NetBSD/sys/dev/pci/if_ipw.c

1983 lines
50 KiB
C

/* $NetBSD: if_ipw.c,v 1.12 2005/06/22 06:16:02 dyoung Exp $ */
/*-
* Copyright (c) 2004
* Damien Bergamini <damien.bergamini@free.fr>. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: if_ipw.c,v 1.12 2005/06/22 06:16:02 dyoung Exp $");
/*-
* Intel(R) PRO/Wireless 2100 MiniPCI driver
* http://www.intel.com/products/mobiletechnology/prowireless.htm
*/
#include "bpfilter.h"
#include <sys/param.h>
#include <sys/sockio.h>
#include <sys/sysctl.h>
#include <sys/mbuf.h>
#include <sys/kernel.h>
#include <sys/socket.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/conf.h>
#include <machine/bus.h>
#include <machine/endian.h>
#include <machine/intr.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <dev/pci/pcidevs.h>
#if NBPFILTER > 0
#include <net/bpf.h>
#endif
#include <net/if.h>
#include <net/if_arp.h>
#include <net/if_dl.h>
#include <net/if_ether.h>
#include <net/if_media.h>
#include <net/if_types.h>
#include <net80211/ieee80211_var.h>
#include <net80211/ieee80211_radiotap.h>
#include <netinet/in.h>
#include <netinet/in_systm.h>
#include <netinet/in_var.h>
#include <netinet/ip.h>
#include <dev/pci/if_ipwreg.h>
#include <dev/pci/if_ipwvar.h>
static int ipw_match(struct device *, struct cfdata *, void *);
static void ipw_attach(struct device *, struct device *, void *);
static int ipw_detach(struct device *, int);
static int ipw_media_change(struct ifnet *);
static int ipw_newstate(struct ieee80211com *, enum ieee80211_state, int);
static void ipw_command_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_newstate_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_data_intr(struct ipw_softc *, struct ipw_status *,
struct ipw_soft_bd *, struct ipw_soft_buf *);
static void ipw_notification_intr(struct ipw_softc *, struct ipw_soft_buf *);
static void ipw_rx_intr(struct ipw_softc *);
static void ipw_release_sbd(struct ipw_softc *, struct ipw_soft_bd *);
static void ipw_tx_intr(struct ipw_softc *);
static int ipw_intr(void *);
static int ipw_cmd(struct ipw_softc *, u_int32_t, void *, u_int32_t);
static int ipw_tx_start(struct ifnet *, struct mbuf *, struct ieee80211_node *);
static void ipw_start(struct ifnet *);
static void ipw_watchdog(struct ifnet *);
static int ipw_get_table1(struct ipw_softc *, u_int32_t *);
static int ipw_get_radio(struct ipw_softc *, int *);
static int ipw_ioctl(struct ifnet *, u_long, caddr_t);
static u_int32_t ipw_read_table1(struct ipw_softc *, u_int32_t);
static void ipw_write_table1(struct ipw_softc *, u_int32_t, u_int32_t);
static int ipw_read_table2(struct ipw_softc *, u_int32_t, void *, u_int32_t *);
static int ipw_tx_init(struct ipw_softc *);
static void ipw_tx_stop(struct ipw_softc *);
static int ipw_rx_init(struct ipw_softc *);
static void ipw_rx_stop(struct ipw_softc *);
static void ipw_reset(struct ipw_softc *);
static int ipw_clock_sync(struct ipw_softc *);
static int ipw_load_ucode(struct ipw_softc *, u_char *, int);
static int ipw_load_firmware(struct ipw_softc *, u_char *, int);
static int ipw_firmware_init(struct ipw_softc *, u_char *);
static int ipw_config(struct ipw_softc *);
static int ipw_init(struct ifnet *);
static void ipw_stop(struct ifnet *, int);
static void ipw_read_mem_1(struct ipw_softc *, bus_size_t, u_int8_t *,
bus_size_t);
static void ipw_write_mem_1(struct ipw_softc *, bus_size_t, u_int8_t *,
bus_size_t);
static void ipw_zero_mem_4(struct ipw_softc *, bus_size_t, bus_size_t);
static inline u_int8_t MEM_READ_1(struct ipw_softc *sc, u_int32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA);
}
static inline u_int16_t MEM_READ_2(struct ipw_softc *sc, u_int32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_2(sc, IPW_CSR_INDIRECT_DATA);
}
static inline u_int32_t MEM_READ_4(struct ipw_softc *sc, u_int32_t addr)
{
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, addr);
return CSR_READ_4(sc, IPW_CSR_INDIRECT_DATA);
}
#ifdef IPW_DEBUG
#define DPRINTF(x) if (ipw_debug > 0) printf x
#define DPRINTFN(n, x) if (ipw_debug >= (n)) printf x
int ipw_debug = 0;
#else
#define DPRINTF(x)
#define DPRINTFN(n, x)
#endif
CFATTACH_DECL(ipw, sizeof (struct ipw_softc), ipw_match, ipw_attach,
ipw_detach, NULL);
static int
ipw_match(struct device *parent, struct cfdata *match, void *aux)
{
struct pci_attach_args *pa = aux;
if (PCI_VENDOR (pa->pa_id) == PCI_VENDOR_INTEL &&
PCI_PRODUCT(pa->pa_id) == PCI_PRODUCT_INTEL_PRO_WL_2100)
return 1;
return 0;
}
/* Base Address Register */
#define IPW_PCI_BAR0 0x10
static void
ipw_attach(struct device *parent, struct device *self, void *aux)
{
struct ipw_softc *sc = (struct ipw_softc *)self;
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ieee80211_rateset *rs;
struct pci_attach_args *pa = aux;
const char *intrstr;
char devinfo[256];
bus_space_tag_t memt;
bus_space_handle_t memh;
bus_addr_t base;
pci_intr_handle_t ih;
u_int32_t data;
int i, revision, error;
sc->sc_pct = pa->pa_pc;
pci_devinfo(pa->pa_id, pa->pa_class, 0, devinfo, sizeof devinfo);
revision = PCI_REVISION(pa->pa_class);
aprint_normal(": %s (rev. 0x%02x)\n", devinfo, revision);
/* enable bus-mastering */
data = pci_conf_read(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG);
data |= PCI_COMMAND_MASTER_ENABLE;
pci_conf_write(sc->sc_pct, pa->pa_tag, PCI_COMMAND_STATUS_REG, data);
/* map the register window */
error = pci_mapreg_map(pa, IPW_PCI_BAR0, PCI_MAPREG_TYPE_MEM |
PCI_MAPREG_MEM_TYPE_32BIT, 0, &memt, &memh, &base, &sc->sc_sz);
if (error != 0) {
aprint_error("%s: could not map memory space\n",
sc->sc_dev.dv_xname);
return;
}
sc->sc_st = memt;
sc->sc_sh = memh;
sc->sc_dmat = pa->pa_dmat;
/* disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
if (pci_intr_map(pa, &ih) != 0) {
aprint_error("%s: could not map interrupt\n",
sc->sc_dev.dv_xname);
return;
}
intrstr = pci_intr_string(sc->sc_pct, ih);
sc->sc_ih = pci_intr_establish(sc->sc_pct, ih, IPL_NET, ipw_intr, sc);
if (sc->sc_ih == NULL) {
aprint_error("%s: could not establish interrupt",
sc->sc_dev.dv_xname);
if (intrstr != NULL)
aprint_error(" at %s", intrstr);
aprint_error("\n");
return;
}
aprint_normal("%s: interrupting at %s\n", sc->sc_dev.dv_xname, intrstr);
