755 lines
19 KiB
C
755 lines
19 KiB
C
/* $NetBSD: sys_sig.c,v 1.12 2008/02/19 12:20:02 yamt Exp $ */
|
|
|
|
/*-
|
|
* Copyright (c) 2006, 2007 The NetBSD Foundation, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This code is derived from software contributed to The NetBSD Foundation
|
|
* by Andrew Doran.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* This product includes software developed by the NetBSD
|
|
* Foundation, Inc. and its contributors.
|
|
* 4. Neither the name of The NetBSD Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
|
|
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
|
|
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/*
|
|
* Copyright (c) 1982, 1986, 1989, 1991, 1993
|
|
* The Regents of the University of California. All rights reserved.
|
|
* (c) UNIX System Laboratories, Inc.
|
|
* All or some portions of this file are derived from material licensed
|
|
* to the University of California by American Telephone and Telegraph
|
|
* Co. or Unix System Laboratories, Inc. and are reproduced herein with
|
|
* the permission of UNIX System Laboratories, Inc.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the University nor the names of its contributors
|
|
* may be used to endorse or promote products derived from this software
|
|
* without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* @(#)kern_sig.c 8.14 (Berkeley) 5/14/95
|
|
*/
|
|
|
|
#include <sys/cdefs.h>
|
|
__KERNEL_RCSID(0, "$NetBSD: sys_sig.c,v 1.12 2008/02/19 12:20:02 yamt Exp $");
|
|
|
|
#include "opt_ptrace.h"
|
|
#include "opt_compat_netbsd.h"
|
|
#include "opt_compat_netbsd32.h"
|
|
|
|
#include <sys/param.h>
|
|
#include <sys/kernel.h>
|
|
#include <sys/signalvar.h>
|
|
#include <sys/proc.h>
|
|
#include <sys/pool.h>
|
|
#include <sys/syscallargs.h>
|
|
#include <sys/kauth.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/kmem.h>
|
|
|
|
#ifdef COMPAT_16
|
|
/* ARGSUSED */
|
|
int
|
|
compat_16_sys___sigaction14(struct lwp *l, const struct compat_16_sys___sigaction14_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) signum;
|
|
syscallarg(const struct sigaction *) nsa;
|
|
syscallarg(struct sigaction *) osa;
|
|
} */
|
|
struct sigaction nsa, osa;
|
|
int error;
|
|
|
|
if (SCARG(uap, nsa)) {
|
|
error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = sigaction1(l, SCARG(uap, signum),
|
|
SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
|
|
NULL, 0);
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, osa)) {
|
|
error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
#endif
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigaction_sigtramp(struct lwp *l, const struct sys___sigaction_sigtramp_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) signum;
|
|
syscallarg(const struct sigaction *) nsa;
|
|
syscallarg(struct sigaction *) osa;
|
|
syscallarg(void *) tramp;
|
|
syscallarg(int) vers;
|
|
} */
|
|
struct sigaction nsa, osa;
|
|
int error;
|
|
|
|
if (SCARG(uap, nsa)) {
|
|
error = copyin(SCARG(uap, nsa), &nsa, sizeof(nsa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = sigaction1(l, SCARG(uap, signum),
|
|
SCARG(uap, nsa) ? &nsa : 0, SCARG(uap, osa) ? &osa : 0,
|
|
SCARG(uap, tramp), SCARG(uap, vers));
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, osa)) {
|
|
error = copyout(&osa, SCARG(uap, osa), sizeof(osa));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/*
|
|
* Manipulate signal mask. Note that we receive new mask, not pointer, and
|
|
* return old mask as return value; the library stub does the rest.
