NetBSD/sys/dev/pcmcia/pcmcia_cis.c

1457 lines
36 KiB
C

/* $NetBSD: pcmcia_cis.c,v 1.55 2009/05/12 14:42:19 cegger Exp $ */
/*
* Copyright (c) 1997 Marc Horowitz. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Marc Horowitz.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: pcmcia_cis.c,v 1.55 2009/05/12 14:42:19 cegger Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <dev/pcmcia/pcmciareg.h>
#include <dev/pcmcia/pcmciachip.h>
#include <dev/pcmcia/pcmciavar.h>
#ifdef PCMCIACISDEBUG
int pcmciacis_debug = 0;
#define DPRINTF(arg) if (pcmciacis_debug) printf arg
#else
#define DPRINTF(arg)
#endif
#define PCMCIA_CIS_SIZE 1024
struct cis_state {
int count;
int gotmfc;
struct pcmcia_config_entry temp_cfe;
struct pcmcia_config_entry *default_cfe;
struct pcmcia_card *card;
struct pcmcia_function *pf;
};
int pcmcia_parse_cis_tuple(struct pcmcia_tuple *, void *);
static void create_pf(struct cis_state *);
static void decode_end(struct pcmcia_tuple *, struct cis_state *);
static void decode_longlink_mfc(struct pcmcia_tuple *, struct cis_state *);
static void decode_device(struct pcmcia_tuple *, struct cis_state *);
static void decode_vers_1(struct pcmcia_tuple *, struct cis_state *);
static void decode_manfid(struct pcmcia_tuple *, struct cis_state *);
static void decode_funcid(struct pcmcia_tuple *, struct cis_state *);
static void decode_funce(struct pcmcia_tuple *, struct cis_state *);
static void decode_config(struct pcmcia_tuple *, struct cis_state *);
static void decode_cftable_entry(struct pcmcia_tuple *, struct cis_state *);
static void
create_pf(struct cis_state *state)
{
state->pf = malloc(sizeof(*state->pf), M_DEVBUF, M_NOWAIT|M_ZERO);
state->pf->number = state->count++;
state->pf->last_config_index = -1;
SIMPLEQ_INIT(&state->pf->cfe_head);
SIMPLEQ_INSERT_TAIL(&state->card->pf_head, state->pf, pf_list);
}
void
pcmcia_free_pf(struct pcmcia_function_head *pfhead)
{
struct pcmcia_function *pf, *npf;
struct pcmcia_config_entry *cfe, *ncfe;
for (pf = SIMPLEQ_FIRST(pfhead); pf != NULL; pf = npf) {
npf = SIMPLEQ_NEXT(pf, pf_list);
for (cfe = SIMPLEQ_FIRST(&pf->cfe_head); cfe != NULL;
cfe = ncfe) {
ncfe = SIMPLEQ_NEXT(cfe, cfe_list);
free(cfe, M_DEVBUF);
}
free(pf, M_DEVBUF);
}
SIMPLEQ_INIT(pfhead);
}
void
pcmcia_read_cis(struct pcmcia_softc *sc)
{
struct cis_state state;
memset(&state, 0, sizeof state);
state.card = &sc->card;
state.card->error = 0;
state.card->cis1_major = -1;
state.card->cis1_minor = -1;
state.card->cis1_info[0] = NULL;
state.card->cis1_info[1] = NULL;
state.card->cis1_info[2] = NULL;
state.card->cis1_info[3] = NULL;
state.card->manufacturer = PCMCIA_VENDOR_INVALID;
state.card->product = PCMCIA_PRODUCT_INVALID;
SIMPLEQ_INIT(&state.card->pf_head);
state.pf = NULL;
if (pcmcia_scan_cis(sc->dev, pcmcia_parse_cis_tuple,
&state) == -1)
state.card->error++;
}
int
pcmcia_scan_cis(device_t dev,
int (*fct)(struct pcmcia_tuple *, void *),
void *arg)
{
struct pcmcia_softc *sc = device_private(dev);
pcmcia_chipset_tag_t pct;
pcmcia_chipset_handle_t pch;
int window;
struct pcmcia_mem_handle pcmh;
struct pcmcia_tuple tuple;
int longlink_present;
int longlink_common;
u_long longlink_addr;
int mfc_count;
int mfc_index;
struct {
int common;
u_long addr;
} mfc[256 / 5];
int ret;
ret = 0;
pct = sc->pct;
pch = sc->pch;
/* allocate some memory */
if (pcmcia_chip_mem_alloc(pct, pch, PCMCIA_CIS_SIZE, &pcmh)) {
#ifdef DIAGNOSTIC
aprint_error_dev(sc->dev,
"can't alloc memory to read attributes\n");
#endif
return -1;
}
/* initialize state for the primary tuple chain */
if (pcmcia_chip_mem_map(pct, pch, PCMCIA_MEM_ATTR, 0,
PCMCIA_CIS_SIZE, &pcmh, &tuple.ptr, &window)) {
pcmcia_chip_mem_free(pct, pch, &pcmh);
#ifdef DIAGNOSTIC
aprint_error_dev(sc->dev,
"can't map memory to read attributes\n");
#endif
return -1;
}
tuple.memt = pcmh.memt;
tuple.memh = pcmh.memh;
DPRINTF(("cis mem map %x\n", (unsigned int) tuple.memh));
tuple.mult = 2;
longlink_present = 1;
longlink_common = 1;
longlink_addr = 0;
mfc_count = 0;
mfc_index = 0;
DPRINTF(("%s: CIS tuple chain:\n", device_xname(sc->dev)));
while (1) {
DELAY(1000);
while (1) {
/*
* Perform boundary check for insane cards.
