c869df6afb
symbols--even when the branches are local and would otherwise work with bxx.b. Compensate for this by shadowing the relevant labels with local labels.
703 lines
21 KiB
Plaintext
703 lines
21 KiB
Plaintext
* $NetBSD: get_op.sa,v 1.4 2001/12/09 01:43:13 briggs Exp $
|
|
|
|
* MOTOROLA MICROPROCESSOR & MEMORY TECHNOLOGY GROUP
|
|
* M68000 Hi-Performance Microprocessor Division
|
|
* M68040 Software Package
|
|
*
|
|
* M68040 Software Package Copyright (c) 1993, 1994 Motorola Inc.
|
|
* All rights reserved.
|
|
*
|
|
* THE SOFTWARE is provided on an "AS IS" basis and without warranty.
|
|
* To the maximum extent permitted by applicable law,
|
|
* MOTOROLA DISCLAIMS ALL WARRANTIES WHETHER EXPRESS OR IMPLIED,
|
|
* INCLUDING IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
|
|
* PARTICULAR PURPOSE and any warranty against infringement with
|
|
* regard to the SOFTWARE (INCLUDING ANY MODIFIED VERSIONS THEREOF)
|
|
* and any accompanying written materials.
|
|
*
|
|
* To the maximum extent permitted by applicable law,
|
|
* IN NO EVENT SHALL MOTOROLA BE LIABLE FOR ANY DAMAGES WHATSOEVER
|
|
* (INCLUDING WITHOUT LIMITATION, DAMAGES FOR LOSS OF BUSINESS
|
|
* PROFITS, BUSINESS INTERRUPTION, LOSS OF BUSINESS INFORMATION, OR
|
|
* OTHER PECUNIARY LOSS) ARISING OF THE USE OR INABILITY TO USE THE
|
|
* SOFTWARE. Motorola assumes no responsibility for the maintenance
|
|
* and support of the SOFTWARE.
|
|
*
|
|
* You are hereby granted a copyright license to use, modify, and
|
|
* distribute the SOFTWARE so long as this entire notice is retained
|
|
* without alteration in any modified and/or redistributed versions,
|
|
* and that such modified versions are clearly identified as such.
|
|
* No licenses are granted by implication, estoppel or otherwise
|
|
* under any patents or trademarks of Motorola, Inc.
|
|
|
|
*
|
|
* get_op.sa 3.6 5/19/92
|
|
*
|
|
* get_op.sa 3.5 4/26/91
|
|
*
|
|
* Description: This routine is called by the unsupported format/data
|
|
* type exception handler ('unsupp' - vector 55) and the unimplemented
|
|
* instruction exception handler ('unimp' - vector 11). 'get_op'
|
|
* determines the opclass (0, 2, or 3) and branches to the
|
|
* opclass handler routine. See 68881/2 User's Manual table 4-11
|
|
* for a description of the opclasses.
|
|
*
|
|
* For UNSUPPORTED data/format (exception vector 55) and for
|
|
* UNIMPLEMENTED instructions (exception vector 11) the following
|
|
* applies:
|
|
*
|
|
* - For unnormormalized numbers (opclass 0, 2, or 3) the
|
|
* number(s) is normalized and the operand type tag is updated.
|
|
*
|
|
* - For a packed number (opclass 2) the number is unpacked and the
|
|
* operand type tag is updated.
|
|
*
|
|
* - For denormalized numbers (opclass 0 or 2) the number(s) is not
|
|
* changed but passed to the next module. The next module for
|
|
* unimp is do_func, the next module for unsupp is res_func.
|
|
*
|
|
* For UNSUPPORTED data/format (exception vector 55) only the
|
|
* following applies:
|
|
*
|
|
* - If there is a move out with a packed number (opclass 3) the
|
|
* number is packed and written to user memory. For the other
|
|
* opclasses the number(s) are written back to the fsave stack
|
|
* and the instruction is then restored back into the '040. The
|
|
* '040 is then able to complete the instruction.
|
|
*
|
|
* For example:
|
|
* fadd.x fpm,fpn where the fpm contains an unnormalized number.
|
|
* The '040 takes an unsupported data trap and gets to this
|
|
* routine. The number is normalized, put back on the stack and
|
|
* then an frestore is done to restore the instruction back into
|
|
* the '040. The '040 then re-executes the fadd.x fpm,fpn with
|
|
* a normalized number in the source and the instruction is
|
|
* successful.