|
|
*/
|
|
int
|
|
sys___sigprocmask14(struct lwp *l, const struct sys___sigprocmask14_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) how;
|
|
syscallarg(const sigset_t *) set;
|
|
syscallarg(sigset_t *) oset;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
sigset_t nss, oss;
|
|
int error;
|
|
|
|
if (SCARG(uap, set)) {
|
|
error = copyin(SCARG(uap, set), &nss, sizeof(nss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
mutex_enter(&p->p_smutex);
|
|
error = sigprocmask1(l, SCARG(uap, how),
|
|
SCARG(uap, set) ? &nss : 0, SCARG(uap, oset) ? &oss : 0);
|
|
mutex_exit(&p->p_smutex);
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, oset)) {
|
|
error = copyout(&oss, SCARG(uap, oset), sizeof(oss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigpending14(struct lwp *l, const struct sys___sigpending14_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(sigset_t *) set;
|
|
} */
|
|
sigset_t ss;
|
|
|
|
sigpending1(l, &ss);
|
|
return (copyout(&ss, SCARG(uap, set), sizeof(ss)));
|
|
}
|
|
|
|
/*
|
|
* Suspend process until signal, providing mask to be set in the meantime.
|
|
* Note nonstandard calling convention: libc stub passes mask, not pointer,
|
|
* to save a copyin.
|
|
*/
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigsuspend14(struct lwp *l, const struct sys___sigsuspend14_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const sigset_t *) set;
|
|
} */
|
|
sigset_t ss;
|
|
int error;
|
|
|
|
if (SCARG(uap, set)) {
|
|
error = copyin(SCARG(uap, set), &ss, sizeof(ss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
|
|
return (sigsuspend1(l, SCARG(uap, set) ? &ss : 0));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys___sigaltstack14(struct lwp *l, const struct sys___sigaltstack14_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const struct sigaltstack *) nss;
|
|
syscallarg(struct sigaltstack *) oss;
|
|
} */
|
|
struct sigaltstack nss, oss;
|
|
int error;
|
|
|
|
if (SCARG(uap, nss)) {
|
|
error = copyin(SCARG(uap, nss), &nss, sizeof(nss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
error = sigaltstack1(l,
|
|
SCARG(uap, nss) ? &nss : 0, SCARG(uap, oss) ? &oss : 0);
|
|
if (error)
|
|
return (error);
|
|
if (SCARG(uap, oss)) {
|
|
error = copyout(&oss, SCARG(uap, oss), sizeof(oss));
|
|
if (error)
|
|
return (error);
|
|
}
|
|
return (0);
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_kill(struct lwp *l, const struct sys_kill_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(int) pid;
|
|
syscallarg(int) signum;
|
|
} */
|
|
struct proc *p;
|
|
ksiginfo_t ksi;
|
|
int signum = SCARG(uap, signum);
|
|
int error;
|
|
|
|
if ((u_int)signum >= NSIG)
|
|
return (EINVAL);
|
|
KSI_INIT(&ksi);
|
|
ksi.ksi_signo = signum;
|
|
ksi.ksi_code = SI_USER;
|
|
ksi.ksi_pid = l->l_proc->p_pid;
|
|
ksi.ksi_uid = kauth_cred_geteuid(l->l_cred);
|
|
if (SCARG(uap, pid) > 0) {
|
|
/* kill single process */
|
|
if ((p = p_find(SCARG(uap, pid), PFIND_UNLOCK_FAIL)) == NULL)
|
|
return (ESRCH);
|
|
mutex_enter(&p->p_mutex);
|
|
error = kauth_authorize_process(l->l_cred,
|
|
KAUTH_PROCESS_SIGNAL, p, KAUTH_ARG(signum),
|
|
NULL, NULL);
|
|
if (!error && signum) {
|
|
mutex_enter(&proclist_mutex);
|
|
mutex_enter(&p->p_smutex);
|
|
kpsignal2(p, &ksi);
|
|
mutex_exit(&p->p_smutex);
|
|
mutex_exit(&proclist_mutex);
|
|
}
|
|
mutex_exit(&p->p_mutex);
|
|
mutex_exit(&proclist_lock);
|
|
return (error);
|
|
}
|
|
switch (SCARG(uap, pid)) {
|
|
case -1: /* broadcast signal */
|
|
return (killpg1(l, &ksi, 0, 1));
|
|
case 0: /* signal own process group */
|
|
return (killpg1(l, &ksi, 0, 0));
|
|
default: /* negative explicit process group */
|
|
return (killpg1(l, &ksi, -SCARG(uap, pid), 0));
|
|
}
|
|
/* NOTREACHED */
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_getcontext(struct lwp *l, const struct sys_getcontext_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(struct __ucontext *) ucp;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
ucontext_t uc;
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
getucontext(l, &uc);
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
return (copyout(&uc, SCARG(uap, ucp), sizeof (*SCARG(uap, ucp))));
|
|
}
|
|
|
|
/* ARGSUSED */
|
|
int
|
|
sys_setcontext(struct lwp *l, const struct sys_setcontext_args *uap, register_t *retval)
|
|
{
|
|
/* {
|
|
syscallarg(const ucontext_t *) ucp;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
ucontext_t uc;
|
|
int error;
|
|
|
|
error = copyin(SCARG(uap, ucp), &uc, sizeof (uc));
|
|
if (error)
|
|
return (error);
|
|
if (!(uc.uc_flags & _UC_CPU))
|
|
return (EINVAL);
|
|
mutex_enter(&p->p_smutex);
|
|
error = setucontext(l, &uc);
|
|
mutex_exit(&p->p_smutex);
|
|
if (error)
|
|
return (error);
|
|
|
|
return (EJUSTRETURN);
|
|
}
|
|
|
|
/*
|
|
* sigtimedwait(2) system call, used also for implementation
|
|
* of sigwaitinfo() and sigwait().