* If CIS is too long, simulate CIS end.
* (This check may not be sufficient for
* malicious cards.)
*/
if (tuple.mult * tuple.ptr >= PCMCIA_CIS_SIZE - 1
- 32 /* ad hoc value */ ) {
DPRINTF(("CISTPL_END (too long CIS)\n"));
tuple.code = PCMCIA_CISTPL_END;
goto cis_end;
}
/* get the tuple code */
tuple.code = pcmcia_cis_read_1(&tuple, tuple.ptr);
/* two special-case tuples */
if (tuple.code == PCMCIA_CISTPL_NULL) {
DPRINTF((" 00\nCISTPL_NONE\n"));
tuple.ptr++;
continue;
} else if (tuple.code == PCMCIA_CISTPL_END) {
DPRINTF((" ff\nCISTPL_END\n"));
cis_end:
/* Call the function for the END tuple, since
the CIS semantics depend on it */
if ((*fct) (&tuple, arg)) {
pcmcia_chip_mem_unmap(pct, pch,
window);
ret = 1;
goto done;
}
tuple.ptr++;
break;
}
/* now all the normal tuples */
tuple.length = pcmcia_cis_read_1(&tuple, tuple.ptr + 1);
#ifdef PCMCIACISDEBUG
/* print the tuple */
{
int i;
DPRINTF((" %02x %02x", tuple.code,
tuple.length));
for (i = 0; i < tuple.length; i++) {
DPRINTF((" %02x",
pcmcia_tuple_read_1(&tuple, i)));
if ((i % 16) == 13)
DPRINTF(("\n"));
}
if ((i % 16) != 14)
DPRINTF(("\n"));
}
#endif
switch (tuple.code) {
case PCMCIA_CISTPL_LONGLINK_A:
case PCMCIA_CISTPL_LONGLINK_C:
if (tuple.length < 4) {
DPRINTF(("CISTPL_LONGLINK_%s too "
"short %d\n",
longlink_common ? "C" : "A",
tuple.length));
break;
}
longlink_present = 1;
longlink_common = (tuple.code ==
PCMCIA_CISTPL_LONGLINK_C) ? 1 : 0;
longlink_addr = pcmcia_tuple_read_4(&tuple, 0);
DPRINTF(("CISTPL_LONGLINK_%s %lx\n",
longlink_common ? "C" : "A",
longlink_addr));
break;
case PCMCIA_CISTPL_NO_LINK:
longlink_present = 0;
DPRINTF(("CISTPL_NO_LINK\n"));
break;
case PCMCIA_CISTPL_CHECKSUM:
if (tuple.length < 5) {
DPRINTF(("CISTPL_CHECKSUM too "
"short %d\n", tuple.length));
break;
} {
int16_t offset;
u_long addr, length;
u_int cksum, sum;
int i;
*((u_int16_t *) & offset) =
pcmcia_tuple_read_2(&tuple, 0);
length = pcmcia_tuple_read_2(&tuple, 2);
cksum = pcmcia_tuple_read_1(&tuple, 4);
addr = tuple.ptr + offset;
DPRINTF(("CISTPL_CHECKSUM addr=%lx "
"len=%lx cksum=%x",
addr, length, cksum));
/*
* XXX do more work to deal with
* distant regions
*/
if ((addr >= PCMCIA_CIS_SIZE) ||
#if 0
((addr + length) < 0) ||
#endif
((addr + length) >=
PCMCIA_CIS_SIZE)) {
DPRINTF((" skipped, "
"too distant\n"));
break;
}
sum = 0;
for (i = 0; i < length; i++)
sum +=
bus_space_read_1(tuple.memt,
tuple.memh,
addr + tuple.mult * i);
if (cksum != (sum & 0xff)) {
DPRINTF((" failed sum=%x\n",
sum));
aprint_error_dev(sc->dev,
"CIS checksum failed\n");
#if 0
/*
* XXX Some working cards have
* XXX bad checksums!!
*/
ret = -1;
#endif
} else {
DPRINTF((" ok\n"));
}
}
break;
case PCMCIA_CISTPL_LONGLINK_MFC:
if (tuple.length < 1) {
DPRINTF(("CISTPL_LONGLINK_MFC too "
"short %d\n", tuple.length));
break;
}
if (((tuple.length - 1) % 5) != 0) {
DPRINTF(("CISTPL_LONGLINK_MFC bogus "
"length %d\n", tuple.length));
break;
}
/*
* this is kind of ad hoc, as I don't have
* any real documentation
*/
{
int i, tmp_count;
/*
* put count into tmp var so that
* if we have to bail (because it's
* a bogus count) it won't be
* remembered for later use.
*/
tmp_count =
pcmcia_tuple_read_1(&tuple, 0);
DPRINTF(("CISTPL_LONGLINK_MFC %d",
tmp_count));
/*
* make _sure_ it's the right size;
* if too short, it may be a weird
* (unknown/undefined) format
*/
if (tuple.length != (tmp_count*5 + 1)) {
DPRINTF((" bogus length %d\n",
tuple.length));
break;
}
#ifdef PCMCIACISDEBUG /* maybe enable all the time? */
/*
* sanity check for a programming
* error which is difficult to find
* when debugging.
