NetBSD/sys/netinet/in_pcb.c

642 lines
17 KiB
C

/* $NetBSD: in_pcb.c,v 1.33 1996/09/15 18:11:06 mycroft Exp $ */
/*
* Copyright (c) 1982, 1986, 1991, 1993
* The Regents of the University of California. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)in_pcb.c 8.2 (Berkeley) 1/4/94
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/protosw.h>
#include <sys/socket.h>
#include <sys/socketvar.h>
#include <sys/ioctl.h>
#include <sys/errno.h>
#include <sys/time.h>
#include <sys/proc.h>
#include <net/if.h>
#include <net/route.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/ip.h>
#include <netinet/in_pcb.h>
#include <netinet/in_var.h>
#include <netinet/ip_var.h>
struct in_addr zeroin_addr;
#define INPCBHASH_BIND(table, laddr, lport) \
&(table)->inpt_bindhashtbl[ \
((ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_bindhash]
#define INPCBHASH_CONNECT(table, faddr, fport, laddr, lport) \
&(table)->inpt_connecthashtbl[ \
((ntohl((faddr).s_addr) + ntohs(fport)) + \
(ntohl((laddr).s_addr) + ntohs(lport))) & (table)->inpt_connecthash]
struct inpcb *
in_pcblookup_port __P((struct inpcbtable *,
struct in_addr, u_int, int));
void
in_pcbinit(table, bindhashsize, connecthashsize)
struct inpcbtable *table;
int bindhashsize, connecthashsize;
{
CIRCLEQ_INIT(&table->inpt_queue);
table->inpt_bindhashtbl =
hashinit(bindhashsize, M_PCB, &table->inpt_bindhash);
table->inpt_connecthashtbl =
hashinit(connecthashsize, M_PCB, &table->inpt_connecthash);
table->inpt_lastport = 0;
}
int
in_pcballoc(so, v)
struct socket *so;
void *v;
{
struct inpcbtable *table = v;
register struct inpcb *inp;
int s;
MALLOC(inp, struct inpcb *, sizeof(*inp), M_PCB, M_WAITOK);
if (inp == NULL)
return (ENOBUFS);
bzero((caddr_t)inp, sizeof(*inp));
inp->inp_table = table;
inp->inp_socket = so;
so->so_pcb = inp;
s = splnet();
CIRCLEQ_INSERT_HEAD(&table->inpt_queue, inp, inp_queue);
in_pcbstate(inp, INP_ATTACHED);
splx(s);
return (0);
}
int
in_pcbbind(v, nam, p)
void *v;
struct mbuf *nam;
struct proc *p;
{
register struct inpcb *inp = v;
register struct socket *so = inp->inp_socket;
register struct inpcbtable *table = inp->inp_table;
register struct sockaddr_in *sin;
u_int16_t lport = 0;
int wild = 0, reuseport = (so->so_options & SO_REUSEPORT);
int error;
if (in_ifaddr.tqh_first == 0)
return (EADDRNOTAVAIL);
if (inp->inp_lport || !in_nullhost(inp->inp_laddr))
return (EINVAL);
if ((so->so_options & (SO_REUSEADDR|SO_REUSEPORT)) == 0 &&
((so->so_proto->pr_flags & PR_CONNREQUIRED) == 0 ||
(so->so_options & SO_ACCEPTCONN) == 0))
wild = INPLOOKUP_WILDCARD;
if (nam == 0)
goto noname;
sin = mtod(nam, struct sockaddr_in *);
if (nam->m_len != sizeof (*sin))
return (EINVAL);
#ifdef notdef
/*
* We should check the family, but old programs
* incorrectly fail to initialize it.
*/
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
#endif
lport = sin->sin_port;
if (IN_MULTICAST(sin->sin_addr.s_addr)) {
/*
* Treat SO_REUSEADDR as SO_REUSEPORT for multicast;
* allow complete duplication of binding if
* SO_REUSEPORT is set, or if SO_REUSEADDR is set
* and a multicast address is bound on both
* new and duplicated sockets.