|
|
*
|
|
* This only handles single LWP in signal wait. libpthread provides
|
|
* it's own sigtimedwait() wrapper to DTRT WRT individual threads.
|
|
*/
|
|
int
|
|
sys___sigtimedwait(struct lwp *l, const struct sys___sigtimedwait_args *uap, register_t *retval)
|
|
{
|
|
|
|
return __sigtimedwait1(l, uap, retval, copyout, copyin, copyout);
|
|
}
|
|
|
|
int
|
|
sigaction1(struct lwp *l, int signum, const struct sigaction *nsa,
|
|
struct sigaction *osa, const void *tramp, int vers)
|
|
{
|
|
struct proc *p;
|
|
struct sigacts *ps;
|
|
sigset_t tset;
|
|
int prop, error;
|
|
ksiginfoq_t kq;
|
|
|
|
if (signum <= 0 || signum >= NSIG)
|
|
return (EINVAL);
|
|
|
|
p = l->l_proc;
|
|
error = 0;
|
|
ksiginfo_queue_init(&kq);
|
|
|
|
/*
|
|
* Trampoline ABI version 0 is reserved for the legacy kernel
|
|
* provided on-stack trampoline. Conversely, if we are using a
|
|
* non-0 ABI version, we must have a trampoline. Only validate the
|
|
* vers if a new sigaction was supplied. Emulations use legacy
|
|
* kernel trampolines with version 0, alternatively check for that
|
|
* too.
|
|
*/
|
|
if ((vers != 0 && tramp == NULL) ||
|
|
#ifdef SIGTRAMP_VALID
|
|
(nsa != NULL &&
|
|
((vers == 0) ?
|
|
(p->p_emul->e_sigcode == NULL) :
|
|
!SIGTRAMP_VALID(vers))) ||
|
|
#endif
|
|
(vers == 0 && tramp != NULL)) {
|
|
return (EINVAL);
|
|
}
|
|
|
|
mutex_enter(&p->p_mutex); /* p_flag */
|
|
mutex_enter(&p->p_smutex);
|
|
|
|
ps = p->p_sigacts;
|
|
if (osa)
|
|
*osa = SIGACTION_PS(ps, signum);
|
|
if (!nsa)
|
|
goto out;
|
|
|
|
prop = sigprop[signum];
|
|
if ((nsa->sa_flags & ~SA_ALLBITS) || (prop & SA_CANTMASK)) {
|
|
error = EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
SIGACTION_PS(ps, signum) = *nsa;
|
|
ps->sa_sigdesc[signum].sd_tramp = tramp;
|
|
ps->sa_sigdesc[signum].sd_vers = vers;
|
|
sigminusset(&sigcantmask, &SIGACTION_PS(ps, signum).sa_mask);
|
|
|
|
if ((prop & SA_NORESET) != 0)
|
|
SIGACTION_PS(ps, signum).sa_flags &= ~SA_RESETHAND;
|
|
|
|
if (signum == SIGCHLD) {
|
|
if (nsa->sa_flags & SA_NOCLDSTOP)
|
|
p->p_sflag |= PS_NOCLDSTOP;
|
|
else
|
|
p->p_sflag &= ~PS_NOCLDSTOP;
|
|
if (nsa->sa_flags & SA_NOCLDWAIT) {
|
|
/*
|
|
* Paranoia: since SA_NOCLDWAIT is implemented by
|
|
* reparenting the dying child to PID 1 (and trust
|
|
* it to reap the zombie), PID 1 itself is forbidden
|
|
* to set SA_NOCLDWAIT.
