NetBSD/sys/netccitt/pk_subr.c

1223 lines
28 KiB
C

/* $NetBSD: pk_subr.c,v 1.19 2000/03/30 13:53:36 augustss Exp $ */
/*
* Copyright (c) 1984 University of British Columbia.
* Copyright (c) 1992 Computer Science Department IV,
* University of Erlangen-Nuremberg, Germany.
* Copyright (c) 1991, 1992, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by the
* Laboratory for Computation Vision and the Computer Science Department
* of the University of British Columbia and the Computer Science
* Department (IV) of the University of Erlangen-Nuremberg, Germany.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)pk_subr.c 8.1 (Berkeley) 6/10/93
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/socket.h>
#include <sys/protosw.h>
#include <sys/socketvar.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <net/if.h>
#include <net/route.h>
#include <netccitt/dll.h>
#include <netccitt/x25.h>
#include <netccitt/x25err.h>
#include <netccitt/pk.h>
#include <netccitt/pk_var.h>
#include <netccitt/pk_extern.h>
#include <machine/stdarg.h>
int pk_sendspace = 1024 * 2 + 8;
int pk_recvspace = 1024 * 2 + 8;
struct pklcd_q pklcd_q = {&pklcd_q, &pklcd_q};
struct x25bitslice x25_bitslice[] = {
/* mask, shift value */
{0xf0, 0x4},
{0xf, 0x0},
{0x80, 0x7},
{0x40, 0x6},
{0x30, 0x4},
{0xe0, 0x5},
{0x10, 0x4},
{0xe, 0x1},
{0x1, 0x0}
};
static struct x25_ifaddr *pk_ifwithaddr __P((struct sockaddr_x25 *));
static void pk_reset __P((struct pklcd *, int));
/*
* Attach X.25 protocol to socket, allocate logical channel descripter and
* buffer space, and enter LISTEN state if we are to accept IN-COMMING CALL
* packets.
*
*/
struct pklcd *
pk_attach(so)
struct socket *so;
{
struct pklcd *lcp;
int error = ENOBUFS;
MALLOC(lcp, struct pklcd *, sizeof(*lcp), M_PCB, M_NOWAIT);
if (lcp) {
bzero((caddr_t) lcp, sizeof(*lcp));
insque(&lcp->lcd_q, &pklcd_q);
lcp->lcd_state = READY;
lcp->lcd_send = pk_output;
if (so) {
error = soreserve(so, pk_sendspace, pk_recvspace);
lcp->lcd_so = so;
if (so->so_options & SO_ACCEPTCONN)
lcp->lcd_state = LISTEN;
} else
sbreserve(&lcp->lcd_sb, pk_sendspace);
}
if (so) {
so->so_pcb = lcp;
so->so_error = error;
}
return (lcp);
}
/*
* Disconnect X.25 protocol from socket.
*/
void
pk_disconnect(lcp)
struct pklcd *lcp;
{
struct socket *so = lcp->lcd_so;
switch (lcp->lcd_state) {
case LISTEN:
TAILQ_REMOVE(&pk_listenhead, lcp, lcd_listen);
pk_close(lcp);
break;
case READY:
pk_acct(lcp);
pk_close(lcp);
break;
case SENT_CLEAR:
case RECEIVED_CLEAR:
break;
default:
pk_acct(lcp);
if (so) {
soisdisconnecting(so);
sbflush(&so->so_rcv);
}
pk_clear(lcp, 241, 0); /* Normal Disconnect */
}
}
/*
* Close an X.25 Logical Channel. Discard all space held by the connection
* and internal descriptors. Wake up any sleepers.
*/
void
pk_close(lcp)
struct pklcd *lcp;
{
struct socket *so = lcp->lcd_so;
/*
* If the X.25 connection is torn down due to link
* level failure (e.g. LLC2 FRMR) and at the same the user
* level is still filling up the socket send buffer that
* send buffer is locked. An attempt to sbflush () that send
* buffer will lead us into - no, not temptation but - panic!
* So - we'll just check wether the send buffer is locked
* and if that's the case we'll mark the lcp as zombie and
* have the pk_timer () do the cleaning ...
*/
if (so && so->so_snd.sb_flags & SB_LOCK)
lcp->lcd_state = LCN_ZOMBIE;
else
pk_freelcd(lcp);
if (so == NULL)
return;
so->so_pcb = 0;
soisdisconnected(so);
#if 0
sofree (so); /* gak!!! you can't do that here */
#endif
}
/*
* Create a template to be used to send X.25 packets on a logical channel. It
* allocates an mbuf and fills in a skeletal packet depending on its type.
