NetBSD/sys/dev/pci/if_wpi.c

3272 lines
84 KiB
C

/* $NetBSD: if_wpi.c,v 1.49 2011/04/02 08:11:31 mbalmer Exp $ */
/*-
* Copyright (c) 2006, 2007
* Damien Bergamini <damien.bergamini@free.fr>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_wpi.c,v 1.49 2011/04/02 08:11:31 mbalmer Exp $");
/*
* Driver for Intel PRO/Wireless 3945ABG 802.11 network adapters.
*/
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/once.h>
#include <sys/conf.h>
#include <sys/kauth.h>
#include <sys/callout.h>
#include <sys/proc.h>
#include <sys/bus.h>
#include <machine/endian.h>
#include <sys/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <net/bpf.h>
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_amrr.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <dev/firmload.h>
#include <dev/pci/if_wpireg.h>
#include <dev/pci/if_wpivar.h>
#ifdef WPI_DEBUG
#define DPRINTF(x) if (wpi_debug > 0) printf x
#define DPRINTFN(n, x) if (wpi_debug >= (n)) printf x
int wpi_debug = 1;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
/*
* Supported rates for 802.11a/b/g modes (in 500Kbps unit).
*/
static const struct ieee80211_rateset wpi_rateset_11a =
{ 8, { 12, 18, 24, 36, 48, 72, 96, 108 } };
static const struct ieee80211_rateset wpi_rateset_11b =
{ 4, { 2, 4, 11, 22 } };
static const struct ieee80211_rateset wpi_rateset_11g =
{ 12, { 2, 4, 11, 22, 12, 18, 24, 36, 48, 72, 96, 108 } };
static once_t wpi_firmware_init;
static kmutex_t wpi_firmware_mutex;
static size_t wpi_firmware_users;
static uint8_t *wpi_firmware_image;
static size_t wpi_firmware_size;
static int wpi_match(device_t, cfdata_t, void *);
static void wpi_attach(device_t, device_t, void *);
static int wpi_detach(device_t , int);
static int wpi_dma_contig_alloc(bus_dma_tag_t, struct wpi_dma_info *,
void **, bus_size_t, bus_size_t, int);
static void wpi_dma_contig_free(struct wpi_dma_info *);
static int wpi_alloc_shared(struct wpi_softc *);
static void wpi_free_shared(struct wpi_softc *);
static int wpi_alloc_fwmem(struct wpi_softc *);
static void wpi_free_fwmem(struct wpi_softc *);
static struct wpi_rbuf *wpi_alloc_rbuf(struct wpi_softc *);
static void wpi_free_rbuf(struct mbuf *, void *, size_t, void *);
static int wpi_alloc_rpool(struct wpi_softc *);
static void wpi_free_rpool(struct wpi_softc *);
static int wpi_alloc_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static void wpi_reset_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static void wpi_free_rx_ring(struct wpi_softc *, struct wpi_rx_ring *);
static int wpi_alloc_tx_ring(struct wpi_softc *, struct wpi_tx_ring *, int,
int);
static void wpi_reset_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
static void wpi_free_tx_ring(struct wpi_softc *, struct wpi_tx_ring *);
static struct ieee80211_node * wpi_node_alloc(struct ieee80211_node_table *);
static void wpi_newassoc(struct ieee80211_node *, int);
static int wpi_media_change(struct ifnet *);
static int wpi_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void wpi_fix_channel(struct ieee80211com *, struct mbuf *);
static void wpi_mem_lock(struct wpi_softc *);
static void wpi_mem_unlock(struct wpi_softc *);
static uint32_t wpi_mem_read(struct wpi_softc *, uint16_t);
static void wpi_mem_write(struct wpi_softc *, uint16_t, uint32_t);
static void wpi_mem_write_region_4(struct wpi_softc *, uint16_t,
const uint32_t *, int);
static int wpi_read_prom_data(struct wpi_softc *, uint32_t, void *, int);
static int wpi_load_microcode(struct wpi_softc *, const uint8_t *, int);
static int wpi_load_firmware(struct wpi_softc *);
static void wpi_calib_timeout(void *);
static void wpi_iter_func(void *, struct ieee80211_node *);
static void wpi_power_calibration(struct wpi_softc *, int);
static void wpi_rx_intr(struct wpi_softc *, struct wpi_rx_desc *,
struct wpi_rx_data *);
static void wpi_tx_intr(struct wpi_softc *, struct wpi_rx_desc *);
static void wpi_cmd_intr(struct wpi_softc *, struct wpi_rx_desc *);
static void wpi_notif_intr(struct wpi_softc *);
static int wpi_intr(void *);
static void wpi_read_eeprom(struct wpi_softc *);
static void wpi_read_eeprom_channels(struct wpi_softc *, int);
static void wpi_read_eeprom_group(struct wpi_softc *, int);
static uint8_t wpi_plcp_signal(int);
static int wpi_tx_data(struct wpi_softc *, struct mbuf *,
struct ieee80211_node *, int);
static void wpi_start(struct ifnet *);
static void wpi_watchdog(struct ifnet *);
static int wpi_ioctl(struct ifnet *, u_long, void *);
static int wpi_cmd(struct wpi_softc *, int, const void *, int, int);
static int wpi_wme_update(struct ieee80211com *);
static int wpi_mrr_setup(struct wpi_softc *);
static void wpi_set_led(struct wpi_softc *, uint8_t, uint8_t, uint8_t);
static void wpi_enable_tsf(struct wpi_softc *, struct ieee80211_node *);
static int wpi_set_txpower(struct wpi_softc *,
struct ieee80211_channel *, int);
static int wpi_get_power_index(struct wpi_softc *,
struct wpi_power_group *, struct ieee80211_channel *, int);
static int wpi_setup_beacon(struct wpi_softc *, struct ieee80211_node *);
static int wpi_auth(struct wpi_softc *);
static int wpi_scan(struct wpi_softc *, uint16_t);
static int wpi_config(struct wpi_softc *);
static void wpi_stop_master(struct wpi_softc *);
static int wpi_power_up(struct wpi_softc *);
static int wpi_reset(struct wpi_softc *);
static void wpi_hw_config(struct wpi_softc *);
static int wpi_init(struct ifnet *);
static void wpi_stop(struct ifnet *, int);
static bool wpi_resume(device_t, const pmf_qual_t *);
static int wpi_getrfkill(struct wpi_softc *);
static void wpi_sysctlattach(struct wpi_softc *);
CFATTACH_DECL_NEW(wpi, sizeof (struct wpi_softc), wpi_match, wpi_attach,
wpi_detach, NULL);
static int
wpi_match(device_t parent, cfdata_t match __unused, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) != PCI_VENDOR_INTEL)
return 0;
if (PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_1 ||
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_3945ABG_2)
return 1;
return 0;
}
/* Base Address Register */
#define WPI_PCI_BAR0 0x10
static int
wpi_attach_once(void)
{
mutex_init(&wpi_firmware_mutex, MUTEX_DEFAULT, IPL_NONE);
return 0;
}
static void
wpi_attach(device_t parent __unused, device_t self, void *aux)
{
struct wpi_softc *sc = device_private(self);
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_ec.ec_if;
struct pci_attach_args *pa = aux;
const char *intrstr;
char devinfo[256];
bus_space_tag_t memt;
bus_space_handle_t memh;
pci_intr_handle_t ih;
pcireg_t data;
int error, ac, revision;
RUN_ONCE(&wpi_firmware_init, wpi_attach_once);
sc->fw_used = false;
sc->sc_dev = self;
sc->sc_pct = pa->pa_pc;
sc->sc_pcitag = pa->pa_tag;
callout_init(&sc->calib_to, 0);
callout_setfunc(&sc->calib_to, wpi_calib_timeout, sc);
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
/* enable bus-mastering */
data = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, sc->sc_pcitag, PCI_COMMAND_STATUS_REG, data);
/* map the register window */
error = pci_mapreg_map(pa, WPI_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, NULL, &sc->sc_sz);
if (error != 0) {
aprint_error_dev(self, "could not map memory space\n");
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
if (pci_intr_map(pa, &ih) != 0) {
aprint_error_dev(self, "could not map interrupt\n");
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, wpi_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error_dev(self, "could not establish interrupt");
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal_dev(self, "interrupting at %s\n", intrstr);
if (wpi_reset(sc) != 0) {
aprint_error_dev(self, "could not reset adapter\n");
return;
}
/*
* Allocate DMA memory for firmware transfers.
*/
if ((error = wpi_alloc_fwmem(sc)) != 0)
return;
/*
* Allocate shared page and Tx/Rx rings.
*/
if ((error = wpi_alloc_shared(sc)) != 0) {
aprint_error_dev(self, "could not allocate shared area\n");
goto fail1;
}
if ((error = wpi_alloc_rpool(sc)) != 0) {
aprint_error_dev(self, "could not allocate Rx buffers\n");
goto fail2;
}
for (ac = 0; ac < 4; ac++) {
error = wpi_alloc_tx_ring(sc, &sc->txq[ac], WPI_TX_RING_COUNT, ac);
if (error != 0) {
aprint_error_dev(self, "could not allocate Tx ring %d\n", ac);
goto fail3;
}
}
error = wpi_alloc_tx_ring(sc, &sc->cmdq, WPI_CMD_RING_COUNT, 4);
if (error != 0) {
aprint_error_dev(self, "could not allocate command ring\n");
goto fail3;
}
if (wpi_alloc_rx_ring(sc, &sc->rxq) != 0) {
aprint_error_dev(self, "could not allocate Rx ring\n");
goto fail4;
}
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_OFDM; /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA; /* default to BSS mode */
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps =
IEEE80211_C_IBSS | /* IBSS mode support */
IEEE80211_C_WPA | /* 802.11i */
IEEE80211_C_MONITOR | /* monitor mode supported */
IEEE80211_C_TXPMGT | /* tx power management */
IEEE80211_C_SHSLOT | /* short slot time supported */
IEEE80211_C_SHPREAMBLE | /* short preamble supported */
IEEE80211_C_WME; /* 802.11e */
/* read supported channels and MAC address from EEPROM */
wpi_read_eeprom(sc);
/* set supported .11a, .11b, .11g rates */
ic->ic_sup_rates[IEEE80211_MODE_11A] = wpi_rateset_11a;
ic->ic_sup_rates[IEEE80211_MODE_11B] = wpi_rateset_11b;
ic->ic_sup_rates[IEEE80211_MODE_11G] = wpi_rateset_11g;
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = wpi_init;
ifp->if_stop = wpi_stop;
ifp->if_ioctl = wpi_ioctl;
ifp->if_start = wpi_start;
ifp->if_watchdog = wpi_watchdog;
IFQ_SET_READY(&ifp->if_snd);
memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
/* override default methods */
ic->ic_node_alloc = wpi_node_alloc;
ic->ic_newassoc = wpi_newassoc;
ic->ic_wme.wme_update = wpi_wme_update;
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = wpi_newstate;
ieee80211_media_init(ic, wpi_media_change, ieee80211_media_status);
sc->amrr.amrr_min_success_threshold = 1;
sc->amrr.amrr_max_success_threshold = 15;
wpi_sysctlattach(sc);
if (pmf_device_register(self, NULL, wpi_resume))
pmf_class_network_register(self, ifp);
else
aprint_error_dev(self, "couldn't establish power handler\n");
bpf_attach2(ifp, DLT_IEEE802_11_RADIO,
sizeof(struct ieee80211_frame) + IEEE80211_RADIOTAP_HDRLEN,
&sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(WPI_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(WPI_TX_RADIOTAP_PRESENT);
ieee80211_announce(ic);
return;
fail4: wpi_free_tx_ring(sc, &sc->cmdq);
fail3: while (--ac >= 0)
wpi_free_tx_ring(sc, &sc->txq[ac]);
wpi_free_rpool(sc);
fail2: wpi_free_shared(sc);
fail1: wpi_free_fwmem(sc);
}
static int
wpi_detach(device_t self, int flags __unused)
{
struct wpi_softc *sc = device_private(self);
struct ifnet *ifp = sc->sc_ic.ic_ifp;
int ac;
wpi_stop(ifp, 1);
if (ifp != NULL)
bpf_detach(ifp);
ieee80211_ifdetach(&sc->sc_ic);
if (ifp != NULL)
if_detach(ifp);
for (ac = 0; ac < 4; ac++)
wpi_free_tx_ring(sc, &sc->txq[ac]);
wpi_free_tx_ring(sc, &sc->cmdq);
wpi_free_rx_ring(sc, &sc->rxq);
wpi_free_rpool(sc);
wpi_free_shared(sc);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
if (sc->fw_used) {
mutex_enter(&wpi_firmware_mutex);
if (--wpi_firmware_users == 0)
firmware_free(wpi_firmware_image, wpi_firmware_size);
mutex_exit(&wpi_firmware_mutex);
}
return 0;
}
static int
wpi_dma_contig_alloc(bus_dma_tag_t tag, struct wpi_dma_info *dma,
void **kvap, bus_size_t size, bus_size_t alignment, int flags)
{
int nsegs, error;
dma->tag = tag;
dma->size = size;
error = bus_dmamap_create(tag, size, 1, size, 0, flags, &dma->map);
if (error != 0)
goto fail;
error = bus_dmamem_alloc(tag, size, alignment, 0, &dma->seg, 1, &nsegs,
flags);
if (error != 0)
goto fail;
error = bus_dmamem_map(tag, &dma->seg, 1, size, &dma->vaddr, flags);
if (error != 0)
goto fail;
error = bus_dmamap_load(tag, dma->map, dma->vaddr, size, NULL, flags);
if (error != 0)
goto fail;
memset(dma->vaddr, 0, size);
dma->paddr = dma->map->dm_segs[0].ds_addr;
if (kvap != NULL)
*kvap = dma->vaddr;
return 0;
fail: wpi_dma_contig_free(dma);
return error;
}
static void
wpi_dma_contig_free(struct wpi_dma_info *dma)
{
if (dma->map != NULL) {
if (dma->vaddr != NULL) {
bus_dmamap_unload(dma->tag, dma->map);
bus_dmamem_unmap(dma->tag, dma->vaddr, dma->size);
bus_dmamem_free(dma->tag, &dma->seg, 1);
dma->vaddr = NULL;
}
bus_dmamap_destroy(dma->tag, dma->map);
dma->map = NULL;
}
}
/*
* Allocate a shared page between host and NIC.