*/
if (tmp_count >
howmany(sizeof mfc, sizeof mfc[0]))
panic("CISTPL_LONGLINK_MFC mfc "
"count would blow stack");
#endif
mfc_count = tmp_count;
for (i = 0; i < mfc_count; i++) {
mfc[i].common =
(pcmcia_tuple_read_1(&tuple,
1 + 5 * i) ==
PCMCIA_MFC_MEM_COMMON) ?
1 : 0;
mfc[i].addr =
pcmcia_tuple_read_4(&tuple,
1 + 5 * i + 1);
DPRINTF((" %s:%lx",
mfc[i].common ? "common" :
"attr", mfc[i].addr));
}
DPRINTF(("\n"));
}
/*
* for LONGLINK_MFC, fall through to the
* function. This tuple has structural and
* semantic content.
*/
default:
{
if ((*fct) (&tuple, arg)) {
pcmcia_chip_mem_unmap(pct,
pch, window);
ret = 1;
goto done;
}
}
break;
} /* switch */
/* skip to the next tuple */
tuple.ptr += 2 + tuple.length;
}
/*
* the chain is done. Clean up and move onto the next one,
* if any. The loop is here in the case that there is an MFC
* card with no longlink (which defaults to existing, == 0).
* In general, this means that if one pointer fails, it will
* try the next one, instead of just bailing.
*/
while (1) {
pcmcia_chip_mem_unmap(pct, pch, window);
if (longlink_present) {
/*
* if the longlink is to attribute memory,
* then it is unindexed. That is, if the
* link value is 0x100, then the actual
* memory address is 0x200. This means that
* we need to multiply by 2 before calling
* mem_map, and then divide the resulting ptr
* by 2 after.
*/
if (!longlink_common)
longlink_addr *= 2;
pcmcia_chip_mem_map(pct, pch, longlink_common ?
(PCMCIA_WIDTH_MEM8 | PCMCIA_MEM_COMMON) :
PCMCIA_MEM_ATTR,
longlink_addr, PCMCIA_CIS_SIZE,
&pcmh, &tuple.ptr, &window);
tuple.memt = pcmh.memt;
tuple.memh = pcmh.memh;
if (!longlink_common)
tuple.ptr /= 2;
DPRINTF(("cis mem map %x\n",
(unsigned int) tuple.memh));
tuple.mult = longlink_common ? 1 : 2;
longlink_present = 0;
longlink_common = 1;
longlink_addr = 0;
} else if (mfc_count && (mfc_index < mfc_count)) {
if (!mfc[mfc_index].common)
mfc[mfc_index].addr *= 2;
pcmcia_chip_mem_map(pct, pch,
mfc[mfc_index].common ?
(PCMCIA_WIDTH_MEM8 | PCMCIA_MEM_COMMON) :
PCMCIA_MEM_ATTR,
mfc[mfc_index].addr, PCMCIA_CIS_SIZE,
&pcmh, &tuple.ptr, &window);
if (!mfc[mfc_index].common)
tuple.ptr /= 2;
DPRINTF(("cis mem map %x\n",
(unsigned int) tuple.memh));
/* set parse state, and point at the next one */
tuple.mult = mfc[mfc_index].common ? 1 : 2;
mfc_index++;
} else {
goto done;
}
/* make sure that the link is valid */
tuple.code = pcmcia_cis_read_1(&tuple, tuple.ptr);
if (tuple.code != PCMCIA_CISTPL_LINKTARGET) {
DPRINTF(("CISTPL_LINKTARGET expected, "
"code %02x observed\n", tuple.code));
continue;
}
tuple.length = pcmcia_cis_read_1(&tuple, tuple.ptr + 1);
if (tuple.length < 3) {
DPRINTF(("CISTPL_LINKTARGET too short %d\n",
tuple.length));
continue;
}
if ((pcmcia_tuple_read_1(&tuple, 0) != 'C') ||
(pcmcia_tuple_read_1(&tuple, 1) != 'I') ||
(pcmcia_tuple_read_1(&tuple, 2) != 'S')) {
DPRINTF(("CISTPL_LINKTARGET magic "
"%02x%02x%02x incorrect\n",
pcmcia_tuple_read_1(&tuple, 0),
pcmcia_tuple_read_1(&tuple, 1),
pcmcia_tuple_read_1(&tuple, 2)));
continue;
}
tuple.ptr += 2 + tuple.length;
break;
}
}
pcmcia_chip_mem_unmap(pct, pch, window);
done:
/* Last, free the allocated memory block */
pcmcia_chip_mem_free(pct, pch, &pcmh);
return (ret);
}
/* XXX this is incredibly verbose. Not sure what trt is */
void
pcmcia_print_cis(struct pcmcia_softc *sc)
{
struct pcmcia_card *card = &sc->card;
struct pcmcia_function *pf;
struct pcmcia_config_entry *cfe;
int i;
printf("%s: CIS version ", device_xname(sc->dev));
if (card->cis1_major == 4) {
if (card->cis1_minor == 0)
printf("PCMCIA 1.0\n");
else if (card->cis1_minor == 1)
printf("PCMCIA 2.0 or 2.1\n");
} else if (card->cis1_major >= 5)
printf("PC Card Standard %d.%d\n", card->cis1_major, card->cis1_minor);
else
printf("unknown (major=%d, minor=%d)\n",
card->cis1_major, card->cis1_minor);
printf("%s: CIS info: ", device_xname(sc->dev));
for (i = 0; i < 4; i++) {
if (card->cis1_info[i] == NULL)
break;
if (i)
printf(", ");
printf("%s", card->cis1_info[i]);
}
printf("\n");
printf("%s: Manufacturer code 0x%x, product 0x%x\n",