* This packet is passed to pk_output where the remainer of the packet is
* filled in.
*/
struct mbuf *
pk_template(lcn, type)
int lcn, type;
{
struct mbuf *m;
struct x25_packet *xp;
MGETHDR(m, M_DONTWAIT, MT_HEADER);
if (m == 0)
panic("pk_template");
m->m_act = 0;
/*
* Efficiency hack: leave a four byte gap at the beginning
* of the packet level header with the hope that this will
* be enough room for the link level to insert its header.
*/
m->m_data += max_linkhdr;
m->m_pkthdr.len = m->m_len = PKHEADERLN;
xp = mtod(m, struct x25_packet *);
*(long *) xp = 0; /* ugly, but fast */
/* xp->q_bit = 0; */
X25SBITS(xp->bits, fmt_identifier, 1);
/* xp->lc_group_number = 0; */
SET_LCN(xp, lcn);
xp->packet_type = type;
return (m);
}
/*
* This routine restarts all the virtual circuits. Actually, the virtual
* circuits are not "restarted" as such. Instead, any active switched circuit
* is simply returned to READY state.
*/
void
pk_restart(pkp, restart_cause)
struct pkcb *pkp;
int restart_cause;
{
struct mbuf *m;
struct pklcd *lcp;
int i;
/* Restart all logical channels. */
if (pkp->pk_chan == 0)
return;
/*
* Don't do this if we're doing a restart issued from
* inside pk_connect () --- which is only done if and
* only if the X.25 link is down, i.e. a RESTART needs
* to be done to get it up.
*/
if (!(pkp->pk_dxerole & DTE_CONNECTPENDING)) {
for (i = 1; i <= pkp->pk_maxlcn; ++i)
if ((lcp = pkp->pk_chan[i]) != NULL) {
if (lcp->lcd_so) {
lcp->lcd_so->so_error = ENETRESET;
pk_close(lcp);
} else {
pk_flush(lcp);
lcp->lcd_state = READY;
if (lcp->lcd_upper)
(*lcp->lcd_upper)(NULL, lcp);
}
}
}
if (restart_cause < 0)
return;
pkp->pk_state = DTE_SENT_RESTART;
pkp->pk_dxerole &= ~(DTE_PLAYDCE | DTE_PLAYDTE);
lcp = pkp->pk_chan[0];
m = lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_RESTART);
m->m_pkthdr.len = m->m_len += 2;
mtod(m, struct x25_packet *)->packet_data = 0; /* DTE only */
mtod(m, octet *)[4] = restart_cause;
pk_output(lcp);
}
/*
* This procedure frees up the Logical Channel Descripter.
*/
void
pk_freelcd(lcp)
struct pklcd *lcp;
{
if (lcp == NULL)
return;
if (lcp->lcd_lcn > 0)
lcp->lcd_pkp->pk_chan[lcp->lcd_lcn] = NULL;
pk_flush(lcp);
remque(&lcp->lcd_q);
free((caddr_t) lcp, M_PCB);
}
static struct x25_ifaddr *
pk_ifwithaddr(sx)
struct sockaddr_x25 *sx;
{
struct ifnet *ifp;
struct ifaddr *ifa;
struct x25_ifaddr *ia;
char *addr = sx->x25_addr;
for (ifp = ifnet.tqh_first; ifp != 0; ifp = ifp->if_list.tqe_next)
for (ifa = ifp->if_addrlist.tqh_first; ifa != 0;
ifa = ifa->ifa_list.tqe_next)
if (ifa->ifa_addr->sa_family == AF_CCITT) {
ia = (struct x25_ifaddr *) ifa;
if (bcmp(addr, ia->ia_xc.xc_addr.x25_addr,
16) == 0)
return (ia);
}
return ((struct x25_ifaddr *) 0);
}
/*
* Bind a address and protocol value to a socket. The important part is the
* protocol value - the first four characters of the Call User Data field.