*/
static int
wpi_alloc_shared(struct wpi_softc *sc)
{
int error;
/* must be aligned on a 4K-page boundary */
error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->shared_dma,
(void **)&sc->shared, sizeof (struct wpi_shared),
WPI_BUF_ALIGN,BUS_DMA_NOWAIT);
if (error != 0)
aprint_error_dev(sc->sc_dev,
"could not allocate shared area DMA memory\n");
return error;
}
static void
wpi_free_shared(struct wpi_softc *sc)
{
wpi_dma_contig_free(&sc->shared_dma);
}
/*
* Allocate DMA-safe memory for firmware transfer.
*/
static int
wpi_alloc_fwmem(struct wpi_softc *sc)
{
int error;
/* allocate enough contiguous space to store text and data */
error = wpi_dma_contig_alloc(sc->sc_dmat, &sc->fw_dma, NULL,
WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ, 0,
BUS_DMA_NOWAIT);
if (error != 0)
aprint_error_dev(sc->sc_dev,
"could not allocate firmware transfer area"
"DMA memory\n");
return error;
}
static void
wpi_free_fwmem(struct wpi_softc *sc)
{
wpi_dma_contig_free(&sc->fw_dma);
}
static struct wpi_rbuf *
wpi_alloc_rbuf(struct wpi_softc *sc)
{
struct wpi_rbuf *rbuf;
mutex_enter(&sc->rxq.freelist_mtx);
rbuf = SLIST_FIRST(&sc->rxq.freelist);
if (rbuf != NULL) {
SLIST_REMOVE_HEAD(&sc->rxq.freelist, next);
sc->rxq.nb_free_entries --;
}
mutex_exit(&sc->rxq.freelist_mtx);
return rbuf;
}
/*
* This is called automatically by the network stack when the mbuf to which our
* Rx buffer is attached is freed.
*/
static void
wpi_free_rbuf(struct mbuf* m, void *buf, size_t size, void *arg)
{
struct wpi_rbuf *rbuf = arg;
struct wpi_softc *sc = rbuf->sc;
/* put the buffer back in the free list */
mutex_enter(&sc->rxq.freelist_mtx);
SLIST_INSERT_HEAD(&sc->rxq.freelist, rbuf, next);
mutex_exit(&sc->rxq.freelist_mtx);
/* No need to protect this with a mutex, see wpi_rx_intr */
sc->rxq.nb_free_entries ++;
if (__predict_true(m != NULL))
pool_cache_put(mb_cache, m);
}
static int
wpi_alloc_rpool(struct wpi_softc *sc)
{
struct wpi_rx_ring *ring = &sc->rxq;
struct wpi_rbuf *rbuf;
int i, error;
/* allocate a big chunk of DMA'able memory.. */
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->buf_dma, NULL,
WPI_RBUF_COUNT * WPI_RBUF_SIZE, WPI_BUF_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_normal_dev(sc->sc_dev,
"could not allocate Rx buffers DMA memory\n");
return error;
}
/* ..and split it into 3KB chunks */
mutex_init(&ring->freelist_mtx, MUTEX_DEFAULT, IPL_NET);
SLIST_INIT(&ring->freelist);
for (i = 0; i < WPI_RBUF_COUNT; i++) {
rbuf = &ring->rbuf[i];
rbuf->sc = sc; /* backpointer for callbacks */
rbuf->vaddr = (char *)ring->buf_dma.vaddr + i * WPI_RBUF_SIZE;
rbuf->paddr = ring->buf_dma.paddr + i * WPI_RBUF_SIZE;
SLIST_INSERT_HEAD(&ring->freelist, rbuf, next);
}
ring->nb_free_entries = WPI_RBUF_COUNT;
return 0;
}
static void
wpi_free_rpool(struct wpi_softc *sc)
{
wpi_dma_contig_free(&sc->rxq.buf_dma);
}
static int
wpi_alloc_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
struct wpi_rx_data *data;
struct wpi_rbuf *rbuf;
int i, error;
ring->cur = 0;
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc,
WPI_RX_RING_COUNT * sizeof (struct wpi_rx_desc),
WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate rx ring DMA memory\n");
goto fail;
}
/*
* Setup Rx buffers.
*/
for (i = 0; i < WPI_RX_RING_COUNT; i++) {
data = &ring->data[i];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate rx mbuf\n");
error = ENOMEM;
goto fail;
}
if ((rbuf = wpi_alloc_rbuf(sc)) == NULL) {
m_freem(data->m);
data->m = NULL;
aprint_error_dev(sc->sc_dev, "could not allocate rx cluster\n");
error = ENOMEM;
goto fail;
}
/* attach Rx buffer to mbuf */
MEXTADD(data->m, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
rbuf);
data->m->m_flags |= M_EXT_RW;
ring->desc[i] = htole32(rbuf->paddr);
}
return 0;
fail: wpi_free_rx_ring(sc, ring);
return error;
}
static void
wpi_reset_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
int ntries;
wpi_mem_lock(sc);
WPI_WRITE(sc, WPI_RX_CONFIG, 0);
for (ntries = 0; ntries < 100; ntries++) {
if (WPI_READ(sc, WPI_RX_STATUS) & WPI_RX_IDLE)
break;
DELAY(10);
}
#ifdef WPI_DEBUG
if (ntries == 100 && wpi_debug > 0)
aprint_error_dev(sc->sc_dev, "timeout resetting Rx ring\n");
#endif
wpi_mem_unlock(sc);
ring->cur = 0;
}
static void
wpi_free_rx_ring(struct wpi_softc *sc, struct wpi_rx_ring *ring)
{
int i;
wpi_dma_contig_free(&ring->desc_dma);
for (i = 0; i < WPI_RX_RING_COUNT; i++) {
if (ring->data[i].m != NULL)
m_freem(ring->data[i].m);
}
}
static int
wpi_alloc_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring, int count,
int qid)
{
struct wpi_tx_data *data;
int i, error;
ring->qid = qid;
ring->count = count;
ring->queued = 0;
ring->cur = 0;
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->desc_dma,
(void **)&ring->desc, count * sizeof (struct wpi_tx_desc),
WPI_RING_DMA_ALIGN, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate tx ring DMA memory\n");
goto fail;
}
/* update shared page with ring's base address */
sc->shared->txbase[qid] = htole32(ring->desc_dma.paddr);
error = wpi_dma_contig_alloc(sc->sc_dmat, &ring->cmd_dma,
(void **)&ring->cmd,
count * sizeof (struct wpi_tx_cmd), 4, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not allocate tx cmd DMA memory\n");
goto fail;
}
ring->data = malloc(count * sizeof (struct wpi_tx_data), M_DEVBUF,
M_NOWAIT);
if (ring->data == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate tx data slots\n");
goto fail;
}
memset(ring->data, 0, count * sizeof (struct wpi_tx_data));
for (i = 0; i < count; i++) {
data = &ring->data[i];
error = bus_dmamap_create(sc->sc_dmat, MCLBYTES,
WPI_MAX_SCATTER - 1, MCLBYTES, 0, BUS_DMA_NOWAIT,
&data->map);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not create tx buf DMA map\n");
goto fail;
}
}
return 0;
fail: wpi_free_tx_ring(sc, ring);
return error;
}
static void
wpi_reset_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
{
struct wpi_tx_data *data;
int i, ntries;
wpi_mem_lock(sc);
WPI_WRITE(sc, WPI_TX_CONFIG(ring->qid), 0);
for (ntries = 0; ntries < 100; ntries++) {
if (WPI_READ(sc, WPI_TX_STATUS) & WPI_TX_IDLE(ring->qid))
break;
DELAY(10);
}
#ifdef WPI_DEBUG
if (ntries == 100 && wpi_debug > 0) {
aprint_error_dev(sc->sc_dev, "timeout resetting Tx ring %d\n",
ring->qid);
}
#endif
wpi_mem_unlock(sc);
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
}
ring->queued = 0;
ring->cur = 0;
}
static void
wpi_free_tx_ring(struct wpi_softc *sc, struct wpi_tx_ring *ring)
{
struct wpi_tx_data *data;
int i;
wpi_dma_contig_free(&ring->desc_dma);
wpi_dma_contig_free(&ring->cmd_dma);
if (ring->data != NULL) {
for (i = 0; i < ring->count; i++) {
data = &ring->data[i];
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
}
}
free(ring->data, M_DEVBUF);
}
}
/*ARGUSED*/
static struct ieee80211_node *
wpi_node_alloc(struct ieee80211_node_table *nt __unused)
{
struct wpi_node *wn;
wn = malloc(sizeof (struct wpi_node), M_80211_NODE, M_NOWAIT | M_ZERO);
return (struct ieee80211_node *)wn;
}
static void
wpi_newassoc(struct ieee80211_node *ni, int isnew)
{
struct wpi_softc *sc = ni->ni_ic->ic_ifp->if_softc;
int i;
ieee80211_amrr_node_init(&sc->amrr, &((struct wpi_node *)ni)->amn);
/* set rate to some reasonable initial value */
for (i = ni->ni_rates.rs_nrates - 1;
i > 0 && (ni->ni_rates.rs_rates[i] & IEEE80211_RATE_VAL) > 72;
i--);
ni->ni_txrate = i;
}
static int
wpi_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
wpi_init(ifp);
return 0;
}
static int
wpi_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211_node *ni;
int error;
callout_stop(&sc->calib_to);
switch (nstate) {
case IEEE80211_S_SCAN:
if (sc->is_scanning)
break;
sc->is_scanning = true;
ieee80211_node_table_reset(&ic->ic_scan);
ic->ic_flags |= IEEE80211_F_SCAN | IEEE80211_F_ASCAN;
/* make the link LED blink while we're scanning */
wpi_set_led(sc, WPI_LED_LINK, 20, 2);
if ((error = wpi_scan(sc, IEEE80211_CHAN_G)) != 0) {
aprint_error_dev(sc->sc_dev, "could not initiate scan\n");
ic->ic_flags &= ~(IEEE80211_F_SCAN | IEEE80211_F_ASCAN);
return error;
}
ic->ic_state = nstate;
return 0;
case IEEE80211_S_ASSOC:
if (ic->ic_state != IEEE80211_S_RUN)
break;
/* FALLTHROUGH */
case IEEE80211_S_AUTH:
sc->config.associd = 0;
sc->config.filter &= ~htole32(WPI_FILTER_BSS);
if ((error = wpi_auth(sc)) != 0) {
aprint_error_dev(sc->sc_dev,
"could not send authentication request\n");
return error;
}
break;
case IEEE80211_S_RUN:
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
/* link LED blinks while monitoring */
wpi_set_led(sc, WPI_LED_LINK, 5, 5);
break;
}
ni = ic->ic_bss;
if (ic->ic_opmode != IEEE80211_M_STA) {
(void) wpi_auth(sc); /* XXX */
wpi_setup_beacon(sc, ni);
}
wpi_enable_tsf(sc, ni);
/* update adapter's configuration */
sc->config.associd = htole16(ni->ni_associd & ~0xc000);
/* short preamble/slot time are negotiated when associating */
sc->config.flags &= ~htole32(WPI_CONFIG_SHPREAMBLE |
WPI_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHSLOT)
sc->config.flags |= htole32(WPI_CONFIG_SHSLOT);
if (ic->ic_flags & IEEE80211_F_SHPREAMBLE)
sc->config.flags |= htole32(WPI_CONFIG_SHPREAMBLE);
sc->config.filter |= htole32(WPI_FILTER_BSS);
if (ic->ic_opmode != IEEE80211_M_STA)
sc->config.filter |= htole32(WPI_FILTER_BEACON);
/* XXX put somewhere HC_QOS_SUPPORT_ASSOC + HC_IBSS_START */
DPRINTF(("config chan %d flags %x\n", sc->config.chan,
sc->config.flags));
error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
sizeof (struct wpi_config), 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not update configuration\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
return error;
}
if (ic->ic_opmode == IEEE80211_M_STA) {
/* fake a join to init the tx rate */
wpi_newassoc(ni, 1);
}
/* start periodic calibration timer */
sc->calib_cnt = 0;
callout_schedule(&sc->calib_to, hz/2);
/* link LED always on while associated */
wpi_set_led(sc, WPI_LED_LINK, 0, 1);
break;
case IEEE80211_S_INIT:
sc->is_scanning = false;
break;
}
return sc->sc_newstate(ic, nstate, arg);
}
/*
* XXX: Hack to set the current channel to the value advertised in beacons or
* probe responses. Only used during AP detection.