|
|
*
|
|
* Next consider if in the process of normalizing the un-
|
|
* normalized number it becomes a denormalized number. The
|
|
* routine which converts the unnorm to a norm (called mk_norm)
|
|
* detects this and tags the number as a denorm. The routine
|
|
* res_func sees the denorm tag and converts the denorm to a
|
|
* norm. The instruction is then restored back into the '040
|
|
* which re_executess the instruction.
|
|
*
|
|
|
|
GET_OP IDNT 2,1 Motorola 040 Floating Point Software Package
|
|
|
|
section 8
|
|
|
|
include fpsp.h
|
|
|
|
xdef PIRN,PIRZRM,PIRP
|
|
xdef SMALRN,SMALRZRM,SMALRP
|
|
xdef BIGRN,BIGRZRM,BIGRP
|
|
|
|
PIRN:
|
|
dc.l $40000000,$c90fdaa2,$2168c235 ;pi
|
|
PIRZRM:
|
|
dc.l $40000000,$c90fdaa2,$2168c234 ;pi
|
|
PIRP:
|
|
dc.l $40000000,$c90fdaa2,$2168c235 ;pi
|
|
|
|
*round to nearest
|
|
SMALRN:
|
|
dc.l $3ffd0000,$9a209a84,$fbcff798 ;log10(2)
|
|
dc.l $40000000,$adf85458,$a2bb4a9a ;e
|
|
dc.l $3fff0000,$b8aa3b29,$5c17f0bc ;log2(e)
|
|
dc.l $3ffd0000,$de5bd8a9,$37287195 ;log10(e)
|
|
dc.l $00000000,$00000000,$00000000 ;0.0
|
|
* round to zero;round to negative infinity
|
|
SMALRZRM:
|
|
dc.l $3ffd0000,$9a209a84,$fbcff798 ;log10(2)
|
|
dc.l $40000000,$adf85458,$a2bb4a9a ;e
|
|
dc.l $3fff0000,$b8aa3b29,$5c17f0bb ;log2(e)
|
|
dc.l $3ffd0000,$de5bd8a9,$37287195 ;log10(e)
|
|
dc.l $00000000,$00000000,$00000000 ;0.0
|
|
* round to positive infinity
|
|
SMALRP:
|
|
dc.l $3ffd0000,$9a209a84,$fbcff799 ;log10(2)
|
|
dc.l $40000000,$adf85458,$a2bb4a9b ;e
|
|
dc.l $3fff0000,$b8aa3b29,$5c17f0bc ;log2(e)
|
|
dc.l $3ffd0000,$de5bd8a9,$37287195 ;log10(e)
|
|
dc.l $00000000,$00000000,$00000000 ;0.0
|
|
|
|
*round to nearest
|
|
BIGRN:
|
|
dc.l $3ffe0000,$b17217f7,$d1cf79ac ;ln(2)
|
|
dc.l $40000000,$935d8ddd,$aaa8ac17 ;ln(10)
|
|
dc.l $3fff0000,$80000000,$00000000 ;10 ^ 0
|
|
|
|
xdef PTENRN
|
|
PTENRN:
|
|
dc.l $40020000,$A0000000,$00000000 ;10 ^ 1
|
|
dc.l $40050000,$C8000000,$00000000 ;10 ^ 2
|
|
dc.l $400C0000,$9C400000,$00000000 ;10 ^ 4
|
|
dc.l $40190000,$BEBC2000,$00000000 ;10 ^ 8
|
|
dc.l $40340000,$8E1BC9BF,$04000000 ;10 ^ 16
|
|
dc.l $40690000,$9DC5ADA8,$2B70B59E ;10 ^ 32
|
|
dc.l $40D30000,$C2781F49,$FFCFA6D5 ;10 ^ 64
|
|
dc.l $41A80000,$93BA47C9,$80E98CE0 ;10 ^ 128
|
|
dc.l $43510000,$AA7EEBFB,$9DF9DE8E ;10 ^ 256
|
|
dc.l $46A30000,$E319A0AE,$A60E91C7 ;10 ^ 512
|
|
dc.l $4D480000,$C9767586,$81750C17 ;10 ^ 1024
|
|
dc.l $5A920000,$9E8B3B5D,$C53D5DE5 ;10 ^ 2048
|
|
dc.l $75250000,$C4605202,$8A20979B ;10 ^ 4096
|
|
*round to minus infinity
|
|
BIGRZRM:
|
|
dc.l $3ffe0000,$b17217f7,$d1cf79ab ;ln(2)
|
|
dc.l $40000000,$935d8ddd,$aaa8ac16 ;ln(10)
|
|
dc.l $3fff0000,$80000000,$00000000 ;10 ^ 0
