NetBSD/sys/ufs/lfs/lfs_bio.c
2002-11-27 11:36:40 +00:00

595 lines
17 KiB
C

/* $NetBSD: lfs_bio.c,v 1.47 2002/11/27 11:36:40 yamt Exp $ */
/*-
* Copyright (c) 1999, 2000 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Konrad E. Schroder <perseant@hhhh.org>.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)lfs_bio.c 8.10 (Berkeley) 6/10/95
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: lfs_bio.c,v 1.47 2002/11/27 11:36:40 yamt Exp $");
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>
#include <sys/buf.h>
#include <sys/vnode.h>
#include <sys/resourcevar.h>
#include <sys/mount.h>
#include <sys/kernel.h>
#include <ufs/ufs/inode.h>
#include <ufs/ufs/ufsmount.h>
#include <ufs/ufs/ufs_extern.h>
#include <sys/malloc.h>
#include <ufs/lfs/lfs.h>
#include <ufs/lfs/lfs_extern.h>
/* Macros to clear/set/test flags. */
# define SET(t, f) (t) |= (f)
# define CLR(t, f) (t) &= ~(f)
# define ISSET(t, f) ((t) & (f))
/*
* LFS block write function.
*
* XXX
* No write cost accounting is done.
* This is almost certainly wrong for synchronous operations and NFS.
*/
int locked_queue_count = 0; /* XXX Count of locked-down buffers. */
long locked_queue_bytes = 0L; /* XXX Total size of locked buffers. */
int lfs_writing = 0; /* Set if already kicked off a writer
because of buffer space */
extern int lfs_dostats;
/*
* Try to reserve some blocks, prior to performing a sensitive operation that
* requires the vnode lock to be honored. If there is not enough space, give
* up the vnode lock temporarily and wait for the space to become available.
*
* Called with vp locked. (Note nowever that if fsb < 0, vp is ignored.)
*
* XXX YAMT - it isn't safe to unlock vp here
* because the node might be modified while we sleep.
* (eg. cached states like i_offset might be stale,
* the vnode might be truncated, etc..)
* maybe we should have a way to restart the vnode op. (EVOPRESTART?)
*
* XXX YAMT - we unlock the vnode so that cleaner can lock it.
* but it isn't enough. eg. for VOP_REMOVE, we should unlock the vnode that
* is going to be removed as well.
*/
int
lfs_reserve(struct lfs *fs, struct vnode *vp, int fsb)
{
CLEANERINFO *cip;
struct buf *bp;
int error, slept;
slept = 0;
while (fsb > 0 && !lfs_fits(fs, fsb + fs->lfs_ravail) &&
vp != fs->lfs_unlockvp) {
VOP_UNLOCK(vp, 0);
if (!slept) {
#ifdef DEBUG
printf("lfs_reserve: waiting for %ld (bfree = %d,"
" est_bfree = %d)\n",
fsb + fs->lfs_ravail, fs->lfs_bfree,
LFS_EST_BFREE(fs));
#endif
}
++slept;
/* Wake up the cleaner */
LFS_CLEANERINFO(cip, fs, bp);
LFS_SYNC_CLEANERINFO(cip, fs, bp, 0);
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
error = tsleep(&fs->lfs_avail, PCATCH | PUSER, "lfs_reserve",
0);
vn_lock(vp, LK_EXCLUSIVE | LK_RETRY); /* XXX use lockstatus */
if (error)
return error;
}
#ifdef DEBUG
if (slept)
printf("lfs_reserve: woke up\n");
#endif
fs->lfs_ravail += fsb;
return 0;
}
/*
*
* XXX we don't let meta-data writes run out of space because they can
* come from the segment writer. We need to make sure that there is
* enough space reserved so that there's room to write meta-data
* blocks.
*
* Also, we don't let blocks that have come to us from the cleaner
* run out of space.
*/
#define CANT_WAIT(BP,F) (IS_IFILE((BP)) || (BP)->b_lblkno < 0 || ((F) & BW_CLEAN))
int
lfs_bwrite(void *v)
{
struct vop_bwrite_args /* {
struct buf *a_bp;
} */ *ap = v;
struct buf *bp = ap->a_bp;
#ifdef DIAGNOSTIC
if (VTOI(bp->b_vp)->i_lfs->lfs_ronly == 0 && (bp->b_flags & B_ASYNC)) {
panic("bawrite LFS buffer");
}
#endif /* DIAGNOSTIC */
return lfs_bwrite_ext(bp,0);
}
/*
* Determine if there is enough room currently available to write fsb
* blocks. We need enough blocks for the new blocks, the current
* inode blocks (including potentially the ifile inode), a summary block,
* and the segment usage table, plus an ifile block.