*/
#define XTRACTPKP(rt) ((rt)->rt_flags & RTF_GATEWAY ? \
((rt)->rt_llinfo ? \
(struct pkcb *) ((struct rtentry *)((rt)->rt_llinfo))->rt_llinfo : \
(struct pkcb *) NULL) : \
(struct pkcb *)((rt)->rt_llinfo))
int
pk_bind(lcp, nam)
struct pklcd *lcp;
struct mbuf *nam;
{
struct pklcd *pp;
struct sockaddr_x25 *sa;
if (nam == NULL)
return (EADDRNOTAVAIL);
if (lcp->lcd_ceaddr) /* XXX */
return (EADDRINUSE);
if (pk_checksockaddr(nam))
return (EINVAL);
sa = mtod(nam, struct sockaddr_x25 *);
/*
* If the user wishes to accept calls only from a particular
* net (net != 0), make sure the net is known
*/
if (sa->x25_addr[0]) {
if (!pk_ifwithaddr(sa))
return (ENETUNREACH);
} else if (sa->x25_net) {
if (!ifa_ifwithnet((struct sockaddr *) sa))
return (ENETUNREACH);
}
/*
* For ISO's sake permit default listeners, but only one such . . .
*/
for (pp = pk_listenhead.tqh_first; pp; pp = pp->lcd_listen.tqe_next) {
struct sockaddr_x25 *sa2 = pp->lcd_ceaddr;
if ((sa2->x25_udlen == sa->x25_udlen) &&
(sa2->x25_udlen == 0 ||
(bcmp(sa2->x25_udata, sa->x25_udata,
min(sa2->x25_udlen, sa->x25_udlen)) == 0)))
return (EADDRINUSE);
}
lcp->lcd_laddr = *sa;
lcp->lcd_ceaddr = &lcp->lcd_laddr;
return (0);
}
/*
* Include a bound control block in the list of listeners.
*/
int
pk_listen(lcp)
struct pklcd *lcp;
{
if (lcp->lcd_ceaddr == 0)
return (EDESTADDRREQ);
lcp->lcd_state = LISTEN;
/*
* Add default listener at end, any others at start.
*/
if (lcp->lcd_ceaddr->x25_udlen == 0) {
TAILQ_INSERT_TAIL(&pk_listenhead, lcp, lcd_listen);
} else {
TAILQ_INSERT_HEAD(&pk_listenhead, lcp, lcd_listen);
}
return (0);
}
/*
* Include a listening control block for the benefit of other protocols.
*/
int
pk_protolisten(spi, spilen, callee)
int spi;
int spilen;
int (*callee) __P((struct mbuf *, void *));
{
struct pklcd *lcp = pk_attach((struct socket *) 0);
struct mbuf *nam;
struct sockaddr_x25 *sa;
int error = ENOBUFS;
if (lcp) {
if ((nam = m_getclr(M_DONTWAIT, MT_SONAME)) != NULL) {
sa = mtod(nam, struct sockaddr_x25 *);
sa->x25_family = AF_CCITT;
sa->x25_len = nam->m_len = sizeof(*sa);
sa->x25_udlen = spilen;
sa->x25_udata[0] = spi;
lcp->lcd_upper = callee;
lcp->lcd_flags = X25_MBS_HOLD;
if ((error = pk_bind(lcp, nam)) == 0)
error = pk_listen(lcp);
(void) m_free(nam);
}
if (error)
pk_freelcd(lcp);
}
return error; /* Hopefully Zero ! */
}
/*
* Associate a logical channel descriptor with a network.
* Fill in the default network specific parameters and then
* set any parameters explicitly specified by the user or
* by the remote DTE.
*/
void
pk_assoc(pkp, lcp, sa)
struct pkcb *pkp;
struct pklcd *lcp;
struct sockaddr_x25 *sa;
{
lcp->lcd_pkp = pkp;
lcp->lcd_packetsize = pkp->pk_xcp->xc_psize;
lcp->lcd_windowsize = pkp->pk_xcp->xc_pwsize;
lcp->lcd_rsn = MODULUS - 1;
pkp->pk_chan[lcp->lcd_lcn] = lcp;
if (sa->x25_opts.op_psize)
lcp->lcd_packetsize = sa->x25_opts.op_psize;
else
sa->x25_opts.op_psize = lcp->lcd_packetsize;
if (sa->x25_opts.op_wsize)
lcp->lcd_windowsize = sa->x25_opts.op_wsize;
else
sa->x25_opts.op_wsize = lcp->lcd_windowsize;
sa->x25_net = pkp->pk_xcp->xc_addr.x25_net;
lcp->lcd_flags |= sa->x25_opts.op_flags;
lcp->lcd_stime = time.tv_sec;
}
int
pk_connect(lcp, sa)
struct pklcd *lcp;
struct sockaddr_x25 *sa;
{
struct pkcb *pkp;
struct rtentry *rt;
struct rtentry *nrt;
if (sa->x25_addr[0] == '\0')
return (EDESTADDRREQ);
/*
* Is the destination address known?