* XXX: Duplicated from if_iwi.c
*/
static void
wpi_fix_channel(struct ieee80211com *ic, struct mbuf *m)
{
struct ieee80211_frame *wh;
uint8_t subtype;
uint8_t *frm, *efrm;
wh = mtod(m, struct ieee80211_frame *);
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) != IEEE80211_FC0_TYPE_MGT)
return;
subtype = wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK;
if (subtype != IEEE80211_FC0_SUBTYPE_BEACON &&
subtype != IEEE80211_FC0_SUBTYPE_PROBE_RESP)
return;
frm = (uint8_t *)(wh + 1);
efrm = mtod(m, uint8_t *) + m->m_len;
frm += 12; /* skip tstamp, bintval and capinfo fields */
while (frm < efrm) {
if (*frm == IEEE80211_ELEMID_DSPARMS)
#if IEEE80211_CHAN_MAX < 255
if (frm[2] <= IEEE80211_CHAN_MAX)
#endif
ic->ic_curchan = &ic->ic_channels[frm[2]];
frm += frm[1] + 2;
}
}
/*
* Grab exclusive access to NIC memory.
*/
static void
wpi_mem_lock(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = WPI_READ(sc, WPI_GPIO_CTL);
WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_MAC);
/* spin until we actually get the lock */
for (ntries = 0; ntries < 1000; ntries++) {
if ((WPI_READ(sc, WPI_GPIO_CTL) &
(WPI_GPIO_CLOCK | WPI_GPIO_SLEEP)) == WPI_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 1000)
aprint_error_dev(sc->sc_dev, "could not lock memory\n");
}
/*
* Release lock on NIC memory.
*/
static void
wpi_mem_unlock(struct wpi_softc *sc)
{
uint32_t tmp = WPI_READ(sc, WPI_GPIO_CTL);
WPI_WRITE(sc, WPI_GPIO_CTL, tmp & ~WPI_GPIO_MAC);
}
static uint32_t
wpi_mem_read(struct wpi_softc *sc, uint16_t addr)
{
WPI_WRITE(sc, WPI_READ_MEM_ADDR, WPI_MEM_4 | addr);
return WPI_READ(sc, WPI_READ_MEM_DATA);
}
static void
wpi_mem_write(struct wpi_softc *sc, uint16_t addr, uint32_t data)
{
WPI_WRITE(sc, WPI_WRITE_MEM_ADDR, WPI_MEM_4 | addr);
WPI_WRITE(sc, WPI_WRITE_MEM_DATA, data);
}
static void
wpi_mem_write_region_4(struct wpi_softc *sc, uint16_t addr,
const uint32_t *data, int wlen)
{
for (; wlen > 0; wlen--, data++, addr += 4)
wpi_mem_write(sc, addr, *data);
}
/*
* Read `len' bytes from the EEPROM. We access the EEPROM through the MAC
* instead of using the traditional bit-bang method.
*/
static int
wpi_read_prom_data(struct wpi_softc *sc, uint32_t addr, void *data, int len)
{
uint8_t *out = data;
uint32_t val;
int ntries;
wpi_mem_lock(sc);
for (; len > 0; len -= 2, addr++) {
WPI_WRITE(sc, WPI_EEPROM_CTL, addr << 2);
for (ntries = 0; ntries < 10; ntries++) {
if ((val = WPI_READ(sc, WPI_EEPROM_CTL)) &
WPI_EEPROM_READY)
break;
DELAY(5);
}
if (ntries == 10) {
aprint_error_dev(sc->sc_dev, "could not read EEPROM\n");
return ETIMEDOUT;
}
*out++ = val >> 16;
if (len > 1)
*out++ = val >> 24;
}
wpi_mem_unlock(sc);
return 0;
}
/*
* The firmware boot code is small and is intended to be copied directly into
* the NIC internal memory.
*/
int
wpi_load_microcode(struct wpi_softc *sc, const uint8_t *ucode, int size)
{
int ntries;
size /= sizeof (uint32_t);
wpi_mem_lock(sc);
/* copy microcode image into NIC memory */
wpi_mem_write_region_4(sc, WPI_MEM_UCODE_BASE,
(const uint32_t *)ucode, size);
wpi_mem_write(sc, WPI_MEM_UCODE_SRC, 0);
wpi_mem_write(sc, WPI_MEM_UCODE_DST, WPI_FW_TEXT);
wpi_mem_write(sc, WPI_MEM_UCODE_SIZE, size);
/* run microcode */
wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_RUN);
/* wait for transfer to complete */
for (ntries = 0; ntries < 1000; ntries++) {
if (!(wpi_mem_read(sc, WPI_MEM_UCODE_CTL) & WPI_UC_RUN))
break;
DELAY(10);
}
if (ntries == 1000) {
wpi_mem_unlock(sc);
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
return ETIMEDOUT;
}
wpi_mem_write(sc, WPI_MEM_UCODE_CTL, WPI_UC_ENABLE);
wpi_mem_unlock(sc);
return 0;
}
static int
wpi_cache_firmware(struct wpi_softc *sc)
{
firmware_handle_t fw;
int error;
if (sc->fw_used)
return 0;
mutex_enter(&wpi_firmware_mutex);
if (wpi_firmware_users++) {
mutex_exit(&wpi_firmware_mutex);
return 0;
}
/* load firmware image from disk */
if ((error = firmware_open("if_wpi","iwlwifi-3945.ucode", &fw)) != 0) {
aprint_error_dev(sc->sc_dev, "could not read firmware file\n");
goto fail1;
}
wpi_firmware_size = firmware_get_size(fw);
if (wpi_firmware_size > sizeof (struct wpi_firmware_hdr) +
WPI_FW_MAIN_TEXT_MAXSZ + WPI_FW_MAIN_DATA_MAXSZ +
WPI_FW_INIT_TEXT_MAXSZ + WPI_FW_INIT_DATA_MAXSZ +
WPI_FW_BOOT_TEXT_MAXSZ) {
aprint_error_dev(sc->sc_dev, "invalid firmware file\n");
error = EFBIG;
goto fail1;
}
if (wpi_firmware_size < sizeof (struct wpi_firmware_hdr)) {
aprint_error_dev(sc->sc_dev,
"truncated firmware header: %zu bytes\n",
wpi_firmware_size);
error = EINVAL;
goto fail2;
}
wpi_firmware_image = firmware_malloc(wpi_firmware_size);
if (wpi_firmware_image == NULL) {
aprint_error_dev(sc->sc_dev, "not enough memory to stock firmware\n");
error = ENOMEM;
goto fail1;
}
if ((error = firmware_read(fw, 0, wpi_firmware_image, wpi_firmware_size)) != 0) {
aprint_error_dev(sc->sc_dev, "can't get firmware\n");
goto fail2;
}
sc->fw_used = true;
firmware_close(fw);
mutex_exit(&wpi_firmware_mutex);
return 0;
fail2:
firmware_free(wpi_firmware_image, wpi_firmware_size);
fail1:
firmware_close(fw);
if (--wpi_firmware_users == 0)
firmware_free(wpi_firmware_image, wpi_firmware_size);
mutex_exit(&wpi_firmware_mutex);
return error;
}
static int
wpi_load_firmware(struct wpi_softc *sc)
{
struct wpi_dma_info *dma = &sc->fw_dma;
struct wpi_firmware_hdr hdr;
const uint8_t *init_text, *init_data, *main_text, *main_data;
const uint8_t *boot_text;
uint32_t init_textsz, init_datasz, main_textsz, main_datasz;
uint32_t boot_textsz;
int error;
if ((error = wpi_cache_firmware(sc)) != 0)
return error;
memcpy(&hdr, wpi_firmware_image, sizeof(hdr));
main_textsz = le32toh(hdr.main_textsz);
main_datasz = le32toh(hdr.main_datasz);
init_textsz = le32toh(hdr.init_textsz);
init_datasz = le32toh(hdr.init_datasz);
boot_textsz = le32toh(hdr.boot_textsz);
/* sanity-check firmware segments sizes */
if (main_textsz > WPI_FW_MAIN_TEXT_MAXSZ ||
main_datasz > WPI_FW_MAIN_DATA_MAXSZ ||
init_textsz > WPI_FW_INIT_TEXT_MAXSZ ||
init_datasz > WPI_FW_INIT_DATA_MAXSZ ||
boot_textsz > WPI_FW_BOOT_TEXT_MAXSZ ||
(boot_textsz & 3) != 0) {
aprint_error_dev(sc->sc_dev, "invalid firmware header\n");
error = EINVAL;
goto free_firmware;
}
/* check that all firmware segments are present */
if (wpi_firmware_size <
sizeof (struct wpi_firmware_hdr) + main_textsz +
main_datasz + init_textsz + init_datasz + boot_textsz) {
aprint_error_dev(sc->sc_dev,
"firmware file too short: %zu bytes\n", wpi_firmware_size);
error = EINVAL;
goto free_firmware;
}
/* get pointers to firmware segments */
main_text = wpi_firmware_image + sizeof (struct wpi_firmware_hdr);
main_data = main_text + main_textsz;
init_text = main_data + main_datasz;
init_data = init_text + init_textsz;
boot_text = init_data + init_datasz;
/* copy initialization images into pre-allocated DMA-safe memory */
memcpy(dma->vaddr, init_data, init_datasz);
memcpy((char*)dma->vaddr + WPI_FW_INIT_DATA_MAXSZ, init_text, init_textsz);
/* tell adapter where to find initialization images */
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
wpi_mem_write(sc, WPI_MEM_DATA_SIZE, init_datasz);
wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
dma->paddr + WPI_FW_INIT_DATA_MAXSZ);
wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, init_textsz);
wpi_mem_unlock(sc);
/* load firmware boot code */
if ((error = wpi_load_microcode(sc, boot_text, boot_textsz)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load boot firmware\n");
return error;
}
/* now press "execute" ;-) */
WPI_WRITE(sc, WPI_RESET, 0);
/* ..and wait at most one second for adapter to initialize */
if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
/* this isn't what was supposed to happen.. */
aprint_error_dev(sc->sc_dev,
"timeout waiting for adapter to initialize\n");
}
/* copy runtime images into pre-allocated DMA-safe memory */
memcpy(dma->vaddr, main_data, main_datasz);
memcpy((char*)dma->vaddr + WPI_FW_MAIN_DATA_MAXSZ, main_text, main_textsz);
/* tell adapter where to find runtime images */
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_DATA_BASE, dma->paddr);
wpi_mem_write(sc, WPI_MEM_DATA_SIZE, main_datasz);
wpi_mem_write(sc, WPI_MEM_TEXT_BASE,
dma->paddr + WPI_FW_MAIN_DATA_MAXSZ);
wpi_mem_write(sc, WPI_MEM_TEXT_SIZE, WPI_FW_UPDATED | main_textsz);
wpi_mem_unlock(sc);
/* wait at most one second for second alive notification */
if ((error = tsleep(sc, PCATCH, "wpiinit", hz)) != 0) {
/* this isn't what was supposed to happen.. */
aprint_error_dev(sc->sc_dev,
"timeout waiting for adapter to initialize\n");
}
return error;
free_firmware:
mutex_enter(&wpi_firmware_mutex);
sc->fw_used = false;
--wpi_firmware_users;
mutex_exit(&wpi_firmware_mutex);
return error;
}
static void
wpi_calib_timeout(void *arg)
{
struct wpi_softc *sc = arg;
struct ieee80211com *ic = &sc->sc_ic;
int temp, s;
/* automatic rate control triggered every 500ms */
if (ic->ic_fixed_rate == -1) {
s = splnet();
if (ic->ic_opmode == IEEE80211_M_STA)
wpi_iter_func(sc, ic->ic_bss);
else
ieee80211_iterate_nodes(&ic->ic_sta, wpi_iter_func, sc);
splx(s);
}
/* update sensor data */
temp = (int)WPI_READ(sc, WPI_TEMPERATURE);
/* automatic power calibration every 60s */
if (++sc->calib_cnt >= 120) {
wpi_power_calibration(sc, temp);
sc->calib_cnt = 0;
}
callout_schedule(&sc->calib_to, hz/2);
}
static void
wpi_iter_func(void *arg, struct ieee80211_node *ni)
{
struct wpi_softc *sc = arg;
struct wpi_node *wn = (struct wpi_node *)ni;
ieee80211_amrr_choose(&sc->amrr, ni, &wn->amn);
}
/*
* This function is called periodically (every 60 seconds) to adjust output
* power to temperature changes.