*/
int
lfs_fits(struct lfs *fs, int fsb)
{
int needed;
needed = fsb + btofsb(fs, fs->lfs_sumsize) +
((howmany(fs->lfs_uinodes + 1, INOPB(fs)) + fs->lfs_segtabsz +
1) << (fs->lfs_blktodb - fs->lfs_fsbtodb));
if (needed >= fs->lfs_avail) {
#ifdef DEBUG
printf("lfs_fits: no fit: fsb = %d, uinodes = %d, "
"needed = %d, avail = %d\n",
fsb, fs->lfs_uinodes, needed, fs->lfs_avail);
#endif
return 0;
}
return 1;
}
int
lfs_availwait(struct lfs *fs, int fsb)
{
int error;
CLEANERINFO *cip;
struct buf *cbp;
while (!lfs_fits(fs, fsb)) {
/*
* Out of space, need cleaner to run.
* Update the cleaner info, then wake it up.
* Note the cleanerinfo block is on the ifile
* so it CANT_WAIT.
*/
LFS_CLEANERINFO(cip, fs, cbp);
LFS_SYNC_CLEANERINFO(cip, fs, cbp, 0);
printf("lfs_availwait: out of available space, "
"waiting on cleaner\n");
wakeup(&lfs_allclean_wakeup);
wakeup(&fs->lfs_nextseg);
#ifdef DIAGNOSTIC
if (fs->lfs_seglock && fs->lfs_lockpid == curproc->p_pid)
panic("lfs_availwait: deadlock");
#endif
error = tsleep(&fs->lfs_avail, PCATCH | PUSER, "cleaner", 0);
if (error)
return (error);
}
return 0;
}
int
lfs_bwrite_ext(struct buf *bp, int flags)
{
struct lfs *fs;
struct inode *ip;
int fsb, error, s;
/*
* Don't write *any* blocks if we're mounted read-only.
* In particular the cleaner can't write blocks either.
*/
if (VTOI(bp->b_vp)->i_lfs->lfs_ronly) {
bp->b_flags &= ~(B_DELWRI | B_READ | B_ERROR);
LFS_UNLOCK_BUF(bp);
if (bp->b_flags & B_CALL)
bp->b_flags &= ~B_BUSY;
else
brelse(bp);
return EROFS;
}
/*
* Set the delayed write flag and use reassignbuf to move the buffer
* from the clean list to the dirty one.
*
* Set the B_LOCKED flag and unlock the buffer, causing brelse to move
* the buffer onto the LOCKED free list. This is necessary, otherwise
* getnewbuf() would try to reclaim the buffers using bawrite, which
* isn't going to work.
*
* XXX we don't let meta-data writes run out of space because they can
* come from the segment writer. We need to make sure that there is
* enough space reserved so that there's room to write meta-data
* blocks.
*/
if (!(bp->b_flags & B_LOCKED)) {
fs = VFSTOUFS(bp->b_vp->v_mount)->um_lfs;
fsb = fragstofsb(fs, numfrags(fs, bp->b_bcount));
if (!CANT_WAIT(bp, flags)) {
if ((error = lfs_availwait(fs, fsb)) != 0) {
brelse(bp);
return error;
}
}
ip = VTOI(bp->b_vp);
if (bp->b_flags & B_CALL) {
LFS_SET_UINO(ip, IN_CLEANING);
} else {
LFS_SET_UINO(ip, IN_MODIFIED);
if (bp->b_lblkno >= 0)
LFS_SET_UINO(ip, IN_UPDATE);
}
fs->lfs_avail -= fsb;
bp->b_flags |= B_DELWRI;
LFS_LOCK_BUF(bp);
bp->b_flags &= ~(B_READ | B_DONE | B_ERROR);
s = splbio();
reassignbuf(bp, bp->b_vp);
splx(s);
}
if (bp->b_flags & B_CALL)
bp->b_flags &= ~B_BUSY;
else
brelse(bp);
return (0);
}
void
lfs_flush_fs(struct lfs *fs, int flags)
{
if (fs->lfs_ronly == 0 && fs->lfs_dirops == 0)
{
/* disallow dirops during flush */
fs->lfs_writer++;
/*
* We set the queue to 0 here because we
* are about to write all the dirty
* buffers we have. If more come in
* while we're writing the segment, they
* may not get written, so we want the
* count to reflect these new writes
* after the segwrite completes.