ic->ic_ifp = ifp;
ic->ic_phytype = IEEE80211_T_DS;
ic->ic_opmode = IEEE80211_M_STA;
ic->ic_state = IEEE80211_S_INIT;
/* set device capabilities */
ic->ic_caps = IEEE80211_C_IBSS | IEEE80211_C_MONITOR |
IEEE80211_C_PMGT | IEEE80211_C_TXPMGT | IEEE80211_C_WEP;
/* set supported 11.b rates */
rs = &ic->ic_sup_rates[IEEE80211_MODE_11B];
rs->rs_nrates = 4;
rs->rs_rates[0] = 2; /* 1Mbps */
rs->rs_rates[1] = 4; /* 2Mbps */
rs->rs_rates[2] = 11; /* 5.5Mbps */
rs->rs_rates[3] = 22; /* 11Mbps */
/* set supported 11.b channels (1 through 14) */
for (i = 1; i <= 14; i++) {
ic->ic_channels[i].ic_freq =
ieee80211_ieee2mhz(i, IEEE80211_CHAN_B);
ic->ic_channels[i].ic_flags = IEEE80211_CHAN_B;
}
ic->ic_ibss_chan = &ic->ic_channels[0];
ifp->if_softc = sc;
ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
ifp->if_init = ipw_init;
ifp->if_stop = ipw_stop;
ifp->if_ioctl = ipw_ioctl;
ifp->if_start = ipw_start;
ifp->if_watchdog = ipw_watchdog;
IFQ_SET_READY(&ifp->if_snd);
bcopy(sc->sc_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
if_attach(ifp);
ieee80211_ifattach(ic);
/* override state transition machine */
sc->sc_newstate = ic->ic_newstate;
ic->ic_newstate = ipw_newstate;
ieee80211_media_init(ic, ipw_media_change, ieee80211_media_status);
#if NBPFILTER > 0
bpfattach2(ifp, DLT_IEEE802_11_RADIO,
sizeof (struct ieee80211_frame) + 64, &sc->sc_drvbpf);
sc->sc_rxtap_len = sizeof sc->sc_rxtapu;
sc->sc_rxtap.wr_ihdr.it_len = htole16(sc->sc_rxtap_len);
sc->sc_rxtap.wr_ihdr.it_present = htole32(IPW_RX_RADIOTAP_PRESENT);
sc->sc_txtap_len = sizeof sc->sc_txtapu;
sc->sc_txtap.wt_ihdr.it_len = htole16(sc->sc_txtap_len);
sc->sc_txtap.wt_ihdr.it_present = htole32(IPW_TX_RADIOTAP_PRESENT);
#endif
}
static int
ipw_detach(struct device* self, int flags)
{
struct ipw_softc *sc = (struct ipw_softc *)self;
struct ifnet *ifp = &sc->sc_if;
ipw_reset(sc);
#if NBPFILTER > 0
bpfdetach(ifp);
#endif
ieee80211_ifdetach(&sc->sc_ic);
if_detach(ifp);
if (sc->sc_ih != NULL) {
pci_intr_disestablish(sc->sc_pct, sc->sc_ih);
sc->sc_ih = NULL;
}
bus_space_unmap(sc->sc_st, sc->sc_sh, sc->sc_sz);
return 0;
}
static int
ipw_media_change(struct ifnet *ifp)
{
int error;
error = ieee80211_media_change(ifp);
if (error != ENETRESET)
return error;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) == (IFF_UP | IFF_RUNNING))
ipw_init(ifp);
return 0;
}
static int
ipw_newstate(struct ieee80211com *ic, enum ieee80211_state nstate, int arg)
{
struct ifnet *ifp = ic->ic_ifp;
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211_node *ni = ic->ic_bss;
u_int32_t val, len;
switch (nstate) {
case IEEE80211_S_INIT:
break;
case IEEE80211_S_RUN:
len = IEEE80211_NWID_LEN;
ipw_read_table2(sc, IPW_INFO_CURRENT_SSID, ni->ni_essid, &len);
ni->ni_esslen = len;
val = ipw_read_table1(sc, IPW_INFO_CURRENT_CHANNEL);
ni->ni_chan = &ic->ic_channels[val];
DELAY(100); /* firmware needs a short delay here */
len = IEEE80211_ADDR_LEN;
ipw_read_table2(sc, IPW_INFO_CURRENT_BSSID, ni->ni_bssid, &len);
break;
case IEEE80211_S_SCAN:
case IEEE80211_S_AUTH:
case IEEE80211_S_ASSOC:
break;
}
ic->ic_state = nstate;
return 0;
}
static void
ipw_command_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ipw_cmd *cmd;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof (struct ipw_cmd),
BUS_DMASYNC_POSTREAD);
cmd = mtod(sbuf->m, struct ipw_cmd *);
DPRINTFN(2, ("RX!CMD!%u!%u!%u!%u!%u\n",
le32toh(cmd->type), le32toh(cmd->subtype), le32toh(cmd->seq),
le32toh(cmd->len), le32toh(cmd->status)));
/*
* Wake up processes waiting for command ack. In the case of the
* IPW_CMD_DISABLE command, wake up the process only when the adapter
* enters the IPW_STATE_DISABLED state. This is notified in
* ipw_newstate_intr().
*/
if (le32toh(cmd->type) != IPW_CMD_DISABLE)
wakeup(sc->cmd);
}
static void
ipw_newstate_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
u_int32_t state;
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, sizeof state,
BUS_DMASYNC_POSTREAD);
state = le32toh(*mtod(sbuf->m, u_int32_t *));
DPRINTFN(2, ("RX!NEWSTATE!%u\n", state));
switch (state) {
case IPW_STATE_ASSOCIATED:
ieee80211_new_state(ic, IEEE80211_S_RUN, -1);
break;
case IPW_STATE_SCANNING:
ieee80211_new_state(ic, IEEE80211_S_SCAN, -1);
break;
case IPW_STATE_ASSOCIATION_LOST:
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
break;
case IPW_STATE_DISABLED:
wakeup(sc->cmd);
break;
case IPW_STATE_RADIO_DISABLED:
/* XXX should turn the interface down */
break;
}
}
static void
ipw_data_intr(struct ipw_softc *sc, struct ipw_status *status,
struct ipw_soft_bd *sbd, struct ipw_soft_buf *sbuf)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct mbuf *m;
struct ieee80211_frame_min *wh;
struct ieee80211_node *ni;
int error;
DPRINTFN(5, ("RX!DATA!%u!%u\n", le32toh(status->len), status->rssi));
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, le32toh(status->len),
BUS_DMASYNC_POSTREAD);
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
/* Finalize mbuf */
m = sbuf->m;
m->m_pkthdr.rcvif = ifp;
m->m_pkthdr.len = m->m_len = le32toh(status->len);
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct ipw_rx_radiotap_header *tap = &sc->sc_rxtap;
tap->wr_flags = 0;
tap->wr_antsignal = status->rssi;
tap->wr_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wr_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
}
#endif
wh = mtod(m, struct ieee80211_frame_min *);
ni = ieee80211_find_rxnode(ic, wh);
/* Send it up to the upper layer */
ieee80211_input(ic, m, ni, status->rssi, 0/*rstamp*/);
ieee80211_free_node(ni);
MGETHDR(m, M_DONTWAIT, MT_DATA);
if (m == NULL) {
aprint_error("%s: could not allocate rx mbuf\n",
sc->sc_dev.dv_xname);
return;
}
MCLGET(m, M_DONTWAIT);
if (!(m->m_flags & M_EXT)) {
m_freem(m);
aprint_error("%s: could not allocate rx mbuf cluster\n",
sc->sc_dev.dv_xname);
return;
}
error = bus_dmamap_load(sc->sc_dmat, sbuf->map, mtod(m, void *),
MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map rxbuf dma memory\n",
sc->sc_dev.dv_xname);
m_freem(m);
return;
}
sbuf->m = m;
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
}
static void
ipw_notification_intr(struct ipw_softc *sc, struct ipw_soft_buf *sbuf)
{