*/
void
wpi_power_calibration(struct wpi_softc *sc, int temp)
{
/* sanity-check read value */
if (temp < -260 || temp > 25) {
/* this can't be correct, ignore */
DPRINTF(("out-of-range temperature reported: %d\n", temp));
return;
}
DPRINTF(("temperature %d->%d\n", sc->temp, temp));
/* adjust Tx power if need be */
if (abs(temp - sc->temp) <= 6)
return;
sc->temp = temp;
if (wpi_set_txpower(sc, sc->sc_ic.ic_bss->ni_chan, 1) != 0) {
/* just warn, too bad for the automatic calibration... */
aprint_error_dev(sc->sc_dev, "could not adjust Tx power\n");
}
}
static void
wpi_rx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc,
struct wpi_rx_data *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct wpi_rx_ring *ring = &sc->rxq;
struct wpi_rx_stat *stat;
struct wpi_rx_head *head;
struct wpi_rx_tail *tail;
struct wpi_rbuf *rbuf;
struct ieee80211_frame *wh;
struct ieee80211_node *ni;
struct mbuf *m, *mnew;
int data_off ;
stat = (struct wpi_rx_stat *)(desc + 1);
if (stat->len > WPI_STAT_MAXLEN) {
aprint_error_dev(sc->sc_dev, "invalid rx statistic header\n");
ifp->if_ierrors++;
return;
}
head = (struct wpi_rx_head *)((char *)(stat + 1) + stat->len);
tail = (struct wpi_rx_tail *)((char *)(head + 1) + le16toh(head->len));
DPRINTFN(4, ("rx intr: idx=%d len=%d stat len=%d rssi=%d rate=%x "
"chan=%d tstamp=%" PRId64 "\n", ring->cur, le32toh(desc->len),
le16toh(head->len), (int8_t)stat->rssi, head->rate, head->chan,
le64toh(tail->tstamp)));
/*
* Discard Rx frames with bad CRC early (XXX we may want to pass them
* to radiotap in monitor mode).
*/
if ((le32toh(tail->flags) & WPI_RX_NOERROR) != WPI_RX_NOERROR) {
DPRINTF(("rx tail flags error %x\n", le32toh(tail->flags)));
ifp->if_ierrors++;
return;
}
/* Compute where are the useful datas */
data_off = (char*)(head + 1) - mtod(data->m, char*);
/*
* If the number of free entry is too low
* just dup the data->m socket and reuse the same rbuf entry
* Note that thi test is not protected by a mutex because the
* only path that causes nb_free_entries to decrease is through
* this interrupt routine, which is not re-entrent.
* What may not be obvious is that the safe path is if that test
* evaluates as true, so nb_free_entries can grow any time.
*/
if (sc->rxq.nb_free_entries <= WPI_RBUF_LOW_LIMIT) {
/* Prepare the mbuf for the m_dup */
data->m->m_pkthdr.len = data->m->m_len = le16toh(head->len);
data->m->m_data = (char*) data->m->m_data + data_off;
m = m_dup(data->m,0,M_COPYALL,M_DONTWAIT);
/* Restore the m_data pointer for future use */
data->m->m_data = (char*) data->m->m_data - data_off;
if (m == NULL) {
ifp->if_ierrors++;
return;
}
} else {
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
ifp->if_ierrors++;
return;
}
rbuf = wpi_alloc_rbuf(sc);
KASSERT(rbuf != NULL);
/* attach Rx buffer to mbuf */
MEXTADD(mnew, rbuf->vaddr, WPI_RBUF_SIZE, 0, wpi_free_rbuf,
rbuf);
mnew->m_flags |= M_EXT_RW;
m = data->m;
data->m = mnew;
/* update Rx descriptor */
ring->desc[ring->cur] = htole32(rbuf->paddr);
m->m_data = (char*)m->m_data + data_off;
m->m_pkthdr.len = m->m_len = le16toh(head->len);
}
/* finalize mbuf */
m->m_pkthdr.rcvif = ifp;
if (ic->ic_state == IEEE80211_S_SCAN)
wpi_fix_channel(ic, m);
if (sc->sc_drvbpf != NULL) {
struct wpi_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_chan_freq =
htole16(ic->ic_channels[head->chan].ic_freq);
tap->wr_chan_flags =
htole16(ic->ic_channels[head->chan].ic_flags);
tap->wr_dbm_antsignal = (int8_t)(stat->rssi - WPI_RSSI_OFFSET);
tap->wr_dbm_antnoise = (int8_t)le16toh(stat->noise);
tap->wr_tsft = tail->tstamp;
tap->wr_antenna = (le16toh(head->flags) >> 4) & 0xf;
switch (head->rate) {
/* CCK rates */
case 10: tap->wr_rate = 2; break;
case 20: tap->wr_rate = 4; break;
case 55: tap->wr_rate = 11; break;
case 110: tap->wr_rate = 22; break;
/* OFDM rates */
case 0xd: tap->wr_rate = 12; break;
case 0xf: tap->wr_rate = 18; break;
case 0x5: tap->wr_rate = 24; break;
case 0x7: tap->wr_rate = 36; break;
case 0x9: tap->wr_rate = 48; break;
case 0xb: tap->wr_rate = 72; break;
case 0x1: tap->wr_rate = 96; break;
case 0x3: tap->wr_rate = 108; break;
/* unknown rate: should not happen */
default: tap->wr_rate = 0;
}
if (le16toh(head->flags) & 0x4)
tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
/* grab a reference to the source node */
wh = mtod(m, struct ieee80211_frame *);
ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
/* send the frame to the 802.11 layer */
ieee80211_input(ic, m, ni, stat->rssi, 0);
/* release node reference */
ieee80211_free_node(ni);
}
static void
wpi_tx_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
{
struct ifnet *ifp = sc->sc_ic.ic_ifp;
struct wpi_tx_ring *ring = &sc->txq[desc->qid & 0x3];
struct wpi_tx_data *txdata = &ring->data[desc->idx];
struct wpi_tx_stat *stat = (struct wpi_tx_stat *)(desc + 1);
struct wpi_node *wn = (struct wpi_node *)txdata->ni;
DPRINTFN(4, ("tx done: qid=%d idx=%d retries=%d nkill=%d rate=%x "
"duration=%d status=%x\n", desc->qid, desc->idx, stat->ntries,
stat->nkill, stat->rate, le32toh(stat->duration),
le32toh(stat->status)));
/*
* Update rate control statistics for the node.
* XXX we should not count mgmt frames since they're always sent at
* the lowest available bit-rate.
*/
wn->amn.amn_txcnt++;
if (stat->ntries > 0) {
DPRINTFN(3, ("tx intr ntries %d\n", stat->ntries));
wn->amn.amn_retrycnt++;
}
if ((le32toh(stat->status) & 0xff) != 1)
ifp->if_oerrors++;
else
ifp->if_opackets++;
bus_dmamap_unload(sc->sc_dmat, txdata->map);
m_freem(txdata->m);
txdata->m = NULL;
ieee80211_free_node(txdata->ni);
txdata->ni = NULL;
ring->queued--;
sc->sc_tx_timer = 0;
ifp->if_flags &= ~IFF_OACTIVE;
wpi_start(ifp);
}
static void
wpi_cmd_intr(struct wpi_softc *sc, struct wpi_rx_desc *desc)
{
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_data *data;
if ((desc->qid & 7) != 4)
return; /* not a command ack */
data = &ring->data[desc->idx];
/* if the command was mapped in a mbuf, free it */
if (data->m != NULL) {
bus_dmamap_unload(sc->sc_dmat, data->map);
m_freem(data->m);
data->m = NULL;
}
wakeup(&ring->cmd[desc->idx]);
}
static void
wpi_notif_intr(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct wpi_rx_desc *desc;
struct wpi_rx_data *data;
uint32_t hw;
hw = le32toh(sc->shared->next);
while (sc->rxq.cur != hw) {
data = &sc->rxq.data[sc->rxq.cur];
desc = mtod(data->m, struct wpi_rx_desc *);
DPRINTFN(4, ("rx notification qid=%x idx=%d flags=%x type=%d "
"len=%d\n", desc->qid, desc->idx, desc->flags,
desc->type, le32toh(desc->len)));
if (!(desc->qid & 0x80)) /* reply to a command */
wpi_cmd_intr(sc, desc);
switch (desc->type) {
case WPI_RX_DONE:
/* a 802.11 frame was received */
wpi_rx_intr(sc, desc, data);
break;
case WPI_TX_DONE:
/* a 802.11 frame has been transmitted */
wpi_tx_intr(sc, desc);
break;
case WPI_UC_READY:
{
struct wpi_ucode_info *uc =
(struct wpi_ucode_info *)(desc + 1);
/* the microcontroller is ready */
DPRINTF(("microcode alive notification version %x "
"alive %x\n", le32toh(uc->version),
le32toh(uc->valid)));
if (le32toh(uc->valid) != 1) {
aprint_error_dev(sc->sc_dev,
"microcontroller initialization failed\n");
}
break;
}
case WPI_STATE_CHANGED:
{
uint32_t *status = (uint32_t *)(desc + 1);
/* enabled/disabled notification */
DPRINTF(("state changed to %x\n", le32toh(*status)));
if (le32toh(*status) & 1) {
/* the radio button has to be pushed */
aprint_error_dev(sc->sc_dev, "Radio transmitter is off\n");
/* turn the interface down */
ifp->if_flags &= ~IFF_UP;
wpi_stop(ifp, 1);
return; /* no further processing */
}
break;
}
case WPI_START_SCAN:
{
struct wpi_start_scan *scan =
(struct wpi_start_scan *)(desc + 1);
DPRINTFN(2, ("scanning channel %d status %x\n",
scan->chan, le32toh(scan->status)));
/* fix current channel */
ic->ic_bss->ni_chan = &ic->ic_channels[scan->chan];
break;
}
case WPI_STOP_SCAN:
{
struct wpi_stop_scan *scan =
(struct wpi_stop_scan *)(desc + 1);
DPRINTF(("scan finished nchan=%d status=%d chan=%d\n",
scan->nchan, scan->status, scan->chan));
if (scan->status == 1 && scan->chan <= 14) {
/*
* We just finished scanning 802.11g channels,
* start scanning 802.11a ones.
