NetBSD/sys/dev/pci/ifpci.c
2008-04-10 19:13:36 +00:00

1337 lines
37 KiB
C

/* $NetBSD: ifpci.c,v 1.25 2008/04/10 19:13:37 cegger Exp $ */
/*
* Copyright (c) 1999 Gary Jennejohn. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the author nor the names of any co-contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
* 4. Altered versions must be plainly marked as such, and must not be
* misrepresented as being the original software and/or documentation.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
*---------------------------------------------------------------------------
* a lot of code was borrowed from i4b_bchan.c and i4b_hscx.c
*---------------------------------------------------------------------------
*
* Fritz!Card PCI driver
* ------------------------------------------------
*
* $Id: ifpci.c,v 1.25 2008/04/10 19:13:37 cegger Exp $
*
* last edit-date: [Fri Jan 5 11:38:58 2001]
*
*---------------------------------------------------------------------------*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ifpci.c,v 1.25 2008/04/10 19:13:37 cegger Exp $");
#include <sys/param.h>
#include <sys/ioctl.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/mbuf.h>
#include <sys/bus.h>
#include <sys/device.h>
#include <sys/socket.h>
#include <net/if.h>
#include <sys/callout.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#include <netisdn/i4b_debug.h>
#include <netisdn/i4b_ioctl.h>
#include <netisdn/i4b_global.h>
#include <netisdn/i4b_l2.h>
#include <netisdn/i4b_l1l2.h>
#include <netisdn/i4b_trace.h>
#include <netisdn/i4b_mbuf.h>
#include <dev/ic/isic_l1.h>
#include <dev/ic/isac.h>
#include <dev/ic/hscx.h>
#include <dev/pci/isic_pci.h>
/* PCI config map to use (only one in this driver) */
#define FRITZPCI_PORT0_IO_MAPOFF PCI_MAPREG_START+4
#define FRITZPCI_PORT0_MEM_MAPOFF PCI_MAPREG_START
static isdn_link_t *avma1pp_ret_linktab(void *token, int channel);
static void avma1pp_set_link(void *token, int channel, const struct isdn_l4_driver_functions *l4_driver, void *l4_driver_softc);
void n_connect_request(struct call_desc *cd);
void n_connect_response(struct call_desc *cd, int response, int cause);
void n_disconnect_request(struct call_desc *cd, int cause);
void n_alert_request(struct call_desc *cd);
void n_mgmt_command(struct isdn_l3_driver *drv, int cmd, void *parm);
extern const struct isdn_layer1_isdnif_driver isic_std_driver;
const struct isdn_l3_driver_functions
ifpci_l3_driver = {
avma1pp_ret_linktab,
avma1pp_set_link,
n_connect_request,
n_connect_response,
n_disconnect_request,
n_alert_request,
NULL,
NULL,
n_mgmt_command
};
struct ifpci_softc {
struct isic_softc sc_isic; /* parent class */
/* PCI-specific goo */
void *sc_ih; /* interrupt handler */
bus_addr_t sc_base;
bus_size_t sc_size;
pci_chipset_tag_t sc_pc;
};
/* prototypes */
static void avma1pp_disable(struct isic_softc *);
static int isic_hscx_fifo(l1_bchan_state_t *chan, struct isic_softc *sc);
static int avma1pp_intr(void*);
static void avma1pp_read_fifo(struct isic_softc *sc, int what, void *buf, size_t size);
static void avma1pp_write_fifo(struct isic_softc *sc, int what, const void *buf, size_t size);
static void avma1pp_write_reg(struct isic_softc *sc, int what, bus_size_t offs, u_int8_t data);
static u_int8_t avma1pp_read_reg(struct isic_softc *sc, int what, bus_size_t offs);
static void hscx_write_fifo(int chan, const void *buf, size_t len, struct isic_softc *sc);
static void hscx_read_fifo(int chan, void *buf, size_t len, struct isic_softc *sc);
static void hscx_write_reg(int chan, u_int off, u_int val, struct isic_softc *sc);
static u_char hscx_read_reg(int chan, u_int off, struct isic_softc *sc);
static u_int hscx_read_reg_int(int chan, u_int off, struct isic_softc *sc);
static void avma1pp_bchannel_stat(isdn_layer1token, int h_chan, bchan_statistics_t *bsp);
static void avma1pp_map_int(struct ifpci_softc *sc, struct pci_attach_args *pa);
static void avma1pp_bchannel_setup(isdn_layer1token, int h_chan, int bprot, int activate);
static void avma1pp_init_linktab(struct isic_softc *);
static int ifpci_match(struct device *parent, struct cfdata *match, void *aux);
static void ifpci_attach(struct device *parent, struct device *self, void *aux);
static int ifpci_detach(struct device *self, int flags);
static int ifpci_activate(struct device *self, enum devact act);