DPRINTFN(2, ("RX!NOTIFICATION\n"));
}
static void
ipw_rx_intr(struct ipw_softc *sc)
{
struct ipw_status *status;
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
u_int32_t r, i;
r = CSR_READ_4(sc, IPW_CSR_RX_READ_INDEX);
for (i = (sc->rxcur + 1) % IPW_NRBD; i != r; i = (i + 1) % IPW_NRBD) {
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_POSTREAD);
bus_dmamap_sync(sc->sc_dmat, sc->status_map,
i * sizeof (struct ipw_status), sizeof (struct ipw_status),
BUS_DMASYNC_POSTREAD);
status = &sc->status_list[i];
sbd = &sc->srbd_list[i];
sbuf = sbd->priv;
switch (le16toh(status->code) & 0xf) {
case IPW_STATUS_CODE_COMMAND:
ipw_command_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_NEWSTATE:
ipw_newstate_intr(sc, sbuf);
break;
case IPW_STATUS_CODE_DATA_802_3:
case IPW_STATUS_CODE_DATA_802_11:
ipw_data_intr(sc, status, sbd, sbuf);
break;
case IPW_STATUS_CODE_NOTIFICATION:
ipw_notification_intr(sc, sbuf);
break;
default:
aprint_debug("%s: unknown status code %u\n",
sc->sc_dev.dv_xname, le16toh(status->code));
}
sbd->bd->flags = 0;
bus_dmamap_sync(sc->sc_dmat, sc->rbd_map,
i * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_PREWRITE);
}
/* Tell the firmware what we have processed */
sc->rxcur = (r == 0) ? IPW_NRBD - 1 : r - 1;
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE_INDEX, sc->rxcur);
}
static void
ipw_release_sbd(struct ipw_softc *sc, struct ipw_soft_bd *sbd)
{
struct ieee80211com *ic;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
switch (sbd->type) {
case IPW_SBD_TYPE_COMMAND:
bus_dmamap_unload(sc->sc_dmat, sc->cmd_map);
break;
case IPW_SBD_TYPE_HEADER:
shdr = sbd->priv;
bus_dmamap_unload(sc->sc_dmat, shdr->map);
TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
break;
case IPW_SBD_TYPE_DATA:
ic = &sc->sc_ic;
sbuf = sbd->priv;
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
if (sbuf->ni != NULL)
ieee80211_free_node(sbuf->ni);
/* kill watchdog timer */
sc->sc_tx_timer = 0;
TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
break;
}
++sc->txfree;
sbd->type = IPW_SBD_TYPE_NOASSOC;
}
static void
ipw_tx_intr(struct ipw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
u_int32_t r, i;
r = CSR_READ_4(sc, IPW_CSR_TX_READ_INDEX);
for (i = (sc->txold + 1) % IPW_NTBD; i != r; i = (i + 1) % IPW_NTBD)
ipw_release_sbd(sc, &sc->stbd_list[i]);
/* Remember what the firmware has processed */
sc->txold = (r == 0) ? IPW_NTBD - 1 : r - 1;
/* Call start() since some buffer descriptors have been released */
ifp->if_flags &= ~IFF_OACTIVE;
(*ifp->if_start)(ifp);
}
static int
ipw_intr(void *arg)
{
struct ipw_softc *sc = arg;
u_int32_t r;
if ((r = CSR_READ_4(sc, IPW_CSR_INTR)) == 0)
return 0;
/* Disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
DPRINTFN(8, ("INTR!0x%08x\n", r));
if (r & IPW_INTR_RX_TRANSFER)
ipw_rx_intr(sc);
if (r & IPW_INTR_TX_TRANSFER)
ipw_tx_intr(sc);
if (r & IPW_INTR_FW_INIT_DONE) {
if (!(r & (IPW_INTR_FATAL_ERROR | IPW_INTR_PARITY_ERROR)))
wakeup(sc);
}
/* Acknowledge interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR, r);
/* Re-enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
return 0;
}
static int
ipw_cmd(struct ipw_softc *sc, u_int32_t type, void *data, u_int32_t len)
{
struct ipw_soft_bd *sbd;
int error;
#ifdef DIAGNOSTIC
KASSERT(sc->txfree != 0);
#endif /* DIAGNOSTIC */
sbd = &sc->stbd_list[sc->txcur];
error = bus_dmamap_load(sc->sc_dmat, sc->cmd_map, sc->cmd,
sizeof (struct ipw_cmd), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map cmd dma memory\n",
sc->sc_dev.dv_xname);
return error;
}
sc->cmd->type = htole32(type);
sc->cmd->subtype = htole32(0);
sc->cmd->len = htole32(len);
sc->cmd->seq = htole32(0);
if (data != NULL)
bcopy(data, sc->cmd->data, len);
sbd->type = IPW_SBD_TYPE_COMMAND;
sbd->bd->physaddr = htole32(sc->cmd_map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(sizeof (struct ipw_cmd));
sbd->bd->nfrag = 1;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_COMMAND |
IPW_BD_FLAG_TX_LAST_FRAGMENT;
bus_dmamap_sync(sc->sc_dmat, sc->cmd_map, 0, sizeof (struct ipw_cmd),
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd), sizeof (struct ipw_bd),
BUS_DMASYNC_PREWRITE);
--sc->txfree;
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, sc->txcur);
DPRINTFN(2, ("TX!CMD!%u!%u!%u!%u\n", type, 0, 0, len));
/* Wait at most two seconds for command to complete */
return tsleep(sc->cmd, 0, "ipwcmd", 2 * hz);
}
/* Check that descriptors are available to transmit one packet.
* Always reserve one transmit-buffer descriptor for ipw_cmd.
*/
static __inline int
ipw_tx_ready(struct ipw_softc *sc)
{
return !TAILQ_EMPTY(&sc->sc_free_shdr) &&
!TAILQ_EMPTY(&sc->sc_free_sbuf) && sc->txfree > 1;
}
/* Must not be called unless ipw_tx_ready(sc). */
static int
ipw_tx_start(struct ifnet *ifp, struct mbuf *m, struct ieee80211_node *ni)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct ieee80211_frame *wh;
struct ieee80211_key *k;
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
int error, i, iswep;
#ifdef DIAGNOSTIC
KASSERT(ipw_tx_ready(sc));
#endif
wh = mtod(m, struct ieee80211_frame *);
iswep = (wh->i_fc[1] & IEEE80211_FC1_WEP) ? 1 : 0;
if (iswep && (k = ieee80211_crypto_encap(ic, ni, m)) == NULL)
return EIO;
#if NBPFILTER > 0
if (sc->sc_drvbpf != NULL) {
struct ipw_tx_radiotap_header *tap = &sc->sc_txtap;
tap->wt_flags = 0;
tap->wt_chan_freq = htole16(ic->ic_bss->ni_chan->ic_freq);
tap->wt_chan_flags = htole16(ic->ic_bss->ni_chan->ic_flags);
bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
}
#endif
shdr = TAILQ_FIRST(&sc->sc_free_shdr);
sbuf = TAILQ_FIRST(&sc->sc_free_sbuf);
shdr->hdr.type = htole32(IPW_HDR_TYPE_SEND);
shdr->hdr.subtype = htole32(0);
shdr->hdr.encrypted = iswep;
shdr->hdr.encrypt = 0;
shdr->hdr.keyidx = 0;
shdr->hdr.keysz = 0;
shdr->hdr.fragmentsz = htole16(0);
IEEE80211_ADDR_COPY(shdr->hdr.src_addr, wh->i_addr2);
if (ic->ic_opmode == IEEE80211_M_STA)
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr3);
else
IEEE80211_ADDR_COPY(shdr->hdr.dst_addr, wh->i_addr1);
/* trim IEEE802.11 header */
m_adj(m, sizeof (struct ieee80211_frame));
/*
* We need to map the mbuf first to know how many buffer descriptors
* are needed for this transfer.