device_xname(sc->dev), card->manufacturer, card->product);
SIMPLEQ_FOREACH(pf, &card->pf_head, pf_list) {
printf("%s: function %d: ", device_xname(sc->dev), pf->number);
switch (pf->function) {
case PCMCIA_FUNCTION_UNSPEC:
printf("unspecified");
break;
case PCMCIA_FUNCTION_MULTIFUNCTION:
printf("multi-function");
break;
case PCMCIA_FUNCTION_MEMORY:
printf("memory");
break;
case PCMCIA_FUNCTION_SERIAL:
printf("serial port");
break;
case PCMCIA_FUNCTION_PARALLEL:
printf("parallel port");
break;
case PCMCIA_FUNCTION_DISK:
printf("fixed disk");
switch (pf->pf_funce_disk_interface) {
case PCMCIA_TPLFE_DDI_PCCARD_ATA:
printf("(ata)");
break;
default:
break;
}
break;
case PCMCIA_FUNCTION_VIDEO:
printf("video adapter");
break;
case PCMCIA_FUNCTION_NETWORK:
printf("network adapter");
break;
case PCMCIA_FUNCTION_AIMS:
printf("auto incrementing mass storage");
break;
case PCMCIA_FUNCTION_SCSI:
printf("SCSI bridge");
break;
case PCMCIA_FUNCTION_SECURITY:
printf("Security services");
break;
case PCMCIA_FUNCTION_INSTRUMENT:
printf("Instrument");
break;
default:
printf("unknown (%d)", pf->function);
break;
}
printf(", ccr addr %lx mask %lx\n", pf->ccr_base, pf->ccr_mask);
SIMPLEQ_FOREACH(cfe, &pf->cfe_head, cfe_list) {
printf("%s: function %d, config table entry %d: ",
device_xname(sc->dev), pf->number, cfe->number);
switch (cfe->iftype) {
case PCMCIA_IFTYPE_MEMORY:
printf("memory card");
break;
case PCMCIA_IFTYPE_IO:
printf("I/O card");
break;
default:
printf("card type unknown");
break;
}
printf("; irq mask %x", cfe->irqmask);
if (cfe->num_iospace) {
printf("; iomask %lx, iospace", cfe->iomask);
for (i = 0; i < cfe->num_iospace; i++) {
printf(" %lx", cfe->iospace[i].start);
if (cfe->iospace[i].length)
printf("-%lx",
cfe->iospace[i].start +
cfe->iospace[i].length - 1);
}
}
if (cfe->num_memspace) {
printf("; memspace");
for (i = 0; i < cfe->num_memspace; i++) {
printf(" %lx",
cfe->memspace[i].cardaddr);
if (cfe->memspace[i].length)
printf("-%lx",
cfe->memspace[i].cardaddr +
cfe->memspace[i].length - 1);
if (cfe->memspace[i].hostaddr)
printf("@%lx",
cfe->memspace[i].hostaddr);
}
}
if (cfe->maxtwins)
printf("; maxtwins %d", cfe->maxtwins);
printf(";");
if (cfe->flags & PCMCIA_CFE_MWAIT_REQUIRED)
printf(" mwait_required");
if (cfe->flags & PCMCIA_CFE_RDYBSY_ACTIVE)
printf(" rdybsy_active");
if (cfe->flags & PCMCIA_CFE_WP_ACTIVE)
printf(" wp_active");
if (cfe->flags & PCMCIA_CFE_BVD_ACTIVE)
printf(" bvd_active");
if (cfe->flags & PCMCIA_CFE_IO8)
printf(" io8");
if (cfe->flags & PCMCIA_CFE_IO16)
printf(" io16");
if (cfe->flags & PCMCIA_CFE_IRQSHARE)
printf(" irqshare");
if (cfe->flags & PCMCIA_CFE_IRQPULSE)
printf(" irqpulse");
if (cfe->flags & PCMCIA_CFE_IRQLEVEL)
printf(" irqlevel");
if (cfe->flags & PCMCIA_CFE_POWERDOWN)
printf(" powerdown");
if (cfe->flags & PCMCIA_CFE_READONLY)
printf(" readonly");
if (cfe->flags & PCMCIA_CFE_AUDIO)
printf(" audio");
printf("\n");
}
}
if (card->error)
printf("%s: %d errors found while parsing CIS\n",
device_xname(sc->dev), card->error);
}
int
pcmcia_parse_cis_tuple(struct pcmcia_tuple *tuple, void *arg)
{
struct cis_state *state = arg;
switch (tuple->code) {
case PCMCIA_CISTPL_END:
decode_end(tuple, state);
break;
case PCMCIA_CISTPL_LONGLINK_MFC:
decode_longlink_mfc(tuple, state);
break;
case PCMCIA_CISTPL_DEVICE:
case PCMCIA_CISTPL_DEVICE_A:
decode_device(tuple, state);
break;
case PCMCIA_CISTPL_VERS_1:
decode_vers_1(tuple, state);
break;
case PCMCIA_CISTPL_MANFID:
decode_manfid(tuple, state);
break;
case PCMCIA_CISTPL_FUNCID:
decode_funcid(tuple, state);
break;
case PCMCIA_CISTPL_FUNCE:
decode_funce(tuple, state);
break;
case PCMCIA_CISTPL_CONFIG:
decode_config(tuple, state);
break;
case PCMCIA_CISTPL_CFTABLE_ENTRY:
decode_cftable_entry(tuple, state);
break;
default:
DPRINTF(("unhandled CISTPL %x\n", tuple->code));
break;
}
return (0);
}
static void
decode_end(struct pcmcia_tuple *tuple, struct cis_state *state)
{
/* if we've seen a LONGLINK_MFC, and this is the first
* END after it, reset the function list.