CFATTACH_DECL(ifpci, sizeof(struct ifpci_softc),
ifpci_match, ifpci_attach, ifpci_detach, ifpci_activate);
/*---------------------------------------------------------------------------*
* AVM PCI Fritz!Card special registers
*---------------------------------------------------------------------------*/
/*
* register offsets from i/o base
*/
#define STAT0_OFFSET 0x02
#define STAT1_OFFSET 0x03
#define ADDR_REG_OFFSET 0x04
/*#define MODREG_OFFSET 0x06
#define VERREG_OFFSET 0x07*/
/* these 2 are used to select an ISAC register set */
#define ISAC_LO_REG_OFFSET 0x04
#define ISAC_HI_REG_OFFSET 0x06
/* offset higher than this goes to the HI register set */
#define MAX_LO_REG_OFFSET 0x2f
/* mask for the offset */
#define ISAC_REGSET_MASK 0x0f
/* the offset from the base to the ISAC registers */
#define ISAC_REG_OFFSET 0x10
/* the offset from the base to the ISAC FIFO */
#define ISAC_FIFO 0x02
/* not really the HSCX, but sort of */
#define HSCX_FIFO 0x00
#define HSCX_STAT 0x04
/*
* AVM PCI Status Latch 0 read only bits
*/
#define ASL_IRQ_ISAC 0x01 /* ISAC interrupt, active low */
#define ASL_IRQ_HSCX 0x02 /* HSX interrupt, active low */
#define ASL_IRQ_TIMER 0x04 /* Timer interrupt, active low */
#define ASL_IRQ_BCHAN ASL_IRQ_HSCX
/* actually active LOW */
#define ASL_IRQ_Pending (ASL_IRQ_ISAC | ASL_IRQ_HSCX | ASL_IRQ_TIMER)
/*
* AVM Status Latch 0 write only bits
*/
#define ASL_RESET_ALL 0x01 /* reset siemens IC's, active 1 */
#define ASL_TIMERDISABLE 0x02 /* active high */
#define ASL_TIMERRESET 0x04 /* active high */
#define ASL_ENABLE_INT 0x08 /* active high */
#define ASL_TESTBIT 0x10 /* active high */
/*
* AVM Status Latch 1 write only bits
*/
#define ASL1_INTSEL 0x0f /* active high */
#define ASL1_ENABLE_IOM 0x80 /* active high */
/*
* "HSCX" mode bits
*/
#define HSCX_MODE_ITF_FLG 0x01
#define HSCX_MODE_TRANS 0x02
#define HSCX_MODE_CCR_7 0x04
#define HSCX_MODE_CCR_16 0x08
#define HSCX_MODE_TESTLOOP 0x80
/*
* "HSCX" status bits
*/
#define HSCX_STAT_RME 0x01
#define HSCX_STAT_RDO 0x10
#define HSCX_STAT_CRCVFRRAB 0x0E
#define HSCX_STAT_CRCVFR 0x06
#define HSCX_STAT_RML_MASK 0x3f00
/*
* "HSCX" interrupt bits
*/
#define HSCX_INT_XPR 0x80
#define HSCX_INT_XDU 0x40
#define HSCX_INT_RPR 0x20
#define HSCX_INT_MASK 0xE0
/*
* "HSCX" command bits
*/
#define HSCX_CMD_XRS 0x80
#define HSCX_CMD_XME 0x01
#define HSCX_CMD_RRS 0x20
#define HSCX_CMD_XML_MASK 0x3f00
/*
* Commands and parameters are sent to the "HSCX" as a long, but the
* fields are handled as bytes.
*
* The long contains:
* (prot << 16)|(txl << 8)|cmd
*
* where:
* prot = protocol to use
* txl = transmit length
* cmd = the command to be executed
*
* The fields are defined as u_char in struct isic_softc.
*
* Macro to coalesce the byte fields into a u_int
*/
#define AVMA1PPSETCMDLONG(f) (f) = ((sc->avma1pp_cmd) | (sc->avma1pp_txl << 8) \
| (sc->avma1pp_prot << 16))
/*
* to prevent deactivating the "HSCX" when both channels are active we
* define an HSCX_ACTIVE flag which is or'd into the channel's state
* flag in avma1pp_bchannel_setup upon active and cleared upon deactivation.
* It is set high to allow room for new flags.
*/
#define HSCX_AVMA1PP_ACTIVE 0x1000
static int
ifpci_match(struct device *parent,
struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR(pa->pa_id) == PCI_VENDOR_AVM &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_AVM_FRITZ_CARD)
return 1;
return 0;
}
static void
ifpci_attach(struct device *parent, struct device *self, void *aux)
{
struct ifpci_softc *psc = (void*)self;
struct pci_attach_args *pa = aux;
struct isic_softc *sc = &psc->sc_isic;
struct isdn_l3_driver *drv;
u_int v;
/* announce */
printf(": Fritz!PCI card\n");
/* initialize sc */
callout_init(&sc->sc_T3_callout, 0);
callout_init(&sc->sc_T4_callout, 0);
/* setup io mappings */
sc->sc_cardtyp = CARD_TYPEP_AVMA1PCI;
sc->sc_num_mappings = 1;
MALLOC_MAPS(sc);
sc->sc_maps[0].size = 0;
if (pci_mapreg_map(pa, FRITZPCI_PORT0_MEM_MAPOFF, PCI_MAPREG_TYPE_MEM, 0,
&sc->sc_maps[0].t, &sc->sc_maps[0].h, &psc->sc_base, &psc->sc_size) != 0
&& pci_mapreg_map(pa, FRITZPCI_PORT0_IO_MAPOFF, PCI_MAPREG_TYPE_IO, 0,
&sc->sc_maps[0].t, &sc->sc_maps[0].h, &psc->sc_base, &psc->sc_size) != 0) {
aprint_error_dev(&sc->sc_dev, "can't map card\n");
return;
}
/* setup access routines */
sc->clearirq = NULL;
sc->readreg = avma1pp_read_reg;
sc->writereg = avma1pp_write_reg;
sc->readfifo = avma1pp_read_fifo;
