937a7a3ed9
This is a completely rewritten scsipi_xfer execution engine, and the associated changes to HBA drivers. Overview of changes & features: - All xfers are queued in the mid-layer, rather than doing so in an ad-hoc fashion in individual adapter drivers. - Adapter/channel resource management in the mid-layer, avoids even trying to start running an xfer if the adapter/channel doesn't have the resources. - Better communication between the mid-layer and the adapters. - Asynchronous event notification mechanism from adapter to mid-layer and peripherals. - Better peripheral queue management: freeze/thaw, sorted requeueing during recovery, etc. - Clean separation of peripherals, adapters, and adapter channels (no more scsipi_link). - Kernel thread for each scsipi_channel makes error recovery much easier (no more dealing with interrupt context when recovering from an error). - Mid-layer support for tagged queueing: commands can have the tag type set explicitly, tag IDs are allocated in the mid-layer (thus eliminating the need to use buggy tag ID allocation schemes in many adapter drivers). - support for QUEUE FULL and CHECK CONDITION status in mid-layer; the command will be requeued, or a REQUEST SENSE will be sent as appropriate. Just before the merge syssrc has been tagged with thorpej_scsipi_beforemerge
910 lines
23 KiB
C
910 lines
23 KiB
C
/* $NetBSD: esp.c,v 1.29 2001/04/25 17:53:14 bouyer Exp $ */
|
|
|
|
/*
|
|
* Copyright (c) 1997 Jason R. Thorpe.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed for the NetBSD Project
|
|
* by Jason R. Thorpe.
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1994 Peter Galbavy
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by Peter Galbavy
|
|
* 4. The name of the author may not be used to endorse or promote products
|
|
* derived from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
|
|
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
|
* DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
|
|
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
|
|
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
|
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Based on aic6360 by Jarle Greipsland
|
|
*
|
|
* Acknowledgements: Many of the algorithms used in this driver are
|
|
* inspired by the work of Julian Elischer (julian@tfs.com) and
|
|
* Charles Hannum (mycroft@duality.gnu.ai.mit.edu). Thanks a million!
|
|
*/
|
|
|
|
/*
|
|
* Initial m68k mac support from Allen Briggs <briggs@macbsd.com>
|
|
* (basically consisting of the match, a bit of the attach, and the
|
|
* "DMA" glue functions).
|
|
*/
|
|
|
|
#include <sys/types.h>
|
|
#include <sys/param.h>
|
|
#include <sys/systm.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/errno.h>
|
|
#include <sys/ioctl.h>
|
|
#include <sys/device.h>
|
|
#include <sys/buf.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/user.h>
|
|
#include <sys/queue.h>
|
|
|
|
#include <dev/scsipi/scsi_all.h>
|
|
#include <dev/scsipi/scsipi_all.h>
|
|
#include <dev/scsipi/scsiconf.h>
|
|
#include <dev/scsipi/scsi_message.h>
|
|
|
|
#include <machine/cpu.h>
|
|
#include <machine/bus.h>
|
|
#include <machine/param.h>
|
|
|
|
#include <dev/ic/ncr53c9xreg.h>
|
|
#include <dev/ic/ncr53c9xvar.h>
|
|
|
|
#include <machine/viareg.h>
|
|
|
|
#include <mac68k/obio/espvar.h>
|
|
#include <mac68k/obio/obiovar.h>
|
|
|
|
void espattach __P((struct device *, struct device *, void *));
|
|
int espmatch __P((struct device *, struct cfdata *, void *));
|
|
|
|
/* Linkup to the rest of the kernel */
|
|
struct cfattach esp_ca = {
|
|
sizeof(struct esp_softc), espmatch, espattach
|
|
};
|
|
|
|
/*
|
|
* Functions and the switch for the MI code.
