NetBSD/sys/arch/mac68k/obio/esp.c
bouyer 937a7a3ed9 Pull up the thorpej_scsipi branch to main branch.
This is a completely rewritten scsipi_xfer execution engine, and the
associated changes to HBA drivers. Overview of changes & features:
- All xfers are queued in the mid-layer, rather than doing so in an
  ad-hoc fashion in individual adapter drivers.
- Adapter/channel resource management in the mid-layer, avoids even trying
  to start running an xfer if the adapter/channel doesn't have the resources.
- Better communication between the mid-layer and the adapters.
- Asynchronous event notification mechanism from adapter to mid-layer and
  peripherals.
- Better peripheral queue management: freeze/thaw, sorted requeueing during
  recovery, etc.
- Clean separation of peripherals, adapters, and adapter channels (no more
  scsipi_link).
- Kernel thread for each scsipi_channel makes error recovery much easier
  (no more dealing with interrupt context when recovering from an error).
- Mid-layer support for tagged queueing: commands can have the tag type
  set explicitly, tag IDs are allocated in the mid-layer (thus eliminating
  the need to use buggy tag ID allocation schemes in many adapter drivers).
- support for QUEUE FULL and CHECK CONDITION status in mid-layer; the command
  will be requeued, or a REQUEST SENSE will be sent as appropriate.

Just before the merge syssrc has been tagged with thorpej_scsipi_beforemerge
2001-04-25 17:53:04 +00:00

910 lines
23 KiB
C

/* $NetBSD: esp.c,v 1.29 2001/04/25 17:53:14 bouyer Exp $ */
/*
* Copyright (c) 1997 Jason R. Thorpe.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed for the NetBSD Project
* by Jason R. Thorpe.
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Copyright (c) 1994 Peter Galbavy
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by Peter Galbavy
* 4. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Based on aic6360 by Jarle Greipsland
*
* Acknowledgements: Many of the algorithms used in this driver are
* inspired by the work of Julian Elischer (julian@tfs.com) and
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
*/
/*
* Initial m68k mac support from Allen Briggs <briggs@macbsd.com>
* (basically consisting of the match, a bit of the attach, and the
* "DMA" glue functions).
*/
#include <sys/types.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/errno.h>
#include <sys/ioctl.h>
#include <sys/device.h>
#include <sys/buf.h>
#include <sys/proc.h>
#include <sys/user.h>
#include <sys/queue.h>
#include <dev/scsipi/scsi_all.h>
#include <dev/scsipi/scsipi_all.h>
#include <dev/scsipi/scsiconf.h>
#include <dev/scsipi/scsi_message.h>
#include <machine/cpu.h>
#include <machine/bus.h>
#include <machine/param.h>
#include <dev/ic/ncr53c9xreg.h>
#include <dev/ic/ncr53c9xvar.h>
#include <machine/viareg.h>
#include <mac68k/obio/espvar.h>
#include <mac68k/obio/obiovar.h>
void espattach __P((struct device *, struct device *, void *));
int espmatch __P((struct device *, struct cfdata *, void *));
/* Linkup to the rest of the kernel */
struct cfattach esp_ca = {
sizeof(struct esp_softc), espmatch, espattach
};
/*
* Functions and the switch for the MI code.