sc->writefifo = avma1pp_write_fifo;
/* setup card type */
sc->sc_cardtyp = CARD_TYPEP_AVMA1PCI;
/* setup IOM bus type */
sc->sc_bustyp = BUS_TYPE_IOM2;
/* this is no IPAC based card */
sc->sc_ipac = 0;
sc->sc_bfifolen = HSCX_FIFO_LEN;
/* setup interrupt mapping */
avma1pp_map_int(psc, pa);
/* init the card */
/* the Linux driver does this to clear any pending ISAC interrupts */
/* see if it helps any - XXXX */
v = 0;
v = ISAC_READ(I_STAR);
v = ISAC_READ(I_MODE);
v = ISAC_READ(I_ADF2);
v = ISAC_READ(I_ISTA);
if (v & ISAC_ISTA_EXI)
{
v = ISAC_READ(I_EXIR);
}
v = ISAC_READ(I_CIRR);
ISAC_WRITE(I_MASK, 0xff);
/* the Linux driver does this to clear any pending HSCX interrupts */
v = hscx_read_reg_int(0, HSCX_STAT, sc);
v = hscx_read_reg_int(1, HSCX_STAT, sc);
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, ASL_RESET_ALL|ASL_TIMERDISABLE);
DELAY(SEC_DELAY/100); /* 10 ms */
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, ASL_TIMERRESET|ASL_ENABLE_INT|ASL_TIMERDISABLE);
DELAY(SEC_DELAY/100); /* 10 ms */
/* setup i4b infrastructure (have to roll our own here) */
/* sc->sc_isac_version = ((ISAC_READ(I_RBCH)) >> 5) & 0x03; */
printf("%s: ISAC %s (IOM-%c)\n", device_xname(&sc->sc_dev),
"2085 Version A1/A2 or 2086/2186 Version 1.1",
sc->sc_bustyp == BUS_TYPE_IOM1 ? '1' : '2');
/* init the ISAC */
isic_isac_init(sc);
/* init the "HSCX" */
avma1pp_bchannel_setup(sc, HSCX_CH_A, BPROT_NONE, 0);
avma1pp_bchannel_setup(sc, HSCX_CH_B, BPROT_NONE, 0);
/* can't use the normal B-Channel stuff */
avma1pp_init_linktab(sc);
/* set trace level */
sc->sc_trace = TRACE_OFF;
sc->sc_state = ISAC_IDLE;
sc->sc_ibuf = NULL;
sc->sc_ib = NULL;
sc->sc_ilen = 0;
sc->sc_obuf = NULL;
sc->sc_op = NULL;
sc->sc_ol = 0;
sc->sc_freeflag = 0;
sc->sc_obuf2 = NULL;
sc->sc_freeflag2 = 0;
/* init higher protocol layers */
drv = isdn_attach_isdnif(device_xname(&sc->sc_dev),
"AVM Fritz!PCI", &sc->sc_l2, &ifpci_l3_driver, NBCH_BRI);
sc->sc_l3token = drv;
sc->sc_l2.driver = &isic_std_driver;
sc->sc_l2.l1_token = sc;
sc->sc_l2.drv = drv;
isdn_layer2_status_ind(&sc->sc_l2, drv, STI_ATTACH, 1);
isdn_isdnif_ready(drv->isdnif);
}
static int
ifpci_detach(struct device *self, int flags)
{
struct ifpci_softc *psc = (struct ifpci_softc *)self;
bus_space_unmap(psc->sc_isic.sc_maps[0].t, psc->sc_isic.sc_maps[0].h, psc->sc_size);
bus_space_free(psc->sc_isic.sc_maps[0].t, psc->sc_isic.sc_maps[0].h, psc->sc_size);
pci_intr_disestablish(psc->sc_pc, psc->sc_ih);
return (0);
}
int
ifpci_activate(struct device *self, enum devact act)
{
struct ifpci_softc *psc = (struct ifpci_softc *)self;
int error = 0, s;
s = splnet();
switch (act) {
case DVACT_ACTIVATE:
error = EOPNOTSUPP;
break;
case DVACT_DEACTIVATE:
psc->sc_isic.sc_intr_valid = ISIC_INTR_DYING;
isdn_layer2_status_ind(&psc->sc_isic.sc_l2, psc->sc_isic.sc_l3token, STI_ATTACH, 0);
isdn_detach_isdnif(psc->sc_isic.sc_l3token);
psc->sc_isic.sc_l3token = NULL;
break;
}
splx(s);
return (error);
}
/*---------------------------------------------------------------------------*
* AVM read fifo routines
*---------------------------------------------------------------------------*/
static void
avma1pp_read_fifo(struct isic_softc *sc, int what, void *buf, size_t size)
{
switch (what) {
case ISIC_WHAT_ISAC:
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, ISAC_FIFO);
bus_space_read_multi_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET, buf, size);
break;
case ISIC_WHAT_HSCXA:
hscx_read_fifo(0, buf, size, sc);
break;
case ISIC_WHAT_HSCXB:
hscx_read_fifo(1, buf, size, sc);
break;
}
}
static void
hscx_read_fifo(int chan, void *buf, size_t len, struct isic_softc *sc)
{
u_int32_t *ip;
size_t cnt;
bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, chan);
ip = (u_int32_t *)buf;
cnt = 0;
/* what if len isn't a multiple of sizeof(int) and buf is */
/* too small ???? */
while (cnt < len)
{
*ip++ = bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET);
cnt += 4;
}
}
/*---------------------------------------------------------------------------*
* AVM write fifo routines
*---------------------------------------------------------------------------*/
static void
avma1pp_write_fifo(struct isic_softc *sc, int what, const void *buf, size_t size)
{
switch (what) {
case ISIC_WHAT_ISAC:
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, ISAC_FIFO);
