sfasselect(dev, pendp, cbuf, clen, buf, len, mode)
struct sfas_softc *dev;
struct sfas_pending *pendp;
unsigned char *cbuf;
int clen;
unsigned char *buf;
int len;
int mode;
{
struct nexus *nexus;
/* Get the nexus struct. */
nexus = sfas_arbitate_target(dev, pendp->xs->sc_link->target);
if (nexus == NULL)
return(0);
/* Setup the nexus struct. */
sfas_setup_nexus(dev, nexus, pendp, cbuf, clen, buf, len, mode);
/* Post it to the interrupt machine. */
sfas_select_unit(dev, pendp->xs->sc_link->target);
return(1);
}
void
sfas_request_sense(dev, nexus)
struct sfas_softc *dev;
struct nexus *nexus;
{
struct scsi_xfer *xs;
struct sfas_pending pend;
struct scsi_sense rqs;
int mode;
xs = nexus->xs;
/* Fake a sfas_pending structure. */
pend.vm_link_data.pages = 0;
pend.xs = xs;
rqs.opcode = REQUEST_SENSE;
rqs.byte2 = xs->sc_link->lun << 5;
#ifdef not_yet
rqs.length=xs->req_sense_length?xs->req_sense_length:sizeof(xs->sense);
#else
rqs.length=sizeof(xs->sense);
#endif
rqs.unused[0] = rqs.unused[1] = rqs.control = 0;
/*
* If we are requesting sense during polled IO, we have to sense with polled
* IO too.
*/
mode = SFAS_SELECT_RS;
if (nexus->flags & SFAS_NF_IMMEDIATE)
mode = SFAS_SELECT_I;
/* Setup the nexus struct for sensing. */
sfas_setup_nexus(dev, nexus, &pend, (char *)&rqs, sizeof(rqs),
(char *)&xs->sense, rqs.length, mode);
/* Post it to the interrupt machine. */
sfas_select_unit(dev, xs->sc_link->target);
}
int
sfasgo(dev, pendp)
struct sfas_softc *dev;
struct sfas_pending *pendp;
{
int s;
char *buf;
buf = pendp->xs->data;
/*
* If we need the vm FIX, make buf reflect that.
*/
#ifdef SFAS_NEED_VM_PATCH
if (pendp->vm_link_data.pages)
buf = dev->sc_vm_link + pendp->vm_link_data.offset;
#endif
if (sfasselect(dev, pendp, (char *)pendp->xs->cmd, pendp->xs->cmdlen,
buf, pendp->xs->datalen, SFAS_SELECT_RS)) {
/*
* We got the command going so the sfas_pending struct is now
* free to reuse.
*/
s = splbio();
TAILQ_INSERT_TAIL(&dev->sc_xs_free, pendp, link);
splx(s);
} else {
/*
* We couldn't make the command fly so we have to wait. The
* struct MUST be inserted at the head to keep the order of
* the commands.
*/
s = splbio();
TAILQ_INSERT_HEAD(&dev->sc_xs_pending, pendp, link);
splx(s);
}
return(0);
}
/*
* Part one of the interrupt machine. Error checks and reselection test.
* We don't know if we have an active nexus here!
*/
int
sfas_pretests(dev, rp)
struct sfas_softc *dev;
sfas_regmap_p rp;
{
struct nexus *nexus;
int i, s;
if (dev->sc_interrupt & SFAS_INT_SCSI_RESET_DETECTED) {
/*
* Cleanup and notify user. Lets hope that this is all we
* have to do
*/
for(i=0; i<8; i++) {
if (dev->sc_nexus[i].xs)
sfas_scsidone(dev, dev->sc_nexus[i].xs, -2);
sfas_init_nexus(dev, &dev->sc_nexus[i]);
}
kprintf("sfasintr: SCSI-RESET detected!");
return(-1);
}
if (dev->sc_interrupt & SFAS_INT_ILLEGAL_COMMAND) {
/* Something went terrible wrong! Dump some data and panic! */
kprintf("FIFO:");
while(*rp->sfas_fifo_flags & SFAS_FIFO_COUNT_MASK)
kprintf(" %x", *rp->sfas_fifo);
kprintf("\n");
kprintf("CMD: %x\n", *rp->sfas_command);
panic("sfasintr: ILLEGAL COMMAND!");
}
if (dev->sc_interrupt & SFAS_INT_RESELECTED) {
/* We were reselected. Set the chip as busy */
s = splbio();
dev->sc_flags |= SFAS_ACTIVE;
if (dev->sc_sel_nexus) {
dev->sc_sel_nexus->flags |= SFAS_NF_SELECT_ME;
dev->sc_sel_nexus = 0;
}
splx(s);
if (dev->sc_units_disconnected) {
/* Find out who reselected us. */
dev->sc_resel[0] &= ~(1<<dev->sc_host_id);
for(i=0; i<8; i++)
if (dev->sc_resel[0] & (1<<i))
break;
if (i == 8)
panic("Illegal reselection!");
if (dev->sc_nexus[i].state == SFAS_NS_DISCONNECTED) {
/*
* This unit had disconnected, so we reconnect
* it.