*/
if (wpi_scan(sc, IEEE80211_CHAN_A) == 0)
break;
}
sc->is_scanning = false;
ieee80211_end_scan(ic);
break;
}
}
sc->rxq.cur = (sc->rxq.cur + 1) % WPI_RX_RING_COUNT;
}
/* tell the firmware what we have processed */
hw = (hw == 0) ? WPI_RX_RING_COUNT - 1 : hw - 1;
WPI_WRITE(sc, WPI_RX_WIDX, hw & ~7);
}
static int
wpi_intr(void *arg)
{
struct wpi_softc *sc = arg;
struct ifnet *ifp = sc->sc_ic.ic_ifp;
uint32_t r;
r = WPI_READ(sc, WPI_INTR);
if (r == 0 || r == 0xffffffff)
return 0; /* not for us */
DPRINTFN(5, ("interrupt reg %x\n", r));
/* disable interrupts */
WPI_WRITE(sc, WPI_MASK, 0);
/* ack interrupts */
WPI_WRITE(sc, WPI_INTR, r);
if (r & (WPI_SW_ERROR | WPI_HW_ERROR)) {
aprint_error_dev(sc->sc_dev, "fatal firmware error\n");
sc->sc_ic.ic_ifp->if_flags &= ~IFF_UP;
wpi_stop(sc->sc_ic.ic_ifp, 1);
return 1;
}
if (r & WPI_RX_INTR)
wpi_notif_intr(sc);
if (r & WPI_ALIVE_INTR) /* firmware initialized */
wakeup(sc);
/* re-enable interrupts */
if (ifp->if_flags & IFF_UP)
WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
return 1;
}
static uint8_t
wpi_plcp_signal(int rate)
{
switch (rate) {
/* CCK rates (returned values are device-dependent) */
case 2: return 10;
case 4: return 20;
case 11: return 55;
case 22: return 110;
/* OFDM rates (cf IEEE Std 802.11a-1999, pp. 14 Table 80) */
/* R1-R4, (u)ral is R4-R1 */
case 12: return 0xd;
case 18: return 0xf;
case 24: return 0x5;
case 36: return 0x7;
case 48: return 0x9;
case 72: return 0xb;
case 96: return 0x1;
case 108: return 0x3;
/* unsupported rates (should not get there) */
default: return 0;
}
}
/* quickly determine if a given rate is CCK or OFDM */
#define WPI_RATE_IS_OFDM(rate) ((rate) >= 12 && (rate) != 22)
static int
wpi_tx_data(struct wpi_softc *sc, struct mbuf *m0, struct ieee80211_node *ni,
int ac)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_tx_ring *ring = &sc->txq[ac];
struct wpi_tx_desc *desc;
struct wpi_tx_data *data;
struct wpi_tx_cmd *cmd;
struct wpi_cmd_data *tx;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
const struct chanAccParams *cap;
struct mbuf *mnew;
int i, error, rate, hdrlen, noack = 0;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
wh = mtod(m0, struct ieee80211_frame *);
if (IEEE80211_QOS_HAS_SEQ(wh)) {
cap = &ic->ic_wme.wme_chanParams;
noack = cap->cap_wmeParams[ac].wmep_noackPolicy;
}
if (wh->i_fc[1] & IEEE80211_FC1_WEP) {
k = ieee80211_crypto_encap(ic, ni, m0);
if (k == NULL) {
m_freem(m0);
return ENOBUFS;
}
/* packet header may have moved, reset our local pointer */
wh = mtod(m0, struct ieee80211_frame *);
}
hdrlen = ieee80211_anyhdrsize(wh);
/* pickup a rate */
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* mgmt frames are sent at the lowest available bit-rate */
rate = ni->ni_rates.rs_rates[0];
} else {
if (ic->ic_fixed_rate != -1) {
rate = ic->ic_sup_rates[ic->ic_curmode].
rs_rates[ic->ic_fixed_rate];
} else
rate = ni->ni_rates.rs_rates[ni->ni_txrate];
}
rate &= IEEE80211_RATE_VAL;
if (sc->sc_drvbpf != NULL) {
struct wpi_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ni->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ni->ni_chan->ic_flags);
tap->wt_rate = rate;
tap->wt_hwqueue = ac;
if (wh->i_fc[1] & IEEE80211_FC1_WEP)
tap->wt_flags |= IEEE80211_RADIOTAP_F_WEP;
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m0);
}
cmd = &ring->cmd[ring->cur];
cmd->code = WPI_CMD_TX_DATA;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
tx = (struct wpi_cmd_data *)cmd->data;
tx->flags = 0;
if (!noack && !IEEE80211_IS_MULTICAST(wh->i_addr1)) {
tx->flags |= htole32(WPI_TX_NEED_ACK);
} else if (m0->m_pkthdr.len + IEEE80211_CRC_LEN > ic->ic_rtsthreshold)
tx->flags |= htole32(WPI_TX_NEED_RTS | WPI_TX_FULL_TXOP);
tx->flags |= htole32(WPI_TX_AUTO_SEQ);
/* retrieve destination node's id */
tx->id = IEEE80211_IS_MULTICAST(wh->i_addr1) ? WPI_ID_BROADCAST :
WPI_ID_BSS;
if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
IEEE80211_FC0_TYPE_MGT) {
/* tell h/w to set timestamp in probe responses */
if ((wh->i_fc[0] &
(IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
(IEEE80211_FC0_TYPE_MGT | IEEE80211_FC0_SUBTYPE_PROBE_RESP))
tx->flags |= htole32(WPI_TX_INSERT_TSTAMP);
if (((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_ASSOC_REQ) ||
((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
IEEE80211_FC0_SUBTYPE_REASSOC_REQ))
tx->timeout = htole16(3);
else
tx->timeout = htole16(2);
} else
tx->timeout = htole16(0);
tx->rate = wpi_plcp_signal(rate);
/* be very persistant at sending frames out */
tx->rts_ntries = 7;
tx->data_ntries = 15;
tx->ofdm_mask = 0xff;
tx->cck_mask = 0xf;
tx->lifetime = htole32(WPI_LIFETIME_INFINITE);
tx->len = htole16(m0->m_pkthdr.len);
/* save and trim IEEE802.11 header */
memcpy((uint8_t *)(tx + 1), wh, hdrlen);
m_adj(m0, hdrlen);
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0 && error != EFBIG) {
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n", error);
m_freem(m0);
return error;
}
if (error != 0) {
/* too many fragments, linearize */
MGETHDR(mnew, M_DONTWAIT, MT_DATA);
if (mnew == NULL) {
m_freem(m0);
return ENOMEM;
}
M_COPY_PKTHDR(mnew, m0);
if (m0->m_pkthdr.len > MHLEN) {
MCLGET(mnew, M_DONTWAIT);
if (!(mnew->m_flags & M_EXT)) {
m_freem(m0);
m_freem(mnew);
return ENOMEM;
}
}
m_copydata(m0, 0, m0->m_pkthdr.len, mtod(mnew, void *));
m_freem(m0);
mnew->m_len = mnew->m_pkthdr.len;
m0 = mnew;
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_WRITE | BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not map mbuf (error %d)\n",
error);
m_freem(m0);
return error;
}
}
data->m = m0;
data->ni = ni;
DPRINTFN(4, ("sending data: qid=%d idx=%d len=%d nsegs=%d\n",
ring->qid, ring->cur, m0->m_pkthdr.len, data->map->dm_nsegs));
/* first scatter/gather segment is used by the tx data command */
desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 |
(1 + data->map->dm_nsegs) << 24);
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
ring->cur * sizeof (struct wpi_tx_cmd));
desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_data) +
((hdrlen + 3) & ~3));
for (i = 1; i <= data->map->dm_nsegs; i++) {
desc->segs[i].addr =
htole32(data->map->dm_segs[i - 1].ds_addr);
desc->segs[i].len =
htole32(data->map->dm_segs[i - 1].ds_len);
}
ring->queued++;
/* kick ring */
ring->cur = (ring->cur + 1) % WPI_TX_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return 0;
}
static void
wpi_start(struct ifnet *ifp)
{
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni;
struct ether_header *eh;
struct mbuf *m0;
int ac;
/*
* net80211 may still try to send management frames even if the
* IFF_RUNNING flag is not set...
*/
if ((ifp->if_flags & (IFF_RUNNING | IFF_OACTIVE)) != IFF_RUNNING)
return;
for (;;) {
IF_DEQUEUE(&ic->ic_mgtq, m0);
if (m0 != NULL) {
ni = (struct ieee80211_node *)m0->m_pkthdr.rcvif;
m0->m_pkthdr.rcvif = NULL;
/* management frames go into ring 0 */
if (sc->txq[0].queued > sc->txq[0].count - 8) {
ifp->if_oerrors++;
continue;
}
bpf_mtap3(ic->ic_rawbpf, m0);
if (wpi_tx_data(sc, m0, ni, 0) != 0) {
ifp->if_oerrors++;
break;
}
} else {
if (ic->ic_state != IEEE80211_S_RUN)
break;
IFQ_POLL(&ifp->if_snd, m0);
if (m0 == NULL)
break;
if (m0->m_len < sizeof (*eh) &&
(m0 = m_pullup(m0, sizeof (*eh))) == NULL) {
ifp->if_oerrors++;
continue;
}
eh = mtod(m0, struct ether_header *);
ni = ieee80211_find_txnode(ic, eh->ether_dhost);
if (ni == NULL) {
m_freem(m0);
ifp->if_oerrors++;
continue;
}
/* classify mbuf so we can find which tx ring to use */
if (ieee80211_classify(ic, m0, ni) != 0) {
m_freem(m0);
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
/* no QoS encapsulation for EAPOL frames */
ac = (eh->ether_type != htons(ETHERTYPE_PAE)) ?
M_WME_GETAC(m0) : WME_AC_BE;
if (sc->txq[ac].queued > sc->txq[ac].count - 8) {
/* there is no place left in this ring */
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m0);
bpf_mtap(ifp, m0);
m0 = ieee80211_encap(ic, m0, ni);
if (m0 == NULL) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
continue;
}
bpf_mtap3(ic->ic_rawbpf, m0);
if (wpi_tx_data(sc, m0, ni, ac) != 0) {
ieee80211_free_node(ni);
ifp->if_oerrors++;
break;
}
}
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
wpi_watchdog(struct ifnet *ifp)
{
struct wpi_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error_dev(sc->sc_dev, "device timeout\n");
ifp->if_oerrors++;
ifp->if_flags &= ~IFF_UP;
wpi_stop(ifp, 1);
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
wpi_ioctl(struct ifnet *ifp, u_long cmd, void *data)
{
#define IS_RUNNING(ifp) \
((ifp->if_flags & IFF_UP) && (ifp->if_flags & IFF_RUNNING))
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if ((error = ifioctl_common(ifp, cmd, data)) != 0)
break;
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
wpi_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
wpi_stop(ifp, 1);
}
break;
case SIOCADDMULTI:
case SIOCDELMULTI:
/* XXX no h/w multicast filter? --dyoung */
if ((error = ether_ioctl(ifp, cmd, data)) == ENETRESET) {
/* setup multicast filter, etc */
error = 0;
}
break;
default:
error = ieee80211_ioctl(ic, cmd, data);
}
if (error == ENETRESET) {
if (IS_RUNNING(ifp) &&
(ic->ic_roaming != IEEE80211_ROAMING_MANUAL))
wpi_init(ifp);
error = 0;
}
splx(s);
return error;
#undef IS_RUNNING
}
/*
* Extract various information from EEPROM.