*/
if (so->so_options & SO_REUSEADDR)
reuseport = SO_REUSEADDR|SO_REUSEPORT;
} else if (!in_nullhost(sin->sin_addr)) {
sin->sin_port = 0; /* yech... */
if (ifa_ifwithaddr(sintosa(sin)) == 0)
return (EADDRNOTAVAIL);
}
if (lport) {
struct inpcb *t;
#ifndef IPNOPRIVPORTS
/* GROSS */
if (ntohs(lport) < IPPORT_RESERVED &&
(p == 0 || (error = suser(p->p_ucred, &p->p_acflag))))
return (EACCES);
#endif
t = in_pcblookup_port(table, sin->sin_addr, lport, wild);
if (t && (reuseport & t->inp_socket->so_options) == 0)
return (EADDRINUSE);
}
inp->inp_laddr = sin->sin_addr;
noname:
if (lport == 0)
do {
if (table->inpt_lastport++ < IPPORT_RESERVED ||
table->inpt_lastport > IPPORT_USERRESERVED)
table->inpt_lastport = IPPORT_RESERVED;
lport = htons(table->inpt_lastport);
} while (in_pcblookup_port(table, inp->inp_laddr, lport, wild));
inp->inp_lport = lport;
in_pcbstate(inp, INP_BOUND);
return (0);
}
/*
* Connect from a socket to a specified address.
* Both address and port must be specified in argument sin.
* If don't have a local address for this socket yet,
* then pick one.
*/
int
in_pcbconnect(v, nam)
register void *v;
struct mbuf *nam;
{
register struct inpcb *inp = v;
struct in_ifaddr *ia;
struct sockaddr_in *ifaddr = NULL;
register struct sockaddr_in *sin = mtod(nam, struct sockaddr_in *);
if (nam->m_len != sizeof (*sin))
return (EINVAL);
if (sin->sin_family != AF_INET)
return (EAFNOSUPPORT);
if (sin->sin_port == 0)
return (EADDRNOTAVAIL);
if (in_ifaddr.tqh_first != 0) {
/*
* If the destination address is INADDR_ANY,
* use the primary local address.
* If the supplied address is INADDR_BROADCAST,
* and the primary interface supports broadcast,
* choose the broadcast address for that interface.
*/
if (in_nullhost(sin->sin_addr))
sin->sin_addr = in_ifaddr.tqh_first->ia_addr.sin_addr;
else if (sin->sin_addr.s_addr == INADDR_BROADCAST &&
(in_ifaddr.tqh_first->ia_ifp->if_flags & IFF_BROADCAST))
sin->sin_addr = in_ifaddr.tqh_first->ia_broadaddr.sin_addr;
}
/*
* If we haven't bound which network number to use as ours,
* we will use the number of the outgoing interface.
* This depends on having done a routing lookup, which
* we will probably have to do anyway, so we might
* as well do it now. On the other hand if we are
* sending to multiple destinations we may have already
* done the lookup, so see if we can use the route
* from before. In any case, we only
* chose a port number once, even if sending to multiple
* destinations.
*/
if (in_nullhost(inp->inp_laddr)) {
register struct route *ro;
ia = (struct in_ifaddr *)0;
/*
* If route is known or can be allocated now,
* our src addr is taken from the i/f, else punt.