|
|
|
|
xdef PTENRM
|
|
PTENRM:
|
|
dc.l $40020000,$A0000000,$00000000 ;10 ^ 1
|
|
dc.l $40050000,$C8000000,$00000000 ;10 ^ 2
|
|
dc.l $400C0000,$9C400000,$00000000 ;10 ^ 4
|
|
dc.l $40190000,$BEBC2000,$00000000 ;10 ^ 8
|
|
dc.l $40340000,$8E1BC9BF,$04000000 ;10 ^ 16
|
|
dc.l $40690000,$9DC5ADA8,$2B70B59D ;10 ^ 32
|
|
dc.l $40D30000,$C2781F49,$FFCFA6D5 ;10 ^ 64
|
|
dc.l $41A80000,$93BA47C9,$80E98CDF ;10 ^ 128
|
|
dc.l $43510000,$AA7EEBFB,$9DF9DE8D ;10 ^ 256
|
|
dc.l $46A30000,$E319A0AE,$A60E91C6 ;10 ^ 512
|
|
dc.l $4D480000,$C9767586,$81750C17 ;10 ^ 1024
|
|
dc.l $5A920000,$9E8B3B5D,$C53D5DE5 ;10 ^ 2048
|
|
dc.l $75250000,$C4605202,$8A20979A ;10 ^ 4096
|
|
*round to positive infinity
|
|
BIGRP:
|
|
dc.l $3ffe0000,$b17217f7,$d1cf79ac ;ln(2)
|
|
dc.l $40000000,$935d8ddd,$aaa8ac17 ;ln(10)
|
|
dc.l $3fff0000,$80000000,$00000000 ;10 ^ 0
|
|
|
|
xdef PTENRP
|
|
PTENRP:
|
|
dc.l $40020000,$A0000000,$00000000 ;10 ^ 1
|
|
dc.l $40050000,$C8000000,$00000000 ;10 ^ 2
|
|
dc.l $400C0000,$9C400000,$00000000 ;10 ^ 4
|
|
dc.l $40190000,$BEBC2000,$00000000 ;10 ^ 8
|
|
dc.l $40340000,$8E1BC9BF,$04000000 ;10 ^ 16
|
|
dc.l $40690000,$9DC5ADA8,$2B70B59E ;10 ^ 32
|
|
dc.l $40D30000,$C2781F49,$FFCFA6D6 ;10 ^ 64
|
|
dc.l $41A80000,$93BA47C9,$80E98CE0 ;10 ^ 128
|
|
dc.l $43510000,$AA7EEBFB,$9DF9DE8E ;10 ^ 256
|
|
dc.l $46A30000,$E319A0AE,$A60E91C7 ;10 ^ 512
|
|
dc.l $4D480000,$C9767586,$81750C18 ;10 ^ 1024
|
|
dc.l $5A920000,$9E8B3B5D,$C53D5DE6 ;10 ^ 2048
|
|
dc.l $75250000,$C4605202,$8A20979B ;10 ^ 4096
|
|
|
|
xref nrm_zero
|
|
xref decbin
|
|
xref round
|
|
|
|
xdef get_op
|
|
xdef uns_getop
|
|
xdef uni_getop
|
|
get_op:
|
|
clr.b DY_MO_FLG(a6)
|
|
tst.b UFLG_TMP(a6) ;test flag for unsupp/unimp state
|
|
beq.b short_uni_getop
|
|
|
|
uns_getop:
|
|
btst.b #direction_bit,CMDREG1B(a6)
|
|
bne.w opclass3 ;branch if a fmove out (any kind)
|
|
btst.b #6,CMDREG1B(a6)
|
|
beq.b uns_notpacked
|
|
|
|
bfextu CMDREG1B(a6){3:3},d0
|
|
cmp.b #3,d0
|
|
beq.w pack_source ;check for a packed src op, branch if so
|
|
uns_notpacked:
|
|
bsr chk_dy_mo ;set the dyadic/monadic flag
|
|
tst.b DY_MO_FLG(a6)
|
|
beq.b src_op_ck ;if monadic, go check src op
|
|
* ;else, check dst op (fall through)
|
|
|
|
btst.b #7,DTAG(a6)
|
|
beq.b src_op_ck ;if dst op is norm, check src op
|
|
bra.b dst_ex_dnrm ;else, handle destination unnorm/dnrm
|
|
|
|
uni_getop:
|
|
short_uni_getop:
|
|
bfextu CMDREG1B(a6){0:6},d0 ;get opclass and src fields
|
|
cmpi.l #$17,d0 ;if op class and size fields are $17,
|
|
* ;it is FMOVECR; if not, continue
|
|
*
|
|
* If the instruction is fmovecr, exit get_op. It is handled
|
|
* in do_func and smovecr.sa.