*/
dev->sc_cur_nexus = &dev->sc_nexus[i];
nexus = dev->sc_cur_nexus;
*rp->sfas_syncper = nexus->syncper;
*rp->sfas_syncoff = nexus->syncoff;
*rp->sfas_config3 = nexus->config3;
*rp->sfas_dest_id = i & 7;
dev->sc_units_disconnected--;
dev->sc_msg_in_len= 0;
#ifdef SFAS_NEED_VM_PATCH
if (nexus->vm_link_data.pages)
sfas_link_vm_link(dev, &nexus->vm_link_data);
#endif
/* Restore active pointers. */
sfas_restore_pointers(dev);
nexus->state = SFAS_NS_RESELECTED;
*rp->sfas_command = SFAS_CMD_MESSAGE_ACCEPTED;
return(1);
}
}
/* Somehow we got an illegal reselection. Dump and panic. */
kprintf("sfasintr: resel[0] %x resel[1] %x disconnected %d\n",
dev->sc_resel[0], dev->sc_resel[1],
dev->sc_units_disconnected);
panic("sfasintr: Unexpected reselection!");
}
return(0);
}
/*
* Part two of the interrupt machine. Handle disconnection and post command
* processing. We know that we have an active nexus here.
*/
int
sfas_midaction(dev, rp, nexus)
struct sfas_softc *dev;
sfas_regmap_p rp;
struct nexus *nexus;
{
int i, left, len, s;
u_char status, msg;
if (dev->sc_interrupt & SFAS_INT_DISCONNECT) {
s = splbio();
dev->sc_cur_nexus = 0;
/* Mark chip as busy and clean up the chip FIFO. */
dev->sc_flags &= ~SFAS_ACTIVE;
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
#ifdef SFAS_NEED_VM_PATCH
sfas_unlink_vm_link(dev);
#endif
/* Let the nexus state reflect what we have to do. */
switch(nexus->state) {
case SFAS_NS_SELECTED:
dev->sc_sel_nexus = 0;
nexus->flags &= ~SFAS_NF_SELECT_ME;
/*
* We were trying to select the unit. Probably no unit
* at this ID.
*/
nexus->xs->resid = dev->sc_len;
nexus->status = -2;
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
nexus->state = SFAS_NS_FINISHED;
break;
case SFAS_NS_SENSE:
/*
* Oops! We have to request sense data from this unit.
* Do so.
*/
dev->sc_led(dev, 0);
nexus->flags |= SFAS_NF_REQUEST_SENSE;
sfas_request_sense(dev, nexus);
break;
case SFAS_NS_DONE:
/* All done. */
nexus->xs->resid = dev->sc_len;
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
nexus->state = SFAS_NS_FINISHED;
dev->sc_led(dev, 0);
break;
case SFAS_NS_DISCONNECTING:
/*
* We have recieved a DISCONNECT message, so we are
* doing a normal disconnection.
*/
nexus->state = SFAS_NS_DISCONNECTED;
dev->sc_units_disconnected++;
break;
case SFAS_NS_RESET:
/*
* We were reseting this SCSI-unit. Clean up the
* nexus struct.
*/
dev->sc_led(dev, 0);
sfas_init_nexus(dev, nexus);
break;
default:
/*
* Unexpected disconnection! Cleanup and exit. This
* shouldn't cause any problems.