|
|
*/
|
|
if (p->p_pid == 1)
|
|
p->p_flag &= ~PK_NOCLDWAIT;
|
|
else
|
|
p->p_flag |= PK_NOCLDWAIT;
|
|
} else
|
|
p->p_flag &= ~PK_NOCLDWAIT;
|
|
|
|
if (nsa->sa_handler == SIG_IGN) {
|
|
/*
|
|
* Paranoia: same as above.
|
|
*/
|
|
if (p->p_pid == 1)
|
|
p->p_flag &= ~PK_CLDSIGIGN;
|
|
else
|
|
p->p_flag |= PK_CLDSIGIGN;
|
|
} else
|
|
p->p_flag &= ~PK_CLDSIGIGN;
|
|
}
|
|
|
|
if ((nsa->sa_flags & SA_NODEFER) == 0)
|
|
sigaddset(&SIGACTION_PS(ps, signum).sa_mask, signum);
|
|
else
|
|
sigdelset(&SIGACTION_PS(ps, signum).sa_mask, signum);
|
|
|
|
/*
|
|
* Set bit in p_sigctx.ps_sigignore for signals that are set to
|
|
* SIG_IGN, and for signals set to SIG_DFL where the default is to
|
|
* ignore. However, don't put SIGCONT in p_sigctx.ps_sigignore, as
|
|
* we have to restart the process.
|
|
*/
|
|
if (nsa->sa_handler == SIG_IGN ||
|
|
(nsa->sa_handler == SIG_DFL && (prop & SA_IGNORE) != 0)) {
|
|
/* Never to be seen again. */
|
|
sigemptyset(&tset);
|
|
sigaddset(&tset, signum);
|
|
sigclearall(p, &tset, &kq);
|
|
if (signum != SIGCONT) {
|
|
/* Easier in psignal */
|
|
sigaddset(&p->p_sigctx.ps_sigignore, signum);
|
|
}
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
} else {
|
|
sigdelset(&p->p_sigctx.ps_sigignore, signum);
|
|
if (nsa->sa_handler == SIG_DFL)
|
|
sigdelset(&p->p_sigctx.ps_sigcatch, signum);
|
|
else
|
|
sigaddset(&p->p_sigctx.ps_sigcatch, signum);
|
|
}
|
|
|
|
/*
|
|
* Previously held signals may now have become visible. Ensure that
|
|
* we check for them before returning to userspace.
|
|
*/
|
|
if (sigispending(l, 0)) {
|
|
lwp_lock(l);
|
|
l->l_flag |= LW_PENDSIG;
|
|
lwp_unlock(l);
|
|
}
|
|
out:
|
|
mutex_exit(&p->p_smutex);
|
|
mutex_exit(&p->p_mutex);
|
|
ksiginfo_queue_drain(&kq);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
sigprocmask1(struct lwp *l, int how, const sigset_t *nss, sigset_t *oss)
|
|
{
|
|
int more;
|
|
|
|
KASSERT(mutex_owned(&l->l_proc->p_smutex));
|
|
|
|
if (oss)
|
|
*oss = l->l_sigmask;
|
|
if (nss) {
|
|
switch (how) {
|
|
case SIG_BLOCK:
|
|
sigplusset(nss, &l->l_sigmask);
|
|
more = 0;
|
|
break;
|
|
case SIG_UNBLOCK:
|
|
sigminusset(nss, &l->l_sigmask);
|
|
more = 1;
|
|
break;
|
|
case SIG_SETMASK:
|
|
l->l_sigmask = *nss;
|
|
more = 1;
|
|
break;
|
|
default:
|
|
return (EINVAL);
|
|
}
|
|
sigminusset(&sigcantmask, &l->l_sigmask);
|
|
if (more && sigispending(l, 0)) {
|
|
/*
|
|
* Check for pending signals on return to user.