|
|
*
|
|
bne.w not_fmovecr ;handle fmovecr as an unimplemented inst
|
|
rts
|
|
|
|
not_fmovecr:
|
|
btst.b #E1,E_BYTE(a6) ;if set, there is a packed operand
|
|
bne.w pack_source ;check for packed src op, branch if so
|
|
|
|
* The following lines of are coded to optimize on normalized operands
|
|
move.b STAG(a6),d0
|
|
or.b DTAG(a6),d0 ;check if either of STAG/DTAG msb set
|
|
bmi.b dest_op_ck ;if so, some op needs to be fixed
|
|
rts
|
|
|
|
dest_op_ck:
|
|
btst.b #7,DTAG(a6) ;check for unsupported data types in
|
|
beq.b src_op_ck ;the destination, if not, check src op
|
|
bsr chk_dy_mo ;set dyadic/monadic flag
|
|
tst.b DY_MO_FLG(a6) ;
|
|
beq.b src_op_ck ;if monadic, check src op
|
|
*
|
|
* At this point, destination has an extended denorm or unnorm.
|
|
*
|
|
dst_ex_dnrm:
|
|
move.w FPTEMP_EX(a6),d0 ;get destination exponent
|
|
andi.w #$7fff,d0 ;mask sign, check if exp = 0000
|
|
beq.b src_op_ck ;if denorm then check source op.
|
|
* ;denorms are taken care of in res_func
|
|
* ;(unsupp) or do_func (unimp)
|
|
* ;else unnorm fall through
|
|
lea.l FPTEMP(a6),a0 ;point a0 to dop - used in mk_norm
|
|
bsr mk_norm ;go normalize - mk_norm returns:
|
|
* ;L_SCR1{7:5} = operand tag
|
|
* ; (000 = norm, 100 = denorm)
|
|
* ;L_SCR1{4} = fpte15 or ete15
|
|
* ; 0 = exp > $3fff
|
|
* ; 1 = exp <= $3fff
|
|
* ;and puts the normalized num back
|
|
* ;on the fsave stack
|
|
*
|
|
move.b L_SCR1(a6),DTAG(a6) ;write the new tag & fpte15
|
|
* ;to the fsave stack and fall
|
|
* ;through to check source operand
|
|
*
|
|
src_op_ck:
|
|
btst.b #7,STAG(a6)
|
|
beq.w end_getop ;check for unsupported data types on the
|
|
* ;source operand
|
|
btst.b #5,STAG(a6)
|
|
bne.b src_sd_dnrm ;if bit 5 set, handle sgl/dbl denorms
|
|
*
|
|
* At this point only unnorms or extended denorms are possible.
|
|
*
|
|
src_ex_dnrm:
|
|
move.w ETEMP_EX(a6),d0 ;get source exponent
|
|
andi.w #$7fff,d0 ;mask sign, check if exp = 0000
|
|
beq.w end_getop ;if denorm then exit, denorms are
|
|
* ;handled in do_func
|
|
lea.l ETEMP(a6),a0 ;point a0 to sop - used in mk_norm
|
|
bsr mk_norm ;go normalize - mk_norm returns:
|
|
* ;L_SCR1{7:5} = operand tag
|
|
* ; (000 = norm, 100 = denorm)
|
|
* ;L_SCR1{4} = fpte15 or ete15
|
|
* ; 0 = exp > $3fff
|
|
* ; 1 = exp <= $3fff
|
|
* ;and puts the normalized num back
|
|
* ;on the fsave stack
|
|
*
|
|
move.b L_SCR1(a6),STAG(a6) ;write the new tag & ete15
|
|
rts ;end_getop
|
|
|
|
*
|
|
* At this point, only single or double denorms are possible.
|
|
* If the inst is not fmove, normalize the source. If it is,
|
|
* do nothing to the input.