*/
error = bus_dmamap_load_mbuf(sc->sc_dmat, sbuf->map, m, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map mbuf (error %d)\n",
sc->sc_dev.dv_xname, error);
m_freem(m);
return error;
}
error = bus_dmamap_load(sc->sc_dmat, shdr->map, &shdr->hdr,
sizeof (struct ipw_hdr), NULL, BUS_DMA_NOWAIT);
if (error != 0) {
aprint_error("%s: could not map hdr (error %d)\n",
sc->sc_dev.dv_xname, error);
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
m_freem(m);
return error;
}
TAILQ_REMOVE(&sc->sc_free_sbuf, sbuf, next);
TAILQ_REMOVE(&sc->sc_free_shdr, shdr, next);
sbd = &sc->stbd_list[sc->txcur];
sbd->type = IPW_SBD_TYPE_HEADER;
sbd->priv = shdr;
sbd->bd->physaddr = htole32(shdr->map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(sizeof (struct ipw_hdr));
sbd->bd->nfrag = 1 + sbuf->map->dm_nsegs;
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3 |
IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
DPRINTFN(5, ("TX!HDR!%u!%u!%u!%u\n", shdr->hdr.type, shdr->hdr.subtype,
shdr->hdr.encrypted, shdr->hdr.encrypt));
DPRINTFN(5, ("!%s", ether_sprintf(shdr->hdr.src_addr)));
DPRINTFN(5, ("!%s\n", ether_sprintf(shdr->hdr.dst_addr)));
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd),
sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
--sc->txfree;
sbuf->m = m;
sbuf->ni = ni;
for (i = 0; i < sbuf->map->dm_nsegs; i++) {
sbd = &sc->stbd_list[sc->txcur];
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[i].ds_addr);
sbd->bd->len = htole32(sbuf->map->dm_segs[i].ds_len);
sbd->bd->nfrag = 0; /* used only in first bd */
sbd->bd->flags = IPW_BD_FLAG_TX_FRAME_802_3;
if (i == sbuf->map->dm_nsegs - 1) {
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->flags |= IPW_BD_FLAG_TX_LAST_FRAGMENT;
} else {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd->flags |= IPW_BD_FLAG_TX_NOT_LAST_FRAGMENT;
}
DPRINTFN(5, ("TX!FRAG!%d!%ld\n", i,
sbuf->map->dm_segs[i].ds_len));
bus_dmamap_sync(sc->sc_dmat, sc->tbd_map,
sc->txcur * sizeof (struct ipw_bd),
sizeof (struct ipw_bd), BUS_DMASYNC_PREWRITE);
sc->txcur = (sc->txcur + 1) % IPW_NTBD;
}
bus_dmamap_sync(sc->sc_dmat, shdr->map, 0, sizeof (struct ipw_hdr),
BUS_DMASYNC_PREWRITE);
bus_dmamap_sync(sc->sc_dmat, sbuf->map, 0, MCLBYTES,
BUS_DMASYNC_PREWRITE);
/* Inform firmware about this new packet */
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, sc->txcur);
return 0;
}
static void
ipw_start(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
struct mbuf *m;
struct ieee80211_node *ni;
for (;;) {
if (!ipw_tx_ready(sc)) {
DPRINTFN(2, ("%s: no tx descriptors\n", ifp->if_xname));
ifp->if_flags |= IFF_OACTIVE;
break;
}
IFQ_DEQUEUE(&ifp->if_snd, m);
if (m == NULL)
break;
#if NBPFILTER > 0
if (ifp->if_bpf != NULL)
bpf_mtap(ifp->if_bpf, m);
#endif
ni = ieee80211_find_txnode(ic,
mtod(m, struct ether_header *)->ether_dhost);
if (ni == NULL) {
/* NB: ieee80211_find_txnode does stat+msg */
continue;
}
m = ieee80211_encap(ic, m, ni);
if (m == NULL)
continue;
#if NBPFILTER > 0
if (ic->ic_rawbpf != NULL)
bpf_mtap(ic->ic_rawbpf, m);
#endif
if (ipw_tx_start(ifp, m, ni) != 0) {
if (ni != NULL)
ieee80211_free_node(ni);
break;
}
/* start watchdog timer */
sc->sc_tx_timer = 5;
ifp->if_timer = 1;
}
}
static void
ipw_watchdog(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
ifp->if_timer = 0;
if (sc->sc_tx_timer > 0) {
if (--sc->sc_tx_timer == 0) {
aprint_error("%s: device timeout\n",
sc->sc_dev.dv_xname);
#ifdef notyet
ipw_init(ifp);
#endif
return;
}
ifp->if_timer = 1;
}
ieee80211_watchdog(&sc->sc_ic);
}
static int
ipw_get_table1(struct ipw_softc *sc, u_int32_t *tbl)
{
u_int32_t addr, size, i;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return ENOTTY;
CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, sc->table1_base);
size = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
if (suword(tbl, size) != 0)
return EFAULT;
for (i = 1, ++tbl; i < size; i++, tbl++) {
addr = CSR_READ_4(sc, IPW_CSR_AUTOINC_DATA);
if (suword(tbl, MEM_READ_4(sc, addr)) != 0)
return EFAULT;
}
return 0;
}
static int
ipw_get_radio(struct ipw_softc *sc, int *ret)
{
u_int32_t addr;
if (!(sc->flags & IPW_FLAG_FW_INITED))
return ENOTTY;
addr = ipw_read_table1(sc, IPW_INFO_EEPROM_ADDRESS);
if ((MEM_READ_4(sc, addr + 32) >> 24) & 1) {
suword(ret, -1);
return 0;
}
if (CSR_READ_4(sc, IPW_CSR_IO) & IPW_IO_RADIO_DISABLED)
suword(ret, 0);
else
suword(ret, 1);
return 0;
}
static int
ipw_ioctl(struct ifnet *ifp, u_long cmd, caddr_t data)
{
struct ipw_softc *sc = ifp->if_softc;
struct ifreq *ifr;
int s, error = 0;
s = splnet();
switch (cmd) {
case SIOCSIFFLAGS:
if (ifp->if_flags & IFF_UP) {
if (!(ifp->if_flags & IFF_RUNNING))
ipw_init(ifp);
} else {
if (ifp->if_flags & IFF_RUNNING)
ipw_stop(ifp, 1);
}
break;
case SIOCGTABLE1:
ifr = (struct ifreq *)data;
error = ipw_get_table1(sc, (u_int32_t *)ifr->ifr_data);
break;
case SIOCGRADIO:
ifr = (struct ifreq *)data;
error = ipw_get_radio(sc, (int *)ifr->ifr_data);
break;
case SIOCSLOADFW:
/* only super-user can do that! */
if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0)
break;
ifr = (struct ifreq *)data;
error = ipw_firmware_init(sc, (u_char *)ifr->ifr_data);
break;
case SIOCSKILLFW:
/* only super-user can do that! */
if ((error = suser(curproc->p_ucred, &curproc->p_acflag)) != 0)
break;
ipw_reset(sc);
break;
default:
error = ieee80211_ioctl(&sc->sc_ic, cmd, data);
if (error != ENETRESET)
break;
if ((ifp->if_flags & (IFF_UP | IFF_RUNNING)) ==
(IFF_UP | IFF_RUNNING))
ipw_init(ifp);
error = 0;
}
splx(s);
return error;
}
static u_int32_t
ipw_read_table1(struct ipw_softc *sc, u_int32_t off)
{
return MEM_READ_4(sc, MEM_READ_4(sc, sc->table1_base + off));