*/
ro = &inp->inp_route;
if (ro->ro_rt &&
(!in_hosteq(satosin(&ro->ro_dst)->sin_addr,
sin->sin_addr) ||
inp->inp_socket->so_options & SO_DONTROUTE)) {
RTFREE(ro->ro_rt);
ro->ro_rt = (struct rtentry *)0;
}
if ((inp->inp_socket->so_options & SO_DONTROUTE) == 0 && /*XXX*/
(ro->ro_rt == (struct rtentry *)0 ||
ro->ro_rt->rt_ifp == (struct ifnet *)0)) {
/* No route yet, so try to acquire one */
ro->ro_dst.sa_family = AF_INET;
ro->ro_dst.sa_len = sizeof(struct sockaddr_in);
satosin(&ro->ro_dst)->sin_addr = sin->sin_addr;
rtalloc(ro);
}
/*
* If we found a route, use the address
* corresponding to the outgoing interface
* unless it is the loopback (in case a route
* to our address on another net goes to loopback).
*/
if (ro->ro_rt && !(ro->ro_rt->rt_ifp->if_flags & IFF_LOOPBACK))
ia = ifatoia(ro->ro_rt->rt_ifa);
if (ia == 0) {
u_int16_t fport = sin->sin_port;
sin->sin_port = 0;
ia = ifatoia(ifa_ifwithladdr(sintosa(sin)));
sin->sin_port = fport;
if (ia == 0)
ia = in_ifaddr.tqh_first;
if (ia == 0)
return (EADDRNOTAVAIL);
}
/*
* If the destination address is multicast and an outgoing
* interface has been set as a multicast option, use the
* address of that interface as our source address.
*/
if (IN_MULTICAST(sin->sin_addr.s_addr) &&
inp->inp_moptions != NULL) {
struct ip_moptions *imo;
struct ifnet *ifp;
imo = inp->inp_moptions;
if (imo->imo_multicast_ifp != NULL) {
ifp = imo->imo_multicast_ifp;
for (ia = in_ifaddr.tqh_first; ia != 0;
ia = ia->ia_list.tqe_next)
if (ia->ia_ifp == ifp)
break;
if (ia == 0)
return (EADDRNOTAVAIL);
}
}
ifaddr = satosin(&ia->ia_addr);
}
if (in_pcblookup_connect(inp->inp_table, sin->sin_addr, sin->sin_port,
!in_nullhost(inp->inp_laddr) ? inp->inp_laddr : ifaddr->sin_addr,
inp->inp_lport) != 0)
return (EADDRINUSE);
if (in_nullhost(inp->inp_laddr)) {
if (inp->inp_lport == 0)
(void)in_pcbbind(inp, (struct mbuf *)0,
(struct proc *)0);
inp->inp_laddr = ifaddr->sin_addr;
}
inp->inp_faddr = sin->sin_addr;
inp->inp_fport = sin->sin_port;
in_pcbstate(inp, INP_CONNECTED);
return (0);
}
void
in_pcbdisconnect(v)
void *v;
{
struct inpcb *inp = v;
inp->inp_faddr = zeroin_addr;
inp->inp_fport = 0;
in_pcbstate(inp, INP_BOUND);
if (inp->inp_socket->so_state & SS_NOFDREF)
in_pcbdetach(inp);
}
void
in_pcbdetach(v)
void *v;
{
struct inpcb *inp = v;
struct socket *so = inp->inp_socket;
int s;
so->so_pcb = 0;
sofree(so);
if (inp->inp_options)
(void)m_free(inp->inp_options);
if (inp->inp_route.ro_rt)
rtfree(inp->inp_route.ro_rt);
ip_freemoptions(inp->inp_moptions);
s = splnet();
in_pcbstate(inp, INP_ATTACHED);
CIRCLEQ_REMOVE(&inp->inp_table->inpt_queue, inp, inp_queue);
splx(s);
FREE(inp, M_PCB);
}
void
in_setsockaddr(inp, nam)
register struct inpcb *inp;
struct mbuf *nam;
{
register struct sockaddr_in *sin;
nam->m_len = sizeof (*sin);
sin = mtod(nam, struct sockaddr_in *);
bzero((caddr_t)sin, sizeof (*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = inp->inp_lport;
sin->sin_addr = inp->inp_laddr;
}
void
in_setpeeraddr(inp, nam)
struct inpcb *inp;
struct mbuf *nam;
{
register struct sockaddr_in *sin;
nam->m_len = sizeof (*sin);
sin = mtod(nam, struct sockaddr_in *);
bzero((caddr_t)sin, sizeof (*sin));
sin->sin_family = AF_INET;
sin->sin_len = sizeof(*sin);
sin->sin_port = inp->inp_fport;
sin->sin_addr = inp->inp_faddr;
}
/*
* Pass some notification to all connections of a protocol
* associated with address dst. The local address and/or port numbers
* may be specified to limit the search. The "usual action" will be
* taken, depending on the ctlinput cmd. The caller must filter any
* cmds that are uninteresting (e.g., no error in the map).
