NetBSD/sys/arch/pc532/pc532/mem.c

284 lines
7.3 KiB
C

/* $NetBSD: mem.c,v 1.13 1995/09/26 20:16:30 phil Exp $ */
/*
* Copyright (c) 1988 University of Utah.
* Copyright (c) 1982, 1986, 1990, 1993
* The Regents of the University of California. All rights reserved.
*
* This code is derived from software contributed to Berkeley by
* the Systems Programming Group of the University of Utah Computer
* Science Department.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the University of
* California, Berkeley and its contributors.
* 4. Neither the name of the University nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* @(#)mem.c 8.3 (Berkeley) 1/12/94
*/
/*
* Memory special file
*/
#include <sys/param.h>
#include <sys/conf.h>
#include <sys/buf.h>
#include <sys/systm.h>
#include <sys/uio.h>
#include <sys/malloc.h>
#include <machine/cpu.h>
#include <vm/vm.h>
extern char *vmmap; /* poor name! */
caddr_t zeropage;
#ifndef NO_RTC
int have_rtc = 1; /* For access to rtc. */
#else
int have_rtc = 0; /* For no rtc. */
#endif
#define ROM_ORIGIN 0xFFF00000 /* Mapped origin! */
/* Do the actual reading and writing of the rtc. We have to read
and write the entire contents at a time. rw = 0 => read,
rw = 1 => write. */
void rw_rtc (unsigned char *buffer, int rw)
{
static unsigned char magic[8] =
{0xc5, 0x3a, 0xa3, 0x5c, 0xc5, 0x3a, 0xa3, 0x5c};
volatile unsigned char * const rom_p = (unsigned char *)ROM_ORIGIN;
unsigned char *bp;
unsigned char dummy; /* To defeat optimization */
/* Read or write to the real time chip. Address line A0 functions as
* data input, A2 is used as the /write signal. Accesses to the RTC
* are always done to one of the addresses (unmapped):
*
* 0x10000000 - write a '0' bit
* 0x10000001 - write a '1' bit
* 0x10000004 - read a bit
*
* Data is output from the RTC using D0. To read or write time
* information, the chip has to be activated first, to distinguish
* clock accesses from normal ROM reads. This is done by writing,
* bit by bit, a magic pattern to the chip. Before that, a dummy read
* assures that the chip's pattern comparison register pointer is
* reset. The RTC register file is always read or written wholly,
* even if we are only interested in a part of it.
*/
/* Activate the real time chip */
dummy = rom_p[4]; /* Synchronize the comparison reg. */
for (bp=magic; bp<magic+8; bp++) {
int i;
for (i=0; i<8; i++)
dummy = rom_p[ (*bp>>i) & 0x01 ];
}
if (rw == 0) {
/* Read the time from the RTC. Do this even this is
a write, since the user might have only given
partial data and the RTC must always be written
completely.
*/
for (bp=buffer; bp<buffer+8; bp++) {
int i;
for (i=0; i<8; i++) {
*bp >>= 1;
*bp |= ((rom_p[4] & 0x01) ? 0x80 : 0x00);
}
}
} else {
/* Write to the RTC */
for (bp=buffer; bp<buffer+8; bp++) {
int i;
for (i=0; i<8; i++)
dummy = rom_p[ (*bp>>i) & 0x01 ];
}
}
}
/*ARGSUSED*/
int
mmopen(dev, flag, mode)
dev_t dev;
int flag, mode;
{
return (0);
}
/*ARGSUSED*/
int
mmclose(dev, flag, mode)
dev_t dev;
int flag, mode;
{
return (0);
}
/*ARGSUSED*/
int
mmrw(dev, uio, flags)
dev_t dev;
struct uio *uio;
int flags;
{
register vm_offset_t o, v;
register int c;
register struct iovec *iov;
int error = 0;
static int physlock;
/* /dev/rtc support. */
unsigned char buffer[8];
if (minor(dev) == 0) {
/* lock against other uses of shared vmmap */
while (physlock > 0) {
physlock++;
error = tsleep((caddr_t)&physlock, PZERO | PCATCH,
"mmrw", 0);
if (error)
return (error);
}
physlock = 1;
}
while (uio->uio_resid > 0 && error == 0) {
iov = uio->uio_iov;
if (iov->iov_len == 0) {
uio->uio_iov++;
uio->uio_iovcnt--;
if (uio->uio_iovcnt < 0)
panic("mmrw");
continue;
}
switch (minor(dev)) {
/* minor device 0 is physical memory */
case 0:
v = uio->uio_offset;
pmap_enter(pmap_kernel(), (vm_offset_t)vmmap,
trunc_page(v), uio->uio_rw == UIO_READ ?
VM_PROT_READ : VM_PROT_WRITE, TRUE);
o = uio->uio_offset & PGOFSET;
c = min(uio->uio_resid, (int)(NBPG - o));
error = uiomove((caddr_t)vmmap + o, c, uio);
pmap_remove(pmap_kernel(), (vm_offset_t)vmmap,
(vm_offset_t)vmmap + NBPG);
continue;
/* minor device 1 is kernel memory */
case 1:
v = uio->uio_offset;
c = min(iov->iov_len, MAXPHYS);
if (!kernacc((caddr_t)v, c,
uio->uio_rw == UIO_READ ? B_READ : B_WRITE))
return (EFAULT);
error = uiomove((caddr_t)v, c, uio);
continue;
/* minor device 2 is EOF/RATHOLE */
case 2:
if (uio->uio_rw == UIO_WRITE)
uio->uio_resid = 0;
return (0);
#ifdef DEV_RTC
/* minor device 3 is the realtime clock. */
case 3:
if (!have_rtc)
return (ENXIO);
/* Calc offsets and lengths. */
v = uio->uio_offset;
if (v > 8)
return (0); /* EOF */
c = iov->iov_len;
if (v+c > 8)
c = 8-v;
rw_rtc(buffer, 0); /* Read the rtc. */
error = uiomove((caddr_t)&buffer[v], c, uio);
if (uio->uio_rw == UIO_READ || error)
return (error);
rw_rtc(buffer, 1); /* Write the rtc. */
return (error);
#endif
/* minor device 12 (/dev/zero) is source of nulls on read, rathole on write */
case 12:
if (uio->uio_rw == UIO_WRITE) {
c = iov->iov_len;
break;
}
if (zeropage == NULL) {
zeropage = (caddr_t)
malloc(CLBYTES, M_TEMP, M_WAITOK);
bzero(zeropage, CLBYTES);
}
c = min(iov->iov_len, CLBYTES);
error = uiomove(zeropage, c, uio);
continue;
default:
return (ENXIO);
}
if (error)
break;
iov->iov_base += c;
iov->iov_len -= c;
uio->uio_offset += c;
uio->uio_resid -= c;
}
if (minor(dev) == 0) {
unlock:
if (physlock > 1)
wakeup((caddr_t)&physlock);
physlock = 0;
}
return (error);
}
int
mmmmap(dev, off, prot)
dev_t dev;
int off, prot;
{
return (EOPNOTSUPP);
}