}
static void
ipw_write_table1(struct ipw_softc *sc, u_int32_t off, u_int32_t info)
{
MEM_WRITE_4(sc, MEM_READ_4(sc, sc->table1_base + off), info);
}
static int
ipw_read_table2(struct ipw_softc *sc, u_int32_t off, void *buf, u_int32_t *len)
{
u_int32_t addr, info;
u_int16_t count, size;
u_int32_t total;
/* addr[4] + count[2] + size[2] */
addr = MEM_READ_4(sc, sc->table2_base + off);
info = MEM_READ_4(sc, sc->table2_base + off + 4);
count = info >> 16;
size = info & 0xffff;
total = count * size;
if (total > *len) {
*len = total;
return EINVAL;
}
*len = total;
ipw_read_mem_1(sc, addr, buf, total);
return 0;
}
static int
ipw_tx_init(struct ipw_softc *sc)
{
const char *errmsg;
struct ipw_bd *bd;
struct ipw_soft_bd *sbd;
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
int error, i, nsegs;
/* Allocate transmission buffer descriptors */
error = bus_dmamap_create(sc->sc_dmat, IPW_TBD_SZ, 1, IPW_TBD_SZ, 0,
BUS_DMA_NOWAIT, &sc->tbd_map);
if (error != 0) {
errmsg = "could not create tbd dma map";
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_TBD_SZ, PAGE_SIZE, 0,
&sc->tbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not allocate tbd dma memory";
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->tbd_seg, nsegs, IPW_TBD_SZ,
(caddr_t *)&sc->tbd_list, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not map tbd dma memory";
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->tbd_map, sc->tbd_list,
IPW_TBD_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not load tbd dma memory";
goto fail;
}
sc->stbd_list = malloc(IPW_NTBD * sizeof (struct ipw_soft_bd),
M_DEVBUF, M_NOWAIT);
if (sc->stbd_list == NULL) {
errmsg = "could not allocate soft tbd";
error = ENOMEM;
goto fail;
}
sbd = sc->stbd_list;
bd = sc->tbd_list;
for (i = 0; i < IPW_NTBD; i++, sbd++, bd++) {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd = bd;
}
CSR_WRITE_4(sc, IPW_CSR_TX_BD_BASE, sc->tbd_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IPW_CSR_TX_BD_SIZE, IPW_NTBD);
CSR_WRITE_4(sc, IPW_CSR_TX_READ_INDEX, 0);
CSR_WRITE_4(sc, IPW_CSR_TX_WRITE_INDEX, 0);
sc->txold = IPW_NTBD - 1; /* latest bd index ack'ed by firmware */
sc->txfree = IPW_NTBD; /* number of descriptors free */
sc->txcur = 0; /* bd index to write to */
/* Allocate a DMA-able command */
error = bus_dmamap_create(sc->sc_dmat, sizeof (struct ipw_cmd), 1,
sizeof (struct ipw_cmd), 0, BUS_DMA_NOWAIT, &sc->cmd_map);
if (error != 0) {
errmsg = "could not create cmd dma map";
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, sizeof (struct ipw_cmd),
PAGE_SIZE, 0, &sc->cmd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not allocate cmd dma memory";
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->cmd_seg, nsegs,
sizeof (struct ipw_cmd), (caddr_t *)&sc->cmd, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not map cmd dma memory";
goto fail;
}
/* Allocate a pool of DMA-able headers */
sc->shdr_list = malloc(IPW_NDATA * sizeof (struct ipw_soft_hdr),
M_DEVBUF, M_NOWAIT);
if (sc->shdr_list == NULL) {
errmsg = "could not allocate soft hdr";
error = ENOMEM;
goto fail;
}
TAILQ_INIT(&sc->sc_free_shdr);
for (i = 0, shdr = sc->shdr_list; i < IPW_NDATA; i++, shdr++) {
error = bus_dmamap_create(sc->sc_dmat,
sizeof (struct ipw_soft_hdr), 1,
sizeof (struct ipw_soft_hdr), 0, BUS_DMA_NOWAIT,
&shdr->map);
if (error != 0) {
errmsg = "could not create hdr dma map";
goto fail;
}
TAILQ_INSERT_TAIL(&sc->sc_free_shdr, shdr, next);
}
/* Allocate a pool of DMA-able buffers */
sc->tx_sbuf_list = malloc(IPW_NDATA * sizeof (struct ipw_soft_buf),
M_DEVBUF, M_NOWAIT);
if (sc->tx_sbuf_list == NULL) {
errmsg = "could not allocate soft txbuf";
error = ENOMEM;
goto fail;
}
TAILQ_INIT(&sc->sc_free_sbuf);
for (i = 0, sbuf = sc->tx_sbuf_list; i < IPW_NDATA; i++, sbuf++) {
error = bus_dmamap_create(sc->sc_dmat, IPW_NDATA * MCLBYTES,
IPW_NDATA, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
if (error != 0) {
errmsg = "could not create txbuf dma map";
goto fail;
}
TAILQ_INSERT_TAIL(&sc->sc_free_sbuf, sbuf, next);
}
return 0;
fail: aprint_error("%s: %s\n", sc->sc_dev.dv_xname, errmsg);
ipw_tx_stop(sc);
return error;
}
static void
ipw_tx_stop(struct ipw_softc *sc)
{
struct ipw_soft_hdr *shdr;
struct ipw_soft_buf *sbuf;
int i;
if (sc->tbd_map != NULL) {
if (sc->tbd_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->tbd_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->tbd_list,
IPW_TBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->tbd_seg, 1);
sc->tbd_list = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, sc->tbd_map);
sc->tbd_map = NULL;
}
if (sc->stbd_list != NULL) {
for (i = 0; i < IPW_NTBD; i++)
ipw_release_sbd(sc, &sc->stbd_list[i]);
free(sc->stbd_list, M_DEVBUF);
sc->stbd_list = NULL;
}
if (sc->cmd_map != NULL) {
if (sc->cmd != NULL) {
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->cmd,
sizeof (struct ipw_cmd));
bus_dmamem_free(sc->sc_dmat, &sc->cmd_seg, 1);
sc->cmd = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, sc->cmd_map);
sc->cmd_map = NULL;
}
if (sc->shdr_list != NULL) {
TAILQ_FOREACH(shdr, &sc->sc_free_shdr, next)
bus_dmamap_destroy(sc->sc_dmat, shdr->map);
free(sc->shdr_list, M_DEVBUF);
sc->shdr_list = NULL;
}
if (sc->tx_sbuf_list != NULL) {
TAILQ_FOREACH(sbuf, &sc->sc_free_sbuf, next)
bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
free(sc->tx_sbuf_list, M_DEVBUF);
sc->tx_sbuf_list = NULL;
}
}
static int
ipw_rx_init(struct ipw_softc *sc)
{
const char *errmsg;
struct ipw_bd *bd;
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
int error, i, nsegs;
/* Allocate reception buffer descriptors */
