NetBSD/sys/arch/arm/ep93xx/ep93xx_intr.c
2006-11-24 21:20:05 +00:00

529 lines
14 KiB
C

/* $NetBSD: ep93xx_intr.c,v 1.8 2006/11/24 21:20:05 wiz Exp $ */
/*
* Copyright (c) 2002 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Jesse Off
*
* This code is derived from software contributed to The NetBSD Foundation
* by Ichiro FUKUHARA and Naoto Shimazaki.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__KERNEL_RCSID(0, "$NetBSD: ep93xx_intr.c,v 1.8 2006/11/24 21:20:05 wiz Exp $");
/*
* Interrupt support for the Cirrus Logic EP93XX
*/
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/termios.h>
#include <uvm/uvm_extern.h>
#include <machine/bus.h>
#include <machine/intr.h>
#include <arm/cpufunc.h>
#include <arm/ep93xx/ep93xxreg.h>
#include <arm/ep93xx/ep93xxvar.h>
/* Interrupt handler queues. */
struct intrq intrq[NIRQ];
/* Interrupts to mask at each level. */
static u_int32_t vic1_imask[NIPL];
static u_int32_t vic2_imask[NIPL];
/* Current interrupt priority level. */
volatile int current_spl_level;
volatile int hardware_spl_level;
/* Software copy of the IRQs we have enabled. */
volatile u_int32_t vic1_intr_enabled;
volatile u_int32_t vic2_intr_enabled;
/* Interrupts pending. */
static volatile int ipending;
/*
* Map a software interrupt queue index (to the unused bits in the
* VIC1 register -- XXX will need to revisit this if those bits are
* ever used in future steppings).
*/
static const u_int32_t si_to_irqbit[SI_NQUEUES] = {
EP93XX_INTR_bit30, /* SI_SOFT */
EP93XX_INTR_bit29, /* SI_SOFTCLOCK */
EP93XX_INTR_bit28, /* SI_SOFTNET */
EP93XX_INTR_bit27, /* SI_SOFTSERIAL */
};
#define INT_SWMASK \
((1U << EP93XX_INTR_bit30) | (1U << EP93XX_INTR_bit29) | \
(1U << EP93XX_INTR_bit28) | (1U << EP93XX_INTR_bit27))
#define SI_TO_IRQBIT(si) (1U << si_to_irqbit[(si)])
/*
* Map a software interrupt queue to an interrupt priority level.
*/
static const int si_to_ipl[SI_NQUEUES] = {
IPL_SOFT, /* SI_SOFT */
IPL_SOFTCLOCK, /* SI_SOFTCLOCK */
IPL_SOFTNET, /* SI_SOFTNET */
IPL_SOFTSERIAL, /* SI_SOFTSERIAL */
};
void ep93xx_intr_dispatch(struct irqframe *frame);
#define VIC1REG(reg) *((volatile u_int32_t*) (EP93XX_AHB_VBASE + \
EP93XX_AHB_VIC1 + (reg)))
#define VIC2REG(reg) *((volatile u_int32_t*) (EP93XX_AHB_VBASE + \
EP93XX_AHB_VIC2 + (reg)))
static void
ep93xx_set_intrmask(u_int32_t vic1_irqs, u_int32_t vic2_irqs)
{
VIC1REG(EP93XX_VIC_IntEnClear) = vic1_irqs;
VIC1REG(EP93XX_VIC_IntEnable) = vic1_intr_enabled & ~vic1_irqs;
VIC2REG(EP93XX_VIC_IntEnClear) = vic2_irqs;
VIC2REG(EP93XX_VIC_IntEnable) = vic2_intr_enabled & ~vic2_irqs;
}
static void
ep93xx_enable_irq(int irq)
{
if (irq < VIC_NIRQ) {
vic1_intr_enabled |= (1U << irq);
VIC1REG(EP93XX_VIC_IntEnable) = (1U << irq);
} else {
vic2_intr_enabled |= (1U << (irq - VIC_NIRQ));
VIC2REG(EP93XX_VIC_IntEnable) = (1U << (irq - VIC_NIRQ));
}
}
static inline void
ep93xx_disable_irq(int irq)
{
if (irq < VIC_NIRQ) {
vic1_intr_enabled &= ~(1U << irq);
VIC1REG(EP93XX_VIC_IntEnClear) = (1U << irq);
} else {
vic2_intr_enabled &= ~(1U << (irq - VIC_NIRQ));
VIC2REG(EP93XX_VIC_IntEnClear) = (1U << (irq - VIC_NIRQ));
}
}
/*
* NOTE: This routine must be called with interrupts disabled in the CPSR.