|
|
*/
|
|
u_char esp_read_reg __P((struct ncr53c9x_softc *, int));
|
|
void esp_write_reg __P((struct ncr53c9x_softc *, int, u_char));
|
|
int esp_dma_isintr __P((struct ncr53c9x_softc *));
|
|
void esp_dma_reset __P((struct ncr53c9x_softc *));
|
|
int esp_dma_intr __P((struct ncr53c9x_softc *));
|
|
int esp_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
|
|
size_t *, int, size_t *));
|
|
void esp_dma_go __P((struct ncr53c9x_softc *));
|
|
void esp_dma_stop __P((struct ncr53c9x_softc *));
|
|
int esp_dma_isactive __P((struct ncr53c9x_softc *));
|
|
void esp_quick_write_reg __P((struct ncr53c9x_softc *, int, u_char));
|
|
int esp_quick_dma_intr __P((struct ncr53c9x_softc *));
|
|
int esp_quick_dma_setup __P((struct ncr53c9x_softc *, caddr_t *,
|
|
size_t *, int, size_t *));
|
|
void esp_quick_dma_go __P((struct ncr53c9x_softc *));
|
|
|
|
void esp_intr __P((void *sc));
|
|
void esp_dualbus_intr __P((void *sc));
|
|
static struct esp_softc *esp0 = NULL, *esp1 = NULL;
|
|
|
|
static __inline__ int esp_dafb_have_dreq __P((struct esp_softc *esc));
|
|
static __inline__ int esp_iosb_have_dreq __P((struct esp_softc *esc));
|
|
int (*esp_have_dreq) __P((struct esp_softc *esc));
|
|
|
|
struct ncr53c9x_glue esp_glue = {
|
|
esp_read_reg,
|
|
esp_write_reg,
|
|
esp_dma_isintr,
|
|
esp_dma_reset,
|
|
esp_dma_intr,
|
|
esp_dma_setup,
|
|
esp_dma_go,
|
|
esp_dma_stop,
|
|
esp_dma_isactive,
|
|
NULL, /* gl_clear_latched_intr */
|
|
};
|
|
|
|
int
|
|
espmatch(parent, cf, aux)
|
|
struct device *parent;
|
|
struct cfdata *cf;
|
|
void *aux;
|
|
{
|
|
int found = 0;
|
|
|
|
if ((cf->cf_unit == 0) && mac68k_machine.scsi96) {
|
|
found = 1;
|
|
}
|
|
if ((cf->cf_unit == 1) && mac68k_machine.scsi96_2) {
|
|
found = 1;
|
|
}
|
|
|
|
return found;
|
|
}
|
|
|
|
/*
|
|
* Attach this instance, and then all the sub-devices
|
|
*/
|
|
void
|
|
espattach(parent, self, aux)
|
|
struct device *parent, *self;
|
|
void *aux;
|
|
{
|
|
struct obio_attach_args *oa = (struct obio_attach_args *)aux;
|
|
extern vaddr_t SCSIBase;
|
|
struct esp_softc *esc = (void *)self;
|
|
struct ncr53c9x_softc *sc = &esc->sc_ncr53c9x;
|
|
int quick = 0;
|
|
unsigned long reg_offset;
|
|
|
|
reg_offset = SCSIBase - IOBase;
|
|
esc->sc_tag = oa->oa_tag;
|
|
/*
|
|
* For Wombat, Primus and Optimus motherboards, DREQ is
|
|
* visible on bit 0 of the IOSB's emulated VIA2 vIFR (and
|
|
* the scsi registers are offset 0x1000 bytes from IOBase).
|
|
*
|
|
* For the Q700/900/950 it's at f9800024 for bus 0 and
|
|
* f9800028 for bus 1 (900/950). For these machines, that is also
|
|
* a (12-bit) configuration register for DAFB's control of the
|
|
* pseudo-DMA timing. The default value is 0x1d1.