*/
if (!(rt = rtalloc1((struct sockaddr *) sa, 1)))
return (ENETUNREACH);
if (!(pkp = XTRACTPKP(rt)))
pkp = pk_newlink((struct x25_ifaddr *) (rt->rt_ifa),
(caddr_t) 0);
/*
* Have we entered the LLC address?
*/
if ((nrt = npaidb_enter((struct sockaddr_dl *) rt->rt_gateway,
rt_key(rt), rt, 0)) != NULL)
pkp->pk_llrt = nrt;
/*
* Have we allocated an LLC2 link yet?
*/
if (pkp->pk_llnext == (caddr_t) 0 && pkp->pk_llctlinput) {
struct dll_ctlinfo ctlinfo;
ctlinfo.dlcti_rt = rt;
ctlinfo.dlcti_pcb = (caddr_t) pkp;
ctlinfo.dlcti_conf =
(struct dllconfig *) (&((struct x25_ifaddr *) (rt->rt_ifa))->ia_xc);
pkp->pk_llnext =
(*pkp->pk_llctlinput)(PRC_CONNECT_REQUEST,
NULL, &ctlinfo);
}
if (pkp->pk_state != DTE_READY && pkp->pk_state != DTE_WAITING)
return (ENETDOWN);
if ((lcp->lcd_lcn = pk_getlcn(pkp)) == 0)
return (EMFILE);
lcp->lcd_faddr = *sa;
lcp->lcd_ceaddr = &lcp->lcd_faddr;
pk_assoc(pkp, lcp, lcp->lcd_ceaddr);
/*
* If the link is not up yet, initiate an X.25 RESTART
*/
if (pkp->pk_state == DTE_WAITING) {
pkp->pk_dxerole |= DTE_CONNECTPENDING;
pk_ctlinput(PRC_LINKUP, NULL, pkp);
if (lcp->lcd_so)
soisconnecting(lcp->lcd_so);
return 0;
}
if (lcp->lcd_so)
soisconnecting(lcp->lcd_so);
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CALL);
pk_callrequest(lcp, lcp->lcd_ceaddr, pkp->pk_xcp);
return (*pkp->pk_ia->ia_start) (lcp);
}
/*
* Complete all pending X.25 call requests --- this gets called after
* the X.25 link has been restarted.
*/
#define RESHUFFLELCN(maxlcn, lcn) ((maxlcn) - (lcn) + 1)
void
pk_callcomplete(pkp)
struct pkcb *pkp;
{
struct pklcd *lcp;
int i;
int ni;
if (pkp->pk_dxerole & DTE_CONNECTPENDING)
pkp->pk_dxerole &= ~DTE_CONNECTPENDING;
else
return;
if (pkp->pk_chan == 0)
return;
/*
* We pretended to be a DTE for allocating lcns, if
* it turns out that we are in reality performing as a
* DCE we need to reshuffle the lcps.
*
* /+---------------+-------- -
* / | a (maxlcn-1) | \
* / +---------------+ \
* +--- * | b (maxlcn-2) | \
* | \ +---------------+ \
* r | \ | c (maxlcn-3) | \
* e | \+---------------+ |
* s | | . |
* h | | . | m
* u | | . | a
* f | | . | x
* f | | . | l
* l | /+---------------+ | c
* e | / | c' ( 3 ) | | n
* | / +---------------+ |
* +--> * | b' ( 2 ) | /
* \ +---------------+ /
* \ | a' ( 1 ) | /
* \+---------------+ /
* | 0 | /
* +---------------+-------- -
*
*/
if (pkp->pk_dxerole & DTE_PLAYDCE) {
/* Sigh, reshuffle it */
for (i = pkp->pk_maxlcn; i > 0; --i)
if (pkp->pk_chan[i]) {
ni = RESHUFFLELCN(pkp->pk_maxlcn, i);
pkp->pk_chan[ni] = pkp->pk_chan[i];
pkp->pk_chan[i] = NULL;
pkp->pk_chan[ni]->lcd_lcn = ni;
}
}
for (i = 1; i <= pkp->pk_maxlcn; ++i)
if ((lcp = pkp->pk_chan[i]) != NULL) {
/*
* if (lcp->lcd_so) soisconnecting (lcp->lcd_so);
*/
lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_CALL);
pk_callrequest(lcp, lcp->lcd_ceaddr, pkp->pk_xcp);
(*pkp->pk_ia->ia_start) (lcp);
}
}
struct bcdinfo {
octet *cp;
unsigned posn;
};
/*
* Build the rest of the CALL REQUEST packet. Fill in calling address,
* facilities fields and the user data field.