bus_space_write_multi_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET, buf, size);
break;
case ISIC_WHAT_HSCXA:
hscx_write_fifo(0, buf, size, sc);
break;
case ISIC_WHAT_HSCXB:
hscx_write_fifo(1, buf, size, sc);
break;
}
}
static void
hscx_write_fifo(int chan, const void *buf, size_t len, struct isic_softc *sc)
{
const u_int32_t *ip;
size_t cnt;
l1_bchan_state_t *Bchan = &sc->sc_chan[chan];
sc->avma1pp_cmd &= ~HSCX_CMD_XME;
sc->avma1pp_txl = 0;
if (Bchan->out_mbuf_cur == NULL)
{
if (Bchan->bprot != BPROT_NONE)
sc->avma1pp_cmd |= HSCX_CMD_XME;
}
if (len != sc->sc_bfifolen)
sc->avma1pp_txl = len;
cnt = 0; /* borrow cnt */
AVMA1PPSETCMDLONG(cnt);
hscx_write_reg(chan, HSCX_STAT, cnt, sc);
ip = (const u_int32_t *)buf;
cnt = 0;
while (cnt < len)
{
bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET, *ip);
ip++;
cnt += 4;
}
}
/*---------------------------------------------------------------------------*
* AVM write register routines
*---------------------------------------------------------------------------*/
static void
avma1pp_write_reg(struct isic_softc *sc, int what, bus_size_t offs, u_int8_t data)
{
u_char reg_bank;
switch (what) {
case ISIC_WHAT_ISAC:
reg_bank = (offs > MAX_LO_REG_OFFSET) ? ISAC_HI_REG_OFFSET:ISAC_LO_REG_OFFSET;
/* set the register bank */
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, reg_bank);
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET + (offs & ISAC_REGSET_MASK), data);
break;
case ISIC_WHAT_HSCXA:
hscx_write_reg(0, offs, data, sc);
break;
case ISIC_WHAT_HSCXB:
hscx_write_reg(1, offs, data, sc);
break;
}
}
static void
hscx_write_reg(int chan, u_int off, u_int val, struct isic_softc *sc)
{
/* HACK */
if (off == H_MASK)
return;
/* point at the correct channel */
bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, chan);
bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET + off, val);
}
/*---------------------------------------------------------------------------*
* AVM read register routines
*---------------------------------------------------------------------------*/
static u_int8_t
avma1pp_read_reg(struct isic_softc *sc, int what, bus_size_t offs)
{
u_char reg_bank;
switch (what) {
case ISIC_WHAT_ISAC:
reg_bank = (offs > MAX_LO_REG_OFFSET) ? ISAC_HI_REG_OFFSET:ISAC_LO_REG_OFFSET;
/* set the register bank */
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, reg_bank);
return(bus_space_read_1(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET +
(offs & ISAC_REGSET_MASK)));
case ISIC_WHAT_HSCXA:
return hscx_read_reg(0, offs, sc);
case ISIC_WHAT_HSCXB:
return hscx_read_reg(1, offs, sc);
}
return 0;
}
static u_char
hscx_read_reg(int chan, u_int off, struct isic_softc *sc)
{
return(hscx_read_reg_int(chan, off, sc) & 0xff);
}
/*
* need to be able to return an int because the RBCH is in the 2nd
* byte.
*/
static u_int
hscx_read_reg_int(int chan, u_int off, struct isic_softc *sc)
{
/* HACK */
if (off == H_ISTA)
return(0);
/* point at the correct channel */
bus_space_write_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ADDR_REG_OFFSET, chan);
return(bus_space_read_4(sc->sc_maps[0].t, sc->sc_maps[0].h, ISAC_REG_OFFSET + off));
}
/*
* this is the real interrupt routine
*/
static void
avma1pp_hscx_intr(int h_chan, u_int stat, struct isic_softc *sc)
{
register l1_bchan_state_t *chan = &sc->sc_chan[h_chan];
int activity = -1;
u_int param = 0;
NDBGL1(L1_H_IRQ, "%#x", stat);
if((stat & HSCX_INT_XDU) && (chan->bprot != BPROT_NONE))/* xmit data underrun */
{
chan->stat_XDU++;
NDBGL1(L1_H_XFRERR, "xmit data underrun");
/* abort the transmission */
sc->avma1pp_txl = 0;
sc->avma1pp_cmd |= HSCX_CMD_XRS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
sc->avma1pp_cmd &= ~HSCX_CMD_XRS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
if (chan->out_mbuf_head != NULL) /* don't continue to transmit this buffer */
{
i4b_Bfreembuf(chan->out_mbuf_head);
chan->out_mbuf_cur = chan->out_mbuf_head = NULL;
}
}
/*
* The following is based on examination of the Linux driver.
*
* The logic here is different than with a "real" HSCX; all kinds
* of information (interrupt/status bits) are in stat.
* HSCX_INT_RPR indicates a receive interrupt
* HSCX_STAT_RDO indicates an overrun condition, abort -
* otherwise read the bytes ((stat & HSCX_STZT_RML_MASK) >> 8)
* HSCX_STAT_RME indicates end-of-frame and apparently any
* CRC/framing errors are only reported in this state.