|
|
*
|
|
src_sd_dnrm:
|
|
btst.b #4,CMDREG1B(a6) ;differentiate between sgl/dbl denorm
|
|
bne.b is_double
|
|
is_single:
|
|
move.w #$3f81,d1 ;write bias for sgl denorm
|
|
bra.b common ;goto the common code
|
|
is_double:
|
|
move.w #$3c01,d1 ;write the bias for a dbl denorm
|
|
common:
|
|
btst.b #sign_bit,ETEMP_EX(a6) ;grab sign bit of mantissa
|
|
beq.b pos
|
|
bset #15,d1 ;set sign bit because it is negative
|
|
pos:
|
|
move.w d1,ETEMP_EX(a6)
|
|
* ;put exponent on stack
|
|
|
|
move.w CMDREG1B(a6),d1
|
|
and.w #$e3ff,d1 ;clear out source specifier
|
|
or.w #$0800,d1 ;set source specifier to extended prec
|
|
move.w d1,CMDREG1B(a6) ;write back to the command word in stack
|
|
* ;this is needed to fix unsupp data stack
|
|
lea.l ETEMP(a6),a0 ;point a0 to sop
|
|
|
|
bsr mk_norm ;convert sgl/dbl denorm to norm
|
|
move.b L_SCR1(a6),STAG(a6) ;put tag into source tag reg - d0
|
|
rts ;end_getop
|
|
*
|
|
* At this point, the source is definitely packed, whether
|
|
* instruction is dyadic or monadic is still unknown
|
|
*
|
|
pack_source:
|
|
move.l FPTEMP_LO(a6),ETEMP(a6) ;write ms part of packed
|
|
* ;number to etemp slot
|
|
bsr chk_dy_mo ;set dyadic/monadic flag
|
|
bsr unpack
|
|
|
|
tst.b DY_MO_FLG(a6)
|
|
beq.b end_getop ;if monadic, exit
|
|
* ;else, fix FPTEMP
|
|
pack_dya:
|
|
bfextu CMDREG1B(a6){6:3},d0 ;extract dest fp reg
|
|
move.l #7,d1
|
|
sub.l d0,d1
|
|
clr.l d0
|
|
bset.l d1,d0 ;set up d0 as a dynamic register mask
|
|
fmovem.x d0,FPTEMP(a6) ;write to FPTEMP
|
|
|
|
btst.b #7,DTAG(a6) ;check dest tag for unnorm or denorm
|
|
bne.w dst_ex_dnrm ;else, handle the unnorm or ext denorm
|
|
*
|
|
* Dest is not denormalized. Check for norm, and set fpte15
|
|
* accordingly.
|
|
*
|
|
move.b DTAG(a6),d0
|
|
andi.b #$f0,d0 ;strip to only dtag:fpte15
|
|
tst.b d0 ;check for normalized value
|
|
bne.b end_getop ;if inf/nan/zero leave get_op
|
|
move.w FPTEMP_EX(a6),d0
|
|
andi.w #$7fff,d0
|
|
cmpi.w #$3fff,d0 ;check if fpte15 needs setting
|
|
bge.b end_getop ;if >= $3fff, leave fpte15=0
|
|
or.b #$10,DTAG(a6)
|
|
bra.b end_getop
|
|
|
|
*
|
|
* At this point, it is either an fmoveout packed, unnorm or denorm
|
|
*
|
|
opclass3:
|
|
clr.b DY_MO_FLG(a6) ;set dyadic/monadic flag to monadic
|
|
bfextu CMDREG1B(a6){4:2},d0
|
|
cmpi.b #3,d0
|
|
bne.w src_ex_dnrm ;if not equal, must be unnorm or denorm
|
|
* ;else it is a packed move out
|
|
* ;exit
|
|
end_getop:
|
|
rts
|
|
|
|
*
|
|
* Sets the DY_MO_FLG correctly. This is used only on if it is an
|
|
* unuspported data type exception. Set if dyadic.
|
|
*
|
|
chk_dy_mo:
|
|
move.w CMDREG1B(a6),d0
|
|
btst.l #5,d0 ;testing extension command word
|
|
beq.b set_mon ;if bit 5 = 0 then monadic
|
|
btst.l #4,d0 ;know that bit 5 = 1
|
|
beq.b set_dya ;if bit 4 = 0 then dyadic
|
|
andi.w #$007f,d0 ;get rid of all but extension bits {6:0}
|
|
cmpi.w #$0038,d0 ;if extension = $38 then fcmp (dyadic)
|
|
bne.b set_mon
|
|
set_dya:
|
|
st.b DY_MO_FLG(a6) ;set the inst flag type to dyadic
|
|
rts
|
|
set_mon:
|
|
clr.b DY_MO_FLG(a6) ;set the inst flag type to monadic
|
|
rts
|
|
*
|
|
* MK_NORM
|
|
*
|
|
* Normalizes unnormalized numbers, sets tag to norm or denorm, sets unfl
|
|
* exception if denorm.