error = bus_dmamap_create(sc->sc_dmat, IPW_RBD_SZ, 1, IPW_RBD_SZ, 0,
BUS_DMA_NOWAIT, &sc->rbd_map);
if (error != 0) {
errmsg = "could not create rbd dma map";
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_RBD_SZ, PAGE_SIZE, 0,
&sc->rbd_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not allocate rbd dma memory";
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->rbd_seg, nsegs, IPW_RBD_SZ,
(caddr_t *)&sc->rbd_list, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not map rbd dma memory";
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->rbd_map, sc->rbd_list,
IPW_RBD_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not load rbd dma memory";
goto fail;
}
sc->srbd_list = malloc(IPW_NRBD * sizeof (struct ipw_soft_bd),
M_DEVBUF, M_NOWAIT);
if (sc->srbd_list == NULL) {
errmsg = "could not allocate soft rbd";
error = ENOMEM;
goto fail;
}
sbd = sc->srbd_list;
bd = sc->rbd_list;
for (i = 0; i < IPW_NRBD; i++, sbd++, bd++) {
sbd->type = IPW_SBD_TYPE_NOASSOC;
sbd->bd = bd;
}
CSR_WRITE_4(sc, IPW_CSR_RX_BD_BASE, sc->rbd_map->dm_segs[0].ds_addr);
CSR_WRITE_4(sc, IPW_CSR_RX_BD_SIZE, IPW_NRBD);
CSR_WRITE_4(sc, IPW_CSR_RX_READ_INDEX, 0);
CSR_WRITE_4(sc, IPW_CSR_RX_WRITE_INDEX, IPW_NRBD - 1);
sc->rxcur = IPW_NRBD - 1; /* latest bd index I've read */
/* Allocate status descriptors */
error = bus_dmamap_create(sc->sc_dmat, IPW_STATUS_SZ, 1, IPW_STATUS_SZ,
0, BUS_DMA_NOWAIT, &sc->status_map);
if (error != 0) {
errmsg = "could not create status dma map";
goto fail;
}
error = bus_dmamem_alloc(sc->sc_dmat, IPW_STATUS_SZ, PAGE_SIZE, 0,
&sc->status_seg, 1, &nsegs, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not allocate status dma memory";
goto fail;
}
error = bus_dmamem_map(sc->sc_dmat, &sc->status_seg, nsegs,
IPW_STATUS_SZ, (caddr_t *)&sc->status_list, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not map status dma memory";
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sc->status_map, sc->status_list,
IPW_STATUS_SZ, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
errmsg = "could not load status dma memory";
goto fail;
}
CSR_WRITE_4(sc, IPW_CSR_RX_STATUS_BASE,
sc->status_map->dm_segs[0].ds_addr);
sc->rx_sbuf_list = malloc(IPW_NRBD * sizeof (struct ipw_soft_buf),
M_DEVBUF, M_NOWAIT);
if (sc->rx_sbuf_list == NULL) {
errmsg = "could not allocate soft rxbuf";
error = ENOMEM;
goto fail;
}
sbuf = sc->rx_sbuf_list;
sbd = sc->srbd_list;
for (i = 0; i < IPW_NRBD; i++, sbuf++, sbd++) {
MGETHDR(sbuf->m, M_DONTWAIT, MT_DATA);
if (sbuf->m == NULL) {
errmsg = "could not allocate rx mbuf";
error = ENOMEM;
goto fail;
}
MCLGET(sbuf->m, M_DONTWAIT);
if (!(sbuf->m->m_flags & M_EXT)) {
m_freem(sbuf->m);
errmsg = "could not allocate rx mbuf cluster";
error = ENOMEM;
goto fail;
}
error = bus_dmamap_create(sc->sc_dmat, IPW_NRBD * MCLBYTES,
IPW_NRBD, MCLBYTES, 0, BUS_DMA_NOWAIT, &sbuf->map);
if (error != 0) {
m_freem(sbuf->m);
errmsg = "could not create rxbuf dma map";
goto fail;
}
error = bus_dmamap_load(sc->sc_dmat, sbuf->map,
mtod(sbuf->m, void *), MCLBYTES, NULL, BUS_DMA_NOWAIT);
if (error != 0) {
bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
errmsg = "could not map rxbuf dma memory";
goto fail;
}
sbd->type = IPW_SBD_TYPE_DATA;
sbd->priv = sbuf;
sbd->bd->physaddr = htole32(sbuf->map->dm_segs[0].ds_addr);
sbd->bd->len = htole32(MCLBYTES);
}
return 0;
fail: aprint_error("%s: %s\n", sc->sc_dev.dv_xname, errmsg);
ipw_rx_stop(sc);
return error;
}
static void
ipw_rx_stop(struct ipw_softc *sc)
{
struct ipw_soft_bd *sbd;
struct ipw_soft_buf *sbuf;
int i;
if (sc->rbd_map != NULL) {
if (sc->rbd_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->rbd_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->rbd_list,
IPW_RBD_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->rbd_seg, 1);
sc->rbd_list = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, sc->rbd_map);
sc->rbd_map = NULL;
}
if (sc->status_map != NULL) {
if (sc->status_list != NULL) {
bus_dmamap_unload(sc->sc_dmat, sc->status_map);
bus_dmamem_unmap(sc->sc_dmat, (caddr_t)sc->status_list,
IPW_STATUS_SZ);
bus_dmamem_free(sc->sc_dmat, &sc->status_seg, 1);
sc->status_list = NULL;
}
bus_dmamap_destroy(sc->sc_dmat, sc->status_map);
sc->status_map = NULL;
}
if (sc->srbd_list != NULL) {
for (i = 0, sbd = sc->srbd_list; i < IPW_NRBD; i++, sbd++) {
if (sbd->type == IPW_SBD_TYPE_NOASSOC)
continue;
sbuf = sbd->priv;
bus_dmamap_unload(sc->sc_dmat, sbuf->map);
bus_dmamap_destroy(sc->sc_dmat, sbuf->map);
m_freem(sbuf->m);
}
free(sc->srbd_list, M_DEVBUF);
sc->srbd_list = NULL;
}
if (sc->rx_sbuf_list != NULL) {
free(sc->rx_sbuf_list, M_DEVBUF);
sc->rx_sbuf_list = NULL;
}
}
static void
ipw_reset(struct ipw_softc *sc)
{
struct ifnet *ifp = &sc->sc_if;
int ntries;
ipw_stop(ifp, 1);
if (sc->flags & IPW_FLAG_FW_INITED) {
ipw_cmd(sc, IPW_CMD_DISABLE_PHY, NULL, 0);
ipw_cmd(sc, IPW_CMD_PREPARE_POWER_DOWN, NULL, 0);
sc->flags &= ~IPW_FLAG_FW_INITED;
}
/* Disable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, 0);
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_STOP_MASTER);
for (ntries = 0; ntries < 5; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_MASTER_DISABLED)
break;
DELAY(10);
}
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
ipw_rx_stop(sc);
ipw_tx_stop(sc);
ifp->if_flags &= ~IFF_UP;
}
static int
ipw_clock_sync(struct ipw_softc *sc)
{
int ntries;
u_int32_t r;
CSR_WRITE_4(sc, IPW_CSR_RST, IPW_RST_SW_RESET);
for (ntries = 0; ntries < 1000; ntries++) {
if (CSR_READ_4(sc, IPW_CSR_RST) & IPW_RST_PRINCETON_RESET)
break;
DELAY(10);
}
if (ntries == 1000)
return EIO;
CSR_WRITE_4(sc, IPW_CSR_CTL, IPW_CTL_INIT_DONE);
for (ntries = 0; ntries < 1000; ntries++) {