|
|
*/
|
|
esp_have_dreq = esp_dafb_have_dreq;
|
|
if (sc->sc_dev.dv_unit == 0) {
|
|
if (reg_offset == 0x10000) {
|
|
quick = 1;
|
|
esp_have_dreq = esp_iosb_have_dreq;
|
|
} else if (reg_offset == 0x18000) {
|
|
quick = 0;
|
|
} else {
|
|
if (bus_space_map(esc->sc_tag, 0xf9800024,
|
|
4, 0, &esc->sc_bsh)) {
|
|
printf("failed to map 4 at 0xf9800024.\n");
|
|
} else {
|
|
quick = 1;
|
|
bus_space_write_4(esc->sc_tag,
|
|
esc->sc_bsh, 0, 0x1d1);
|
|
}
|
|
}
|
|
} else {
|
|
if (bus_space_map(esc->sc_tag, 0xf9800028,
|
|
4, 0, &esc->sc_bsh)) {
|
|
printf("failed to map 4 at 0xf9800028.\n");
|
|
} else {
|
|
quick = 1;
|
|
bus_space_write_4(esc->sc_tag, esc->sc_bsh, 0, 0x1d1);
|
|
}
|
|
}
|
|
if (quick) {
|
|
esp_glue.gl_write_reg = esp_quick_write_reg;
|
|
esp_glue.gl_dma_intr = esp_quick_dma_intr;
|
|
esp_glue.gl_dma_setup = esp_quick_dma_setup;
|
|
esp_glue.gl_dma_go = esp_quick_dma_go;
|
|
}
|
|
|
|
/*
|
|
* Set up the glue for MI code early; we use some of it here.
|
|
*/
|
|
sc->sc_glue = &esp_glue;
|
|
|
|
/*
|
|
* Save the regs
|
|
*/
|
|
if (sc->sc_dev.dv_unit == 0) {
|
|
esp0 = esc;
|
|
|
|
esc->sc_reg = (volatile u_char *) SCSIBase;
|
|
via2_register_irq(VIA2_SCSIIRQ, esp_intr, esc);
|
|
esc->irq_mask = V2IF_SCSIIRQ;
|
|
if (reg_offset == 0x10000) {
|
|
/* From the Q650 developer's note */
|
|
sc->sc_freq = 16500000;
|
|
} else {
|
|
sc->sc_freq = 25000000;
|
|
}
|
|
|
|
if (esp_glue.gl_dma_go == esp_quick_dma_go) {
|
|
printf(" (quick)");
|
|
}
|
|
} else {
|
|
esp1 = esc;
|
|
|
|
esc->sc_reg = (volatile u_char *) SCSIBase + 0x402;
|
|
via2_register_irq(VIA2_SCSIIRQ, esp_dualbus_intr, NULL);
|
|
esc->irq_mask = 0;
|
|
sc->sc_freq = 25000000;
|
|
|
|
if (esp_glue.gl_dma_go == esp_quick_dma_go) {
|
|
printf(" (quick)");
|
|
}
|
|
}
|
|
|
|
printf(": address %p", esc->sc_reg);
|
|
|
|
sc->sc_id = 7;
|
|
|
|
/* gimme Mhz */
|
|
sc->sc_freq /= 1000000;
|
|
|
|
/*
|
|
* It is necessary to try to load the 2nd config register here,
|
|
* to find out what rev the esp chip is, else the esp_reset
|
|
* will not set up the defaults correctly.
|
|
*/
|
|
sc->sc_cfg1 = sc->sc_id; /* | NCRCFG1_PARENB; */
|
|
sc->sc_cfg2 = NCRCFG2_SCSI2;
|
|
sc->sc_cfg3 = 0;
|
|
sc->sc_rev = NCR_VARIANT_NCR53C96;
|
|
|
|
/*
|
|
* This is the value used to start sync negotiations
|
|
* Note that the NCR register "SYNCTP" is programmed
|
|
* in "clocks per byte", and has a minimum value of 4.
|
|
* The SCSI period used in negotiation is one-fourth
|
|
* of the time (in nanoseconds) needed to transfer one byte.