* if ((stat & HSCX_STAT_CRCVFRRAB) != HSCX_STAT_CRCVFR)
* CRC/framing error
*/
if(stat & HSCX_INT_RPR)
{
register int fifo_data_len;
int error = 0;
/* always have to read the FIFO, so use a scratch buffer */
u_char scrbuf[HSCX_FIFO_LEN];
if(stat & HSCX_STAT_RDO)
{
chan->stat_RDO++;
NDBGL1(L1_H_XFRERR, "receive data overflow");
error++;
}
/*
* check whether we're receiving data for an inactive B-channel
* and discard it. This appears to happen for telephony when
* both B-channels are active and one is deactivated. Since
* it is not really possible to deactivate the channel in that
* case (the ASIC seems to deactivate _both_ channels), the
* "deactivated" channel keeps receiving data which can lead
* to exhaustion of mbufs and a kernel panic.
*
* This is a hack, but it's the only solution I can think of
* without having the documentation for the ASIC.
* GJ - 28 Nov 1999
*/
if (chan->state == HSCX_IDLE)
{
NDBGL1(L1_H_XFRERR, "toss data from %d", h_chan);
error++;
}
fifo_data_len = ((stat & HSCX_STAT_RML_MASK) >> 8);
if(fifo_data_len == 0)
fifo_data_len = sc->sc_bfifolen;
/* ALWAYS read data from HSCX fifo */
HSCX_RDFIFO(h_chan, scrbuf, fifo_data_len);
chan->rxcount += fifo_data_len;
/* all error conditions checked, now decide and take action */
if(error == 0)
{
if(chan->in_mbuf == NULL)
{
if((chan->in_mbuf = i4b_Bgetmbuf(BCH_MAX_DATALEN)) == NULL)
panic("L1 avma1pp_hscx_intr: RME, cannot allocate mbuf!");
chan->in_cbptr = chan->in_mbuf->m_data;
chan->in_len = 0;
}
if((chan->in_len + fifo_data_len) <= BCH_MAX_DATALEN)
{
/* OK to copy the data */
memcpy(chan->in_cbptr, scrbuf, fifo_data_len);
chan->in_cbptr += fifo_data_len;
chan->in_len += fifo_data_len;
/* setup mbuf data length */
chan->in_mbuf->m_len = chan->in_len;
chan->in_mbuf->m_pkthdr.len = chan->in_len;
if(sc->sc_trace & TRACE_B_RX)
{
struct i4b_trace_hdr hdr;
hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2);
hdr.dir = FROM_NT;
hdr.count = ++sc->sc_trace_bcount;
isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->in_mbuf->m_len, chan->in_mbuf->m_data);
}
if (stat & HSCX_STAT_RME)
{
if((stat & HSCX_STAT_CRCVFRRAB) == HSCX_STAT_CRCVFR)
{
(*chan->l4_driver->bch_rx_data_ready)(chan->l4_driver_softc);
activity = ACT_RX;
/* mark buffer ptr as unused */
chan->in_mbuf = NULL;
chan->in_cbptr = NULL;
chan->in_len = 0;
}
else
{
chan->stat_CRC++;
NDBGL1(L1_H_XFRERR, "CRC/RAB");
if (chan->in_mbuf != NULL)
{
i4b_Bfreembuf(chan->in_mbuf);
chan->in_mbuf = NULL;
chan->in_cbptr = NULL;
chan->in_len = 0;
}
}
}
} /* END enough space in mbuf */
else
{
if(chan->bprot == BPROT_NONE)
{
/* setup mbuf data length */
chan->in_mbuf->m_len = chan->in_len;
chan->in_mbuf->m_pkthdr.len = chan->in_len;
if(sc->sc_trace & TRACE_B_RX)
{
struct i4b_trace_hdr hdr;
hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2);
hdr.dir = FROM_NT;
hdr.count = ++sc->sc_trace_bcount;
isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->in_mbuf->m_len, chan->in_mbuf->m_data);
}
if(!(isdn_bchan_silence(chan->in_mbuf->m_data, chan->in_mbuf->m_len)))
activity = ACT_RX;
/* move rx'd data to rx queue */
if (!(IF_QFULL(&chan->rx_queue)))
{
IF_ENQUEUE(&chan->rx_queue, chan->in_mbuf);
}
else
{
i4b_Bfreembuf(chan->in_mbuf);
}
/* signal upper layer that data are available */
(*chan->l4_driver->bch_rx_data_ready)(chan->l4_driver_softc);
/* alloc new buffer */
if((chan->in_mbuf = i4b_Bgetmbuf(BCH_MAX_DATALEN)) == NULL)
panic("L1 avma1pp_hscx_intr: RPF, cannot allocate new mbuf!");
/* setup new data ptr */
chan->in_cbptr = chan->in_mbuf->m_data;
/* OK to copy the data */
memcpy(chan->in_cbptr, scrbuf, fifo_data_len);
chan->in_cbptr += fifo_data_len;
chan->in_len = fifo_data_len;
chan->rxcount += fifo_data_len;
}
else
{
NDBGL1(L1_H_XFRERR, "RAWHDLC rx buffer overflow in RPF, in_len=%d", chan->in_len);
chan->in_cbptr = chan->in_mbuf->m_data;
chan->in_len = 0;
}
}
} /* if(error == 0) */
else
{
/* land here for RDO */
if (chan->in_mbuf != NULL)
{
i4b_Bfreembuf(chan->in_mbuf);
chan->in_mbuf = NULL;
chan->in_cbptr = NULL;
chan->in_len = 0;
}
sc->avma1pp_txl = 0;
sc->avma1pp_cmd |= HSCX_CMD_RRS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
sc->avma1pp_cmd &= ~HSCX_CMD_RRS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
}
}
/* transmit fifo empty, new data can be written to fifo */
if(stat & HSCX_INT_XPR)
{
/*
* for a description what is going on here, please have
* a look at isic_bchannel_start() in i4b_bchan.c !