if ((r = CSR_READ_4(sc, IPW_CSR_CTL)) & IPW_CTL_CLOCK_READY)
break;
DELAY(200);
}
if (ntries == 1000)
return EIO;
CSR_WRITE_4(sc, IPW_CSR_CTL, r | IPW_CTL_ALLOW_STANDBY);
return 0;
}
static int
ipw_load_ucode(struct ipw_softc *sc, u_char *uc, int size)
{
int ntries;
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x40);
MEM_WRITE_MULTI_1(sc, 0x210010, uc, size);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
MEM_WRITE_2(sc, 0x220000, 0x0703);
MEM_WRITE_2(sc, 0x220000, 0x0707);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210014, 0x72);
MEM_WRITE_1(sc, 0x210000, 0x00);
MEM_WRITE_1(sc, 0x210000, 0x80);
for (ntries = 0; ntries < 10; ntries++) {
if (MEM_READ_1(sc, 0x210000) & 1)
break;
DELAY(10);
}
if (ntries == 10)
return EIO;
return 0;
}
/* set of macros to handle unaligned little endian data in firmware image */
#define GETLE32(p) ((p)[0] | (p)[1] << 8 | (p)[2] << 16 | (p)[3] << 24)
#define GETLE16(p) ((p)[0] | (p)[1] << 8)
static int
ipw_load_firmware(struct ipw_softc *sc, u_char *fw, int size)
{
u_char *p, *end;
u_int32_t addr;
u_int16_t len;
p = fw;
end = fw + size;
while (p < end) {
if (p + 6 > end)
return EINVAL;
addr = GETLE32(p);
p += 4;
len = GETLE16(p);
p += 2;
if (p + len > end)
return EINVAL;
ipw_write_mem_1(sc, addr, p, len);
p += len;
}
return 0;
}
static int
ipw_firmware_init(struct ipw_softc *sc, u_char *data)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ipw_fw_hdr hdr;
u_int32_t r, len, fw_size, uc_size;
u_char *fw, *uc;
int error;
ipw_reset(sc);
if ((error = copyin(data, &hdr, sizeof hdr)) != 0)
goto fail1;
fw_size = le32toh(hdr.fw_size);
uc_size = le32toh(hdr.uc_size);
data += sizeof hdr;
if ((fw = malloc(fw_size, M_DEVBUF, M_NOWAIT)) == NULL) {
error = ENOMEM;
goto fail1;
}
if ((error = copyin(data, fw, fw_size)) != 0)
goto fail2;
data += fw_size;
if ((uc = malloc(uc_size, M_DEVBUF, M_NOWAIT)) == NULL) {
error = ENOMEM;
goto fail2;
}
if ((error = copyin(data, uc, uc_size)) != 0)
goto fail3;
if ((error = ipw_clock_sync(sc)) != 0) {
aprint_error("%s: clock synchronization failed\n",
sc->sc_dev.dv_xname);
goto fail3;
}
MEM_WRITE_4(sc, 0x003000e0, 0x80000000);
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
if ((error = ipw_load_ucode(sc, uc, uc_size)) != 0) {
aprint_error("%s: could not load microcode\n",
sc->sc_dev.dv_xname);
goto fail3;
}
MEM_WRITE_4(sc, 0x003000e0, 0);
if ((error = ipw_clock_sync(sc)) != 0) {
aprint_error("%s: clock synchronization failed\n",
sc->sc_dev.dv_xname);
goto fail3;
}
if ((error = ipw_load_firmware(sc, fw, fw_size))) {
aprint_error("%s: could not load firmware\n",
sc->sc_dev.dv_xname);
goto fail3;
}
ipw_zero_mem_4(sc, 0x0002f200, 196);
ipw_zero_mem_4(sc, 0x0002f610, 8);
ipw_zero_mem_4(sc, 0x0002fa00, 8);
ipw_zero_mem_4(sc, 0x0002fc00, 4);
ipw_zero_mem_4(sc, 0x0002ff80, 32);
if ((error = ipw_rx_init(sc)) != 0) {
aprint_error("%s: could not initialize rx queue\n",
sc->sc_dev.dv_xname);
goto fail3;
}
if ((error = ipw_tx_init(sc)) != 0) {
aprint_error("%s: could not initialize tx queue\n",
sc->sc_dev.dv_xname);
goto fail3;
}
CSR_WRITE_4(sc, IPW_CSR_IO, IPW_IO_GPIO1_ENABLE | IPW_IO_GPIO3_MASK |
IPW_IO_LED_OFF);
/* Enable interrupts */
CSR_WRITE_4(sc, IPW_CSR_INTR_MASK, IPW_INTR_MASK);
/* Let's go! */
CSR_WRITE_4(sc, IPW_CSR_RST, 0);
/* Wait at most 5 seconds for firmware initialization to complete */
if ((error = tsleep(sc, 0, "ipwinit", 5 * hz)) != 0) {
aprint_error("%s: timeout waiting for firmware initialization "
"to complete\n", sc->sc_dev.dv_xname);
goto fail3;
}
/* Firmware initialization completed */
sc->flags |= IPW_FLAG_FW_INITED;
free(uc, M_DEVBUF);
free(fw, M_DEVBUF);
r = CSR_READ_4(sc, IPW_CSR_IO);
CSR_WRITE_4(sc, IPW_CSR_IO, r | IPW_IO_GPIO1_MASK | IPW_IO_GPIO3_MASK);
/* Retrieve information tables base addresses */
sc->table1_base = CSR_READ_4(sc, IPW_CSR_TABLE1_BASE);
sc->table2_base = CSR_READ_4(sc, IPW_CSR_TABLE2_BASE);
ipw_write_table1(sc, IPW_INFO_LOCK, 0);
/* Retrieve adapter MAC address */
len = IEEE80211_ADDR_LEN;
ipw_read_table2(sc, IPW_INFO_ADAPTER_MAC, ic->ic_myaddr, &len);
IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl), ic->ic_myaddr);
return 0;
fail3: free(uc, M_DEVBUF);
fail2: free(fw, M_DEVBUF);
fail1: ipw_reset(sc);
return error;
}
static int
ipw_config(struct ipw_softc *sc)
{
struct ieee80211com *ic = &sc->sc_ic;
struct ifnet *ifp = &sc->sc_if;
struct ipw_security security;
struct ieee80211_key *k;
struct ipw_wep_key wepkey;
struct ipw_scan_options options;
struct ipw_configuration config;
u_int32_t data;
int error, i;
switch (ic->ic_opmode) {
case IEEE80211_M_STA:
case IEEE80211_M_HOSTAP:
data = htole32(IPW_MODE_BSS);
break;
case IEEE80211_M_IBSS:
case IEEE80211_M_AHDEMO:
data = htole32(IPW_MODE_IBSS);
break;
case IEEE80211_M_MONITOR:
data = htole32(IPW_MODE_MONITOR);
break;
}
DPRINTF(("Setting adapter mode to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_MONITOR) {
data = htole32(ieee80211_chan2ieee(ic, ic->ic_ibss_chan));
DPRINTF(("Setting adapter channel to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_CHANNEL, &data, sizeof data);
if (error != 0)
return error;
}
if (ic->ic_opmode == IEEE80211_M_MONITOR) {
DPRINTF(("Enabling adapter\n"));
return ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
}
DPRINTF(("Setting adapter MAC to %s\n", ether_sprintf(ic->ic_myaddr)));
IEEE80211_ADDR_COPY(LLADDR(ifp->if_sadl), ic->ic_myaddr);
error = ipw_cmd(sc, IPW_CMD_SET_MAC_ADDRESS, ic->ic_myaddr,
IEEE80211_ADDR_LEN);
if (error != 0)
return error;
config.flags = htole32(IPW_CFG_BSS_MASK | IPW_CFG_IBSS_MASK |
IPW_CFG_PREAMBLE_LEN | IPW_CFG_802_1x_ENABLE);
if (ic->ic_opmode == IEEE80211_M_IBSS)