*/
if (lfs_dostats)
++lfs_stats.flush_invoked;
lfs_segwrite(fs->lfs_ivnode->v_mount, flags);
/* XXX KS - allow dirops again */
if (--fs->lfs_writer == 0)
wakeup(&fs->lfs_dirops);
}
}
/*
* XXX
* This routine flushes buffers out of the B_LOCKED queue when LFS has too
* many locked down. Eventually the pageout daemon will simply call LFS
* when pages need to be reclaimed. Note, we have one static count of locked
* buffers, so we can't have more than a single file system. To make this
* work for multiple file systems, put the count into the mount structure.
*/
void
lfs_flush(struct lfs *fs, int flags)
{
struct mount *mp, *nmp;
if (lfs_dostats)
++lfs_stats.write_exceeded;
if (lfs_writing && flags == 0) {/* XXX flags */
#ifdef DEBUG_LFS
printf("lfs_flush: not flushing because another flush is active\n");
#endif
return;
}
lfs_writing = 1;
simple_lock(&mountlist_slock);
for (mp = mountlist.cqh_first; mp != (void *)&mountlist; mp = nmp) {
if (vfs_busy(mp, LK_NOWAIT, &mountlist_slock)) {
nmp = mp->mnt_list.cqe_next;
continue;
}
if (strncmp(&mp->mnt_stat.f_fstypename[0], MOUNT_LFS, MFSNAMELEN) == 0)
lfs_flush_fs(((struct ufsmount *)mp->mnt_data)->ufsmount_u.lfs, flags);
simple_lock(&mountlist_slock);
nmp = mp->mnt_list.cqe_next;
vfs_unbusy(mp);
}
simple_unlock(&mountlist_slock);
LFS_DEBUG_COUNTLOCKED("flush");
lfs_writing = 0;
}
#define INOCOUNT(fs) howmany((fs)->lfs_uinodes, INOPB(fs))
#define INOBYTES(fs) ((fs)->lfs_uinodes * DINODE_SIZE)
int
lfs_check(struct vnode *vp, ufs_daddr_t blkno, int flags)
{
int error;
struct lfs *fs;
struct inode *ip;
extern int lfs_dirvcount;
error = 0;
ip = VTOI(vp);
/* If out of buffers, wait on writer */
/* XXX KS - if it's the Ifile, we're probably the cleaner! */
if (ip->i_number == LFS_IFILE_INUM)
return 0;
/* If we're being called from inside a dirop, don't sleep */
if (ip->i_flag & IN_ADIROP)
return 0;
fs = ip->i_lfs;
/*
* If we would flush below, but dirops are active, sleep.
* Note that a dirop cannot ever reach this code!
*/
while (fs->lfs_dirops > 0 &&
(locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES ||
lfs_dirvcount > LFS_MAXDIROP || fs->lfs_diropwait > 0))
{
++fs->lfs_diropwait;
tsleep(&fs->lfs_writer, PRIBIO+1, "bufdirop", 0);
--fs->lfs_diropwait;
}
if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES ||
lfs_dirvcount > LFS_MAXDIROP || fs->lfs_diropwait > 0)
{
++fs->lfs_writer;
lfs_flush(fs, flags);
if (--fs->lfs_writer == 0)
wakeup(&fs->lfs_dirops);
}
while (locked_queue_count + INOCOUNT(fs) > LFS_WAIT_BUFS
|| locked_queue_bytes + INOBYTES(fs) > LFS_WAIT_BYTES)
{
if (lfs_dostats)
++lfs_stats.wait_exceeded;
#ifdef DEBUG_LFS
printf("lfs_check: waiting: count=%d, bytes=%ld\n",
locked_queue_count, locked_queue_bytes);
#endif
error = tsleep(&locked_queue_count, PCATCH | PUSER,
"buffers", hz * LFS_BUFWAIT);
if (error != EWOULDBLOCK)
break;
/*
* lfs_flush might not flush all the buffers, if some of the
* inodes were locked or if most of them were Ifile blocks
* and we weren't asked to checkpoint. Try flushing again
* to keep us from blocking indefinitely.