*
* XXX This might also be the right place to start a
* new function, but that assumes that a function
* definition never crosses any longlink, and I'm not
* sure about that. This is probably safe for MFC
* cards, but what we have now isn't broken, so I'd
* rather not change it.
*/
if (state->gotmfc == 1) {
state->gotmfc = 2;
state->count = 0;
state->pf = NULL;
pcmcia_free_pf(&state->card->pf_head);
}
}
static void
decode_longlink_mfc(struct pcmcia_tuple *tuple,
struct cis_state *state)
{
/*
* this tuple's structure was dealt with in scan_cis. here,
* record the fact that the MFC tuple was seen, so that
* functions declared before the MFC link can be cleaned
* up.
*/
if (state->gotmfc == 0) {
state->gotmfc = 1;
} else {
DPRINTF(("got LONGLINK_MFC again!"));
}
}
static void
decode_device(struct pcmcia_tuple *tuple,
struct cis_state *state)
{
#ifdef PCMCIACISDEBUG
u_int reg, dtype, dspeed;
reg = pcmcia_tuple_read_1(tuple, 0);
dtype = reg & PCMCIA_DTYPE_MASK;
dspeed = reg & PCMCIA_DSPEED_MASK;
DPRINTF(("CISTPL_DEVICE%s type=",
(tuple->code == PCMCIA_CISTPL_DEVICE) ? "" : "_A"));
switch (dtype) {
case PCMCIA_DTYPE_NULL:
DPRINTF(("null"));
break;
case PCMCIA_DTYPE_ROM:
DPRINTF(("rom"));
break;
case PCMCIA_DTYPE_OTPROM:
DPRINTF(("otprom"));
break;
case PCMCIA_DTYPE_EPROM:
DPRINTF(("eprom"));
break;
case PCMCIA_DTYPE_EEPROM:
DPRINTF(("eeprom"));
break;
case PCMCIA_DTYPE_FLASH:
DPRINTF(("flash"));
break;
case PCMCIA_DTYPE_SRAM:
DPRINTF(("sram"));
break;
case PCMCIA_DTYPE_DRAM:
DPRINTF(("dram"));
break;
case PCMCIA_DTYPE_FUNCSPEC:
DPRINTF(("funcspec"));
break;
case PCMCIA_DTYPE_EXTEND:
DPRINTF(("extend"));
break;
default:
DPRINTF(("reserved"));
break;
}
DPRINTF((" speed="));
switch (dspeed) {
case PCMCIA_DSPEED_NULL:
DPRINTF(("null"));
break;
case PCMCIA_DSPEED_250NS:
DPRINTF(("250ns"));
break;
case PCMCIA_DSPEED_200NS:
DPRINTF(("200ns"));
break;
case PCMCIA_DSPEED_150NS:
DPRINTF(("150ns"));
break;
case PCMCIA_DSPEED_100NS:
DPRINTF(("100ns"));
break;
case PCMCIA_DSPEED_EXT:
DPRINTF(("ext"));
break;
default:
DPRINTF(("reserved"));
break;
}
DPRINTF(("\n"));
#endif
}
static void
decode_vers_1(struct pcmcia_tuple *tuple, struct cis_state *state)
{
int start, i, ch, count;
if (tuple->length < 6) {
DPRINTF(("CISTPL_VERS_1 too short %d\n",
tuple->length));
return;
}
state->card->cis1_major = pcmcia_tuple_read_1(tuple, 0);
state->card->cis1_minor = pcmcia_tuple_read_1(tuple, 1);
for (count = 0, start = 0, i = 0;
(count < 4) && ((i + 4) < 256); i++) {
ch = pcmcia_tuple_read_1(tuple, 2 + i);
if (ch == 0xff) {
if (i > start) {
state->card->cis1_info_buf[i] = 0;
state->card->cis1_info[count] =
state->card->cis1_info_buf + start;
}
break;
}
state->card->cis1_info_buf[i] = ch;
if (ch == 0) {
state->card->cis1_info[count] =
state->card->cis1_info_buf + start;
start = i + 1;
count++;
}
}
DPRINTF(("CISTPL_VERS_1\n"));
}
static void
decode_manfid(struct pcmcia_tuple *tuple, struct cis_state *state)
{
if (tuple->length < 4) {
DPRINTF(("CISTPL_MANFID too short %d\n",
tuple->length));
return;
}
state->card->manufacturer = pcmcia_tuple_read_2(tuple, 0);
state->card->product = pcmcia_tuple_read_2(tuple, 2);
DPRINTF(("CISTPL_MANFID\n"));
}
static void
decode_funcid(struct pcmcia_tuple *tuple, struct cis_state *state)
{
if (tuple->length < 1) {
DPRINTF(("CISTPL_FUNCID too short %d\n",
tuple->length));
return;
}
if (state->pf) {
if (state->pf->function == PCMCIA_FUNCTION_UNSPEC) {
/*
* This looks like a opportunistic function
* created by a CONFIG tuple. Just keep it.
*/
} else {
/*
* A function is being defined, end it.