*/
static void
ep93xx_intr_calculate_masks(void)
{
struct intrq *iq;
struct intrhand *ih;
int irq, ipl;
/* First, figure out which IPLs each IRQ has. */
for (irq = 0; irq < NIRQ; irq++) {
int levels = 0;
iq = &intrq[irq];
ep93xx_disable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list))
levels |= (1U << ih->ih_ipl);
iq->iq_levels = levels;
}
/* Next, figure out which IRQs are used by each IPL. */
for (ipl = 0; ipl < NIPL; ipl++) {
int vic1_irqs = 0;
int vic2_irqs = 0;
for (irq = 0; irq < VIC_NIRQ; irq++) {
if (intrq[irq].iq_levels & (1U << ipl))
vic1_irqs |= (1U << irq);
}
vic1_imask[ipl] = vic1_irqs;
for (irq = 0; irq < VIC_NIRQ; irq++) {
if (intrq[irq + VIC_NIRQ].iq_levels & (1U << ipl))
vic2_irqs |= (1U << irq);
}
vic2_imask[ipl] = vic2_irqs;
}
vic1_imask[IPL_NONE] = 0;
vic2_imask[IPL_NONE] = 0;
/*
* Initialize the soft interrupt masks to block themselves.
*/
vic1_imask[IPL_SOFT] = SI_TO_IRQBIT(SI_SOFT);
vic1_imask[IPL_SOFTCLOCK] = SI_TO_IRQBIT(SI_SOFTCLOCK);
vic1_imask[IPL_SOFTNET] = SI_TO_IRQBIT(SI_SOFTNET);
vic1_imask[IPL_SOFTSERIAL] = SI_TO_IRQBIT(SI_SOFTSERIAL);
/*
* splsoftclock() is the only interface that users of the
* generic software interrupt facility have to block their
* soft intrs, so splsoftclock() must also block IPL_SOFT.
*/
vic1_imask[IPL_SOFTCLOCK] |= vic1_imask[IPL_SOFT];
vic2_imask[IPL_SOFTCLOCK] |= vic2_imask[IPL_SOFT];
/*
* splsoftnet() must also block splsoftclock(), since we don't
* want timer-driven network events to occur while we're
* processing incoming packets.
*/
vic1_imask[IPL_SOFTNET] |= vic1_imask[IPL_SOFTCLOCK];
vic2_imask[IPL_SOFTNET] |= vic2_imask[IPL_SOFTCLOCK];
/*
* Enforce a hierarchy that gives "slow" device (or devices with
* limited input buffer space/"real-time" requirements) a better
* chance at not dropping data.
*/
vic1_imask[IPL_BIO] |= vic1_imask[IPL_SOFTNET];
vic2_imask[IPL_BIO] |= vic2_imask[IPL_SOFTNET];
vic1_imask[IPL_NET] |= vic1_imask[IPL_BIO];
vic2_imask[IPL_NET] |= vic2_imask[IPL_BIO];
vic1_imask[IPL_SOFTSERIAL] |= vic1_imask[IPL_NET];
vic2_imask[IPL_SOFTSERIAL] |= vic2_imask[IPL_NET];
vic1_imask[IPL_TTY] |= vic1_imask[IPL_SOFTSERIAL];
vic2_imask[IPL_TTY] |= vic2_imask[IPL_SOFTSERIAL];
/*
* splvm() blocks all interrupts that use the kernel memory
* allocation facilities.
*/
vic1_imask[IPL_VM] |= vic1_imask[IPL_TTY];
vic2_imask[IPL_VM] |= vic2_imask[IPL_TTY];
/*
* Audio devices are not allowed to perform memory allocation
* in their interrupt routines, and they have fairly "real-time"
* requirements, so give them a high interrupt priority.
*/
vic1_imask[IPL_AUDIO] |= vic1_imask[IPL_VM];
vic2_imask[IPL_AUDIO] |= vic2_imask[IPL_VM];
/*
* splclock() must block anything that uses the scheduler.