*/
u_char esp_read_reg __P((struct ncr53c9x_softc *, int));
void esp_write_reg __P((struct ncr53c9x_softc *, int, u_char));
int esp_dma_isintr __P((struct ncr53c9x_softc *));
void esp_dma_reset __P((struct ncr53c9x_softc *));
int esp_dma_intr __P((struct ncr53c9x_softc *));
int esp_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
size_t *, int, size_t *));
void esp_dma_go __P((struct ncr53c9x_softc *));
void esp_dma_stop __P((struct ncr53c9x_softc *));
int esp_dma_isactive __P((struct ncr53c9x_softc *));
void esp_quick_write_reg __P((struct ncr53c9x_softc *, int, u_char));
int esp_quick_dma_intr __P((struct ncr53c9x_softc *));
int esp_quick_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
size_t *, int, size_t *));
void esp_quick_dma_go __P((struct ncr53c9x_softc *));
void esp_intr __P((void *sc));
void esp_dualbus_intr __P((void *sc));
static struct esp_softc *esp0 = NULL, *esp1 = NULL;
static __inline__ int esp_dafb_have_dreq __P((struct esp_softc *esc));
static __inline__ int esp_iosb_have_dreq __P((struct esp_softc *esc));
int (*esp_have_dreq) __P((struct esp_softc *esc));
struct ncr53c9x_glue esp_glue = {
esp_read_reg,
esp_write_reg,
esp_dma_isintr,
esp_dma_reset,
esp_dma_intr,
esp_dma_setup,
esp_dma_go,
esp_dma_stop,
esp_dma_isactive,
NULL, /* gl_clear_latched_intr */
};
int
espmatch(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
int found = 0;
if ((cf->cf_unit == 0) && mac68k_machine.scsi96) {
found = 1;
}
if ((cf->cf_unit == 1) && mac68k_machine.scsi96_2) {
found = 1;
}
return found;
}
/*
* Attach this instance, and then all the sub-devices
*/
void
espattach(parent, self, aux)
struct device *parent, *self;
void *aux;
{
struct obio_attach_args *oa = (struct obio_attach_args *)aux;
extern vaddr_t SCSIBase;
struct esp_softc *esc = (void *)self;
struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
int quick = 0;
unsigned long reg_offset;
reg_offset = SCSIBase - IOBase;
esc->sc_tag = oa->oa_tag;
/*
* For Wombat, Primus and Optimus motherboards, DREQ is
* visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
* the scsi registers are offset 0x1000 bytes from IOBase).
*
* For the Q700/900/950 it's at f9800024 for bus 0 and
* f9800028 for bus 1 (900/950). For these machines, that is also
* a (12-bit) configuration register for DAFB's control of the
* pseudo-DMA timing. The default value is 0x1d1.
*/
esp_have_dreq = esp_dafb_have_dreq;
if (sc->sc_dev.dv_unit == 0) {
if (reg_offset == 0x10000) {
quick = 1;
esp_have_dreq = esp_iosb_have_dreq;
} else if (reg_offset == 0x18000) {
quick = 0;
} else {
if (bus_space_map(esc->sc_tag, 0xf9800024,
4, 0, &esc->sc_bsh)) {
printf("failed to map 4 at 0xf9800024.\n");
} else {
quick = 1;
bus_space_write_4(esc->sc_tag,
esc->sc_bsh, 0, 0x1d1);
}
}
} else {
if (bus_space_map(esc->sc_tag, 0xf9800028,
4, 0, &esc->sc_bsh)) {
printf("failed to map 4 at 0xf9800028.\n");
} else {
quick = 1;
bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
}
}
if (quick) {
esp_glue.gl_write_reg = esp_quick_write_reg;
esp_glue.gl_dma_intr = esp_quick_dma_intr;
esp_glue.gl_dma_setup = esp_quick_dma_setup;
esp_glue.gl_dma_go = esp_quick_dma_go;
}
/*
* Set up the glue for MI code early; we use some of it here.
*/
sc->sc_glue = &esp_glue;
/*
* Save the regs
*/
if (sc->sc_dev.dv_unit == 0) {
esp0 = esc;
esc->sc_reg = (volatile u_char *) SCSIBase;
via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
esc->irq_mask = V2IF_SCSIIRQ;
if (reg_offset == 0x10000) {
/* From the Q650 developer's note */
sc->sc_freq = 16500000;
} else {
sc->sc_freq = 25000000;
}
if (esp_glue.gl_dma_go == esp_quick_dma_go) {
printf(" (quick)");
}
} else {
esp1 = esc;
esc->sc_reg = (volatile u_char *) SCSIBase + 0x402;
via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
esc->irq_mask = 0;
sc->sc_freq = 25000000;
if (esp_glue.gl_dma_go == esp_quick_dma_go) {
printf(" (quick)");
}
}
printf(": address %p", esc->sc_reg);
sc->sc_id = 7;
/* gimme Mhz */
sc->sc_freq /= 1000000;
/*
* It is necessary to try to load the 2nd config register here,
* to find out what rev the esp chip is, else the esp_reset
* will not set up the defaults correctly.