*/
NDBGL1(L1_H_IRQ, "%s: chan %d - XPR, Tx Fifo Empty!", device_xname(&sc->sc_dev), h_chan);
if(chan->out_mbuf_cur == NULL) /* last frame is transmitted */
{
IF_DEQUEUE(&chan->tx_queue, chan->out_mbuf_head);
if(chan->out_mbuf_head == NULL)
{
chan->state &= ~HSCX_TX_ACTIVE;
(*chan->l4_driver->bch_tx_queue_empty)(chan->l4_driver_softc);
}
else
{
chan->state |= HSCX_TX_ACTIVE;
chan->out_mbuf_cur = chan->out_mbuf_head;
chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data;
chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len;
if(sc->sc_trace & TRACE_B_TX)
{
struct i4b_trace_hdr hdr;
hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2);
hdr.dir = FROM_TE;
hdr.count = ++sc->sc_trace_bcount;
isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data);
}
if(chan->bprot == BPROT_NONE)
{
if(!(isdn_bchan_silence(chan->out_mbuf_cur->m_data, chan->out_mbuf_cur->m_len)))
activity = ACT_TX;
}
else
{
activity = ACT_TX;
}
}
}
isic_hscx_fifo(chan, sc);
}
/* call timeout handling routine */
if(activity == ACT_RX || activity == ACT_TX)
(*chan->l4_driver->bch_activity)(chan->l4_driver_softc, activity);
}
/*
* this is the main routine which checks each channel and then calls
* the real interrupt routine as appropriate
*/
static void
avma1pp_hscx_int_handler(struct isic_softc *sc)
{
u_int stat;
/* has to be a u_int because the byte count is in the 2nd byte */
stat = hscx_read_reg_int(0, HSCX_STAT, sc);
if (stat & HSCX_INT_MASK)
avma1pp_hscx_intr(0, stat, sc);
stat = hscx_read_reg_int(1, HSCX_STAT, sc);
if (stat & HSCX_INT_MASK)
avma1pp_hscx_intr(1, stat, sc);
}
static void
avma1pp_disable(struct isic_softc *sc)
{
bus_space_write_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET, ASL_RESET_ALL|ASL_TIMERDISABLE);
}
static int
avma1pp_intr(void *parm)
{
struct isic_softc *sc = parm;
int ret = 0;
#define OURS ret = 1
u_char stat;
if (sc->sc_intr_valid != ISIC_INTR_VALID)
return 0;
stat = bus_space_read_1(sc->sc_maps[0].t, sc->sc_maps[0].h, STAT0_OFFSET);
NDBGL1(L1_H_IRQ, "stat %x", stat);
/* was there an interrupt from this card ? */
if ((stat & ASL_IRQ_Pending) == ASL_IRQ_Pending)
return 0; /* no */
/* interrupts are low active */
if (!(stat & ASL_IRQ_TIMER))
NDBGL1(L1_H_IRQ, "timer interrupt ???");
if (!(stat & ASL_IRQ_HSCX))
{
NDBGL1(L1_H_IRQ, "HSCX");
avma1pp_hscx_int_handler(sc);
OURS;
}
if (!(stat & ASL_IRQ_ISAC))
{
NDBGL1(L1_H_IRQ, "ISAC");
for (;;) {
/* get isac irq status */
u_int8_t isac_irq_stat = ISAC_READ(I_ISTA);
if (!isac_irq_stat)
break;
isic_isac_irq(sc, isac_irq_stat);
}
OURS;
}
return ret;
}
static void
avma1pp_map_int(struct ifpci_softc *psc, struct pci_attach_args *pa)
{
struct isic_softc *sc = &psc->sc_isic;
pci_chipset_tag_t pc = pa->pa_pc;
pci_intr_handle_t ih;
const char *intrstr;
/* Map and establish the interrupt. */
if (pci_intr_map(pa, &ih)) {
aprint_error_dev(&sc->sc_dev, "couldn't map interrupt\n");
avma1pp_disable(sc);
return;
}
psc->sc_pc = pc;
intrstr = pci_intr_string(pc, ih);
psc->sc_ih = pci_intr_establish(pc, ih, IPL_NET, avma1pp_intr, sc);
if (psc->sc_ih == NULL) {
aprint_error_dev(&sc->sc_dev, "couldn't establish interrupt");
if (intrstr != NULL)
printf(" at %s", intrstr);
printf("\n");
avma1pp_disable(sc);
return;
}
printf("%s: interrupting at %s\n", device_xname(&sc->sc_dev), intrstr);
}
static void
avma1pp_hscx_init(struct isic_softc *sc, int h_chan, int activate)
{
l1_bchan_state_t *chan = &sc->sc_chan[h_chan];
u_int param = 0;
NDBGL1(L1_BCHAN, "%s: channel=%d, %s",
device_xname(&sc->sc_dev), h_chan, activate ? "activate" : "deactivate");
if (activate == 0)
{
/* only deactivate if both channels are idle */
if (sc->sc_chan[HSCX_CH_A].state != HSCX_IDLE ||
sc->sc_chan[HSCX_CH_B].state != HSCX_IDLE)
{
return;
}
sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS;
sc->avma1pp_prot = HSCX_MODE_TRANS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
return;
}
if(chan->bprot == BPROT_RHDLC)
{
NDBGL1(L1_BCHAN, "BPROT_RHDLC");
/* HDLC Frames, transparent mode 0 */
sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS;