*/
kprintf("sfasintr: Unexpected disconnection\n");
kprintf("sfasintr: u %x s %d p %d f %x c %x\n",
nexus->lun_unit, nexus->state,
dev->sc_status & SFAS_STAT_PHASE_MASK,
nexus->flags, nexus->cbuf[0]);
nexus->xs->resid = dev->sc_len;
nexus->flags &= ~SFAS_NF_UNIT_BUSY;
nexus->state = SFAS_NS_FINISHED;
nexus->status = -3;
dev->sc_led(dev, 0);
break;
}
/*
* If we have disconnected units, we MUST enable reselection
* within 250ms.
*/
if (dev->sc_units_disconnected &&
!(dev->sc_flags & SFAS_ACTIVE))
*rp->sfas_command = SFAS_CMD_ENABLE_RESEL;
splx(s);
/* Select the first pre-initialized nexus we find. */
for(i=0; i<8; i++)
if (dev->sc_nexus[i].flags & SFAS_NF_SELECT_ME)
if (sfas_select_unit(dev, i) == 2)
break;
/* Does any unit need sense data? */
for(i=0; i<8; i++)
if (dev->sc_nexus[i].flags & SFAS_NF_REQUEST_SENSE) {
sfas_request_sense(dev, &dev->sc_nexus[i]);
break;
}
/* We are done with this nexus! */
if (nexus->state == SFAS_NS_FINISHED)
sfas_scsidone(dev, nexus->xs, nexus->status);
return(1);
}
switch(nexus->state) {
case SFAS_NS_SELECTED:
dev->sc_cur_nexus = nexus;
dev->sc_sel_nexus = 0;
nexus->flags &= ~SFAS_NF_SELECT_ME;
/*
* We have selected a unit. Setup chip, restore pointers and
* light the led.
*/
*rp->sfas_syncper = nexus->syncper;
*rp->sfas_syncoff = nexus->syncoff;
*rp->sfas_config3 = nexus->config3;
sfas_restore_pointers(dev);
if (!(nexus->flags & SFAS_NF_SENSING))
nexus->status = 0xFF;
dev->sc_msg_in[0] = 0xFF;
dev->sc_msg_in_len= 0;
dev->sc_led(dev, 1);
break;
case SFAS_NS_DATA_IN:
case SFAS_NS_DATA_OUT:
/* We have transfered data. */
if (dev->sc_dma_len)
if (dev->sc_cur_link < dev->sc_max_link) {
/*
* Clean up dma and at the same time get how
* many bytes that were NOT transfered.
*/
left = dev->sc_setup_dma(dev, 0, 0, SFAS_DMA_CLEAR);
len = dev->sc_dma_len;
if (nexus->state == SFAS_NS_DATA_IN) {
/*
* If we were bumping we may have had an odd length
* which means that there may be bytes left in the
* fifo. We also need to move the data from the
* bump buffer to the actual memory.
*/
if (dev->sc_dma_buf == dev->sc_bump_pa)
{
while((*rp->sfas_fifo_flags&SFAS_FIFO_COUNT_MASK)
&& left)
dev->sc_bump_va[len-(left--)] = *rp->sfas_fifo;
bcopy(dev->sc_bump_va, dev->sc_buf, len-left);
}
} else {
/* Count any unsent bytes and flush them. */
left+= *rp->sfas_fifo_flags & SFAS_FIFO_COUNT_MASK;
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
}
/*
* Update pointers/length to reflect the transfered
* data.
*/
dev->sc_len -= len-left;
dev->sc_buf += len-left;
dev->sc_dma_buf += len-left;
dev->sc_dma_len = left;
dev->sc_dma_blk_ptr += len-left;
dev->sc_dma_blk_len -= len-left;
/*
* If it was the end of a dma block, we select the
* next to begin with.
*/
if (!dev->sc_dma_blk_len)
dev->sc_cur_link++;
}
break;
case SFAS_NS_STATUS:
/*
* If we were not sensing, grab the status byte. If we were
* sensing and we got a bad status, let the user know.
*/
status = *rp->sfas_fifo;
msg = *rp->sfas_fifo;
if (!(nexus->flags & SFAS_NF_SENSING))
nexus->status = status;
else if (status != 0)
nexus->status = -1;
/*
* Preload the command complete message. Handeled in
* sfas_postaction.