*/
sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
sc->sc_cfg2 = NCRCFG2_SCSI2;
sc->sc_cfg3 = 0;
sc->sc_rev = NCR_VARIANT_NCR53C96;
/*
* This is the value used to start sync negotiations
* Note that the NCR register "SYNCTP" is programmed
* in "clocks per byte", and has a minimum value of 4.
* The SCSI period used in negotiation is one-fourth
* of the time (in nanoseconds) needed to transfer one byte.
* Since the chip's clock is given in MHz, we have the following
* formula: 4 * period = (1000 / freq) * 4
*/
sc->sc_minsync = 1000 / sc->sc_freq;
/* We need this to fit into the TCR... */
sc->sc_maxxfer = 64 * 1024;
if (!quick) {
sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */
sc->sc_maxxfer = 8 * 1024;
}
/*
* Configure interrupts.
*/
if (esc->irq_mask) {
via2_reg(vPCR) = 0x22;
via2_reg(vIFR) = esc->irq_mask;
via2_reg(vIER) = 0x80 | esc->irq_mask;
}
/*
* Now try to attach all the sub-devices
*/
sc->sc_adapter.adapt_minphys = minphys;
sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
ncr53c9x_attach(sc);
}
/*
* Glue functions.
*/
u_char
esp_read_reg(sc, reg)
struct ncr53c9x_softc *sc;
int reg;
{
struct esp_softc *esc = (struct esp_softc *)sc;
return esc->sc_reg[reg * 16];
}
void
esp_write_reg(sc, reg, val)
struct ncr53c9x_softc *sc;
int reg;
u_char val;
{
struct esp_softc *esc = (struct esp_softc *)sc;
u_char v = val;
if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
v = NCRCMD_TRANS;
}
esc->sc_reg[reg * 16] = v;
}
void
esp_dma_stop(sc)
struct ncr53c9x_softc *sc;
{
}
int
esp_dma_isactive(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
return esc->sc_active;
}
int
esp_dma_isintr(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
return esc->sc_reg[NCR_STAT * 16] & 0x80;
}
void
esp_dma_reset(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
esc->sc_active = 0;
esc->sc_tc = 0;
}
int
esp_dma_intr(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
u_char *p;
u_int espphase, espstat, espintr;
int cnt, s;
if (esc->sc_active == 0) {
printf("dma_intr--inactive DMA\n");
return -1;
}
if ((sc->sc_espintr & NCRINTR_BS) == 0) {
esc->sc_active = 0;
return 0;
}
cnt = esc->sc_dmasize;
if (esc->sc_dmasize == 0) {
printf("data interrupt, but no count left.");
}
p = *esc->sc_dmaaddr;
espphase = sc->sc_phase;
espstat = (u_int) sc->sc_espstat;
espintr = (u_int) sc->sc_espintr;
cmdreg = esc->sc_reg + NCR_CMD * 16;
fiforeg = esc->sc_reg + NCR_FIFO * 16;
statreg = esc->sc_reg + NCR_STAT * 16;
intrreg = esc->sc_reg + NCR_INTR * 16;
do {
if (esc->sc_datain) {
*p++ = *fiforeg;
cnt--;
if (espphase == DATA_IN_PHASE) {
*cmdreg = NCRCMD_TRANS;
} else {
esc->sc_active = 0;
}
} else {
if ( (espphase == DATA_OUT_PHASE)
|| (espphase == MESSAGE_OUT_PHASE)) {
*fiforeg = *p++;
cnt--;
*cmdreg = NCRCMD_TRANS;
} else {
esc->sc_active = 0;
}
}
if (esc->sc_active) {
while (!(*statreg & 0x80));
s = splhigh();
espstat = *statreg;
espintr = *intrreg;
espphase = (espintr & NCRINTR_DIS)
? /* Disconnected */ BUSFREE_PHASE
: espstat & PHASE_MASK;
splx(s);
}
} while (esc->sc_active && (espintr & NCRINTR_BS));
sc->sc_phase = espphase;