sc->avma1pp_prot = HSCX_MODE_ITF_FLG;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
sc->avma1pp_cmd = HSCX_CMD_XRS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
sc->avma1pp_cmd = 0;
}
else
{
NDBGL1(L1_BCHAN, "BPROT_NONE??");
/* Raw Telephony, extended transparent mode 1 */
sc->avma1pp_cmd = HSCX_CMD_XRS|HSCX_CMD_RRS;
sc->avma1pp_prot = HSCX_MODE_TRANS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
sc->avma1pp_cmd = HSCX_CMD_XRS;
AVMA1PPSETCMDLONG(param);
hscx_write_reg(h_chan, HSCX_STAT, param, sc);
sc->avma1pp_cmd = 0;
}
}
static void
avma1pp_bchannel_setup(isdn_layer1token t, int h_chan, int bprot, int activate)
{
struct isic_softc *sc = (struct isic_softc*)t;
l1_bchan_state_t *chan = &sc->sc_chan[h_chan];
int s = splnet();
if(activate == 0)
{
/* deactivation */
chan->state = HSCX_IDLE;
avma1pp_hscx_init(sc, h_chan, activate);
}
NDBGL1(L1_BCHAN, "%s: channel=%d, %s",
device_xname(&sc->sc_dev), h_chan, activate ? "activate" : "deactivate");
/* general part */
chan->channel = h_chan; /* B channel */
chan->bprot = bprot; /* B channel protocol */
chan->state = HSCX_IDLE; /* B channel state */
/* receiver part */
i4b_Bcleanifq(&chan->rx_queue); /* clean rx queue */
chan->rx_queue.ifq_maxlen = IFQ_MAXLEN;
chan->rxcount = 0; /* reset rx counter */
i4b_Bfreembuf(chan->in_mbuf); /* clean rx mbuf */
chan->in_mbuf = NULL; /* reset mbuf ptr */
chan->in_cbptr = NULL; /* reset mbuf curr ptr */
chan->in_len = 0; /* reset mbuf data len */
/* transmitter part */
i4b_Bcleanifq(&chan->tx_queue); /* clean tx queue */
chan->tx_queue.ifq_maxlen = IFQ_MAXLEN;
chan->txcount = 0; /* reset tx counter */
i4b_Bfreembuf(chan->out_mbuf_head); /* clean tx mbuf */
chan->out_mbuf_head = NULL; /* reset head mbuf ptr */
chan->out_mbuf_cur = NULL; /* reset current mbuf ptr */
chan->out_mbuf_cur_ptr = NULL; /* reset current mbuf data ptr */
chan->out_mbuf_cur_len = 0; /* reset current mbuf data cnt */
if(activate != 0)
{
/* activation */
avma1pp_hscx_init(sc, h_chan, activate);
chan->state |= HSCX_AVMA1PP_ACTIVE;
}
splx(s);
}
static void
avma1pp_bchannel_start(isdn_layer1token t, int h_chan)
{
struct isic_softc *sc = (struct isic_softc*)t;
register l1_bchan_state_t *chan = &sc->sc_chan[h_chan];
int s;
int activity = -1;
s = splnet(); /* enter critical section */
if(chan->state & HSCX_TX_ACTIVE) /* already running ? */
{
splx(s);
return; /* yes, leave */
}
/* get next mbuf from queue */
IF_DEQUEUE(&chan->tx_queue, chan->out_mbuf_head);
if(chan->out_mbuf_head == NULL) /* queue empty ? */
{
splx(s); /* leave critical section */
return; /* yes, exit */
}
/* init current mbuf values */
chan->out_mbuf_cur = chan->out_mbuf_head;
chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len;
chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data;
/* activity indicator for timeout handling */
if(chan->bprot == BPROT_NONE)
{
if(!(isdn_bchan_silence(chan->out_mbuf_cur->m_data, chan->out_mbuf_cur->m_len)))
activity = ACT_TX;
}
else
{
activity = ACT_TX;
}
chan->state |= HSCX_TX_ACTIVE; /* we start transmitting */
if(sc->sc_trace & TRACE_B_TX) /* if trace, send mbuf to trace dev */
{
struct i4b_trace_hdr hdr;
hdr.type = (h_chan == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2);
hdr.dir = FROM_TE;
hdr.count = ++sc->sc_trace_bcount;
isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data);
}
isic_hscx_fifo(chan, sc);
/* call timeout handling routine */
if(activity == ACT_RX || activity == ACT_TX)
(*chan->l4_driver->bch_activity)(chan->l4_driver_softc, activity);
splx(s);
}
/*---------------------------------------------------------------------------*
* return the address of isic drivers linktab
*---------------------------------------------------------------------------*/
static isdn_link_t *
avma1pp_ret_linktab(void *token, int channel)
{
struct l2_softc *l2sc = token;
struct isic_softc *sc = l2sc->l1_token;
l1_bchan_state_t *chan = &sc->sc_chan[channel];
return(&chan->isdn_linktab);
}
/*---------------------------------------------------------------------------*
* set the driver linktab in the b channel softc