|
|
* Since the chip's clock is given in MHz, we have the following
|
|
* formula: 4 * period = (1000 / freq) * 4
|
|
*/
|
|
sc->sc_minsync = 1000 / sc->sc_freq;
|
|
|
|
/* We need this to fit into the TCR... */
|
|
sc->sc_maxxfer = 64 * 1024;
|
|
|
|
if (!quick) {
|
|
sc->sc_minsync = 0; /* No synchronous xfers w/o DMA */
|
|
sc->sc_maxxfer = 8 * 1024;
|
|
}
|
|
|
|
/*
|
|
* Configure interrupts.
|
|
*/
|
|
if (esc->irq_mask) {
|
|
via2_reg(vPCR) = 0x22;
|
|
via2_reg(vIFR) = esc->irq_mask;
|
|
via2_reg(vIER) = 0x80 | esc->irq_mask;
|
|
}
|
|
|
|
/*
|
|
* Now try to attach all the sub-devices
|
|
*/
|
|
sc->sc_adapter.adapt_minphys = minphys;
|
|
sc->sc_adapter.adapt_request = ncr53c9x_scsipi_request;
|
|
ncr53c9x_attach(sc);
|
|
}
|
|
|
|
/*
|
|
* Glue functions.
|
|
*/
|
|
|
|
u_char
|
|
esp_read_reg(sc, reg)
|
|
struct ncr53c9x_softc *sc;
|
|
int reg;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
return esc->sc_reg[reg * 16];
|
|
}
|
|
|
|
void
|
|
esp_write_reg(sc, reg, val)
|
|
struct ncr53c9x_softc *sc;
|
|
int reg;
|
|
u_char val;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
u_char v = val;
|
|
|
|
if (reg == NCR_CMD && v == (NCRCMD_TRANS|NCRCMD_DMA)) {
|
|
v = NCRCMD_TRANS;
|
|
}
|
|
esc->sc_reg[reg * 16] = v;
|
|
}
|
|
|
|
void
|
|
esp_dma_stop(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
}
|
|
|
|
int
|
|
esp_dma_isactive(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
return esc->sc_active;
|
|
}
|
|
|
|
int
|
|
esp_dma_isintr(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
return esc->sc_reg[NCR_STAT * 16] & 0x80;
|
|
}
|
|
|
|
void
|
|
esp_dma_reset(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
esc->sc_active = 0;
|
|
esc->sc_tc = 0;
|
|
}
|
|
|
|
int
|
|
esp_dma_intr(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
volatile u_char *cmdreg, *intrreg, *statreg, *fiforeg;
|
|
u_char *p;
|
|
u_int espphase, espstat, espintr;
|
|
int cnt, s;
|
|
|
|
if (esc->sc_active == 0) {
|
|
printf("dma_intr--inactive DMA\n");
|
|
return -1;
|
|
}
|
|
|
|
if ((sc->sc_espintr & NCRINTR_BS) == 0) {
|
|
esc->sc_active = 0;
|
|
return 0;
|
|
}
|
|
|
|
cnt = esc->sc_dmasize;
|
|
if (esc->sc_dmasize == 0) {
|
|
printf("data interrupt, but no count left.");
|
|
}
|
|
|
|
p = *esc->sc_dmaaddr;
|
|
espphase = sc->sc_phase;
|
|
espstat = (u_int) sc->sc_espstat;
|
|
espintr = (u_int) sc->sc_espintr;
|
|
cmdreg = esc->sc_reg + NCR_CMD * 16;
|
|
fiforeg = esc->sc_reg + NCR_FIFO * 16;
|
|
statreg = esc->sc_reg + NCR_STAT * 16;
|
|
intrreg = esc->sc_reg + NCR_INTR * 16;
|
|
do {
|
|
if (esc->sc_datain) {
|
|
*p++ = *fiforeg;
|
|
cnt--;
|
|
if (espphase == DATA_IN_PHASE) {
|
|
*cmdreg = NCRCMD_TRANS;
|
|
} else {
|
|
esc->sc_active = 0;
|
|
}
|
|
} else {
|
|
if ( (espphase == DATA_OUT_PHASE)
|
|
|| (espphase == MESSAGE_OUT_PHASE)) {
|
|
*fiforeg = *p++;
|
|
cnt--;
|
|
*cmdreg = NCRCMD_TRANS;
|
|
} else {
|
|