*/
dev->sc_msg_in[0] = msg;
dev->sc_msg_in_len = 1;
nexus->flags |= SFAS_NF_HAS_MSG;
break;
default:
break;
}
return(0);
}
/*
* Part three of the interrupt machine. Handle phase changes (and repeated
* phase passes). We know that we have an active nexus here.
*/
int
sfas_postaction(dev, rp, nexus)
struct sfas_softc *dev;
sfas_regmap_p rp;
struct nexus *nexus;
{
int i, len;
u_char cmd;
short offset, period;
cmd = 0;
switch(dev->sc_status & SFAS_STAT_PHASE_MASK) {
case SFAS_PHASE_DATA_OUT:
case SFAS_PHASE_DATA_IN:
if ((dev->sc_status & SFAS_STAT_PHASE_MASK) ==
SFAS_PHASE_DATA_OUT)
nexus->state = SFAS_NS_DATA_OUT;
else
nexus->state = SFAS_NS_DATA_IN;
/* Make DMA ready to accept new data. Load active pointers
* from the DMA block. */
dev->sc_setup_dma(dev, 0, 0, SFAS_DMA_CLEAR);
if (dev->sc_cur_link < dev->sc_max_link) {
if (!dev->sc_dma_blk_len) {
dev->sc_dma_blk_ptr =
dev->sc_chain[dev->sc_cur_link].ptr;
dev->sc_dma_blk_len =
dev->sc_chain[dev->sc_cur_link].len;
dev->sc_dma_blk_flg =
dev->sc_chain[dev->sc_cur_link].flg;
}
/* We should use polled IO here. */
if (dev->sc_dma_blk_flg == SFAS_CHAIN_PRG) {
sfas_ixfer(dev);
dev->sc_cur_link++;
dev->sc_dma_len = 0;
break;
} else if (dev->sc_dma_blk_flg == SFAS_CHAIN_BUMP)
len = dev->sc_dma_blk_len;
else
len = dev->sc_need_bump(dev,
dev->sc_dma_blk_ptr, dev->sc_dma_blk_len);
/*
* If len != 0 we must bump the data, else we just
* DMA it straight into memory.
*/
if (len) {
dev->sc_dma_buf = dev->sc_bump_pa;
dev->sc_dma_len = len;
if (nexus->state == SFAS_NS_DATA_OUT)
bcopy(dev->sc_buf, dev->sc_bump_va,
dev->sc_dma_len);
} else {
dev->sc_dma_buf = dev->sc_dma_blk_ptr;
dev->sc_dma_len = dev->sc_dma_blk_len;
}
/* Load DMA with adress and length of transfer. */
dev->sc_setup_dma(dev, dev->sc_dma_buf, dev->sc_dma_len,
((nexus->state == SFAS_NS_DATA_OUT)
? SFAS_DMA_WRITE : SFAS_DMA_READ));
cmd = SFAS_CMD_TRANSFER_INFO | SFAS_CMD_DMA;
} else {
/*
* Hmmm, the unit wants more info than we have or has
* more than we want. Let the chip handle that.
*/
*rp->sfas_tc_low = 0;
*rp->sfas_tc_mid = 1;
*rp->sfas_tc_high = 0;
cmd = SFAS_CMD_TRANSFER_PAD;
}
break;
case SFAS_PHASE_COMMAND:
/* The scsi unit wants the command, send it. */
nexus->state = SFAS_NS_SVC;
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
for(i=0; i<5; i++);
for(i=0; i<nexus->clen; i++)
*rp->sfas_fifo = nexus->cbuf[i];
cmd = SFAS_CMD_TRANSFER_INFO;
break;
case SFAS_PHASE_STATUS:
/*
* We've got status phase. Request status and command
* complete message.
*/
nexus->state = SFAS_NS_STATUS;
cmd = SFAS_CMD_COMMAND_COMPLETE;
break;
case SFAS_PHASE_MESSAGE_OUT:
/*
* Either the scsi unit wants us to send a message or we have
* asked for it by seting the ATN bit.