config.flags |= htole32(IPW_CFG_IBSS_AUTO_START);
if (ifp->if_flags & IFF_PROMISC)
config.flags |= htole32(IPW_CFG_PROMISCUOUS);
config.channels = htole32(0x3fff); /* channels 1-14 */
config.ibss_chan = htole32(0x7ff);
DPRINTF(("Setting adapter configuration 0x%08x\n", config.flags));
error = ipw_cmd(sc, IPW_CMD_SET_CONFIGURATION, &config, sizeof config);
if (error != 0)
return error;
data = htole32(0x3); /* 1, 2 */
DPRINTF(("Setting adapter basic tx rates to 0x%x\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_BASIC_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(0xf); /* 1, 2, 5.5, 11 */
DPRINTF(("Setting adapter tx rates to 0x%x\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_TX_RATES, &data, sizeof data);
if (error != 0)
return error;
data = htole32(IPW_POWER_MODE_CAM);
DPRINTF(("Setting adapter power mode to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_POWER_MODE, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS) {
data = htole32(ic->ic_bss->ni_txpower);
DPRINTF(("Setting adapter tx power index to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_TX_POWER_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
data = htole32(ic->ic_rtsthreshold);
DPRINTF(("Setting adapter RTS threshold to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_RTS_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
data = htole32(ic->ic_fragthreshold);
DPRINTF(("Setting adapter frag threshold to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_FRAG_THRESHOLD, &data, sizeof data);
if (error != 0)
return error;
#ifdef IPW_DEBUG
if (ipw_debug > 0) {
printf("Setting adapter ESSID to ");
ieee80211_print_essid(ic->ic_des_essid, ic->ic_des_esslen);
printf("\n");
}
#endif
error = ipw_cmd(sc, IPW_CMD_SET_ESSID, ic->ic_des_essid,
ic->ic_des_esslen);
if (error != 0)
return error;
/* no mandatory BSSID */
error = ipw_cmd(sc, IPW_CMD_SET_MANDATORY_BSSID, NULL, 0);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_DESBSSID) {
DPRINTF(("Setting adapter desired BSSID to %s\n",
ether_sprintf(ic->ic_des_bssid)));
error = ipw_cmd(sc, IPW_CMD_SET_DESIRED_BSSID,
ic->ic_des_bssid, IEEE80211_ADDR_LEN);
if (error != 0)
return error;
}
security.authmode = IPW_AUTH_OPEN;
security.ciphers = htole32(IPW_CIPHER_NONE);
security.version = htole16(0);
security.replay_counters_number = 0;
security.unicast_using_group = 0;
DPRINTF(("Setting adapter authmode to %u\n", security.authmode));
error = ipw_cmd(sc, IPW_CMD_SET_SECURITY_INFORMATION, &security,
sizeof security);
if (error != 0)
return error;
if (ic->ic_flags & IEEE80211_F_PRIVACY) {
k = ic->ic_nw_keys;
for (i = 0; i < IEEE80211_WEP_NKID; i++, k++) {
if (k->wk_keylen == 0)
continue;
wepkey.idx = i;
wepkey.len = k->wk_keylen;
bzero(wepkey.key, sizeof wepkey.key);
bcopy(k->wk_key, wepkey.key, k->wk_keylen);
DPRINTF(("Setting wep key index %d len %d\n",
wepkey.idx, wepkey.len));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY, &wepkey,
sizeof wepkey);
if (error != 0)
return error;
}
data = htole32(ic->ic_def_txkey);
DPRINTF(("Setting adapter tx key index to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_KEY_INDEX, &data,
sizeof data);
if (error != 0)
return error;
}
data = htole32((sc->sc_ic.ic_flags & IEEE80211_F_PRIVACY) ? 0x8 : 0);
DPRINTF(("Setting adapter wep flags to 0x%x\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_WEP_FLAGS, &data, sizeof data);
if (error != 0)
return error;
if (ic->ic_opmode == IEEE80211_M_IBSS ||
ic->ic_opmode == IEEE80211_M_HOSTAP) {
data = htole32(ic->ic_lintval);
DPRINTF(("Setting adapter beacon interval to %u\n", data));
error = ipw_cmd(sc, IPW_CMD_SET_BEACON_INTERVAL, &data,
sizeof data);
if (error != 0)
return error;
}
options.flags = htole32(0);
options.channels = htole32(0x3fff); /* scan channels 1-14 */
error = ipw_cmd(sc, IPW_CMD_SET_SCAN_OPTIONS, &options, sizeof options);
if (error != 0)
return error;
/* finally, enable adapter (start scanning for an access point) */
DPRINTF(("Enabling adapter\n"));
error = ipw_cmd(sc, IPW_CMD_ENABLE, NULL, 0);
if (error != 0)
return error;
return 0;
}
static int
ipw_init(struct ifnet *ifp)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
/* exit immediately if firmware has not been ioctl'd */
if (!(sc->flags & IPW_FLAG_FW_INITED)) {
ifp->if_flags &= ~IFF_UP;
return EIO;
}
ipw_stop(ifp, 0);
if (ipw_config(sc) != 0) {
aprint_error("%s: device configuration failed\n",
sc->sc_dev.dv_xname);
goto fail;
}
ifp->if_flags &= ~IFF_OACTIVE;
ifp->if_flags |= IFF_RUNNING;
ic->ic_bss->ni_chan = ic->ic_channels;
return 0;
fail: ipw_stop(ifp, 0);
return EIO;
}
static void
ipw_stop(struct ifnet *ifp, int disable)
{
struct ipw_softc *sc = ifp->if_softc;
struct ieee80211com *ic = &sc->sc_ic;
if (ifp->if_flags & IFF_RUNNING) {
DPRINTF(("Disabling adapter\n"));
ipw_cmd(sc, IPW_CMD_DISABLE, NULL, 0);
}
ifp->if_timer = 0;
ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
ieee80211_new_state(ic, IEEE80211_S_INIT, -1);
}
static void
ipw_read_mem_1(struct ipw_softc *sc, bus_size_t offset, u_int8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
*datap = CSR_READ_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3));
}
}
static void
ipw_write_mem_1(struct ipw_softc *sc, bus_size_t offset, u_int8_t *datap,
bus_size_t count)
{
for (; count > 0; offset++, datap++, count--) {
CSR_WRITE_4(sc, IPW_CSR_INDIRECT_ADDR, offset & ~3);
CSR_WRITE_1(sc, IPW_CSR_INDIRECT_DATA + (offset & 3), *datap);
}
}
static void
ipw_zero_mem_4(struct ipw_softc *sc, bus_size_t offset, bus_size_t count)
{
CSR_WRITE_4(sc, IPW_CSR_AUTOINC_ADDR, offset);
while (count-- > 0)
CSR_WRITE_4(sc, IPW_CSR_AUTOINC_DATA, 0);
}