esc->sc_active = 0;
|
|
}
|
|
}
|
|
|
|
if (esc->sc_active) {
|
|
while (!(*statreg & 0x80));
|
|
s = splhigh();
|
|
espstat = *statreg;
|
|
espintr = *intrreg;
|
|
espphase = (espintr & NCRINTR_DIS)
|
|
? /* Disconnected */ BUSFREE_PHASE
|
|
: espstat & PHASE_MASK;
|
|
splx(s);
|
|
}
|
|
} while (esc->sc_active && (espintr & NCRINTR_BS));
|
|
sc->sc_phase = espphase;
|
|
sc->sc_espstat = (u_char) espstat;
|
|
sc->sc_espintr = (u_char) espintr;
|
|
*esc->sc_dmaaddr = p;
|
|
esc->sc_dmasize = cnt;
|
|
|
|
if (esc->sc_dmasize == 0) {
|
|
esc->sc_tc = NCRSTAT_TC;
|
|
}
|
|
sc->sc_espstat |= esc->sc_tc;
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
esp_dma_setup(sc, addr, len, datain, dmasize)
|
|
struct ncr53c9x_softc *sc;
|
|
caddr_t *addr;
|
|
size_t *len;
|
|
int datain;
|
|
size_t *dmasize;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
esc->sc_dmaaddr = addr;
|
|
esc->sc_dmalen = len;
|
|
esc->sc_datain = datain;
|
|
esc->sc_dmasize = *dmasize;
|
|
esc->sc_tc = 0;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
esp_dma_go(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
if (esc->sc_datain == 0) {
|
|
esc->sc_reg[NCR_FIFO * 16] = **esc->sc_dmaaddr;
|
|
(*esc->sc_dmalen)--;
|
|
(*esc->sc_dmaaddr)++;
|
|
}
|
|
esc->sc_active = 1;
|
|
}
|
|
|
|
void
|
|
esp_quick_write_reg(sc, reg, val)
|
|
struct ncr53c9x_softc *sc;
|
|
int reg;
|
|
u_char val;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
esc->sc_reg[reg * 16] = val;
|
|
}
|
|
|
|
#if DEBUG
|
|
int mac68k_esp_debug=0;
|
|
#endif
|
|
|
|
int
|
|
esp_quick_dma_intr(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
int trans=0, resid=0;
|
|
|
|
if (esc->sc_active == 0)
|
|
panic("dma_intr--inactive DMA\n");
|
|
|
|
esc->sc_active = 0;
|
|
|
|
if (esc->sc_dmasize == 0) {
|
|
int res;
|
|
|
|
res = NCR_READ_REG(sc, NCR_TCL);
|
|
res += NCR_READ_REG(sc, NCR_TCM) << 8;
|
|
/* This can happen in the case of a TRPAD operation */
|
|
/* Pretend that it was complete */
|
|
sc->sc_espstat |= NCRSTAT_TC;
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("dmaintr: DMA xfer of zero xferred %d\n",
|
|
65536 - res);
|
|
}
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
if ((sc->sc_espstat & NCRSTAT_TC) == 0) {
|
|
if (esc->sc_datain == 0) {
|
|
resid = NCR_READ_REG(sc, NCR_FFLAG) & 0x1f;
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("Write FIFO residual %d bytes\n", resid);
|
|
}
|
|
#endif
|
|
}
|
|
resid += NCR_READ_REG(sc, NCR_TCL);
|
|
resid += NCR_READ_REG(sc, NCR_TCM) << 8;
|
|
if (resid == 0)
|
|
resid = 65536;
|
|
}
|
|
|
|
trans = esc->sc_dmasize - resid;
|
|
if (trans < 0) {
|
|
printf("dmaintr: trans < 0????");
|
|
trans = *esc->sc_dmalen;
|
|
}
|
|
|
|
NCR_DMA(("dmaintr: trans %d, resid %d.\n", trans, resid));
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("eqd_intr: trans %d, resid %d.\n", trans, resid);
|
|
}
|
|
#endif
|
|
*esc->sc_dmaaddr += trans;