*/
void
pk_callrequest(lcp, sa, xcp)
struct pklcd *lcp;
struct sockaddr_x25 *sa;
struct x25config *xcp;
{
struct x25_calladdr *a;
struct mbuf *m = lcp->lcd_template;
struct x25_packet *xp = mtod(m, struct x25_packet *);
struct bcdinfo b;
if (lcp->lcd_flags & X25_DBIT)
X25SBITS(xp->bits, d_bit, 1);
a = (struct x25_calladdr *) & xp->packet_data;
b.cp = (octet *) a->address_field;
b.posn = 0;
X25SBITS(a->addrlens, called_addrlen, to_bcd(&b, sa, xcp));
X25SBITS(a->addrlens, calling_addrlen, to_bcd(&b, &xcp->xc_addr, xcp));
if (b.posn & 0x01)
*b.cp++ &= 0xf0;
m->m_pkthdr.len = m->m_len += b.cp - (octet *) a;
if (lcp->lcd_facilities) {
m->m_pkthdr.len +=
(m->m_next = lcp->lcd_facilities)->m_pkthdr.len;
lcp->lcd_facilities = 0;
} else
pk_build_facilities(m, sa, (int) xcp->xc_type);
m_copyback(m, m->m_pkthdr.len, sa->x25_udlen, sa->x25_udata);
}
void
pk_build_facilities(m, sa, type)
struct mbuf *m;
struct sockaddr_x25 *sa;
int type;
{
octet *cp;
octet *fcp;
int revcharge;
cp = mtod(m, octet *) + m->m_len;
fcp = cp + 1;
revcharge = sa->x25_opts.op_flags & X25_REVERSE_CHARGE ? 1 : 0;
/*
* This is specific to Datapac X.25(1976) DTEs. International
* calls must have the "hi priority" bit on.
*/
if (type == X25_1976 && sa->x25_opts.op_psize == X25_PS128)
revcharge |= 02;
if (revcharge) {
*fcp++ = FACILITIES_REVERSE_CHARGE;
*fcp++ = revcharge;
}
switch (type) {
case X25_1980:
case X25_1984:
*fcp++ = FACILITIES_PACKETSIZE;
*fcp++ = sa->x25_opts.op_psize;
*fcp++ = sa->x25_opts.op_psize;
*fcp++ = FACILITIES_WINDOWSIZE;
*fcp++ = sa->x25_opts.op_wsize;
*fcp++ = sa->x25_opts.op_wsize;
}
*cp = fcp - cp - 1;
m->m_pkthdr.len = (m->m_len += *cp + 1);
}
int
to_bcd(b, sa, xcp)
struct bcdinfo *b;
struct sockaddr_x25 *sa;
struct x25config *xcp;
{
char *x = sa->x25_addr;
unsigned start = b->posn;
/*
* The nodnic and prepnd0 stuff looks tedious,
* but it does allow full X.121 addresses to be used,
* which is handy for routing info (& OSI type 37 addresses).
*/
if (xcp->xc_addr.x25_net && (xcp->xc_nodnic || xcp->xc_prepnd0)) {
char dnicname[sizeof(long) * NBBY / 3 + 2];
char *p = dnicname;
sprintf(p, "%d", xcp->xc_addr.x25_net & 0x7fff);
for (; *p; p++) /* *p == 0 means dnic matched */
if ((*p ^ *x++) & 0x0f)
break;
if (*p || xcp->xc_nodnic == 0)
x = sa->x25_addr;
if (*p && xcp->xc_prepnd0) {
if ((b->posn)++ & 0x01)
(b->cp)++;
else
*(b->cp) = 0;
}
}
while (*x)
if ((b->posn)++ & 0x01)
*(b->cp)++ |= *x++ & 0x0F;
else
*(b->cp) = *x++ << 4;
return ((b->posn) - start);
}
/*
* This routine gets the first available logical channel number. The search
* is - from the highest number to lowest number if playing DTE, and - from
* lowest to highest number if playing DCE.