|
|
*
|
|
* CASE opclass 0x0 unsupp
|
|
* mk_norm till msb set
|
|
* set tag = norm
|
|
*
|
|
* CASE opclass 0x0 unimp
|
|
* mk_norm till msb set or exp = 0
|
|
* if integer bit = 0
|
|
* tag = denorm
|
|
* else
|
|
* tag = norm
|
|
*
|
|
* CASE opclass 011 unsupp
|
|
* mk_norm till msb set or exp = 0
|
|
* if integer bit = 0
|
|
* tag = denorm
|
|
* set unfl_nmcexe = 1
|
|
* else
|
|
* tag = norm
|
|
*
|
|
* if exp <= $3fff
|
|
* set ete15 or fpte15 = 1
|
|
* else set ete15 or fpte15 = 0
|
|
|
|
* input:
|
|
* a0 = points to operand to be normalized
|
|
* output:
|
|
* L_SCR1{7:5} = operand tag (000 = norm, 100 = denorm)
|
|
* L_SCR1{4} = fpte15 or ete15 (0 = exp > $3fff, 1 = exp <=$3fff)
|
|
* the normalized operand is placed back on the fsave stack
|
|
mk_norm:
|
|
clr.l L_SCR1(a6)
|
|
bclr.b #sign_bit,LOCAL_EX(a0)
|
|
sne LOCAL_SGN(a0) ;transform into internal extended format
|
|
|
|
cmpi.b #$2c,1+EXC_VEC(a6) ;check if unimp
|
|
bne.b uns_data ;branch if unsupp
|
|
bsr uni_inst ;call if unimp (opclass 0x0)
|
|
bra.b reload
|
|
uns_data:
|
|
btst.b #direction_bit,CMDREG1B(a6) ;check transfer direction
|
|
bne.b bit_set ;branch if set (opclass 011)
|
|
bsr uns_opx ;call if opclass 0x0
|
|
bra.b reload
|
|
bit_set:
|
|
bsr uns_op3 ;opclass 011
|
|
reload:
|
|
cmp.w #$3fff,LOCAL_EX(a0) ;if exp > $3fff
|
|
bgt.b end_mk ; fpte15/ete15 already set to 0
|
|
bset.b #4,L_SCR1(a6) ;else set fpte15/ete15 to 1
|
|
* ;calling routine actually sets the
|
|
* ;value on the stack (along with the
|
|
* ;tag), since this routine doesn't
|
|
* ;know if it should set ete15 or fpte15
|
|
* ;ie, it doesn't know if this is the
|
|
* ;src op or dest op.
|
|
end_mk:
|
|
bfclr LOCAL_SGN(a0){0:8}
|
|
beq.b end_mk_pos
|
|
bset.b #sign_bit,LOCAL_EX(a0) ;convert back to IEEE format
|
|
end_mk_pos:
|
|
rts
|
|
*
|
|
* CASE opclass 011 unsupp
|
|
*
|
|
uns_op3:
|
|
bsr nrm_zero ;normalize till msb = 1 or exp = zero
|
|
btst.b #7,LOCAL_HI(a0) ;if msb = 1
|
|
bne.b no_unfl ;then branch
|
|
set_unfl:
|
|
or.b #dnrm_tag,L_SCR1(a6) ;set denorm tag
|
|
bset.b #unfl_bit,FPSR_EXCEPT(a6) ;set unfl exception bit
|
|
no_unfl:
|
|
rts
|
|
*
|
|
* CASE opclass 0x0 unsupp
|
|
*
|
|
uns_opx:
|
|
bsr nrm_zero ;normalize the number
|
|
btst.b #7,LOCAL_HI(a0) ;check if integer bit (j-bit) is set
|
|
beq.b uns_den ;if clear then now have a denorm
|
|
uns_nrm:
|
|
or.b #norm_tag,L_SCR1(a6) ;set tag to norm
|
|
rts
|
|
uns_den:
|
|
or.b #dnrm_tag,L_SCR1(a6) ;set tag to denorm
|
|
rts
|
|
*
|
|
* CASE opclass 0x0 unimp
|
|
*
|
|
uni_inst:
|
|
bsr nrm_zero
|
|
btst.b #7,LOCAL_HI(a0) ;check if integer bit (j-bit) is set
|
|
beq.b uni_den ;if clear then now have a denorm
|
|
uni_nrm:
|
|
or.b #norm_tag,L_SCR1(a6) ;set tag to norm
|
|
rts
|
|
uni_den:
|
|
or.b #dnrm_tag,L_SCR1(a6) ;set tag to denorm
|
|
rts
|
|
|
|
*
|
|
* Decimal to binary conversion
|
|
*
|
|
* Special cases of inf and NaNs are completed outside of decbin.
|
|
* If the input is an snan, the snan bit is not set.