|
|
*esc->sc_dmalen -= trans;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
esp_quick_dma_setup(sc, addr, len, datain, dmasize)
|
|
struct ncr53c9x_softc *sc;
|
|
caddr_t *addr;
|
|
size_t *len;
|
|
int datain;
|
|
size_t *dmasize;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
esc->sc_dmaaddr = addr;
|
|
esc->sc_dmalen = len;
|
|
|
|
if (*len & 1) {
|
|
esc->sc_pad = 1;
|
|
} else {
|
|
esc->sc_pad = 0;
|
|
}
|
|
|
|
esc->sc_datain = datain;
|
|
esc->sc_dmasize = *dmasize;
|
|
|
|
#if DIAGNOSTIC
|
|
if (esc->sc_dmasize == 0) {
|
|
/* This can happen in the case of a TRPAD operation */
|
|
}
|
|
#endif
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("eqd_setup: addr %lx, len %lx, in? %d, dmasize %lx\n",
|
|
(long) *addr, (long) *len, datain, (long) esc->sc_dmasize);
|
|
}
|
|
#endif
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __inline__ int
|
|
esp_dafb_have_dreq(esc)
|
|
struct esp_softc *esc;
|
|
{
|
|
return (*(volatile u_int32_t *)(esc->sc_bsh.base) & 0x200);
|
|
}
|
|
|
|
static __inline__ int
|
|
esp_iosb_have_dreq(esc)
|
|
struct esp_softc *esc;
|
|
{
|
|
return (via2_reg(vIFR) & V2IF_SCSIDRQ);
|
|
}
|
|
|
|
static volatile int espspl=-1;
|
|
|
|
/*
|
|
* Apple "DMA" is weird.
|
|
*
|
|
* Basically, the CPU acts like the DMA controller. The DREQ/ off the
|
|
* chip goes to a register that we've mapped at attach time (on the
|
|
* IOSB or DAFB, depending on the machine). Apple also provides some
|
|
* space for which the memory controller handshakes data to/from the
|
|
* NCR chip with the DACK/ line. This space appears to be mapped over
|
|
* and over, every 4 bytes, but only the lower 16 bits are valid (but
|
|
* reading the upper 16 bits will handshake DACK/ just fine, so if you
|
|
* read *u_int16_t++ = *u_int16_t++ in a loop, you'll get
|
|
* <databyte><databyte>0xff0xff<databyte><databyte>0xff0xff...
|
|
*
|
|
* When you're attempting to read or write memory to this DACK/ed space,
|
|
* and the NCR is not ready for some timeout period, the system will
|
|
* generate a bus error. This might be for one of several reasons:
|
|
*
|
|
* 1) (on write) The FIFO is full and is not draining.
|
|
* 2) (on read) The FIFO is empty and is not filling.
|
|
* 3) An interrupt condition has occurred.
|
|
* 4) Anything else?
|
|
*
|
|
* So if a bus error occurs, we first turn off the nofault bus error handler,
|
|
* then we check for an interrupt (which would render the first two
|
|
* possibilities moot). If there's no interrupt, check for a DREQ/. If we
|
|
* have that, then attempt to resume stuffing (or unstuffing) the FIFO. If
|
|
* neither condition holds, pause briefly and check again.
|
|
*
|
|
* NOTE!!! In order to make allowances for the hardware structure of
|
|
* the mac, spl values in here are hardcoded!!!!!!!!!
|
|
* This is done to allow serial interrupts to get in during
|
|
* scsi transfers. This is ugly.