*/
int
pk_getlcn(pkp)
struct pkcb *pkp;
{
int i;
if (pkp->pk_chan == 0)
return (0);
if (pkp->pk_dxerole & DTE_PLAYDCE) {
for (i = 1; i <= pkp->pk_maxlcn; ++i)
if (pkp->pk_chan[i] == NULL)
break;
} else {
for (i = pkp->pk_maxlcn; i > 0; --i)
if (pkp->pk_chan[i] == NULL)
break;
}
i = (i > pkp->pk_maxlcn ? 0 : i);
return (i);
}
/*
* This procedure sends a CLEAR request packet. The lc state is set to
* "SENT_CLEAR".
*/
void
pk_clear(lcp, diagnostic, abortive)
struct pklcd *lcp;
int diagnostic;
int abortive;
{
struct mbuf *m = pk_template(lcp->lcd_lcn, X25_CLEAR);
m->m_len += 2;
m->m_pkthdr.len += 2;
mtod(m, struct x25_packet *)->packet_data = 0;
mtod(m, octet *)[4] = diagnostic;
if (lcp->lcd_facilities) {
m->m_next = lcp->lcd_facilities;
m->m_pkthdr.len += m->m_next->m_len;
lcp->lcd_facilities = 0;
}
if (abortive)
lcp->lcd_template = m;
else {
struct socket *so = lcp->lcd_so;
struct sockbuf *sb = so ? &so->so_snd : &lcp->lcd_sb;
sbappendrecord(sb, m);
}
pk_output(lcp);
}
/*
* This procedure generates RNR's or RR's to inhibit or enable
* inward data flow, if the current state changes (blocked ==> open or
* vice versa), or if forced to generate one. One forces RNR's to ack data.
*/
void
pk_flowcontrol(lcp, inhibit, forced)
struct pklcd *lcp;
int inhibit;
int forced;
{
inhibit = (inhibit != 0);
if (lcp == 0 || lcp->lcd_state != DATA_TRANSFER ||
(forced == 0 && lcp->lcd_rxrnr_condition == inhibit))
return;
lcp->lcd_rxrnr_condition = inhibit;
lcp->lcd_template =
pk_template(lcp->lcd_lcn, inhibit ? X25_RNR : X25_RR);
pk_output(lcp);
}
/*
* This procedure sends a RESET request packet. It re-intializes virtual
* circuit.
*/
static void
pk_reset(lcp, diagnostic)
struct pklcd *lcp;
int diagnostic;
{
struct mbuf *m;
struct socket *so = lcp->lcd_so;
if (lcp->lcd_state != DATA_TRANSFER)
return;
if (so)
so->so_error = ECONNRESET;
lcp->lcd_reset_condition = TRUE;
/* Reset all the control variables for the channel. */
pk_flush(lcp);
lcp->lcd_window_condition = lcp->lcd_rnr_condition =
lcp->lcd_intrconf_pending = FALSE;
lcp->lcd_rsn = MODULUS - 1;
lcp->lcd_ssn = 0;
lcp->lcd_output_window = lcp->lcd_input_window =
lcp->lcd_last_transmitted_pr = 0;
m = lcp->lcd_template = pk_template(lcp->lcd_lcn, X25_RESET);
m->m_pkthdr.len = m->m_len += 2;
mtod(m, struct x25_packet *)->packet_data = 0;
mtod(m, octet *)[4] = diagnostic;
pk_output(lcp);
}
/*
* This procedure frees all data queued for output or delivery on a
* virtual circuit.
*/
void
pk_flush(lcp)
struct pklcd *lcp;
{
struct socket *so;
if (lcp->lcd_template)
m_freem(lcp->lcd_template);
if (lcp->lcd_cps) {
m_freem(lcp->lcd_cps);
lcp->lcd_cps = 0;
}
if (lcp->lcd_facilities) {
m_freem(lcp->lcd_facilities);
lcp->lcd_facilities = 0;
}
if ((so = lcp->lcd_so) != NULL)
sbflush(&so->so_snd);
else
sbflush(&lcp->lcd_sb);
}
/*
* This procedure handles all local protocol procedure errors.