|
|
*/
|
|
lwp_lock(l);
|
|
l->l_flag |= LW_PENDSIG;
|
|
lwp_unlock(l);
|
|
}
|
|
}
|
|
|
|
return (0);
|
|
}
|
|
|
|
void
|
|
sigpending1(struct lwp *l, sigset_t *ss)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
*ss = l->l_sigpend.sp_set;
|
|
sigplusset(&p->p_sigpend.sp_set, ss);
|
|
sigminusset(&l->l_sigmask, ss);
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
|
|
int
|
|
sigsuspend1(struct lwp *l, const sigset_t *ss)
|
|
{
|
|
struct proc *p;
|
|
|
|
p = l->l_proc;
|
|
|
|
if (ss) {
|
|
/*
|
|
* When returning from sigsuspend, we want
|
|
* the old mask to be restored after the
|
|
* signal handler has finished. Thus, we
|
|
* save it here and mark the sigctx structure
|
|
* to indicate this.
|
|
*/
|
|
mutex_enter(&p->p_smutex);
|
|
l->l_sigrestore = 1;
|
|
l->l_sigoldmask = l->l_sigmask;
|
|
l->l_sigmask = *ss;
|
|
sigminusset(&sigcantmask, &l->l_sigmask);
|
|
|
|
/* Check for pending signals when sleeping. */
|
|
if (sigispending(l, 0)) {
|
|
lwp_lock(l);
|
|
l->l_flag |= LW_PENDSIG;
|
|
lwp_unlock(l);
|
|
}
|
|
mutex_exit(&p->p_smutex);
|
|
}
|
|
|
|
while (kpause("pause", true, 0, NULL) == 0)
|
|
;
|
|
|
|
/* always return EINTR rather than ERESTART... */
|
|
return (EINTR);
|
|
}
|
|
|
|
int
|
|
sigaltstack1(struct lwp *l, const struct sigaltstack *nss,
|
|
struct sigaltstack *oss)
|
|
{
|
|
struct proc *p = l->l_proc;
|
|
int error = 0;
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
|
|
if (oss)
|
|
*oss = l->l_sigstk;
|
|
|
|
if (nss) {
|
|
if (nss->ss_flags & ~SS_ALLBITS)
|
|
error = EINVAL;
|
|
else if (nss->ss_flags & SS_DISABLE) {
|
|
if (l->l_sigstk.ss_flags & SS_ONSTACK)
|
|
error = EINVAL;
|
|
} else if (nss->ss_size < MINSIGSTKSZ)
|
|
error = ENOMEM;
|
|
|
|
if (!error)
|
|
l->l_sigstk = *nss;
|
|
}
|
|
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
return (error);
|
|
}
|
|
|
|
int
|
|
__sigtimedwait1(struct lwp *l, const struct sys___sigtimedwait_args *uap, register_t *retval,
|
|
copyout_t put_info, copyin_t fetch_timeout, copyout_t put_timeout)
|
|
{
|
|
/* {
|
|
syscallarg(const sigset_t *) set;
|
|
syscallarg(siginfo_t *) info;
|
|
syscallarg(struct timespec *) timeout;
|
|
} */
|
|
struct proc *p = l->l_proc;
|
|
int error, signum;
|
|
int timo = 0;
|
|
struct timespec ts, tsstart, tsnow;
|
|
ksiginfo_t *ksi;
|
|
|
|
memset(&tsstart, 0, sizeof tsstart); /* XXX gcc */
|
|
|
|
/*
|
|
* Calculate timeout, if it was specified.