|
|
*
|
|
* input:
|
|
* ETEMP(a6) - points to packed decimal string in memory
|
|
* output:
|
|
* fp0 - contains packed string converted to extended precision
|
|
* ETEMP - same as fp0
|
|
unpack:
|
|
move.w CMDREG1B(a6),d0 ;examine command word, looking for fmove's
|
|
and.w #$3b,d0
|
|
beq move_unpack ;special handling for fmove: must set FPSR_CC
|
|
|
|
move.w ETEMP(a6),d0 ;get word with inf information
|
|
bfextu d0{20:12},d1 ;get exponent into d1
|
|
cmpi.w #$0fff,d1 ;test for inf or NaN
|
|
bne.b try_zero ;if not equal, it is not special
|
|
bfextu d0{17:3},d1 ;get SE and y bits into d1
|
|
cmpi.w #7,d1 ;SE and y bits must be on for special
|
|
bne.b try_zero ;if not on, it is not special
|
|
*input is of the special cases of inf and NaN
|
|
tst.l ETEMP_HI(a6) ;check ms mantissa
|
|
bne.b fix_nan ;if non-zero, it is a NaN
|
|
tst.l ETEMP_LO(a6) ;check ls mantissa
|
|
bne.b fix_nan ;if non-zero, it is a NaN
|
|
bra.w finish ;special already on stack
|
|
fix_nan:
|
|
btst.b #signan_bit,ETEMP_HI(a6) ;test for snan
|
|
bne.w finish
|
|
or.l #snaniop_mask,USER_FPSR(a6) ;always set snan if it is so
|
|
bra.w finish
|
|
try_zero:
|
|
move.w ETEMP_EX+2(a6),d0 ;get word 4
|
|
andi.w #$000f,d0 ;clear all but last ni(y)bble
|
|
tst.w d0 ;check for zero.
|
|
bne.w not_spec
|
|
tst.l ETEMP_HI(a6) ;check words 3 and 2
|
|
bne.w not_spec
|
|
tst.l ETEMP_LO(a6) ;check words 1 and 0
|
|
bne.w not_spec
|
|
tst.l ETEMP(a6) ;test sign of the zero
|
|
bge.b pos_zero
|
|
move.l #$80000000,ETEMP(a6) ;write neg zero to etemp
|
|
clr.l ETEMP_HI(a6)
|
|
clr.l ETEMP_LO(a6)
|
|
bra.w finish
|
|
pos_zero:
|
|
clr.l ETEMP(a6)
|
|
clr.l ETEMP_HI(a6)
|
|
clr.l ETEMP_LO(a6)
|
|
bra.w finish
|
|
|
|
not_spec:
|
|
fmovem.x fp0-fp1,-(a7) ;save fp0 - decbin returns in it
|
|
bsr decbin
|
|
fmove.x fp0,ETEMP(a6) ;put the unpacked sop in the fsave stack
|
|
fmovem.x (a7)+,fp0-fp1
|
|
fmove.l #0,FPSR ;clr fpsr from decbin
|
|
bra finish
|
|
|
|
*
|
|
* Special handling for packed move in: Same results as all other
|
|
* packed cases, but we must set the FPSR condition codes properly.
|
|
*
|
|
move_unpack:
|
|
move.w ETEMP(a6),d0 ;get word with inf information
|
|
bfextu d0{20:12},d1 ;get exponent into d1
|
|
cmpi.w #$0fff,d1 ;test for inf or NaN
|
|
bne.b mtry_zero ;if not equal, it is not special
|
|
bfextu d0{17:3},d1 ;get SE and y bits into d1
|
|
cmpi.w #7,d1 ;SE and y bits must be on for special
|
|
bne.b mtry_zero ;if not on, it is not special
|
|
*input is of the special cases of inf and NaN
|
|
tst.l ETEMP_HI(a6) ;check ms mantissa
|
|
bne.b mfix_nan ;if non-zero, it is a NaN
|
|
tst.l ETEMP_LO(a6) ;check ls mantissa
|
|
bne.b mfix_nan ;if non-zero, it is a NaN
|
|
*input is inf
|
|
or.l #inf_mask,USER_FPSR(a6) ;set I bit
|
|
tst.l ETEMP(a6) ;check sign
|
|
bge.w finish
|
|
or.l #neg_mask,USER_FPSR(a6) ;set N bit
|
|
bra.w finish ;special already on stack
|
|
mfix_nan:
|
|
or.l #nan_mask,USER_FPSR(a6) ;set NaN bit
|
|
move.b #nan_tag,STAG(a6) ;set stag to NaN
|
|
btst.b #signan_bit,ETEMP_HI(a6) ;test for snan
|
|
bne.b mn_snan
|
|
or.l #snaniop_mask,USER_FPSR(a6) ;set snan bit
|
|
btst.b #snan_bit,FPCR_ENABLE(a6) ;test for snan enabled
|
|
bne.b mn_snan
|
|
bset.b #signan_bit,ETEMP_HI(a6) ;force snans to qnans
|
|
mn_snan:
|
|
tst.l ETEMP(a6) ;check for sign
|
|
bge.w finish ;if clr, go on
|
|
or.l #neg_mask,USER_FPSR(a6) ;set N bit
|
|
bra.w finish
|
|
|
|
mtry_zero:
|
|
move.w ETEMP_EX+2(a6),d0 ;get word 4
|
|
andi.w #$000f,d0 ;clear all but last ni(y)bble
|
|
tst.w d0 ;check for zero.