*/
static void
wpi_read_eeprom(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
char domain[4];
int i;
wpi_read_prom_data(sc, WPI_EEPROM_CAPABILITIES, &sc->cap, 1);
wpi_read_prom_data(sc, WPI_EEPROM_REVISION, &sc->rev, 2);
wpi_read_prom_data(sc, WPI_EEPROM_TYPE, &sc->type, 1);
DPRINTF(("cap=%x rev=%x type=%x\n", sc->cap, le16toh(sc->rev),
sc->type));
/* read and print regulatory domain */
wpi_read_prom_data(sc, WPI_EEPROM_DOMAIN, domain, 4);
aprint_normal_dev(sc->sc_dev, "%.4s", domain);
/* read and print MAC address */
wpi_read_prom_data(sc, WPI_EEPROM_MAC, ic->ic_myaddr, 6);
aprint_normal(", address %s\n", ether_sprintf(ic->ic_myaddr));
/* read the list of authorized channels */
for (i = 0; i < WPI_CHAN_BANDS_COUNT; i++)
wpi_read_eeprom_channels(sc, i);
/* read the list of power groups */
for (i = 0; i < WPI_POWER_GROUPS_COUNT; i++)
wpi_read_eeprom_group(sc, i);
}
static void
wpi_read_eeprom_channels(struct wpi_softc *sc, int n)
{
struct ieee80211com *ic = &sc->sc_ic;
const struct wpi_chan_band *band = &wpi_bands[n];
struct wpi_eeprom_chan channels[WPI_MAX_CHAN_PER_BAND];
int chan, i;
wpi_read_prom_data(sc, band->addr, channels,
band->nchan * sizeof (struct wpi_eeprom_chan));
for (i = 0; i < band->nchan; i++) {
if (!(channels[i].flags & WPI_EEPROM_CHAN_VALID))
continue;
chan = band->chan[i];
if (n == 0) { /* 2GHz band */
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_2GHZ);
ic->ic_channels[chan].ic_flags =
IEEE80211_CHAN_CCK | IEEE80211_CHAN_OFDM |
IEEE80211_CHAN_DYN | IEEE80211_CHAN_2GHZ;
} else { /* 5GHz band */
/*
* Some 3945abg adapters support channels 7, 8, 11
* and 12 in the 2GHz *and* 5GHz bands.
* Because of limitations in our net80211(9) stack,
* we can't support these channels in 5GHz band.
*/
if (chan <= 14)
continue;
ic->ic_channels[chan].ic_freq =
ieee80211_ieee2mhz(chan, IEEE80211_CHAN_5GHZ);
ic->ic_channels[chan].ic_flags = IEEE80211_CHAN_A;
}
/* is active scan allowed on this channel? */
if (!(channels[i].flags & WPI_EEPROM_CHAN_ACTIVE)) {
ic->ic_channels[chan].ic_flags |=
IEEE80211_CHAN_PASSIVE;
}
/* save maximum allowed power for this channel */
sc->maxpwr[chan] = channels[i].maxpwr;
DPRINTF(("adding chan %d flags=0x%x maxpwr=%d\n",
chan, channels[i].flags, sc->maxpwr[chan]));
}
}
static void
wpi_read_eeprom_group(struct wpi_softc *sc, int n)
{
struct wpi_power_group *group = &sc->groups[n];
struct wpi_eeprom_group rgroup;
int i;
wpi_read_prom_data(sc, WPI_EEPROM_POWER_GRP + n * 32, &rgroup,
sizeof rgroup);
/* save power group information */
group->chan = rgroup.chan;
group->maxpwr = rgroup.maxpwr;
/* temperature at which the samples were taken */
group->temp = (int16_t)le16toh(rgroup.temp);
DPRINTF(("power group %d: chan=%d maxpwr=%d temp=%d\n", n,
group->chan, group->maxpwr, group->temp));
for (i = 0; i < WPI_SAMPLES_COUNT; i++) {
group->samples[i].index = rgroup.samples[i].index;
group->samples[i].power = rgroup.samples[i].power;
DPRINTF(("\tsample %d: index=%d power=%d\n", i,
group->samples[i].index, group->samples[i].power));
}
}
/*
* Send a command to the firmware.
*/
static int
wpi_cmd(struct wpi_softc *sc, int code, const void *buf, int size, int async)
{
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_desc *desc;
struct wpi_tx_cmd *cmd;
KASSERT(size <= sizeof cmd->data);
desc = &ring->desc[ring->cur];
cmd = &ring->cmd[ring->cur];
cmd->code = code;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
memcpy(cmd->data, buf, size);
desc->flags = htole32(WPI_PAD32(size) << 28 | 1 << 24);
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
ring->cur * sizeof (struct wpi_tx_cmd));
desc->segs[0].len = htole32(4 + size);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return async ? 0 : tsleep(cmd, PCATCH, "wpicmd", hz);
}
static int
wpi_wme_update(struct ieee80211com *ic)
{
#define WPI_EXP2(v) htole16((1 << (v)) - 1)
#define WPI_USEC(v) htole16(IEEE80211_TXOP_TO_US(v))
struct wpi_softc *sc = ic->ic_ifp->if_softc;
const struct wmeParams *wmep;
struct wpi_wme_setup wme;
int ac;
/* don't override default WME values if WME is not actually enabled */
if (!(ic->ic_flags & IEEE80211_F_WME))
return 0;
wme.flags = 0;
for (ac = 0; ac < WME_NUM_AC; ac++) {
wmep = &ic->ic_wme.wme_chanParams.cap_wmeParams[ac];
wme.ac[ac].aifsn = wmep->wmep_aifsn;
wme.ac[ac].cwmin = WPI_EXP2(wmep->wmep_logcwmin);
wme.ac[ac].cwmax = WPI_EXP2(wmep->wmep_logcwmax);
wme.ac[ac].txop = WPI_USEC(wmep->wmep_txopLimit);
DPRINTF(("setting WME for queue %d aifsn=%d cwmin=%d cwmax=%d "
"txop=%d\n", ac, wme.ac[ac].aifsn, wme.ac[ac].cwmin,
wme.ac[ac].cwmax, wme.ac[ac].txop));
}
return wpi_cmd(sc, WPI_CMD_SET_WME, &wme, sizeof wme, 1);
#undef WPI_USEC
#undef WPI_EXP2
}
/*
* Configure h/w multi-rate retries.
*/
static int
wpi_mrr_setup(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_mrr_setup mrr;
int i, error;
/* CCK rates (not used with 802.11a) */
for (i = WPI_CCK1; i <= WPI_CCK11; i++) {
mrr.rates[i].flags = 0;
mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
/* fallback to the immediate lower CCK rate (if any) */
mrr.rates[i].next = (i == WPI_CCK1) ? WPI_CCK1 : i - 1;
/* try one time at this rate before falling back to "next" */
mrr.rates[i].ntries = 1;
}
/* OFDM rates (not used with 802.11b) */
for (i = WPI_OFDM6; i <= WPI_OFDM54; i++) {
mrr.rates[i].flags = 0;
mrr.rates[i].plcp = wpi_ridx_to_plcp[i];
/* fallback to the immediate lower rate (if any) */
/* we allow fallback from OFDM/6 to CCK/2 in 11b/g mode */
mrr.rates[i].next = (i == WPI_OFDM6) ?
((ic->ic_curmode == IEEE80211_MODE_11A) ?
WPI_OFDM6 : WPI_CCK2) :
i - 1;
/* try one time at this rate before falling back to "next" */
mrr.rates[i].ntries = 1;
}
/* setup MRR for control frames */
mrr.which = htole32(WPI_MRR_CTL);
error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not setup MRR for control frames\n");
return error;
}
/* setup MRR for data frames */
mrr.which = htole32(WPI_MRR_DATA);
error = wpi_cmd(sc, WPI_CMD_MRR_SETUP, &mrr, sizeof mrr, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not setup MRR for data frames\n");
return error;
}
return 0;
}
static void
wpi_set_led(struct wpi_softc *sc, uint8_t which, uint8_t off, uint8_t on)
{
struct wpi_cmd_led led;
led.which = which;
led.unit = htole32(100000); /* on/off in unit of 100ms */
led.off = off;
led.on = on;
(void)wpi_cmd(sc, WPI_CMD_SET_LED, &led, sizeof led, 1);
}
static void
wpi_enable_tsf(struct wpi_softc *sc, struct ieee80211_node *ni)
{
struct wpi_cmd_tsf tsf;
uint64_t val, mod;
memset(&tsf, 0, sizeof tsf);
memcpy(&tsf.tstamp, ni->ni_tstamp.data, 8);
tsf.bintval = htole16(ni->ni_intval);
tsf.lintval = htole16(10);
/* compute remaining time until next beacon */
val = (uint64_t)ni->ni_intval * 1024; /* msecs -> usecs */
mod = le64toh(tsf.tstamp) % val;
tsf.binitval = htole32((uint32_t)(val - mod));
DPRINTF(("TSF bintval=%u tstamp=%" PRId64 ", init=%u\n",
ni->ni_intval, le64toh(tsf.tstamp), (uint32_t)(val - mod)));
if (wpi_cmd(sc, WPI_CMD_TSF, &tsf, sizeof tsf, 1) != 0)
aprint_error_dev(sc->sc_dev, "could not enable TSF\n");
}
/*
* Update Tx power to match what is defined for channel `c'.
*/
static int
wpi_set_txpower(struct wpi_softc *sc, struct ieee80211_channel *c, int async)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_power_group *group;
struct wpi_cmd_txpower txpower;
u_int chan;
int i;
/* get channel number */
chan = ieee80211_chan2ieee(ic, c);
/* find the power group to which this channel belongs */
if (IEEE80211_IS_CHAN_5GHZ(c)) {
for (group = &sc->groups[1]; group < &sc->groups[4]; group++)
if (chan <= group->chan)
break;
} else
group = &sc->groups[0];
memset(&txpower, 0, sizeof txpower);
txpower.band = IEEE80211_IS_CHAN_5GHZ(c) ? 0 : 1;
txpower.chan = htole16(chan);
/* set Tx power for all OFDM and CCK rates */
for (i = 0; i <= 11 ; i++) {
/* retrieve Tx power for this channel/rate combination */
int idx = wpi_get_power_index(sc, group, c,
wpi_ridx_to_rate[i]);
txpower.rates[i].plcp = wpi_ridx_to_plcp[i];
if (IEEE80211_IS_CHAN_5GHZ(c)) {
txpower.rates[i].rf_gain = wpi_rf_gain_5ghz[idx];
txpower.rates[i].dsp_gain = wpi_dsp_gain_5ghz[idx];
} else {
txpower.rates[i].rf_gain = wpi_rf_gain_2ghz[idx];
txpower.rates[i].dsp_gain = wpi_dsp_gain_2ghz[idx];
}
DPRINTF(("chan %d/rate %d: power index %d\n", chan,
wpi_ridx_to_rate[i], idx));
}
return wpi_cmd(sc, WPI_CMD_TXPOWER, &txpower, sizeof txpower, async);
}
/*
* Determine Tx power index for a given channel/rate combination.
* This takes into account the regulatory information from EEPROM and the
* current temperature.
*/
static int
wpi_get_power_index(struct wpi_softc *sc, struct wpi_power_group *group,
struct ieee80211_channel *c, int rate)
{
/* fixed-point arithmetic division using a n-bit fractional part */
#define fdivround(a, b, n) \
((((1 << n) * (a)) / (b) + (1 << n) / 2) / (1 << n))
/* linear interpolation */
#define interpolate(x, x1, y1, x2, y2, n) \
((y1) + fdivround(((x) - (x1)) * ((y2) - (y1)), (x2) - (x1), n))
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_power_sample *sample;
int pwr, idx;
u_int chan;
/* get channel number */
chan = ieee80211_chan2ieee(ic, c);
/* default power is group's maximum power - 3dB */
pwr = group->maxpwr / 2;
/* decrease power for highest OFDM rates to reduce distortion */
switch (rate) {
case 72: /* 36Mb/s */
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 0 : 5;
break;
case 96: /* 48Mb/s */
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 7 : 10;
break;
case 108: /* 54Mb/s */
pwr -= IEEE80211_IS_CHAN_2GHZ(c) ? 9 : 12;
break;
}
/* never exceed channel's maximum allowed Tx power */
pwr = min(pwr, sc->maxpwr[chan]);
/* retrieve power index into gain tables from samples */
for (sample = group->samples; sample < &group->samples[3]; sample++)
if (pwr > sample[1].power)
break;
/* fixed-point linear interpolation using a 19-bit fractional part */
idx = interpolate(pwr, sample[0].power, sample[0].index,
sample[1].power, sample[1].index, 19);
/*
* Adjust power index based on current temperature:
* - if cooler than factory-calibrated: decrease output power
* - if warmer than factory-calibrated: increase output power
*/
idx -= (sc->temp - group->temp) * 11 / 100;
/* decrease power for CCK rates (-5dB) */
if (!WPI_RATE_IS_OFDM(rate))
idx += 10;
/* keep power index in a valid range */
if (idx < 0)
return 0;
if (idx > WPI_MAX_PWR_INDEX)
return WPI_MAX_PWR_INDEX;
return idx;
#undef interpolate
#undef fdivround
}
/*
* Build a beacon frame that the firmware will broadcast periodically in
* IBSS or HostAP modes.