* Call the protocol specific routine (if any) to report
* any errors for each matching socket.
*
* Must be called at splsoftnet.
*/
void
in_pcbnotify(table, faddr, fport_arg, laddr, lport_arg, errno, notify)
struct inpcbtable *table;
struct in_addr faddr, laddr;
u_int fport_arg, lport_arg;
int errno;
void (*notify) __P((struct inpcb *, int));
{
struct inpcbhead *head;
register struct inpcb *inp, *ninp;
u_int16_t fport = fport_arg, lport = lport_arg;
if (in_nullhost(faddr) || notify == 0)
return;
head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport);
for (inp = head->lh_first; inp != NULL; inp = ninp) {
ninp = inp->inp_hash.le_next;
if (in_hosteq(inp->inp_faddr, faddr) &&
inp->inp_fport == fport &&
inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, laddr))
(*notify)(inp, errno);
}
}
void
in_pcbnotifyall(table, faddr, errno, notify)
struct inpcbtable *table;
struct in_addr faddr;
int errno;
void (*notify) __P((struct inpcb *, int));
{
register struct inpcb *inp, *ninp;
if (in_nullhost(faddr) || notify == 0)
return;
for (inp = table->inpt_queue.cqh_first;
inp != (struct inpcb *)&table->inpt_queue;
inp = ninp) {
ninp = inp->inp_queue.cqe_next;
if (in_hosteq(inp->inp_faddr, faddr))
(*notify)(inp, errno);
}
}
/*
* Check for alternatives when higher level complains
* about service problems. For now, invalidate cached
* routing information. If the route was created dynamically
* (by a redirect), time to try a default gateway again.
*/
void
in_losing(inp)
struct inpcb *inp;
{
register struct rtentry *rt;
struct rt_addrinfo info;
if ((rt = inp->inp_route.ro_rt)) {
inp->inp_route.ro_rt = 0;
bzero((caddr_t)&info, sizeof(info));
info.rti_info[RTAX_DST] = &inp->inp_route.ro_dst;
info.rti_info[RTAX_GATEWAY] = rt->rt_gateway;
info.rti_info[RTAX_NETMASK] = rt_mask(rt);
rt_missmsg(RTM_LOSING, &info, rt->rt_flags, 0);
if (rt->rt_flags & RTF_DYNAMIC)
(void) rtrequest(RTM_DELETE, rt_key(rt),
rt->rt_gateway, rt_mask(rt), rt->rt_flags,
(struct rtentry **)0);
else
/*
* A new route can be allocated
* the next time output is attempted.
*/
rtfree(rt);
}
}
/*
* After a routing change, flush old routing
* and allocate a (hopefully) better one.
*/
void
in_rtchange(inp, errno)
register struct inpcb *inp;
int errno;
{
if (inp->inp_route.ro_rt) {
rtfree(inp->inp_route.ro_rt);
inp->inp_route.ro_rt = 0;
/*
* A new route can be allocated the next time
* output is attempted.