*/
if (locked_queue_count + INOCOUNT(fs) > LFS_MAX_BUFS ||
locked_queue_bytes + INOBYTES(fs) > LFS_MAX_BYTES)
{
++fs->lfs_writer;
lfs_flush(fs, flags | SEGM_CKP);
if (--fs->lfs_writer == 0)
wakeup(&fs->lfs_dirops);
}
}
return (error);
}
/*
* Allocate a new buffer header.
*/
#ifdef MALLOCLOG
# define DOMALLOC(S, T, F) _malloc((S), (T), (F), file, line)
struct buf *
lfs_newbuf_malloclog(struct lfs *fs, struct vnode *vp, ufs_daddr_t daddr, size_t size, char *file, int line)
#else
# define DOMALLOC(S, T, F) malloc((S), (T), (F))
struct buf *
lfs_newbuf(struct lfs *fs, struct vnode *vp, ufs_daddr_t daddr, size_t size)
#endif
{
struct buf *bp;
size_t nbytes;
int s;
nbytes = roundup(size, fsbtob(fs, 1));
bp = DOMALLOC(sizeof(struct buf), M_SEGMENT, M_WAITOK);
bzero(bp, sizeof(struct buf));
if (nbytes) {
bp->b_data = DOMALLOC(nbytes, M_SEGMENT, M_WAITOK);
bzero(bp->b_data, nbytes);
}
#ifdef DIAGNOSTIC
if (vp == NULL)
panic("vp is NULL in lfs_newbuf");
if (bp == NULL)
panic("bp is NULL after malloc in lfs_newbuf");
#endif
s = splbio();
bgetvp(vp, bp);
splx(s);
bp->b_saveaddr = (caddr_t)fs;
bp->b_bufsize = size;
bp->b_bcount = size;
bp->b_lblkno = daddr;
bp->b_blkno = daddr;
bp->b_error = 0;
bp->b_resid = 0;
bp->b_iodone = lfs_callback;
bp->b_flags |= B_BUSY | B_CALL | B_NOCACHE;
return (bp);
}
#ifdef MALLOCLOG
# define DOFREE(A, T) _free((A), (T), file, line)
void
lfs_freebuf_malloclog(struct buf *bp, char *file, int line)
#else
# define DOFREE(A, T) free((A), (T))
void
lfs_freebuf(struct buf *bp)
#endif
{
int s;
s = splbio();
if (bp->b_vp)
brelvp(bp);
splx(s);
if (!(bp->b_flags & B_INVAL)) { /* B_INVAL indicates a "fake" buffer */
DOFREE(bp->b_data, M_SEGMENT);
bp->b_data = NULL;
}
DOFREE(bp, M_SEGMENT);
}
/*
* Definitions for the buffer free lists.
*/
#define BQUEUES 4 /* number of free buffer queues */
#define BQ_LOCKED 0 /* super-blocks &c */
#define BQ_LRU 1 /* lru, useful buffers */
#define BQ_AGE 2 /* rubbish */
#define BQ_EMPTY 3 /* buffer headers with no memory */
extern TAILQ_HEAD(bqueues, buf) bufqueues[BQUEUES];
/*
* Return a count of buffers on the "locked" queue.
* Don't count malloced buffers, since they don't detract from the total.
*/
void
lfs_countlocked(int *count, long *bytes, char *msg)
{
struct buf *bp;
int n = 0;
long int size = 0L;
for (bp = bufqueues[BQ_LOCKED].tqh_first; bp;
bp = bp->b_freelist.tqe_next) {
if (bp->b_flags & B_CALL) /* Malloced buffer */
continue;
n++;
size += bp->b_bufsize;
#ifdef DEBUG_LOCKED_LIST
if (n > nbuf)
panic("lfs_countlocked: this can't happen: more"
" buffers locked than exist");
#endif
}
#ifdef DEBUG_LOCKED_LIST
/* Theoretically this function never really does anything */
if (n != *count)
printf("lfs_countlocked: %s: adjusted buf count from %d to %d\n",
msg, *count, n);
if (size != *bytes)
printf("lfs_countlocked: %s: adjusted byte count from %ld to %ld\n",
msg, *bytes, size);
#endif
*count = n;
*bytes = size;
return;
}