*/
void
pk_procerror(error, lcp, errstr, diagnostic)
int error;
struct pklcd *lcp;
char *errstr;
int diagnostic;
{
pk_message(lcp->lcd_lcn, lcp->lcd_pkp->pk_xcp, errstr);
switch (error) {
case PK_CLEAR:
if (lcp->lcd_so) {
lcp->lcd_so->so_error = ECONNABORTED;
soisdisconnecting(lcp->lcd_so);
}
pk_clear(lcp, diagnostic, 1);
break;
case PK_RESET:
pk_reset(lcp, diagnostic);
}
}
/*
* This procedure is called during the DATA TRANSFER state to check and
* process the P(R) values received in the DATA, RR OR RNR packets.
*/
int
pk_ack(lcp, pr)
struct pklcd *lcp;
unsigned pr;
{
struct socket *so = lcp->lcd_so;
if (lcp->lcd_output_window == pr)
return (PACKET_OK);
if (lcp->lcd_output_window < lcp->lcd_ssn) {
if (pr < lcp->lcd_output_window || pr > lcp->lcd_ssn) {
pk_procerror(PK_RESET, lcp,
"p(r) flow control error", 2);
return (ERROR_PACKET);
}
} else {
if (pr < lcp->lcd_output_window && pr > lcp->lcd_ssn) {
pk_procerror(PK_RESET, lcp,
"p(r) flow control error #2", 2);
return (ERROR_PACKET);
}
}
lcp->lcd_output_window = pr; /* Rotate window. */
if (lcp->lcd_window_condition == TRUE)
lcp->lcd_window_condition = FALSE;
if (so && sb_notify(&(so->so_snd)))
sowwakeup(so);
return (PACKET_OK);
}
/*
* This procedure decodes the X.25 level 3 packet returning a code to be used
* in switchs or arrays.
*/
int
pk_decode(xp)
struct x25_packet *xp;
{
int type;
if (X25GBITS(xp->bits, fmt_identifier) != 1)
return (PK_INVALID_PACKET);
#ifdef ancient_history
/*
* Make sure that the logical channel group number is 0. This
* restriction may be removed at some later date.
*/
if (xp->lc_group_number != 0)
return (PK_INVALID_PACKET);
#endif
/*
* Test for data packet first.
*/
if (!(xp->packet_type & DATA_PACKET_DESIGNATOR))
return (PK_DATA);
/*
* Test if flow control packet (RR or RNR).
*/
if (!(xp->packet_type & RR_OR_RNR_PACKET_DESIGNATOR))
switch (xp->packet_type & 0x1f) {
case X25_RR:
return (PK_RR);
case X25_RNR:
return (PK_RNR);
case X25_REJECT:
return (PK_REJECT);
}
/*
* Determine the rest of the packet types.
*/
switch (xp->packet_type) {
case X25_CALL:
type = PK_CALL;
break;
case X25_CALL_ACCEPTED:
type = PK_CALL_ACCEPTED;
break;
case X25_CLEAR:
type = PK_CLEAR;
break;
case X25_CLEAR_CONFIRM:
type = PK_CLEAR_CONF;
break;
case X25_INTERRUPT:
type = PK_INTERRUPT;
break;
case X25_INTERRUPT_CONFIRM:
type = PK_INTERRUPT_CONF;
break;
case X25_RESET:
type = PK_RESET;
break;
case X25_RESET_CONFIRM:
type = PK_RESET_CONF;
break;
case X25_RESTART:
type = PK_RESTART;
break;
case X25_RESTART_CONFIRM:
type = PK_RESTART_CONF;
break;
case X25_DIAGNOSTIC:
type = PK_DIAG_TYPE;
break;
default:
type = PK_INVALID_PACKET;
}
return (type);
}
/*
* A restart packet has been received. Print out the reason for the restart.
*/
void
pk_restartcause(pkp, xp)
struct pkcb *pkp;
struct x25_packet *xp;
{
struct x25config *xcp = pkp->pk_xcp;
int lcn = LCN(xp);
switch (xp->packet_data) {
case X25_RESTART_LOCAL_PROCEDURE_ERROR:
pk_message(lcn, xcp, "restart: local procedure error");
break;
case X25_RESTART_NETWORK_CONGESTION:
pk_message(lcn, xcp, "restart: network congestion");
break;
case X25_RESTART_NETWORK_OPERATIONAL:
pk_message(lcn, xcp, "restart: network operational");
break;
default:
pk_message(lcn, xcp, "restart: unknown cause");
}
}
#define MAXRESETCAUSE 7
int Reset_cause[] = {
EXRESET, EXROUT, 0, EXRRPE, 0, EXRLPE, 0, EXRNCG
};
/*
* A reset packet has arrived. Return the cause to the user.