*/
static int
wpi_setup_beacon(struct wpi_softc *sc, struct ieee80211_node *ni)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_desc *desc;
struct wpi_tx_data *data;
struct wpi_tx_cmd *cmd;
struct wpi_cmd_beacon *bcn;
struct ieee80211_beacon_offsets bo;
struct mbuf *m0;
int error;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
m0 = ieee80211_beacon_alloc(ic, ni, &bo);
if (m0 == NULL) {
aprint_error_dev(sc->sc_dev, "could not allocate beacon frame\n");
return ENOMEM;
}
cmd = &ring->cmd[ring->cur];
cmd->code = WPI_CMD_SET_BEACON;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
bcn = (struct wpi_cmd_beacon *)cmd->data;
memset(bcn, 0, sizeof (struct wpi_cmd_beacon));
bcn->id = WPI_ID_BROADCAST;
bcn->ofdm_mask = 0xff;
bcn->cck_mask = 0x0f;
bcn->lifetime = htole32(WPI_LIFETIME_INFINITE);
bcn->len = htole16(m0->m_pkthdr.len);
bcn->rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
wpi_plcp_signal(12) : wpi_plcp_signal(2);
bcn->flags = htole32(WPI_TX_AUTO_SEQ | WPI_TX_INSERT_TSTAMP);
/* save and trim IEEE802.11 header */
m_copydata(m0, 0, sizeof (struct ieee80211_frame), (void *)&bcn->wh);
m_adj(m0, sizeof (struct ieee80211_frame));
/* assume beacon frame is contiguous */
error = bus_dmamap_load_mbuf(sc->sc_dmat, data->map, m0,
BUS_DMA_READ | BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "could not map beacon\n");
m_freem(m0);
return error;
}
data->m = m0;
/* first scatter/gather segment is used by the beacon command */
desc->flags = htole32(WPI_PAD32(m0->m_pkthdr.len) << 28 | 2 << 24);
desc->segs[0].addr = htole32(ring->cmd_dma.paddr +
ring->cur * sizeof (struct wpi_tx_cmd));
desc->segs[0].len = htole32(4 + sizeof (struct wpi_cmd_beacon));
desc->segs[1].addr = htole32(data->map->dm_segs[0].ds_addr);
desc->segs[1].len = htole32(data->map->dm_segs[0].ds_len);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return 0;
}
static int
wpi_auth(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_node *ni = ic->ic_bss;
struct wpi_node_info node;
int error;
/* update adapter's configuration */
IEEE80211_ADDR_COPY(sc->config.bssid, ni->ni_bssid);
sc->config.chan = ieee80211_chan2ieee(ic, ni->ni_chan);
sc->config.flags = htole32(WPI_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ni->ni_chan)) {
sc->config.flags |= htole32(WPI_CONFIG_AUTO |
WPI_CONFIG_24GHZ);
}
switch (ic->ic_curmode) {
case IEEE80211_MODE_11A:
sc->config.cck_mask = 0;
sc->config.ofdm_mask = 0x15;
break;
case IEEE80211_MODE_11B:
sc->config.cck_mask = 0x03;
sc->config.ofdm_mask = 0;
break;
default: /* assume 802.11b/g */
sc->config.cck_mask = 0x0f;
sc->config.ofdm_mask = 0x15;
}
DPRINTF(("config chan %d flags %x cck %x ofdm %x\n", sc->config.chan,
sc->config.flags, sc->config.cck_mask, sc->config.ofdm_mask));
error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
sizeof (struct wpi_config), 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not configure\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = wpi_set_txpower(sc, ni->ni_chan, 1)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
return error;
}
/* add default node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, ni->ni_bssid);
node.id = WPI_ID_BSS;
node.rate = (ic->ic_curmode == IEEE80211_MODE_11A) ?
wpi_plcp_signal(12) : wpi_plcp_signal(2);
node.action = htole32(WPI_ACTION_SET_RATE);
node.antenna = WPI_ANTENNA_BOTH;
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 1);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add BSS node\n");
return error;
}
return 0;
}
/*
* Send a scan request to the firmware. Since this command is huge, we map it
* into a mbuf instead of using the pre-allocated set of commands.
*/
static int
wpi_scan(struct wpi_softc *sc, uint16_t flags)
{
struct ieee80211com *ic = &sc->sc_ic;
struct wpi_tx_ring *ring = &sc->cmdq;
struct wpi_tx_desc *desc;
struct wpi_tx_data *data;
struct wpi_tx_cmd *cmd;
struct wpi_scan_hdr *hdr;
struct wpi_scan_chan *chan;
struct ieee80211_frame *wh;
struct ieee80211_rateset *rs;
struct ieee80211_channel *c;
enum ieee80211_phymode mode;
uint8_t *frm;
int nrates, pktlen, error;
desc = &ring->desc[ring->cur];
data = &ring->data[ring->cur];
MGETHDR(data->m, M_DONTWAIT, MT_DATA);
if (data->m == NULL) {
aprint_error_dev(sc->sc_dev,
"could not allocate mbuf for scan command\n");
return ENOMEM;
}
MCLGET(data->m, M_DONTWAIT);
if (!(data->m->m_flags & M_EXT)) {
m_freem(data->m);
data->m = NULL;
aprint_error_dev(sc->sc_dev,
"could not allocate mbuf for scan command\n");
return ENOMEM;
}
cmd = mtod(data->m, struct wpi_tx_cmd *);
cmd->code = WPI_CMD_SCAN;
cmd->flags = 0;
cmd->qid = ring->qid;
cmd->idx = ring->cur;
hdr = (struct wpi_scan_hdr *)cmd->data;
memset(hdr, 0, sizeof (struct wpi_scan_hdr));
hdr->txflags = htole32(WPI_TX_AUTO_SEQ);
hdr->id = WPI_ID_BROADCAST;
hdr->lifetime = htole32(WPI_LIFETIME_INFINITE);
/*
* Move to the next channel if no packets are received within 5 msecs
* after sending the probe request (this helps to reduce the duration
* of active scans).
*/
hdr->quiet = htole16(5); /* timeout in milliseconds */
hdr->plcp_threshold = htole16(1); /* min # of packets */
if (flags & IEEE80211_CHAN_A) {
hdr->crc_threshold = htole16(1);
/* send probe requests at 6Mbps */
hdr->rate = wpi_plcp_signal(12);
} else {
hdr->flags = htole32(WPI_CONFIG_24GHZ | WPI_CONFIG_AUTO);
/* send probe requests at 1Mbps */
hdr->rate = wpi_plcp_signal(2);
}
/* for directed scans, firmware inserts the essid IE itself */
hdr->essid[0].id = IEEE80211_ELEMID_SSID;
hdr->essid[0].len = ic->ic_des_esslen;
memcpy(hdr->essid[0].data, ic->ic_des_essid, ic->ic_des_esslen);
/*
* Build a probe request frame. Most of the following code is a
* copy & paste of what is done in net80211.
*/
wh = (struct ieee80211_frame *)(hdr + 1);
wh->i_fc[0] = IEEE80211_FC0_VERSION_0 | IEEE80211_FC0_TYPE_MGT |
IEEE80211_FC0_SUBTYPE_PROBE_REQ;
wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
IEEE80211_ADDR_COPY(wh->i_addr1, etherbroadcastaddr);
IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
IEEE80211_ADDR_COPY(wh->i_addr3, etherbroadcastaddr);
*(u_int16_t *)&wh->i_dur[0] = 0; /* filled by h/w */
*(u_int16_t *)&wh->i_seq[0] = 0; /* filled by h/w */
frm = (uint8_t *)(wh + 1);
/* add empty essid IE (firmware generates it for directed scans) */
*frm++ = IEEE80211_ELEMID_SSID;
*frm++ = 0;
mode = ieee80211_chan2mode(ic, ic->ic_ibss_chan);
rs = &ic->ic_sup_rates[mode];
/* add supported rates IE */
*frm++ = IEEE80211_ELEMID_RATES;
nrates = rs->rs_nrates;
if (nrates > IEEE80211_RATE_SIZE)
nrates = IEEE80211_RATE_SIZE;
*frm++ = nrates;
memcpy(frm, rs->rs_rates, nrates);
frm += nrates;
/* add supported xrates IE */
if (rs->rs_nrates > IEEE80211_RATE_SIZE) {
nrates = rs->rs_nrates - IEEE80211_RATE_SIZE;
*frm++ = IEEE80211_ELEMID_XRATES;
*frm++ = nrates;
memcpy(frm, rs->rs_rates + IEEE80211_RATE_SIZE, nrates);
frm += nrates;
}
/* setup length of probe request */
hdr->paylen = htole16(frm - (uint8_t *)wh);
chan = (struct wpi_scan_chan *)frm;
for (c = &ic->ic_channels[1];
c <= &ic->ic_channels[IEEE80211_CHAN_MAX]; c++) {
if ((c->ic_flags & flags) != flags)
continue;
chan->chan = ieee80211_chan2ieee(ic, c);
chan->flags = 0;
if (!(c->ic_flags & IEEE80211_CHAN_PASSIVE)) {
chan->flags |= WPI_CHAN_ACTIVE;
if (ic->ic_des_esslen != 0)
chan->flags |= WPI_CHAN_DIRECT;
}
chan->dsp_gain = 0x6e;
if (IEEE80211_IS_CHAN_5GHZ(c)) {
chan->rf_gain = 0x3b;
chan->active = htole16(10);
chan->passive = htole16(110);
} else {
chan->rf_gain = 0x28;
chan->active = htole16(20);
chan->passive = htole16(120);
}
hdr->nchan++;
chan++;
frm += sizeof (struct wpi_scan_chan);
}
hdr->len = htole16(frm - (uint8_t *)hdr);
pktlen = frm - (uint8_t *)cmd;
error = bus_dmamap_load(sc->sc_dmat, data->map, cmd, pktlen,
NULL, BUS_DMA_NOWAIT);
if (error) {
aprint_error_dev(sc->sc_dev, "could not map scan command\n");
m_freem(data->m);
data->m = NULL;
return error;
}
desc->flags = htole32(WPI_PAD32(pktlen) << 28 | 1 << 24);
desc->segs[0].addr = htole32(data->map->dm_segs[0].ds_addr);
desc->segs[0].len = htole32(data->map->dm_segs[0].ds_len);
/* kick cmd ring */
ring->cur = (ring->cur + 1) % WPI_CMD_RING_COUNT;
WPI_WRITE(sc, WPI_TX_WIDX, ring->qid << 8 | ring->cur);
return 0; /* will be notified async. of failure/success */
}
static int
wpi_config(struct wpi_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = ic->ic_ifp;
struct wpi_power power;
struct wpi_bluetooth bluetooth;
struct wpi_node_info node;
int error;
memset(&power, 0, sizeof power);
power.flags = htole32(WPI_POWER_CAM | 0x8);
error = wpi_cmd(sc, WPI_CMD_SET_POWER_MODE, &power, sizeof power, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not set power mode\n");
return error;
}
/* configure bluetooth coexistence */
memset(&bluetooth, 0, sizeof bluetooth);
bluetooth.flags = 3;
bluetooth.lead = 0xaa;
bluetooth.kill = 1;
error = wpi_cmd(sc, WPI_CMD_BLUETOOTH, &bluetooth, sizeof bluetooth,
0);
if (error != 0) {
aprint_error_dev(sc->sc_dev,
"could not configure bluetooth coexistence\n");
return error;
}
/* configure adapter */
memset(&sc->config, 0, sizeof (struct wpi_config));
IEEE80211_ADDR_COPY(ic->ic_myaddr, CLLADDR(ifp->if_sadl));
IEEE80211_ADDR_COPY(sc->config.myaddr, ic->ic_myaddr);
/*set default channel*/
sc->config.chan = ieee80211_chan2ieee(ic, ic->ic_ibss_chan);
sc->config.flags = htole32(WPI_CONFIG_TSF);
if (IEEE80211_IS_CHAN_2GHZ(ic->ic_ibss_chan)) {
sc->config.flags |= htole32(WPI_CONFIG_AUTO |