|
|
bne.b mnot_spec
|
|
tst.l ETEMP_HI(a6) ;check words 3 and 2
|
|
bne.b mnot_spec
|
|
tst.l ETEMP_LO(a6) ;check words 1 and 0
|
|
bne.b mnot_spec
|
|
tst.l ETEMP(a6) ;test sign of the zero
|
|
bge.b mpos_zero
|
|
or.l #neg_mask+z_mask,USER_FPSR(a6) ;set N and Z
|
|
move.l #$80000000,ETEMP(a6) ;write neg zero to etemp
|
|
clr.l ETEMP_HI(a6)
|
|
clr.l ETEMP_LO(a6)
|
|
bra.b finish
|
|
mpos_zero:
|
|
or.l #z_mask,USER_FPSR(a6) ;set Z
|
|
clr.l ETEMP(a6)
|
|
clr.l ETEMP_HI(a6)
|
|
clr.l ETEMP_LO(a6)
|
|
bra.b finish
|
|
|
|
mnot_spec:
|
|
fmovem.x fp0-fp1,-(a7) ;save fp0 ,fp1 - decbin returns in fp0
|
|
bsr decbin
|
|
fmove.x fp0,ETEMP(a6)
|
|
* ;put the unpacked sop in the fsave stack
|
|
fmovem.x (a7)+,fp0-fp1
|
|
|
|
finish:
|
|
move.w CMDREG1B(a6),d0 ;get the command word
|
|
and.w #$fbff,d0 ;change the source specifier field to
|
|
* ;extended (was packed).
|
|
move.w d0,CMDREG1B(a6) ;write command word back to fsave stack
|
|
* ;we need to do this so the 040 will
|
|
* ;re-execute the inst. without taking
|
|
* ;another packed trap.
|
|
|
|
fix_stag:
|
|
*Converted result is now in etemp on fsave stack, now set the source
|
|
*tag (stag)
|
|
* if (ete =$7fff) then INF or NAN
|
|
* if (etemp = $x.0----0) then
|
|
* stag = INF
|
|
* else
|
|
* stag = NAN
|
|
* else
|
|
* if (ete = $0000) then
|
|
* stag = ZERO
|
|
* else
|
|
* stag = NORM
|
|
*
|
|
* Note also that the etemp_15 bit (just right of the stag) must
|
|
* be set accordingly.
|
|
*
|
|
move.w ETEMP_EX(a6),d1
|
|
andi.w #$7fff,d1 ;strip sign
|
|
cmp.w #$7fff,d1
|
|
bne.b z_or_nrm
|
|
move.l ETEMP_HI(a6),d1
|
|
bne.b is_nan
|
|
move.l ETEMP_LO(a6),d1
|
|
bne.b is_nan
|
|
is_inf:
|
|
move.b #$40,STAG(a6)
|
|
move.l #$40,d0
|
|
rts
|
|
is_nan:
|
|
move.b #$60,STAG(a6)
|
|
move.l #$60,d0
|
|
rts
|
|
z_or_nrm:
|
|
tst.w d1
|
|
bne.b is_nrm
|
|
is_zro:
|
|
* For a zero, set etemp_15
|
|
move.b #$30,STAG(a6)
|
|
move.l #$20,d0
|
|
rts
|
|
is_nrm:
|
|
* For a norm, check if the exp <= $3fff; if so, set etemp_15
|
|
cmpi.w #$3fff,d1
|
|
ble.b set_bit15
|
|
clr.b STAG(a6)
|
|
bra.b end_is_nrm
|
|
set_bit15:
|
|
move.b #$10,STAG(a6)
|
|
end_is_nrm:
|
|
clr.l d0
|
|
end_fix:
|
|
rts
|
|
|
|
end_get:
|
|
rts
|
|
end
|