*/
void
pk_resetcause(pkp, xp)
struct pkcb *pkp;
struct x25_packet *xp;
{
struct pklcd *lcp =
pkp->pk_chan[LCN(xp)];
int code = xp->packet_data;
if (code > MAXRESETCAUSE)
code = 7; /* EXRNCG */
pk_message(LCN(xp), lcp->lcd_pkp->pk_xcp,
"reset code 0x%x, diagnostic 0x%x",
xp->packet_data, 4[(u_char *) xp]);
if (lcp->lcd_so)
lcp->lcd_so->so_error = Reset_cause[code];
}
#define MAXCLEARCAUSE 25
int Clear_cause[] = {
EXCLEAR, EXCBUSY, 0, EXCINV, 0, EXCNCG, 0,
0, 0, EXCOUT, 0, EXCAB, 0, EXCNOB, 0, 0, 0, EXCRPE,
0, EXCLPE, 0, 0, 0, 0, 0, EXCRRC
};
/*
* A clear packet has arrived. Return the cause to the user.
*/
void
pk_clearcause(pkp, xp)
struct pkcb *pkp;
struct x25_packet *xp;
{
struct pklcd *lcp =
pkp->pk_chan[LCN(xp)];
int code = xp->packet_data;
if (code > MAXCLEARCAUSE)
code = 5; /* EXRNCG */
if (lcp->lcd_so)
lcp->lcd_so->so_error = Clear_cause[code];
}
char *
format_ntn(xcp)
struct x25config *xcp;
{
return (xcp->xc_addr.x25_addr);
}
/* VARARGS1 */
void
#if __STDC__
pk_message(int lcn, struct x25config * xcp, char * fmt,...)
#else
pk_message(lcn, xcp, fmt, va_alist)
int lcn;
struct x25config *xcp;
char *fmt;
va_dcl
#endif
{
va_list ap;
if (lcn)
if (!PQEMPTY)
printf("X.25(%s): lcn %d: ", format_ntn(xcp), lcn);
else
printf("X.25: lcn %d: ", lcn);
else if (!PQEMPTY)
printf("X.25(%s): ", format_ntn(xcp));
else
printf("X.25: ");
va_start(ap, fmt);
vprintf(fmt, ap);
printf("\n");
va_end(ap);
}
int
pk_fragment(lcp, m0, qbit, mbit, wait)
struct mbuf *m0;
struct pklcd *lcp;
int qbit, mbit, wait;
{
struct mbuf *m = m0;
struct x25_packet *xp;
struct sockbuf *sb;
struct mbuf *head = 0, *next, **mp = &head;
int totlen, psize = 1 << (lcp->lcd_packetsize);
if (m == 0)
return 0;
if ((m->m_flags & M_PKTHDR) == 0)
panic("pk_fragment");
totlen = m->m_pkthdr.len;
m->m_act = 0;
sb = lcp->lcd_so ? &lcp->lcd_so->so_snd : &lcp->lcd_sb;
do {
if (totlen > psize) {
if ((next = m_split(m, psize, wait)) == 0)
goto abort;
totlen -= psize;
} else
next = 0;
M_PREPEND(m, PKHEADERLN, wait);
if (m == 0)
goto abort;
*mp = m;
mp = &m->m_act;
*mp = 0;
xp = mtod(m, struct x25_packet *);
0[(char *) xp] = 0;
if (qbit)
X25SBITS(xp->bits, q_bit, 1);
if (lcp->lcd_flags & X25_DBIT)
X25SBITS(xp->bits, d_bit, 1);
X25SBITS(xp->bits, fmt_identifier, 1);
xp->packet_type = X25_DATA;
SET_LCN(xp, lcp->lcd_lcn);
if (next || (mbit && (totlen == psize ||
(lcp->lcd_flags & X25_DBIT))))
SMBIT(xp, 1);
} while ((m = next) != NULL);
for (m = head; m; m = next) {
next = m->m_act;
m->m_act = 0;
sbappendrecord(sb, m);
}
return 0;
abort:
if (wait)
panic("pk_fragment null mbuf after wait");
if (next)
m_freem(next);
for (m = head; m; m = next) {
next = m->m_act;
m_freem(m);
}
return ENOBUFS;
}