sc->sc_espstat = (u_char) espstat;
sc->sc_espintr = (u_char) espintr;
*esc->sc_dmaaddr = p;
esc->sc_dmasize = cnt;
if (esc->sc_dmasize == 0) {
esc->sc_tc = NCRSTAT_TC;
}
sc->sc_espstat |= esc->sc_tc;
return 0;
}
int
esp_dma_setup(sc, addr, len, datain, dmasize)
struct ncr53c9x_softc *sc;
caddr_t *addr;
size_t *len;
int datain;
size_t *dmasize;
{
struct esp_softc *esc = (struct esp_softc *)sc;
esc->sc_dmaaddr = addr;
esc->sc_dmalen = len;
esc->sc_datain = datain;
esc->sc_dmasize = *dmasize;
esc->sc_tc = 0;
return 0;
}
void
esp_dma_go(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
if (esc->sc_datain == 0) {
esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
(*esc->sc_dmalen)--;
(*esc->sc_dmaaddr)++;
}
esc->sc_active = 1;
}
void
esp_quick_write_reg(sc, reg, val)
struct ncr53c9x_softc *sc;
int reg;
u_char val;
{
struct esp_softc *esc = (struct esp_softc *)sc;
esc->sc_reg[reg * 16] = val;
}
#if DEBUG
int mac68k_esp_debug=0;
#endif
int
esp_quick_dma_intr(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
int trans=0, resid=0;
if (esc->sc_active == 0)
panic("dma_intr--inactive DMA\n");
esc->sc_active = 0;
if (esc->sc_dmasize == 0) {
int res;
res = NCR_READ_REG(sc, NCR_TCL);
res += NCR_READ_REG(sc, NCR_TCM) << 8;
/* This can happen in the case of a TRPAD operation */
/* Pretend that it was complete */
sc->sc_espstat |= NCRSTAT_TC;
#if DEBUG
if (mac68k_esp_debug) {
printf("dmaintr: DMA xfer of zero xferred %d\n",
65536 - res);
}
#endif
return 0;
}
if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
if (esc->sc_datain == 0) {
resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
#if DEBUG
if (mac68k_esp_debug) {
printf("Write FIFO residual %d bytes\n", resid);
}
#endif
}
resid += NCR_READ_REG(sc, NCR_TCL);
resid += NCR_READ_REG(sc, NCR_TCM) << 8;
if (resid == 0)
resid = 65536;
}
trans = esc->sc_dmasize - resid;
if (trans < 0) {
printf("dmaintr: trans < 0????");
trans = *esc->sc_dmalen;
}
NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
#if DEBUG
if (mac68k_esp_debug) {
printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
}
#endif
*esc->sc_dmaaddr += trans;
*esc->sc_dmalen -= trans;
return 0;
}
int
esp_quick_dma_setup(sc, addr, len, datain, dmasize)
struct ncr53c9x_softc *sc;
caddr_t *addr;
size_t *len;
int datain;
size_t *dmasize;
{
struct esp_softc *esc = (struct esp_softc *)sc;
esc->sc_dmaaddr = addr;
esc->sc_dmalen = len;
if (*len & 1) {
esc->sc_pad = 1;
} else {
esc->sc_pad = 0;
}
esc->sc_datain = datain;
esc->sc_dmasize = *dmasize;
#if DIAGNOSTIC
if (esc->sc_dmasize == 0) {
/* This can happen in the case of a TRPAD operation */
}
#endif
#if DEBUG
if (mac68k_esp_debug) {
printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
(long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
}
#endif
return 0;
}
static __inline__ int
esp_dafb_have_dreq(esc)
struct esp_softc *esc;
{
return (*(volatile u_int32_t *)(esc->sc_bsh.base) & 0x200);
}
static __inline__ int
esp_iosb_have_dreq(esc)
struct esp_softc *esc;
{
return (via2_reg(vIFR) & V2IF_SCSIDRQ);
}
static volatile int espspl=-1;
/*
* Apple "DMA" is weird.