|
|
*/
|
|
void
|
|
esp_quick_dma_go(sc)
|
|
struct ncr53c9x_softc *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
extern long mac68k_a2_fromfault;
|
|
extern int *nofault;
|
|
label_t faultbuf;
|
|
u_int16_t volatile *pdma;
|
|
u_int16_t *addr;
|
|
int len, res;
|
|
u_short cnt32, cnt2;
|
|
u_char volatile *statreg;
|
|
|
|
esc->sc_active = 1;
|
|
|
|
espspl = splhigh();
|
|
|
|
addr = (u_int16_t *) *esc->sc_dmaaddr;
|
|
len = esc->sc_dmasize;
|
|
|
|
restart_dmago:
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("eqdg: a %lx, l %lx, in? %d ... ",
|
|
(long) addr, (long) len, esc->sc_datain);
|
|
}
|
|
#endif
|
|
nofault = (int *) &faultbuf;
|
|
if (setjmp((label_t *) nofault)) {
|
|
int i=0;
|
|
|
|
nofault = (int *) 0;
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("be\n");
|
|
}
|
|
#endif
|
|
/*
|
|
* Bus error...
|
|
* So, we first check for an interrupt. If we have
|
|
* one, go handle it. Next we check for DREQ/. If
|
|
* we have it, then we restart the transfer. If
|
|
* neither, then loop until we get one or the other.
|
|
*/
|
|
statreg = esc->sc_reg + NCR_STAT * 16;
|
|
for (;;) {
|
|
spl2(); /* Give serial a chance... */
|
|
splhigh(); /* That's enough... */
|
|
|
|
if (*statreg & 0x80) {
|
|
goto gotintr;
|
|
}
|
|
|
|
if (esp_have_dreq(esc)) {
|
|
/*
|
|
* Get the remaining length from the address
|
|
* differential.
|
|
*/
|
|
addr = (u_int16_t *) mac68k_a2_fromfault;
|
|
len = esc->sc_dmasize -
|
|
((long) addr - (long) *esc->sc_dmaaddr);
|
|
|
|
if (esc->sc_datain == 0) {
|
|
/*
|
|
* Let the FIFO drain before we read
|
|
* the transfer count.
|
|
* Do we need to do this?
|
|
* Can we do this?
|
|
*/
|
|
while (NCR_READ_REG(sc, NCR_FFLAG)
|
|
& 0x1f);
|
|
/*
|
|
* Get the length from the transfer
|
|
* counters.
|
|
*/
|
|
res = NCR_READ_REG(sc, NCR_TCL);
|
|
res += NCR_READ_REG(sc, NCR_TCM) << 8;
|
|
/*
|
|
* If they don't agree,
|
|
* adjust accordingly.
|
|
*/
|
|
while (res > len) {
|
|
len+=2; addr--;
|
|
}
|
|
if (res != len) {
|
|
panic("esp_quick_dma_go: res %d != len %d\n",
|
|
res, len);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
DELAY(1);
|
|
if (i++ > 1000000)
|
|
panic("esp_dma_go: Bus error, but no condition! Argh!");
|
|
}
|
|
goto restart_dmago;
|
|
}
|
|
|
|
len &= ~1;
|
|
|
|
statreg = esc->sc_reg + NCR_STAT * 16;
|
|
pdma = (u_int16_t *) (esc->sc_reg + 0x100);
|
|
|
|
/*
|
|
* These loops are unrolled into assembly for two reasons:
|
|
* 1) We can make sure that they are as efficient as possible, and
|
|
* 2) (more importantly) we need the address that we are reading
|
|
* from or writing to to be in a2.