WPI_CONFIG_24GHZ);
}
sc->config.filter = 0;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
sc->config.mode = WPI_MODE_STA;
sc->config.filter |= htole32(WPI_FILTER_MULTICAST);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
sc->config.mode = WPI_MODE_IBSS;
break;
case IEEE80211_M_HOSTAP:
sc->config.mode = WPI_MODE_HOSTAP;
break;
case IEEE80211_M_MONITOR:
sc->config.mode = WPI_MODE_MONITOR;
sc->config.filter |= htole32(WPI_FILTER_MULTICAST |
WPI_FILTER_CTL | WPI_FILTER_PROMISC);
break;
}
sc->config.cck_mask = 0x0f; /* not yet negotiated */
sc->config.ofdm_mask = 0xff; /* not yet negotiated */
error = wpi_cmd(sc, WPI_CMD_CONFIGURE, &sc->config,
sizeof (struct wpi_config), 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "configure command failed\n");
return error;
}
/* configuration has changed, set Tx power accordingly */
if ((error = wpi_set_txpower(sc, ic->ic_ibss_chan, 0)) != 0) {
aprint_error_dev(sc->sc_dev, "could not set Tx power\n");
return error;
}
/* add broadcast node */
memset(&node, 0, sizeof node);
IEEE80211_ADDR_COPY(node.bssid, etherbroadcastaddr);
node.id = WPI_ID_BROADCAST;
node.rate = wpi_plcp_signal(2);
node.action = htole32(WPI_ACTION_SET_RATE);
node.antenna = WPI_ANTENNA_BOTH;
error = wpi_cmd(sc, WPI_CMD_ADD_NODE, &node, sizeof node, 0);
if (error != 0) {
aprint_error_dev(sc->sc_dev, "could not add broadcast node\n");
return error;
}
if ((error = wpi_mrr_setup(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not setup MRR\n");
return error;
}
return 0;
}
static void
wpi_stop_master(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
tmp = WPI_READ(sc, WPI_RESET);
WPI_WRITE(sc, WPI_RESET, tmp | WPI_STOP_MASTER);
tmp = WPI_READ(sc, WPI_GPIO_CTL);
if ((tmp & WPI_GPIO_PWR_STATUS) == WPI_GPIO_PWR_SLEEP)
return; /* already asleep */
for (ntries = 0; ntries < 100; ntries++) {
if (WPI_READ(sc, WPI_RESET) & WPI_MASTER_DISABLED)
break;
DELAY(10);
}
if (ntries == 100) {
aprint_error_dev(sc->sc_dev, "timeout waiting for master\n");
}
}
static int
wpi_power_up(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
wpi_mem_lock(sc);
tmp = wpi_mem_read(sc, WPI_MEM_POWER);
wpi_mem_write(sc, WPI_MEM_POWER, tmp & ~0x03000000);
wpi_mem_unlock(sc);
for (ntries = 0; ntries < 5000; ntries++) {
if (WPI_READ(sc, WPI_GPIO_STATUS) & WPI_POWERED)
break;
DELAY(10);
}
if (ntries == 5000) {
aprint_error_dev(sc->sc_dev, "timeout waiting for NIC to power up\n");
return ETIMEDOUT;
}
return 0;
}
static int
wpi_reset(struct wpi_softc *sc)
{
uint32_t tmp;
int ntries;
/* clear any pending interrupts */
WPI_WRITE(sc, WPI_INTR, 0xffffffff);
tmp = WPI_READ(sc, WPI_PLL_CTL);
WPI_WRITE(sc, WPI_PLL_CTL, tmp | WPI_PLL_INIT);
tmp = WPI_READ(sc, WPI_CHICKEN);
WPI_WRITE(sc, WPI_CHICKEN, tmp | WPI_CHICKEN_RXNOLOS);
tmp = WPI_READ(sc, WPI_GPIO_CTL);
WPI_WRITE(sc, WPI_GPIO_CTL, tmp | WPI_GPIO_INIT);
/* wait for clock stabilization */
for (ntries = 0; ntries < 1000; ntries++) {
if (WPI_READ(sc, WPI_GPIO_CTL) & WPI_GPIO_CLOCK)
break;
DELAY(10);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for clock stabilization\n");
return ETIMEDOUT;
}
/* initialize EEPROM */
tmp = WPI_READ(sc, WPI_EEPROM_STATUS);
if ((tmp & WPI_EEPROM_VERSION) == 0) {
aprint_error_dev(sc->sc_dev, "EEPROM not found\n");
return EIO;
}
WPI_WRITE(sc, WPI_EEPROM_STATUS, tmp & ~WPI_EEPROM_LOCKED);
return 0;
}
static void
wpi_hw_config(struct wpi_softc *sc)
{
uint32_t rev, hw;
/* voodoo from the reference driver */
hw = WPI_READ(sc, WPI_HWCONFIG);
rev = pci_conf_read(sc->sc_pct, sc->sc_pcitag, PCI_CLASS_REG);
rev = PCI_REVISION(rev);
if ((rev & 0xc0) == 0x40)
hw |= WPI_HW_ALM_MB;
else if (!(rev & 0x80))
hw |= WPI_HW_ALM_MM;
if (sc->cap == 0x80)
hw |= WPI_HW_SKU_MRC;
hw &= ~WPI_HW_REV_D;
if ((le16toh(sc->rev) & 0xf0) == 0xd0)
hw |= WPI_HW_REV_D;
if (sc->type > 1)
hw |= WPI_HW_TYPE_B;
DPRINTF(("setting h/w config %x\n", hw));
WPI_WRITE(sc, WPI_HWCONFIG, hw);
}
static int
wpi_init(struct ifnet *ifp)
{
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int qid, ntries, error;
wpi_stop(ifp,1);
(void)wpi_reset(sc);
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_CLOCK1, 0xa00);
DELAY(20);
tmp = wpi_mem_read(sc, WPI_MEM_PCIDEV);
wpi_mem_write(sc, WPI_MEM_PCIDEV, tmp | 0x800);
wpi_mem_unlock(sc);
(void)wpi_power_up(sc);
wpi_hw_config(sc);
/* init Rx ring */
wpi_mem_lock(sc);
WPI_WRITE(sc, WPI_RX_BASE, sc->rxq.desc_dma.paddr);
WPI_WRITE(sc, WPI_RX_RIDX_PTR, sc->shared_dma.paddr +
offsetof(struct wpi_shared, next));
WPI_WRITE(sc, WPI_RX_WIDX, (WPI_RX_RING_COUNT - 1) & ~7);
WPI_WRITE(sc, WPI_RX_CONFIG, 0xa9601010);
wpi_mem_unlock(sc);
/* init Tx rings */
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_MODE, 2); /* bypass mode */
wpi_mem_write(sc, WPI_MEM_RA, 1); /* enable RA0 */
wpi_mem_write(sc, WPI_MEM_TXCFG, 0x3f); /* enable all 6 Tx rings */
wpi_mem_write(sc, WPI_MEM_BYPASS1, 0x10000);
wpi_mem_write(sc, WPI_MEM_BYPASS2, 0x30002);
wpi_mem_write(sc, WPI_MEM_MAGIC4, 4);
wpi_mem_write(sc, WPI_MEM_MAGIC5, 5);
WPI_WRITE(sc, WPI_TX_BASE_PTR, sc->shared_dma.paddr);
WPI_WRITE(sc, WPI_MSG_CONFIG, 0xffff05a5);
for (qid = 0; qid < 6; qid++) {
WPI_WRITE(sc, WPI_TX_CTL(qid), 0);
WPI_WRITE(sc, WPI_TX_BASE(qid), 0);
WPI_WRITE(sc, WPI_TX_CONFIG(qid), 0x80200008);
}
wpi_mem_unlock(sc);
/* clear "radio off" and "disable command" bits (reversed logic) */
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_DISABLE_CMD);
/* clear any pending interrupts */
WPI_WRITE(sc, WPI_INTR, 0xffffffff);
/* enable interrupts */
WPI_WRITE(sc, WPI_MASK, WPI_INTR_MASK);
/* not sure why/if this is necessary... */
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
WPI_WRITE(sc, WPI_UCODE_CLR, WPI_RADIO_OFF);
if ((error = wpi_load_firmware(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not load firmware\n");
goto fail1;
}
/* Check the status of the radio switch */
if (wpi_getrfkill(sc)) {
aprint_error_dev(sc->sc_dev, "Radio is disabled by hardware switch\n");
error = EBUSY;
goto fail1;
}
/* wait for thermal sensors to calibrate */
for (ntries = 0; ntries < 1000; ntries++) {
if ((sc->temp = (int)WPI_READ(sc, WPI_TEMPERATURE)) != 0)
break;
DELAY(10);
}
if (ntries == 1000) {
aprint_error_dev(sc->sc_dev,
"timeout waiting for thermal sensors calibration\n");
error = ETIMEDOUT;
goto fail1;
}
DPRINTF(("temperature %d\n", sc->temp));
if ((error = wpi_config(sc)) != 0) {
aprint_error_dev(sc->sc_dev, "could not configure device\n");
goto fail1;
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
if (ic->ic_opmode != IEEE80211_M_MONITOR) {
if (ic->ic_roaming != IEEE80211_ROAMING_MANUAL)
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
}
else
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
return 0;
fail1: wpi_stop(ifp, 1);
return error;
}
static void
wpi_stop(struct ifnet *ifp, int disable)
{
struct wpi_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
uint32_t tmp;
int ac;
ifp->if_timer = sc->sc_tx_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
/* disable interrupts */
WPI_WRITE(sc, WPI_MASK, 0);
WPI_WRITE(sc, WPI_INTR, WPI_INTR_MASK);
WPI_WRITE(sc, WPI_INTR_STATUS, 0xff);
WPI_WRITE(sc, WPI_INTR_STATUS, 0x00070000);
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_MODE, 0);
wpi_mem_unlock(sc);
/* reset all Tx rings */
for (ac = 0; ac < 4; ac++)
wpi_reset_tx_ring(sc, &sc->txq[ac]);
wpi_reset_tx_ring(sc, &sc->cmdq);
/* reset Rx ring */
wpi_reset_rx_ring(sc, &sc->rxq);
wpi_mem_lock(sc);
wpi_mem_write(sc, WPI_MEM_CLOCK2, 0x200);
wpi_mem_unlock(sc);
DELAY(5);
wpi_stop_master(sc);
tmp = WPI_READ(sc, WPI_RESET);
WPI_WRITE(sc, WPI_RESET, tmp | WPI_SW_RESET);
}
static bool
wpi_resume(device_t dv, const pmf_qual_t *qual)
{
struct wpi_softc *sc = device_private(dv);
(void)wpi_reset(sc);
return true;
}
/*
* Return whether or not the radio is enabled in hardware
* (i.e. the rfkill switch is "off").
*/
static int
wpi_getrfkill(struct wpi_softc *sc)
{
uint32_t tmp;
wpi_mem_lock(sc);
tmp = wpi_mem_read(sc, WPI_MEM_RFKILL);
wpi_mem_unlock(sc);
return !(tmp & 0x01);
}
static int
wpi_sysctl_radio(SYSCTLFN_ARGS)
{
struct sysctlnode node;
struct wpi_softc *sc;
int val, error;
node = *rnode;
sc = (struct wpi_softc *)node.sysctl_data;
val = !wpi_getrfkill(sc);
node.sysctl_data = &val;
error = sysctl_lookup(SYSCTLFN_CALL(&node));
if (error || newp == NULL)
return error;
return 0;
}
static void
wpi_sysctlattach(struct wpi_softc *sc)
{
int rc;
const struct sysctlnode *rnode;
const struct sysctlnode *cnode;
struct sysctllog **clog = &sc->sc_sysctllog;
if ((rc = sysctl_createv(clog, 0, NULL, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, "hw", NULL,
NULL, 0, NULL, 0, CTL_HW, CTL_EOL)) != 0)
goto err;
if ((rc = sysctl_createv(clog, 0, &rnode, &rnode,
CTLFLAG_PERMANENT, CTLTYPE_NODE, device_xname(sc->sc_dev),
SYSCTL_DESCR("wpi controls and statistics"),
NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT, CTLTYPE_INT, "radio",
SYSCTL_DESCR("radio transmitter switch state (0=off, 1=on)"),
wpi_sysctl_radio, 0, sc, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
#ifdef WPI_DEBUG
/* control debugging printfs */
if ((rc = sysctl_createv(clog, 0, &rnode, &cnode,
CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_INT,
"debug", SYSCTL_DESCR("Enable debugging output"),
NULL, 0, &wpi_debug, 0, CTL_CREATE, CTL_EOL)) != 0)
goto err;
#endif
return;
err:
aprint_error("%s: sysctl_createv failed (rc = %d)\n", __func__, rc);
}