|
|
*/
|
|
if (SCARG(uap, timeout)) {
|
|
uint64_t ms;
|
|
|
|
if ((error = (*fetch_timeout)(SCARG(uap, timeout), &ts, sizeof(ts))))
|
|
return (error);
|
|
|
|
ms = (ts.tv_sec * 1000) + (ts.tv_nsec / 1000000);
|
|
timo = mstohz(ms);
|
|
if (timo == 0 && ts.tv_sec == 0 && ts.tv_nsec > 0)
|
|
timo = 1;
|
|
if (timo <= 0)
|
|
return (EAGAIN);
|
|
|
|
/*
|
|
* Remember current uptime, it would be used in
|
|
* ECANCELED/ERESTART case.
|
|
*/
|
|
getnanouptime(&tsstart);
|
|
}
|
|
|
|
error = copyin(SCARG(uap, set), &l->l_sigwaitset,
|
|
sizeof(l->l_sigwaitset));
|
|
if (error != 0)
|
|
return (error);
|
|
|
|
/*
|
|
* Silently ignore SA_CANTMASK signals. psignal1() would ignore
|
|
* SA_CANTMASK signals in waitset, we do this only for the below
|
|
* siglist check.
|
|
*/
|
|
sigminusset(&sigcantmask, &l->l_sigwaitset);
|
|
|
|
/*
|
|
* Allocate a ksi up front. We can't sleep with the mutex held.
|
|
*/
|
|
ksi = ksiginfo_alloc(p, NULL, PR_WAITOK);
|
|
if (ksi == NULL)
|
|
return (ENOMEM);
|
|
|
|
mutex_enter(&p->p_smutex);
|
|
|
|
if ((signum = sigget(&p->p_sigpend, ksi, 0, &l->l_sigwaitset)) == 0)
|
|
signum = sigget(&l->l_sigpend, ksi, 0, &l->l_sigwaitset);
|
|
|
|
if (signum != 0) {
|
|
/*
|
|
* We found a pending signal - copy it out to the user.
|
|
*/
|
|
mutex_exit(&p->p_smutex);
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Set up the sigwait list.
|
|
*/
|
|
l->l_sigwaited = ksi;
|
|
LIST_INSERT_HEAD(&p->p_sigwaiters, l, l_sigwaiter);
|
|
|
|
/*
|
|
* Wait for signal to arrive. We can either be woken up or time out.
|
|
*/
|
|
error = cv_timedwait_sig(&l->l_sigcv, &p->p_smutex, timo);
|
|
|
|
/*
|
|
* Need to find out if we woke as a result of lwp_wakeup() or a
|
|
* signal outside our wait set.
|
|
*/
|
|
if (l->l_sigwaited != NULL) {
|
|
if (error == EINTR) {
|
|
/* wakeup via _lwp_wakeup() */
|
|
error = ECANCELED;
|
|
} else if (!error) {
|
|
/* spurious wakeup - arrange for syscall restart */
|
|
error = ERESTART;
|
|
}
|
|
l->l_sigwaited = NULL;
|
|
LIST_REMOVE(l, l_sigwaiter);
|
|
}
|
|
|
|
mutex_exit(&p->p_smutex);
|
|
|
|
/*
|
|
* If the sleep was interrupted (either by signal or wakeup), update
|
|
* the timeout and copyout new value back. It would be used when
|
|
* the syscall would be restarted or called again.
|
|
*/
|
|
if (timo && (error == ERESTART || error == ECANCELED)) {
|
|
getnanouptime(&tsnow);
|
|
|
|
/* compute how much time has passed since start */
|
|
timespecsub(&tsnow, &tsstart, &tsnow);
|
|
/* substract passed time from timeout */
|
|
timespecsub(&ts, &tsnow, &ts);
|
|
|
|
if (ts.tv_sec < 0)
|
|
error = EAGAIN;
|
|
else {
|
|
/* copy updated timeout to userland */
|
|
error = (*put_timeout)(&ts, SCARG(uap, timeout),
|
|
sizeof(ts));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If a signal from the wait set arrived, copy it to userland.
|
|
* Copy only the used part of siginfo, the padding part is
|
|
* left unchanged (userland is not supposed to touch it anyway).
|
|
*/
|
|
out:
|
|
if (error == 0)
|
|
error = (*put_info)(&ksi->ksi_info, SCARG(uap, info),
|
|
sizeof(ksi->ksi_info));
|
|
|
|
ksiginfo_free(ksi);
|
|
|
|
return error;
|
|
}
|