*/
state->pf = NULL;
}
}
if (state->pf == NULL)
create_pf(state);
state->pf->function = pcmcia_tuple_read_1(tuple, 0);
DPRINTF(("CISTPL_FUNCID\n"));
}
static void
decode_funce(struct pcmcia_tuple *tuple, struct cis_state *state)
{
struct pcmcia_function *pf = state->pf;
int type = pcmcia_tuple_read_1(tuple, 0);
if (state->pf == NULL || state->pf->function <= 0) {
DPRINTF(("CISTPL_FUNCE is not followed by "
"valid CISTPL_FUNCID\n"));
return;
}
if (tuple->length < 2)
return;
switch (pf->function) {
case PCMCIA_FUNCTION_DISK:
if (type == PCMCIA_TPLFE_TYPE_DISK_DEVICE_INTERFACE) {
pf->pf_funce_disk_interface
= pcmcia_tuple_read_1(tuple, 1);
}
break;
case PCMCIA_FUNCTION_NETWORK:
if (type == PCMCIA_TPLFE_TYPE_LAN_NID) {
int i;
int len = pcmcia_tuple_read_1(tuple, 1);
if (tuple->length < 2 + len || len > 8) {
/* tuple length not enough or nid too long */
break;
}
for (i = 0; i < len; ++i) {
pf->pf_funce_lan_nid[i]
= pcmcia_tuple_read_1(tuple, 2 + i);
}
pf->pf_funce_lan_nidlen = len;
}
break;
default:
break;
}
return;
}
static void
decode_config(struct pcmcia_tuple *tuple, struct cis_state *state)
{
u_int reg, rasz, rmsz, rfsz;
int i;
/* most of these are educated guesses */
static const struct pcmcia_config_entry init_cfe = {
.number = -1,
.flags = PCMCIA_CFE_RDYBSY_ACTIVE | PCMCIA_CFE_WP_ACTIVE |
PCMCIA_CFE_BVD_ACTIVE,
.iftype = PCMCIA_IFTYPE_MEMORY,
};
if (tuple->length < 3) {
DPRINTF(("CISTPL_CONFIG too short %d\n", tuple->length));
return;
}
reg = pcmcia_tuple_read_1(tuple, 0);
rasz = 1 + ((reg & PCMCIA_TPCC_RASZ_MASK) >>
PCMCIA_TPCC_RASZ_SHIFT);
rmsz = 1 + ((reg & PCMCIA_TPCC_RMSZ_MASK) >>
PCMCIA_TPCC_RMSZ_SHIFT);
rfsz = ((reg & PCMCIA_TPCC_RFSZ_MASK) >>
PCMCIA_TPCC_RFSZ_SHIFT);
if (tuple->length < (rasz + rmsz + rfsz)) {
DPRINTF(("CISTPL_CONFIG (%d,%d,%d) too short %d\n",
rasz, rmsz, rfsz, tuple->length));
return;
}
if (state->pf == NULL) {
create_pf(state);
state->pf->function = PCMCIA_FUNCTION_UNSPEC;
}
state->pf->last_config_index =
pcmcia_tuple_read_1(tuple, 1);
state->pf->ccr_base = 0;
for (i = 0; i < rasz; i++)
state->pf->ccr_base |= ((pcmcia_tuple_read_1(tuple, 2 + i)) <<
(i * 8));
state->pf->ccr_mask = 0;
for (i = 0; i < rmsz; i++)
state->pf->ccr_mask |= ((pcmcia_tuple_read_1(tuple,
2 + rasz + i)) << (i * 8));
/* skip the reserved area and subtuples */
/* reset the default cfe for each cfe list */
state->temp_cfe = init_cfe;
state->default_cfe = &state->temp_cfe;
DPRINTF(("CISTPL_CONFIG\n"));
}
static void
decode_cftable_entry(struct pcmcia_tuple *tuple, struct cis_state *state)
{
int idx, i, j;
u_int reg, reg2;
u_int intface, def, num;
u_int power, timing, iospace, irq, memspace, misc;
struct pcmcia_config_entry *cfe;
idx = 0;
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
intface = reg & PCMCIA_TPCE_INDX_INTFACE;
def = reg & PCMCIA_TPCE_INDX_DEFAULT;
num = reg & PCMCIA_TPCE_INDX_NUM_MASK;
/*
* this is a little messy. Some cards have only a
* cfentry with the default bit set. So, as we go
* through the list, we add new indexes to the queue,
* and keep a pointer to the last one with the
* default bit set. if we see a record with the same
* index, as the default, we stash the default and
* replace the queue entry. otherwise, we just add
* new entries to the queue, pointing the default ptr
* at them if the default bit is set. if we get to
* the end with the default pointer pointing at a
* record which hasn't had a matching index, that's
* ok; it just becomes a cfentry like any other.
*/
/*
* if the index in the cis differs from the default
* cis, create new entry in the queue and start it
* with the current default
*/
if (state->default_cfe == NULL) {
DPRINTF(("CISTPL_CFTABLE_ENTRY with no "
"default\n"));
return;
}
if (num != state->default_cfe->number) {
cfe = malloc(sizeof(*cfe), M_DEVBUF, M_NOWAIT);
if (cfe == NULL) {
printf("Cannot allocate cfe entry\n");
return;
}
*cfe = *state->default_cfe;
SIMPLEQ_INSERT_TAIL(&state->pf->cfe_head, cfe, cfe_list);
cfe->number = num;
/*
* if the default bit is set in the cis, then
* point the new default at whatever is being
* filled in
*/
if (def)
state->default_cfe = cfe;
} else {
/*
* the cis index matches the default index,
* fill in the default cfentry. It is
* assumed that the cfdefault index is in the
* queue. For it to be otherwise, the cis
* index would have to be -1 (initial
* condition) which is not possible, or there
* would have to be a preceding cis entry
* which had the same cis index and had the
* default bit unset. Neither condition
* should happen. If it does, this cfentry
* is lost (written into temp space), which
* is an acceptable failure mode.