*
* Basically, the CPU acts like the DMA controller. The DREQ/ off the
* chip goes to a register that we've mapped at attach time (on the
* IOSB or DAFB, depending on the machine). Apple also provides some
* space for which the memory controller handshakes data to/from the
* NCR chip with the DACK/ line. This space appears to be mapped over
* and over, every 4 bytes, but only the lower 16 bits are valid (but
* reading the upper 16 bits will handshake DACK/ just fine, so if you
* read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
* <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
*
* When you're attempting to read or write memory to this DACK/ed space,
* and the NCR is not ready for some timeout period, the system will
* generate a bus error. This might be for one of several reasons:
*
* 1) (on write) The FIFO is full and is not draining.
* 2) (on read) The FIFO is empty and is not filling.
* 3) An interrupt condition has occurred.
* 4) Anything else?
*
* So if a bus error occurs, we first turn off the nofault bus error handler,
* then we check for an interrupt (which would render the first two
* possibilities moot). If there's no interrupt, check for a DREQ/. If we
* have that, then attempt to resume stuffing (or unstuffing) the FIFO. If
* neither condition holds, pause briefly and check again.
*
* NOTE!!! In order to make allowances for the hardware structure of
* the mac, spl values in here are hardcoded!!!!!!!!!
* This is done to allow serial interrupts to get in during
* scsi transfers. This is ugly.
*/
void
esp_quick_dma_go(sc)
struct ncr53c9x_softc *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
extern long mac68k_a2_fromfault;
extern int *nofault;
label_t faultbuf;
u_int16_t volatile *pdma;
u_int16_t *addr;
int len, res;
u_short cnt32, cnt2;
u_char volatile *statreg;
esc->sc_active = 1;
espspl = splhigh();
addr = (u_int16_t *) *esc->sc_dmaaddr;
len = esc->sc_dmasize;
restart_dmago:
#if DEBUG
if (mac68k_esp_debug) {
printf("eqdg: a %lx, l %lx, in? %d ... ",
(long) addr, (long) len, esc->sc_datain);
}
#endif
nofault = (int *) &faultbuf;
if (setjmp((label_t *) nofault)) {
int i=0;
nofault = (int *) 0;
#if DEBUG
if (mac68k_esp_debug) {
printf("be\n");
}
#endif
/*
* Bus error...
* So, we first check for an interrupt. If we have
* one, go handle it. Next we check for DREQ/. If
* we have it, then we restart the transfer. If
* neither, then loop until we get one or the other.
*/
statreg = esc->sc_reg + NCR_STAT * 16;
for (;;) {
spl2(); /* Give serial a chance... */
splhigh(); /* That's enough... */
if (*statreg & 0x80) {
goto gotintr;
}
if (esp_have_dreq(esc)) {
/*
* Get the remaining length from the address
* differential.
*/
addr = (u_int16_t *) mac68k_a2_fromfault;
len = esc->sc_dmasize -
((long) addr - (long) *esc->sc_dmaaddr);
if (esc->sc_datain == 0) {
/*
* Let the FIFO drain before we read
* the transfer count.
* Do we need to do this?
* Can we do this?