*/
nexus->state = SFAS_NS_MSG_OUT;
*rp->sfas_command = SFAS_CMD_FLUSH_FIFO;
if (nexus->flags & SFAS_NF_DO_SDTR) {
/* Send a Synchronous Data Transfer Request. */
sfas_build_sdtrm(dev, nexus->period, nexus->offset);
nexus->flags |= SFAS_NF_SDTR_SENT;
nexus->flags &= ~SFAS_NF_DO_SDTR;
} else if (nexus->flags & SFAS_NF_RESET) {
/* Send a reset scsi unit message. */
dev->sc_msg_out[0] = 0x0C;
dev->sc_msg_out_len = 1;
nexus->state = SFAS_NS_RESET;
nexus->flags &= ~SFAS_NF_RESET;
} else if (dev->sc_msg_out_len == 0) {
/* Don't know what to send so we send a NOP message. */
dev->sc_msg_out[0] = 0x08;
dev->sc_msg_out_len = 1;
}
cmd = SFAS_CMD_TRANSFER_INFO;
for(i=0; i<dev->sc_msg_out_len; i++)
*rp->sfas_fifo = dev->sc_msg_out[i];
dev->sc_msg_out_len = 0;
break;
case SFAS_PHASE_MESSAGE_IN:
/* Receive a message from the scsi unit. */
nexus->state = SFAS_NS_MSG_IN;
while(!(nexus->flags & SFAS_NF_HAS_MSG)) {
*rp->sfas_command = SFAS_CMD_TRANSFER_INFO;
sfasiwait(dev);
dev->sc_msg_in[dev->sc_msg_in_len++] = *rp->sfas_fifo;
/* Check if we got all the bytes in the message. */
if (dev->sc_msg_in[0] >= 0x80) ;
else if (dev->sc_msg_in[0] >= 0x30) ;
else if (((dev->sc_msg_in[0] >= 0x20) &&
(dev->sc_msg_in_len == 2)) ||
((dev->sc_msg_in[0] != 0x01) &&
(dev->sc_msg_in_len == 1))) {
nexus->flags |= SFAS_NF_HAS_MSG;
break;
} else {
if (dev->sc_msg_in_len >= 2)
if ((dev->sc_msg_in[1]+2) == dev->sc_msg_in_len) {
nexus->flags |= SFAS_NF_HAS_MSG;
break;
}
}
*rp->sfas_command = SFAS_CMD_MESSAGE_ACCEPTED;
sfasiwait(dev);
if ((dev->sc_status & SFAS_STAT_PHASE_MASK) !=
SFAS_PHASE_MESSAGE_IN)
break;
}
cmd = SFAS_CMD_MESSAGE_ACCEPTED;
if (nexus->flags & SFAS_NF_HAS_MSG) {
/* We have a message. Decode it. */
switch(dev->sc_msg_in[0]) {
case 0x00: /* COMMAND COMPLETE */
if ((nexus->status == SCSI_CHECK) &&
!(nexus->flags & SFAS_NF_SENSING))
nexus->state = SFAS_NS_SENSE;
else
nexus->state = SFAS_NS_DONE;
break;
case 0x04: /* DISCONNECT */
nexus->state = SFAS_NS_DISCONNECTING;
break;
case 0x02: /* SAVE DATA POINTER */
sfas_save_pointers(dev);
break;
case 0x03: /* RESTORE DATA POINTERS */
sfas_restore_pointers(dev);
break;
case 0x07: /* MESSAGE REJECT */
/*
* If we had sent a SDTR and we got a message
* reject, the scsi docs say that we must go
* to async transfer.
*/
if (nexus->flags & SFAS_NF_SDTR_SENT) {
nexus->flags &= ~SFAS_NF_SDTR_SENT;
nexus->config3 &= ~SFAS_CFG3_FASTSCSI;
nexus->syncper = 5;
nexus->syncoff = 0;
*rp->sfas_syncper = nexus->syncper;
*rp->sfas_syncoff = nexus->syncoff;
*rp->sfas_config3 = nexus->config3;
} else
/*
* Something was rejected but we don't know
* what! PANIC!
*/
panic("sfasintr: Unknown message rejected!");
break;
case 0x08: /* MO OPERATION */
break;
case 0x01: /* EXTENDED MESSAGE */
switch(dev->sc_msg_in[2]) {
case 0x01:/* SYNC. DATA TRANSFER REQUEST */
/* Decode the SDTR message. */
period = 4*dev->sc_msg_in[3];
offset = dev->sc_msg_in[4];
/*
* Make sure that the specs are within
* chip limits. Note that if we
* initiated the negotiation the specs
* WILL be withing chip limits. If it
* was the scsi unit that initiated
* the negotiation, the specs may be
* to high.