*/
cfe = state->default_cfe;
/*
* if the cis entry does not have the default
* bit set, copy the default out of the way
* first.
*/
if (!def) {
state->temp_cfe = *state->default_cfe;
state->default_cfe = &state->temp_cfe;
}
}
if (intface) {
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
cfe->flags &= ~(PCMCIA_CFE_MWAIT_REQUIRED
| PCMCIA_CFE_RDYBSY_ACTIVE
| PCMCIA_CFE_WP_ACTIVE
| PCMCIA_CFE_BVD_ACTIVE);
if (reg & PCMCIA_TPCE_IF_MWAIT)
cfe->flags |= PCMCIA_CFE_MWAIT_REQUIRED;
if (reg & PCMCIA_TPCE_IF_RDYBSY)
cfe->flags |= PCMCIA_CFE_RDYBSY_ACTIVE;
if (reg & PCMCIA_TPCE_IF_WP)
cfe->flags |= PCMCIA_CFE_WP_ACTIVE;
if (reg & PCMCIA_TPCE_IF_BVD)
cfe->flags |= PCMCIA_CFE_BVD_ACTIVE;
cfe->iftype = reg & PCMCIA_TPCE_IF_IFTYPE;
}
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
power = reg & PCMCIA_TPCE_FS_POWER_MASK;
timing = reg & PCMCIA_TPCE_FS_TIMING;
iospace = reg & PCMCIA_TPCE_FS_IOSPACE;
irq = reg & PCMCIA_TPCE_FS_IRQ;
memspace = reg & PCMCIA_TPCE_FS_MEMSPACE_MASK;
misc = reg & PCMCIA_TPCE_FS_MISC;
if (power) {
/* skip over power, don't save */
/* for each parameter selection byte */
for (i = 0; i < power; i++) {
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
/* for each bit */
for (j = 0; j < 7; j++) {
/* if the bit is set */
if ((reg >> j) & 0x01) {
/* skip over bytes */
do {
reg2 = pcmcia_tuple_read_1(tuple, idx);
idx++;
/*
* until
* non-
* extension
* byte
*/
} while (reg2 & 0x80);
}
}
}
}
if (timing) {
/* skip over timing, don't save */
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
if ((reg & PCMCIA_TPCE_TD_RESERVED_MASK) !=
PCMCIA_TPCE_TD_RESERVED_MASK)
idx++;
if ((reg & PCMCIA_TPCE_TD_RDYBSY_MASK) !=
PCMCIA_TPCE_TD_RDYBSY_MASK)
idx++;
if ((reg & PCMCIA_TPCE_TD_WAIT_MASK) !=
PCMCIA_TPCE_TD_WAIT_MASK)
idx++;
}
if (iospace) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_IO\n"));
goto abort_cfe;
}
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
cfe->flags &=
~(PCMCIA_CFE_IO8 | PCMCIA_CFE_IO16);
if (reg & PCMCIA_TPCE_IO_BUSWIDTH_8BIT)
cfe->flags |= PCMCIA_CFE_IO8;
if (reg & PCMCIA_TPCE_IO_BUSWIDTH_16BIT)
cfe->flags |= PCMCIA_CFE_IO16;
cfe->iomask =
reg & PCMCIA_TPCE_IO_IOADDRLINES_MASK;
if (reg & PCMCIA_TPCE_IO_HASRANGE) {
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
cfe->num_iospace = 1 + (reg &
PCMCIA_TPCE_IO_RANGE_COUNT);
if (cfe->num_iospace >
(sizeof(cfe->iospace) /
sizeof(cfe->iospace[0]))) {
DPRINTF(("too many io "
"spaces %d",
cfe->num_iospace));
state->card->error++;
return;
}
for (i = 0; i < cfe->num_iospace; i++) {
switch (reg & PCMCIA_TPCE_IO_RANGE_ADDRSIZE_MASK) {
case PCMCIA_TPCE_IO_RANGE_ADDRSIZE_NONE:
cfe->iospace[i].start =
0;
break;
case PCMCIA_TPCE_IO_RANGE_ADDRSIZE_ONE:
cfe->iospace[i].start =
pcmcia_tuple_read_1(tuple, idx);
idx++;
break;
case PCMCIA_TPCE_IO_RANGE_ADDRSIZE_TWO:
cfe->iospace[i].start =
pcmcia_tuple_read_2(tuple, idx);
idx += 2;
break;
case PCMCIA_TPCE_IO_RANGE_ADDRSIZE_FOUR:
cfe->iospace[i].start =
pcmcia_tuple_read_4(tuple, idx);
idx += 4;
break;
}
switch (reg &
PCMCIA_TPCE_IO_RANGE_LENGTHSIZE_MASK) {
case PCMCIA_TPCE_IO_RANGE_LENGTHSIZE_NONE:
cfe->iospace[i].length =
0;
break;
case PCMCIA_TPCE_IO_RANGE_LENGTHSIZE_ONE:
cfe->iospace[i].length =
pcmcia_tuple_read_1(tuple, idx);
idx++;
break;
case PCMCIA_TPCE_IO_RANGE_LENGTHSIZE_TWO:
cfe->iospace[i].length =
pcmcia_tuple_read_2(tuple, idx);
idx += 2;
break;
case PCMCIA_TPCE_IO_RANGE_LENGTHSIZE_FOUR:
cfe->iospace[i].length =
pcmcia_tuple_read_4(tuple, idx);
idx += 4;
break;
}