*/
vic1_imask[IPL_CLOCK] |= vic1_imask[IPL_AUDIO];
vic2_imask[IPL_CLOCK] |= vic2_imask[IPL_AUDIO];
/*
* No separate statclock on the EP93xx.
*/
vic1_imask[IPL_STATCLOCK] |= vic1_imask[IPL_CLOCK];
vic2_imask[IPL_STATCLOCK] |= vic2_imask[IPL_CLOCK];
/*
* serial uarts have small buffers that need low-latency servicing
*/
vic1_imask[IPL_SERIAL] |= vic1_imask[IPL_STATCLOCK];
vic2_imask[IPL_SERIAL] |= vic2_imask[IPL_STATCLOCK];
/*
* splhigh() must block "everything".
*/
vic1_imask[IPL_HIGH] |= vic1_imask[IPL_SERIAL];
vic2_imask[IPL_HIGH] |= vic2_imask[IPL_SERIAL];
/*
* Now compute which IRQs must be blocked when servicing any
* given IRQ.
*/
for (irq = 0; irq < NIRQ; irq++) {
int vic1_irqs;
int vic2_irqs;
if (irq < VIC_NIRQ) {
vic1_irqs = (1U << irq);
vic2_irqs = 0;
} else {
vic1_irqs = 0;
vic2_irqs = (1U << (irq - VIC_NIRQ));
}
iq = &intrq[irq];
if (TAILQ_FIRST(&iq->iq_list) != NULL)
ep93xx_enable_irq(irq);
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
vic1_irqs |= vic1_imask[ih->ih_ipl];
vic2_irqs |= vic2_imask[ih->ih_ipl];
}
iq->iq_vic1_mask = vic1_irqs;
iq->iq_vic2_mask = vic2_irqs;
}
}
static void
ep93xx_do_pending(void)
{
static __cpu_simple_lock_t processing = __SIMPLELOCK_UNLOCKED;
int new;
u_int oldirqstate, oldirqstate2;
if (__cpu_simple_lock_try(&processing) == 0)
return;
new = current_spl_level;
oldirqstate = disable_interrupts(I32_bit);
#define DO_SOFTINT(si) \
if ((ipending & ~vic1_imask[new]) & SI_TO_IRQBIT(si)) { \
ipending &= ~SI_TO_IRQBIT(si); \
current_spl_level = si_to_ipl[(si)]; \
oldirqstate2 = enable_interrupts(I32_bit); \
softintr_dispatch(si); \
restore_interrupts(oldirqstate2); \
current_spl_level = new; \
}
DO_SOFTINT(SI_SOFTSERIAL);
DO_SOFTINT(SI_SOFTNET);
DO_SOFTINT(SI_SOFTCLOCK);
DO_SOFTINT(SI_SOFT);
__cpu_simple_unlock(&processing);
restore_interrupts(oldirqstate);
}
inline void
splx(int new)
{
int old;
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
old = current_spl_level;
current_spl_level = new;
if (new != hardware_spl_level) {
hardware_spl_level = new;
ep93xx_set_intrmask(vic1_imask[new], vic2_imask[new]);
}
restore_interrupts(oldirqstate);
/* If there are software interrupts to process, do it. */
if ((ipending & INT_SWMASK) & ~vic1_imask[new])
ep93xx_do_pending();
}
int
_splraise(int ipl)
{
int old;
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
old = current_spl_level;
current_spl_level = ipl;
restore_interrupts(oldirqstate);
return (old);
}
int
_spllower(int ipl)
{
int old = current_spl_level;
if (old <= ipl)
return (old);
splx(ipl);
return (old);
}
void
_setsoftintr(int si)
{
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
ipending |= SI_TO_IRQBIT(si);
restore_interrupts(oldirqstate);
/* Process unmasked pending soft interrupts. */
if ((ipending & INT_SWMASK) & ~vic1_imask[current_spl_level])
ep93xx_do_pending();
}
/*
* ep93xx_intr_init:
*
* Initialize the rest of the interrupt subsystem, making it
* ready to handle interrupts from devices.