*---------------------------------------------------------------------------*/
static void
avma1pp_set_link(void *token, int channel, const struct isdn_l4_driver_functions *l4_driver, void *l4_driver_softc)
{
struct l2_softc *l2sc = token;
struct isic_softc *sc = l2sc->l1_token;
l1_bchan_state_t *chan = &sc->sc_chan[channel];
chan->l4_driver = l4_driver;
chan->l4_driver_softc = l4_driver_softc;
}
static const struct isdn_l4_bchannel_functions
avma1pp_l4_bchannel_functions = {
avma1pp_bchannel_setup,
avma1pp_bchannel_start,
avma1pp_bchannel_stat
};
/*---------------------------------------------------------------------------*
* initialize our local linktab
*---------------------------------------------------------------------------*/
static void
avma1pp_init_linktab(struct isic_softc *sc)
{
l1_bchan_state_t *chan = &sc->sc_chan[HSCX_CH_A];
isdn_link_t *lt = &chan->isdn_linktab;
/* local setup */
lt->l1token = sc;
lt->channel = HSCX_CH_A;
lt->bchannel_driver = &avma1pp_l4_bchannel_functions;
lt->tx_queue = &chan->tx_queue;
/* used by non-HDLC data transfers, i.e. telephony drivers */
lt->rx_queue = &chan->rx_queue;
/* used by HDLC data transfers, i.e. ipr and isp drivers */
lt->rx_mbuf = &chan->in_mbuf;
chan = &sc->sc_chan[HSCX_CH_B];
lt = &chan->isdn_linktab;
lt->l1token = sc;
lt->channel = HSCX_CH_B;
lt->bchannel_driver = &avma1pp_l4_bchannel_functions;
lt->tx_queue = &chan->tx_queue;
/* used by non-HDLC data transfers, i.e. telephony drivers */
lt->rx_queue = &chan->rx_queue;
/* used by HDLC data transfers, i.e. ipr and isp drivers */
lt->rx_mbuf = &chan->in_mbuf;
}
/*
* use this instead of isic_bchannel_stat in i4b_bchan.c because it's static
*/
static void
avma1pp_bchannel_stat(isdn_layer1token t, int h_chan, bchan_statistics_t *bsp)
{
struct isic_softc *sc = (struct isic_softc*)t;
l1_bchan_state_t *chan = &sc->sc_chan[h_chan];
int s;
s = splnet();
bsp->outbytes = chan->txcount;
bsp->inbytes = chan->rxcount;
chan->txcount = 0;
chan->rxcount = 0;
splx(s);
}
/*---------------------------------------------------------------------------*
* fill HSCX fifo with data from the current mbuf
* Put this here until it can go into i4b_hscx.c
*---------------------------------------------------------------------------*/
static int
isic_hscx_fifo(l1_bchan_state_t *chan, struct isic_softc *sc)
{
int len;
int nextlen;
int i;
int cmd;
/* using a scratch buffer simplifies writing to the FIFO */
u_char scrbuf[HSCX_FIFO_LEN];
len = 0;
cmd = 0;
/*
* fill the HSCX tx fifo with data from the current mbuf. if
* current mbuf holds less data than HSCX fifo length, try to
* get the next mbuf from (a possible) mbuf chain. if there is
* not enough data in a single mbuf or in a chain, then this
* is the last mbuf and we tell the HSCX that it has to send
* CRC and closing flag
*/
while(chan->out_mbuf_cur && len != sc->sc_bfifolen)
{
nextlen = min(chan->out_mbuf_cur_len, sc->sc_bfifolen - len);
#ifdef NOTDEF
printf("i:mh=%p, mc=%p, mcp=%p, mcl=%d l=%d nl=%d # ",
chan->out_mbuf_head,
chan->out_mbuf_cur,
chan->out_mbuf_cur_ptr,
chan->out_mbuf_cur_len,
len,
nextlen);
#endif
cmd |= HSCX_CMDR_XTF;
/* collect the data in the scratch buffer */
for (i = 0; i < nextlen; i++)
scrbuf[i + len] = chan->out_mbuf_cur_ptr[i];
len += nextlen;
chan->txcount += nextlen;
chan->out_mbuf_cur_ptr += nextlen;
chan->out_mbuf_cur_len -= nextlen;
if(chan->out_mbuf_cur_len == 0)
{
if((chan->out_mbuf_cur = chan->out_mbuf_cur->m_next) != NULL)
{
chan->out_mbuf_cur_ptr = chan->out_mbuf_cur->m_data;
chan->out_mbuf_cur_len = chan->out_mbuf_cur->m_len;
if(sc->sc_trace & TRACE_B_TX)
{
struct i4b_trace_hdr hdr;
hdr.type = (chan->channel == HSCX_CH_A ? TRC_CH_B1 : TRC_CH_B2);
hdr.dir = FROM_TE;
hdr.count = ++sc->sc_trace_bcount;
isdn_layer2_trace_ind(&sc->sc_l2, sc->sc_l3token, &hdr, chan->out_mbuf_cur->m_len, chan->out_mbuf_cur->m_data);
}
}
else
{
if (chan->bprot != BPROT_NONE)
cmd |= HSCX_CMDR_XME;
i4b_Bfreembuf(chan->out_mbuf_head);
chan->out_mbuf_head = NULL;
}
}
}
/* write what we have from the scratch buf to the HSCX fifo */
if (len != 0)
HSCX_WRFIFO(chan->channel, scrbuf, len);
return(cmd);
}