*/
}
/* SHOULD NOTIFY HIGHER-LEVEL PROTOCOLS */
}
struct inpcb *
in_pcblookup_port(table, laddr, lport_arg, flags)
struct inpcbtable *table;
struct in_addr laddr;
u_int lport_arg;
int flags;
{
register struct inpcb *inp, *match = 0;
int matchwild = 3, wildcard;
u_int16_t lport = lport_arg;
for (inp = table->inpt_queue.cqh_first;
inp != (struct inpcb *)&table->inpt_queue;
inp = inp->inp_queue.cqe_next) {
if (inp->inp_lport != lport)
continue;
wildcard = 0;
if (!in_nullhost(inp->inp_faddr))
wildcard++;
if (in_nullhost(inp->inp_laddr)) {
if (!in_nullhost(laddr))
wildcard++;
} else {
if (in_nullhost(laddr))
wildcard++;
else {
if (!in_hosteq(inp->inp_laddr, laddr))
continue;
}
}
if (wildcard && (flags & INPLOOKUP_WILDCARD) == 0)
continue;
if (wildcard < matchwild) {
match = inp;
matchwild = wildcard;
if (matchwild == 0)
break;
}
}
return (match);
}
#ifdef DIAGNOSTIC
int in_pcbnotifymiss = 0;
#endif
struct inpcb *
in_pcblookup_connect(table, faddr, fport_arg, laddr, lport_arg)
struct inpcbtable *table;
struct in_addr faddr, laddr;
u_int fport_arg, lport_arg;
{
struct inpcbhead *head;
register struct inpcb *inp;
u_int16_t fport = fport_arg, lport = lport_arg;
head = INPCBHASH_CONNECT(table, faddr, fport, laddr, lport);
for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
if (in_hosteq(inp->inp_faddr, faddr) &&
inp->inp_fport == fport &&
inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, laddr))
goto out;
}
#ifdef DIAGNOSTIC
if (in_pcbnotifymiss) {
printf("in_pcblookup_connect: faddr=%08x fport=%d laddr=%08x lport=%d\n",
ntohl(faddr.s_addr), ntohs(fport),
ntohl(laddr.s_addr), ntohs(lport));
}
#endif
return (0);
out:
/* Move this PCB to the head of hash chain. */
if (inp != head->lh_first) {
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
}
return (inp);
}
struct inpcb *
in_pcblookup_bind(table, laddr, lport_arg)
struct inpcbtable *table;
struct in_addr laddr;
u_int lport_arg;
{
struct inpcbhead *head;
register struct inpcb *inp;
u_int16_t lport = lport_arg;
head = INPCBHASH_BIND(table, laddr, lport);
for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
if (inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, laddr))
goto out;
}
head = INPCBHASH_BIND(table, zeroin_addr, lport);
for (inp = head->lh_first; inp != NULL; inp = inp->inp_hash.le_next) {
if (inp->inp_lport == lport &&
in_hosteq(inp->inp_laddr, zeroin_addr))
goto out;
}
#ifdef DIAGNOSTIC
if (in_pcbnotifymiss) {
printf("in_pcblookup_bind: laddr=%08x lport=%d\n",
ntohl(laddr.s_addr), ntohs(lport));
}
#endif
return (0);
out:
/* Move this PCB to the head of hash chain. */
if (inp != head->lh_first) {
LIST_REMOVE(inp, inp_hash);
LIST_INSERT_HEAD(head, inp, inp_hash);
}
return (inp);
}
void
in_pcbstate(inp, state)
struct inpcb *inp;
int state;
{
if (inp->inp_state > INP_ATTACHED)
LIST_REMOVE(inp, inp_hash);
switch (state) {
case INP_BOUND:
LIST_INSERT_HEAD(INPCBHASH_BIND(inp->inp_table,
inp->inp_laddr, inp->inp_lport), inp, inp_hash);
break;
case INP_CONNECTED:
LIST_INSERT_HEAD(INPCBHASH_CONNECT(inp->inp_table,
inp->inp_faddr, inp->inp_fport,
inp->inp_laddr, inp->inp_lport), inp, inp_hash);
break;
}
inp->inp_state = state;
}