cfe->iospace[i].length++;
}
} else {
cfe->num_iospace = 1;
cfe->iospace[0].start = 0;
cfe->iospace[0].length =
(1 << cfe->iomask);
}
}
if (irq) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_IR\n"));
goto abort_cfe;
}
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
cfe->flags &= ~(PCMCIA_CFE_IRQSHARE
| PCMCIA_CFE_IRQPULSE
| PCMCIA_CFE_IRQLEVEL);
if (reg & PCMCIA_TPCE_IR_SHARE)
cfe->flags |= PCMCIA_CFE_IRQSHARE;
if (reg & PCMCIA_TPCE_IR_PULSE)
cfe->flags |= PCMCIA_CFE_IRQPULSE;
if (reg & PCMCIA_TPCE_IR_LEVEL)
cfe->flags |= PCMCIA_CFE_IRQLEVEL;
if (reg & PCMCIA_TPCE_IR_HASMASK) {
/*
* it's legal to ignore the
* special-interrupt bits, so I will
*/
cfe->irqmask =
pcmcia_tuple_read_2(tuple, idx);
idx += 2;
} else {
cfe->irqmask =
(1 << (reg & PCMCIA_TPCE_IR_IRQ));
}
}
if (memspace) {
int lengthsize;
int cardaddrsize;
int hostaddrsize;
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_MS\n"));
goto abort_cfe;
}
switch (memspace) {
#ifdef notdef /* This is 0 */
case PCMCIA_TPCE_FS_MEMSPACE_NONE:
cfe->num_memspace = 0;
break;
#endif
case PCMCIA_TPCE_FS_MEMSPACE_LENGTH:
cfe->num_memspace = 1;
cfe->memspace[0].length = 256 *
pcmcia_tuple_read_2(tuple, idx);
idx += 2;
cfe->memspace[0].cardaddr = 0;
cfe->memspace[0].hostaddr = 0;
break;
case PCMCIA_TPCE_FS_MEMSPACE_LENGTHADDR:
cfe->num_memspace = 1;
cfe->memspace[0].length = 256 *
pcmcia_tuple_read_2(tuple, idx);
idx += 2;
cfe->memspace[0].cardaddr = 256 *
pcmcia_tuple_read_2(tuple, idx);
idx += 2;
cfe->memspace[0].hostaddr =
cfe->memspace[0].cardaddr;
break;
default:
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
cfe->num_memspace = (reg & PCMCIA_TPCE_MS_COUNT)
+ 1;
if (cfe->num_memspace >
(sizeof(cfe->memspace) /
sizeof(cfe->memspace[0]))) {
DPRINTF(("too many mem spaces %d",
cfe->num_memspace));
state->card->error++;
return;
}
lengthsize =
((reg & PCMCIA_TPCE_MS_LENGTH_SIZE_MASK) >>
PCMCIA_TPCE_MS_LENGTH_SIZE_SHIFT);
cardaddrsize =
((reg &
PCMCIA_TPCE_MS_CARDADDR_SIZE_MASK) >>
PCMCIA_TPCE_MS_CARDADDR_SIZE_SHIFT);
hostaddrsize =
(reg & PCMCIA_TPCE_MS_HOSTADDR) ?
cardaddrsize : 0;
if (lengthsize == 0) {
DPRINTF(("cfe memspace "
"lengthsize == 0"));
state->card->error++;
}
for (i = 0; i < cfe->num_memspace; i++) {
if (lengthsize) {
cfe->memspace[i].length = 256 *
pcmcia_tuple_read_n(tuple,
lengthsize, idx);
idx += lengthsize;
} else {
cfe->memspace[i].length = 0;
}
if (cfe->memspace[i].length == 0) {
DPRINTF(("cfe->memspace"
"[%d].length == 0", i));
state->card->error++;
}
if (cardaddrsize) {
cfe->memspace[i].cardaddr =
256 *
pcmcia_tuple_read_n(tuple,
cardaddrsize, idx);
idx += cardaddrsize;
} else {
cfe->memspace[i].cardaddr = 0;
}
if (hostaddrsize) {
cfe->memspace[i].hostaddr =
256 *
pcmcia_tuple_read_n(tuple,
hostaddrsize, idx);
idx += hostaddrsize;
} else {
cfe->memspace[i].hostaddr = 0;
}
}
}
}
if (misc) {
if (tuple->length <= idx) {
DPRINTF(("ran out of space before TCPE_MI\n"));
goto abort_cfe;
}
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
cfe->flags &= ~(PCMCIA_CFE_POWERDOWN
| PCMCIA_CFE_READONLY
| PCMCIA_CFE_AUDIO);
if (reg & PCMCIA_TPCE_MI_PWRDOWN)
cfe->flags |= PCMCIA_CFE_POWERDOWN;
if (reg & PCMCIA_TPCE_MI_READONLY)
cfe->flags |= PCMCIA_CFE_READONLY;
if (reg & PCMCIA_TPCE_MI_AUDIO)
cfe->flags |= PCMCIA_CFE_AUDIO;
cfe->maxtwins = reg & PCMCIA_TPCE_MI_MAXTWINS;
while (reg & PCMCIA_TPCE_MI_EXT) {
reg = pcmcia_tuple_read_1(tuple, idx);
idx++;
}
}
/* skip all the subtuples */
abort_cfe:
DPRINTF(("CISTPL_CFTABLE_ENTRY\n"));
}