NetBSD/lib/libcrypto/man/openssl_dsa.3

257 lines
7.4 KiB
Groff

.\" $NetBSD: openssl_dsa.3,v 1.5 2002/08/08 23:48:12 itojun Exp $
.\"
.\" Automatically generated by Pod::Man version 1.02
.\" Fri Aug 9 08:28:31 2002
.\"
.\" Standard preamble:
.\" ======================================================================
.de Sh \" Subsection heading
.br
.if t .Sp
.ne 5
.PP
\fB\\$1\fR
.PP
..
.de Sp \" Vertical space (when we can't use .PP)
.if t .sp .5v
.if n .sp
..
.de Ip \" List item
.br
.ie \\n(.$>=3 .ne \\$3
.el .ne 3
.IP "\\$1" \\$2
..
.de Vb \" Begin verbatim text
.ft CW
.nf
.ne \\$1
..
.de Ve \" End verbatim text
.ft R
.fi
..
.\" Set up some character translations and predefined strings. \*(-- will
.\" give an unbreakable dash, \*(PI will give pi, \*(L" will give a left
.\" double quote, and \*(R" will give a right double quote. | will give a
.\" real vertical bar. \*(C+ will give a nicer C++. Capital omega is used
.\" to do unbreakable dashes and therefore won't be available. \*(C` and
.\" \*(C' expand to `' in nroff, nothing in troff, for use with C<>
.tr \(*W-|\(bv\*(Tr
.ds C+ C\v'-.1v'\h'-1p'\s-2+\h'-1p'+\s0\v'.1v'\h'-1p'
.ie n \{\
. ds -- \(*W-
. ds PI pi
. if (\n(.H=4u)&(1m=24u) .ds -- \(*W\h'-12u'\(*W\h'-12u'-\" diablo 10 pitch
. if (\n(.H=4u)&(1m=20u) .ds -- \(*W\h'-12u'\(*W\h'-8u'-\" diablo 12 pitch
. ds L" ""
. ds R" ""
. ds C` `
. ds C' '
'br\}
.el\{\
. ds -- \|\(em\|
. ds PI \(*p
. ds L" ``
. ds R" ''
'br\}
.\"
.\" If the F register is turned on, we'll generate index entries on stderr
.\" for titles (.TH), headers (.SH), subsections (.Sh), items (.Ip), and
.\" index entries marked with X<> in POD. Of course, you'll have to process
.\" the output yourself in some meaningful fashion.
.if \nF \{\
. de IX
. tm Index:\\$1\t\\n%\t"\\$2"
. .
. nr % 0
. rr F
.\}
.\"
.\" For nroff, turn off justification. Always turn off hyphenation; it
.\" makes way too many mistakes in technical documents.
.hy 0
.if n .na
.\"
.\" Accent mark definitions (@(#)ms.acc 1.5 88/02/08 SMI; from UCB 4.2).
.\" Fear. Run. Save yourself. No user-serviceable parts.
.bd B 3
. \" fudge factors for nroff and troff
.if n \{\
. ds #H 0
. ds #V .8m
. ds #F .3m
. ds #[ \f1
. ds #] \fP
.\}
.if t \{\
. ds #H ((1u-(\\\\n(.fu%2u))*.13m)
. ds #V .6m
. ds #F 0
. ds #[ \&
. ds #] \&
.\}
. \" simple accents for nroff and troff
.if n \{\
. ds ' \&
. ds ` \&
. ds ^ \&
. ds , \&
. ds ~ ~
. ds /
.\}
.if t \{\
. ds ' \\k:\h'-(\\n(.wu*8/10-\*(#H)'\'\h"|\\n:u"
. ds ` \\k:\h'-(\\n(.wu*8/10-\*(#H)'\`\h'|\\n:u'
. ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'^\h'|\\n:u'
. ds , \\k:\h'-(\\n(.wu*8/10)',\h'|\\n:u'
. ds ~ \\k:\h'-(\\n(.wu-\*(#H-.1m)'~\h'|\\n:u'
. ds / \\k:\h'-(\\n(.wu*8/10-\*(#H)'\z\(sl\h'|\\n:u'
.\}
. \" troff and (daisy-wheel) nroff accents
.ds : \\k:\h'-(\\n(.wu*8/10-\*(#H+.1m+\*(#F)'\v'-\*(#V'\z.\h'.2m+\*(#F'.\h'|\\n:u'\v'\*(#V'
.ds 8 \h'\*(#H'\(*b\h'-\*(#H'
.ds o \\k:\h'-(\\n(.wu+\w'\(de'u-\*(#H)/2u'\v'-.3n'\*(#[\z\(de\v'.3n'\h'|\\n:u'\*(#]
.ds d- \h'\*(#H'\(pd\h'-\w'~'u'\v'-.25m'\f2\(hy\fP\v'.25m'\h'-\*(#H'
.ds D- D\\k:\h'-\w'D'u'\v'-.11m'\z\(hy\v'.11m'\h'|\\n:u'
.ds th \*(#[\v'.3m'\s+1I\s-1\v'-.3m'\h'-(\w'I'u*2/3)'\s-1o\s+1\*(#]
.ds Th \*(#[\s+2I\s-2\h'-\w'I'u*3/5'\v'-.3m'o\v'.3m'\*(#]
.ds ae a\h'-(\w'a'u*4/10)'e
.ds Ae A\h'-(\w'A'u*4/10)'E
. \" corrections for vroff
.if v .ds ~ \\k:\h'-(\\n(.wu*9/10-\*(#H)'\s-2\u~\d\s+2\h'|\\n:u'
.if v .ds ^ \\k:\h'-(\\n(.wu*10/11-\*(#H)'\v'-.4m'^\v'.4m'\h'|\\n:u'
. \" for low resolution devices (crt and lpr)
.if \n(.H>23 .if \n(.V>19 \
\{\
. ds : e
. ds 8 ss
. ds o a
. ds d- d\h'-1'\(ga
. ds D- D\h'-1'\(hy
. ds th \o'bp'
. ds Th \o'LP'