*/
if (offset > 16)
offset = 16;
if ((period < 200) &&
(dev->sc_clock_freq <= 25))
period = 200;
if (offset == 0)
period = 5*dev->sc_clock_period;
nexus->syncper = period/
dev->sc_clock_period;
nexus->syncoff = offset;
if (period < 200)
nexus->config3 |= SFAS_CFG3_FASTSCSI;
else
nexus->config3 &=~SFAS_CFG3_FASTSCSI;
nexus->flags |= SFAS_NF_SYNC_TESTED;
*rp->sfas_syncper = nexus->syncper;
*rp->sfas_syncoff = nexus->syncoff;
*rp->sfas_config3 = nexus->config3;
/*
* Hmmm, it seems that the scsi unit
* initiated sync negotiation, so lets
* reply acording to scsi-2 standard.
*/
if (!(nexus->flags& SFAS_NF_SDTR_SENT))
{
if ((dev->sc_config_flags &
SFAS_NO_SYNCH) ||
(dev->sc_config_flags &
SFAS_NO_DMA) ||
sfas_inhibit_sync[
nexus->lun_unit & 7]) {
period = 200;
offset = 0;
}
nexus->offset = offset;
nexus->period = period;
nexus->flags |= SFAS_NF_DO_SDTR;
*rp->sfas_command = SFAS_CMD_SET_ATN;
}
nexus->flags &= ~SFAS_NF_SDTR_SENT;
break;
case 0x00: /* MODIFY DATA POINTERS */
case 0x02: /* EXTENDED IDENTIFY (SCSI-1) */
case 0x03: /* WIDE DATA TRANSFER REQUEST */
default:
/* Reject any unhandeled messages. */
dev->sc_msg_out[0] = 0x07;
dev->sc_msg_out_len = 1;
*rp->sfas_command = SFAS_CMD_SET_ATN;
cmd = SFAS_CMD_MESSAGE_ACCEPTED;
break;
}
break;
default:
/* Reject any unhandeled messages. */
dev->sc_msg_out[0] = 0x07;
dev->sc_msg_out_len = 1;
*rp->sfas_command = SFAS_CMD_SET_ATN;
cmd = SFAS_CMD_MESSAGE_ACCEPTED;
break;
}
nexus->flags &= ~SFAS_NF_HAS_MSG;
dev->sc_msg_in_len = 0;
}
break;
default:
kprintf("SFASINTR: UNKNOWN PHASE! phase: %d\n",
dev->sc_status & SFAS_STAT_PHASE_MASK);
dev->sc_led(dev, 0);
sfas_scsidone(dev, nexus->xs, -4);
return(-1);
}
if (cmd)
*rp->sfas_command = cmd;
return(0);
}
/*
* Stub for interrupt machine.
*/
void
sfasintr(dev)
struct sfas_softc *dev;
{
sfas_regmap_p rp;
struct nexus *nexus;
rp = dev->sc_fas;
if (!sfas_pretests(dev, rp)) {
nexus = dev->sc_cur_nexus;
if (nexus == NULL)
nexus = dev->sc_sel_nexus;
if (nexus)
if (!sfas_midaction(dev, rp, nexus))
sfas_postaction(dev, rp, nexus);
}
}
/*
* sfasicmd is used to perform IO when we can't use interrupts. sfasicmd
* emulates the normal environment by waiting for the chip and calling
* sfasintr.
*/
void
sfasicmd(dev, pendp)
struct sfas_softc *dev;
struct sfas_pending *pendp;
{
sfas_regmap_p rp;
struct nexus *nexus;
nexus = &dev->sc_nexus[pendp->xs->sc_link->target];
rp = dev->sc_fas;
if (!sfasselect(dev, pendp, (char *)pendp->xs->cmd, pendp->xs->cmdlen,
(char *)pendp->xs->data, pendp->xs->datalen,
SFAS_SELECT_I))
panic("sfasicmd: Couldn't select unit");
while(nexus->state != SFAS_NS_FINISHED) {
sfasiwait(dev);
sfasintr(dev);
}
nexus->flags &= ~SFAS_NF_SYNC_TESTED;
}