*/
while (NCR_READ_REG(sc, NCR_FFLAG)
& 0x1f);
/*
* Get the length from the transfer
* counters.
*/
res = NCR_READ_REG(sc, NCR_TCL);
res += NCR_READ_REG(sc, NCR_TCM) << 8;
/*
* If they don't agree,
* adjust accordingly.
*/
while (res > len) {
len+=2; addr--;
}
if (res != len) {
panic("esp_quick_dma_go: res %d != len %d\n",
res, len);
}
}
break;
}
DELAY(1);
if (i++ > 1000000)
panic("esp_dma_go: Bus error, but no condition! Argh!");
}
goto restart_dmago;
}
len &= ~1;
statreg = esc->sc_reg + NCR_STAT * 16;
pdma = (u_int16_t *) (esc->sc_reg + 0x100);
/*
* These loops are unrolled into assembly for two reasons:
* 1) We can make sure that they are as efficient as possible, and
* 2) (more importantly) we need the address that we are reading
* from or writing to to be in a2.
*/
cnt32 = len / 32;
cnt2 = (len % 32) / 2;
if (esc->sc_datain == 0) {
/* while (cnt32--) { 16 instances of *pdma = *addr++; } */
/* while (cnt2--) { *pdma = *addr++; } */
__asm __volatile ("
movl %1, %%a2
movl %2, %%a3
movw %3, %%d2
cmpw #0, %%d2
beq 2f
subql #1, %%d2
1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
movw #8704,%%sr
movw #9728,%%sr
dbra %%d2, 1b
2: movw %4, %%d2
cmpw #0, %%d2
beq 4f
subql #1, %%d2
3: movw %%a2@+,%%a3@
dbra %%d2, 3b
4: movl %%a2, %0"
: "=g" (addr)
: "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
: "a2", "a3", "d2");
if (esc->sc_pad) {
unsigned char *c;
c = (unsigned char *) addr;
/* Wait for DREQ */
while (!esp_have_dreq(esc)) {
if (*statreg & 0x80) {
nofault = (int *) 0;
goto gotintr;
}
}
*(unsigned char *)pdma = *c;
}
} else {
/* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
/* while (cnt2--) { *addr++ = *pdma; } */
__asm __volatile ("
movl %1, %%a2
movl %2, %%a3
movw %3, %%d2
cmpw #0, %%d2
beq 6f
subql #1, %%d2
5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
movw #8704,%%sr
movw #9728,%%sr
dbra %%d2, 5b
6: movw %4, %%d2
cmpw #0, %%d2
beq 8f
subql #1, %%d2
7: movw %%a3@,%%a2@+
dbra %%d2, 7b
8: movl %%a2, %0"
: "=g" (addr)
: "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
: "a2", "a3", "d2");
if (esc->sc_pad) {
unsigned char *c;
c = (unsigned char *) addr;
/* Wait for DREQ */
while (!esp_have_dreq(esc)) {
if (*statreg & 0x80) {
nofault = (int *) 0;
goto gotintr;
}
}
*c = *(unsigned char *)pdma;
}
}
nofault = (int *) 0;
/*
* If we have not received an interrupt yet, we should shortly,
* and we can't prevent it, so return and wait for it.
*/
if ((*statreg & 0x80) == 0) {
#if DEBUG
if (mac68k_esp_debug) {
printf("g.\n");
}
#endif
if (espspl != -1) splx(espspl); espspl = -1;
return;
}
gotintr:
#if DEBUG
if (mac68k_esp_debug) {
printf("g!\n");
}
#endif
ncr53c9x_intr(sc);
if (espspl != -1) splx(espspl); espspl = -1;
}
void
esp_intr(sc)
void *sc;
{
struct esp_softc *esc = (struct esp_softc *)sc;
if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
}
}
void
esp_dualbus_intr(sc)
void *sc;
{
if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
}
if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
ncr53c9x_intr((struct ncr53c9x_softc *) esp1);
}
}