. ds ae ae
. ds Ae AE
.\}
.rm #[ #] #H #V #F C
.\" ======================================================================
.\"
.IX Title "dsa 3"
.TH dsa 3 "0.9.6f" "2000-07-22" "OpenSSL"
.UC
.SH "NAME"
dsa \- Digital Signature Algorithm
.SH "LIBRARY"
libcrypto, -lcrypto
.SH "SYNOPSIS"
.IX Header "SYNOPSIS"
.Vb 1
\& #include <openssl/dsa.h>
.Ve
.Vb 2
\& DSA * DSA_new(void);
\& void DSA_free(DSA *dsa);
.Ve
.Vb 1
\& int DSA_size(DSA *dsa);
.Ve
.Vb 3
\& DSA * DSA_generate_parameters(int bits, unsigned char *seed,
\& int seed_len, int *counter_ret, unsigned long *h_ret,
\& void (*callback)(int, int, void *), void *cb_arg);
.Ve
.Vb 1
\& DH * DSA_dup_DH(DSA *r);
.Ve
.Vb 1
\& int DSA_generate_key(DSA *dsa);
.Ve
.Vb 6
\& int DSA_sign(int dummy, const unsigned char *dgst, int len,
\& unsigned char *sigret, unsigned int *siglen, DSA *dsa);
\& int DSA_sign_setup(DSA *dsa, BN_CTX *ctx, BIGNUM **kinvp,
\& BIGNUM **rp);
\& int DSA_verify(int dummy, const unsigned char *dgst, int len,
\& unsigned char *sigbuf, int siglen, DSA *dsa);
.Ve
.Vb 5
\& void DSA_set_default_method(DSA_METHOD *meth);
\& DSA_METHOD *DSA_get_default_method(void);
\& DSA_METHOD *DSA_set_method(DSA *dsa, DSA_METHOD *meth);
\& DSA *DSA_new_method(DSA_METHOD *meth);
\& DSA_METHOD *DSA_OpenSSL(void);
.Ve
.Vb 4
\& int DSA_get_ex_new_index(long argl, char *argp, int (*new_func)(),
\& int (*dup_func)(), void (*free_func)());
\& int DSA_set_ex_data(DSA *d, int idx, char *arg);
\& char *DSA_get_ex_data(DSA *d, int idx);
.Ve
.Vb 4
\& DSA_SIG *DSA_SIG_new(void);
\& void DSA_SIG_free(DSA_SIG *a);
\& int i2d_DSA_SIG(DSA_SIG *a, unsigned char **pp);
\& DSA_SIG *d2i_DSA_SIG(DSA_SIG **v, unsigned char **pp, long length);
.Ve
.Vb 3
\& DSA_SIG *DSA_do_sign(const unsigned char *dgst, int dlen, DSA *dsa);
\& int DSA_do_verify(const unsigned char *dgst, int dgst_len,
\& DSA_SIG *sig, DSA *dsa);
.Ve
.Vb 6
\& DSA * d2i_DSAPublicKey(DSA **a, unsigned char **pp, long length);
\& DSA * d2i_DSAPrivateKey(DSA **a, unsigned char **pp, long length);
\& DSA * d2i_DSAparams(DSA **a, unsigned char **pp, long length);
\& int i2d_DSAPublicKey(DSA *a, unsigned char **pp);
\& int i2d_DSAPrivateKey(DSA *a, unsigned char **pp);
\& int i2d_DSAparams(DSA *a,unsigned char **pp);
.Ve
.Vb 4
\& int DSAparams_print(BIO *bp, DSA *x);
\& int DSAparams_print_fp(FILE *fp, DSA *x);
\& int DSA_print(BIO *bp, DSA *x, int off);
\& int DSA_print_fp(FILE *bp, DSA *x, int off);
.Ve
.SH "DESCRIPTION"
.IX Header "DESCRIPTION"
These functions implement the Digital Signature Algorithm (\s-1DSA\s0). The
generation of shared \s-1DSA\s0 parameters is described in
DSA_generate_parameters(3);
DSA_generate_key(3) describes how to
generate a signature key. Signature generation and verification are
described in DSA_sign(3).
.PP
The \fB\s-1DSA\s0\fR structure consists of several \s-1BIGNUM\s0 components.
.PP
.Vb 10
\& struct
\& {
\& BIGNUM *p; // prime number (public)
\& BIGNUM *q; // 160-bit subprime, q | p-1 (public)
\& BIGNUM *g; // generator of subgroup (public)
\& BIGNUM *priv_key; // private key x
\& BIGNUM *pub_key; // public key y = g^x
\& // ...
\& }
\& DSA;
.Ve
In public keys, \fBpriv_key\fR is \s-1NULL\s0.
.SH "CONFORMING TO"
.IX Header "CONFORMING TO"
\&\s-1US\s0 Federal Information Processing Standard \s-1FIPS\s0 186 (Digital Signature
Standard, \s-1DSS\s0), \s-1ANSI\s0 X9.30
.SH "SEE ALSO"
.IX Header "SEE ALSO"
openssl_bn(3), openssl_dh(3), openssl_err(3), openssl_rand(3),
openssl_rsa(3), openssl_sha(3), DSA_new(3),
DSA_size(3),
DSA_generate_parameters(3),
DSA_dup_DH(3),
DSA_generate_key(3),
DSA_sign(3), DSA_set_method(3),
DSA_get_ex_new_index(3),
RSA_print(3)