|
|
*/
|
|
cnt32 = len / 32;
|
|
cnt2 = (len % 32) / 2;
|
|
if (esc->sc_datain == 0) {
|
|
/* while (cnt32--) { 16 instances of *pdma = *addr++; } */
|
|
/* while (cnt2--) { *pdma = *addr++; } */
|
|
__asm __volatile ("
|
|
movl %1, %%a2
|
|
movl %2, %%a3
|
|
movw %3, %%d2
|
|
cmpw #0, %%d2
|
|
beq 2f
|
|
subql #1, %%d2
|
|
1: movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw %%a2@+,%%a3@; movw %%a2@+,%%a3@
|
|
movw #8704,%%sr
|
|
movw #9728,%%sr
|
|
dbra %%d2, 1b
|
|
2: movw %4, %%d2
|
|
cmpw #0, %%d2
|
|
beq 4f
|
|
subql #1, %%d2
|
|
3: movw %%a2@+,%%a3@
|
|
dbra %%d2, 3b
|
|
4: movl %%a2, %0"
|
|
: "=g" (addr)
|
|
: "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
|
|
: "a2", "a3", "d2");
|
|
if (esc->sc_pad) {
|
|
unsigned char *c;
|
|
c = (unsigned char *) addr;
|
|
/* Wait for DREQ */
|
|
while (!esp_have_dreq(esc)) {
|
|
if (*statreg & 0x80) {
|
|
nofault = (int *) 0;
|
|
goto gotintr;
|
|
}
|
|
}
|
|
*(unsigned char *)pdma = *c;
|
|
}
|
|
} else {
|
|
/* while (cnt32--) { 16 instances of *addr++ = *pdma; } */
|
|
/* while (cnt2--) { *addr++ = *pdma; } */
|
|
__asm __volatile ("
|
|
movl %1, %%a2
|
|
movl %2, %%a3
|
|
movw %3, %%d2
|
|
cmpw #0, %%d2
|
|
beq 6f
|
|
subql #1, %%d2
|
|
5: movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw %%a3@,%%a2@+; movw %%a3@,%%a2@+
|
|
movw #8704,%%sr
|
|
movw #9728,%%sr
|
|
dbra %%d2, 5b
|
|
6: movw %4, %%d2
|
|
cmpw #0, %%d2
|
|
beq 8f
|
|
subql #1, %%d2
|
|
7: movw %%a3@,%%a2@+
|
|
dbra %%d2, 7b
|
|
8: movl %%a2, %0"
|
|
: "=g" (addr)
|
|
: "0" (addr), "g" (pdma), "g" (cnt32), "g" (cnt2)
|
|
: "a2", "a3", "d2");
|
|
if (esc->sc_pad) {
|
|
unsigned char *c;
|
|
c = (unsigned char *) addr;
|
|
/* Wait for DREQ */
|
|
while (!esp_have_dreq(esc)) {
|
|
if (*statreg & 0x80) {
|
|
nofault = (int *) 0;
|
|
goto gotintr;
|
|
}
|
|
}
|
|
*c = *(unsigned char *)pdma;
|
|
}
|
|
}
|
|
|
|
nofault = (int *) 0;
|
|
|
|
/*
|
|
* If we have not received an interrupt yet, we should shortly,
|
|
* and we can't prevent it, so return and wait for it.
|
|
*/
|
|
if ((*statreg & 0x80) == 0) {
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("g.\n");
|
|
}
|
|
#endif
|
|
if (espspl != -1) splx(espspl); espspl = -1;
|
|
return;
|
|
}
|
|
|
|
gotintr:
|
|
#if DEBUG
|
|
if (mac68k_esp_debug) {
|
|
printf("g!\n");
|
|
}
|
|
#endif
|
|
ncr53c9x_intr(sc);
|
|
if (espspl != -1) splx(espspl); espspl = -1;
|
|
}
|
|
|
|
void
|
|
esp_intr(sc)
|
|
void *sc;
|
|
{
|
|
struct esp_softc *esc = (struct esp_softc *)sc;
|
|
|
|
if (esc->sc_reg[NCR_STAT * 16] & 0x80) {
|
|
ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
|
|
}
|
|
}
|
|
|
|
void
|
|
esp_dualbus_intr(sc)
|
|
void *sc;
|
|
{
|
|
if (esp0 && (esp0->sc_reg[NCR_STAT * 16] & 0x80)) {
|
|
ncr53c9x_intr((struct ncr53c9x_softc *) esp0);
|
|
}
|
|
|
|
if (esp1 && (esp1->sc_reg[NCR_STAT * 16] & 0x80)) {
|
|
ncr53c9x_intr((struct ncr53c9x_softc *) esp1);
|
|
}
|
|
}
|