*/
void
ep93xx_intr_init(void)
{
struct intrq *iq;
int i;
vic1_intr_enabled = 0;
vic2_intr_enabled = 0;
for (i = 0; i < NIRQ; i++) {
iq = &intrq[i];
TAILQ_INIT(&iq->iq_list);
sprintf(iq->iq_name, "irq %d", i);
evcnt_attach_dynamic(&iq->iq_ev, EVCNT_TYPE_INTR,
NULL, (i < VIC_NIRQ ? "vic1" : "vic2"),
iq->iq_name);
}
current_intr_depth = 0;
current_spl_level = 0;
hardware_spl_level = 0;
/* All interrupts should use IRQ not FIQ */
VIC1REG(EP93XX_VIC_IntSelect) = 0;
VIC2REG(EP93XX_VIC_IntSelect) = 0;
ep93xx_intr_calculate_masks();
/* Enable IRQs (don't yet use FIQs). */
enable_interrupts(I32_bit);
}
void *
ep93xx_intr_establish(int irq, int ipl, int (*ih_func)(void *), void *arg)
{
struct intrq* iq;
struct intrhand* ih;
u_int oldirqstate;
if (irq < 0 || irq > NIRQ)
panic("ep93xx_intr_establish: IRQ %d out of range", irq);
if (ipl < 0 || ipl > NIPL)
panic("ep93xx_intr_establish: IPL %d out of range", ipl);
ih = malloc(sizeof(*ih), M_DEVBUF, M_NOWAIT);
if (ih == NULL)
return (NULL);
ih->ih_func = ih_func;
ih->ih_arg = arg;
ih->ih_irq = irq;
ih->ih_ipl = ipl;
iq = &intrq[irq];
oldirqstate = disable_interrupts(I32_bit);
TAILQ_INSERT_TAIL(&iq->iq_list, ih, ih_list);
ep93xx_intr_calculate_masks();
restore_interrupts(oldirqstate);
return (ih);
}
void
ep93xx_intr_disestablish(void *cookie)
{
struct intrhand* ih = cookie;
struct intrq* iq = &intrq[ih->ih_irq];
u_int oldirqstate;
oldirqstate = disable_interrupts(I32_bit);
TAILQ_REMOVE(&iq->iq_list, ih, ih_list);
ep93xx_intr_calculate_masks();
restore_interrupts(oldirqstate);
}
void
ep93xx_intr_dispatch(struct irqframe *frame)
{
struct intrq* iq;
struct intrhand* ih;
u_int oldirqstate;
int pcpl;
u_int32_t vic1_hwpend;
u_int32_t vic2_hwpend;
int irq;
pcpl = current_spl_level;
vic1_hwpend = VIC1REG(EP93XX_VIC_IRQStatus);
vic2_hwpend = VIC2REG(EP93XX_VIC_IRQStatus);
hardware_spl_level = pcpl;
ep93xx_set_intrmask(vic1_imask[pcpl] | vic1_hwpend,
vic2_imask[pcpl] | vic2_hwpend);
vic1_hwpend &= ~vic1_imask[pcpl];
vic2_hwpend &= ~vic2_imask[pcpl];
if (vic1_hwpend) {
irq = ffs(vic1_hwpend) - 1;
iq = &intrq[irq];
iq->iq_ev.ev_count++;
uvmexp.intrs++;
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
current_spl_level = ih->ih_ipl;
oldirqstate = enable_interrupts(I32_bit);
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
restore_interrupts(oldirqstate);
}
} else if (vic2_hwpend) {
irq = ffs(vic2_hwpend) - 1;
iq = &intrq[irq + VIC_NIRQ];
iq->iq_ev.ev_count++;
uvmexp.intrs++;
for (ih = TAILQ_FIRST(&iq->iq_list); ih != NULL;
ih = TAILQ_NEXT(ih, ih_list)) {
current_spl_level = ih->ih_ipl;
oldirqstate = enable_interrupts(I32_bit);
(void) (*ih->ih_func)(ih->ih_arg ? ih->ih_arg : frame);
restore_interrupts(oldirqstate);
}
}
current_spl_level = pcpl;
hardware_spl_level = pcpl;
ep93xx_set_intrmask(vic1_imask[pcpl], vic2_imask[pcpl]);
/* Check for pendings soft intrs. */
if ((ipending & INT_SWMASK) & ~vic1_imask[pcpl]) {
ep93xx_do_pending();
}
}