NetBSD/sys/arch/mvme68k/dev/vme_two.c
scw 9c745dbd5e Merge 'scw_mvme68k_bus_space' branch with the trunk.
These changes add support for:

	o The MI VMEbus framework on both MVME147 and MVME167.
	o Enhancements to the existing MD bus_space(9) implementation.
	o Most of the bus_dma(9) API.
2000-03-18 22:33:02 +00:00

894 lines
22 KiB
C

/* $NetBSD: vme_two.c,v 1.2 2000/03/18 22:33:04 scw Exp $ */
/*-
* Copyright (c) 1999 The NetBSD Foundation, Inc.
* All rights reserved.
*
* This code is derived from software contributed to The NetBSD Foundation
* by Steve C. Woodford.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* This product includes software developed by the NetBSD
* Foundation, Inc. and its contributors.
* 4. Neither the name of The NetBSD Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
* TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
* BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/*
* VME support specific to the VMEchip2 found on the MVME-1[67]7 boards.
*/
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/device.h>
#include <sys/malloc.h>
#include <machine/cpu.h>
#include <machine/bus.h>
#include <dev/vme/vmereg.h>
#include <dev/vme/vmevar.h>
#include <mvme68k/mvme68k/isr.h>
#include <mvme68k/dev/mainbus.h>
#include <mvme68k/dev/vme_tworeg.h>
#include <mvme68k/dev/vme_twovar.h>
int vmetwo_match __P((struct device *, struct cfdata *, void *));
void vmetwo_attach __P((struct device *, struct device *, void *));
struct cfattach vmetwo_ca = {
sizeof(struct vmetwo_softc), vmetwo_match, vmetwo_attach
};
extern struct cfdriver vmetwo_cd;
/*
* Array of interrupt handlers registered with us for the non-VMEbus
* vectored interrupts. Eg. ABORT Switch, SYSFAIL etc.
*
* We can't just install a caller's handler directly, since these
* interrupts have to be manually cleared, so we have a trampoline
* which does the clearing automatically.
*/
static struct vme_two_handler {
int (*isr_hand) __P((void *));
void *isr_arg;
} vme_two_handlers[(VME2_VECTOR_LOCAL_MAX - VME2_VECTOR_LOCAL_MIN) + 1];
#define VMETWO_HANDLERS_SZ (sizeof(vme_two_handlers) / \
sizeof(struct vme_two_handler))
static struct vmetwo_softc *vmetwo_sc;
void vmetwo_master_range __P((struct vmetwo_softc *, int,
struct vmetwo_range *));
int vmetwo_local_isr_trampoline __P((void *));
void vmetwo_intr_establish __P((struct vmetwo_softc *, int, int,
int (*) (void *), void *));
void vmetwo_intr_disestablish __P((struct vmetwo_softc *, int, int));
#ifdef DIAGNOSTIC
static const char *_vme2_mod_string __P((vme_addr_t, vme_size_t,
vme_am_t, vme_datasize_t));
#endif
/* ARGSUSED */
int
vmetwo_match(parent, cf, aux)
struct device *parent;
struct cfdata *cf;
void *aux;
{
struct mainbus_attach_args *ma;
ma = aux;
if (strcmp(ma->ma_name, vmetwo_cd.cd_name))
return (0);
/* Only one VMEchip2, please. */
if (vmetwo_sc)
return (0);
if (machineid != MVME_167 && machineid != MVME_177)
return (0);
return (1);
}
/* ARGSUSED */
void
vmetwo_attach(parent, self, aux)
struct device *parent;
struct device *self;
void *aux;
{
struct mainbus_attach_args *ma;
struct vmebus_attach_args vaa;
struct vmetwo_softc *sc;
u_int32_t reg;
int i;
sc = vmetwo_sc = (struct vmetwo_softc *) self;
ma = aux;
sc->sc_dmat = ma->ma_dmat;
sc->sc_bust = ma->ma_bust;
sc->sc_vmet = MVME68K_VME_BUS_SPACE;
/*
* Map the local control registers
*/
bus_space_map(ma->ma_bust, ma->ma_offset + VME2REG_LCSR_OFFSET,
VME2LCSR_SIZE, 0, &sc->sc_lcrh);
#ifdef notyet
/*
* Map the global control registers
*/
bus_space_map(ma->ma_bust, ma->ma_offset + VME2REG_GCSR_OFFSET,
VME2GCSR_SIZE, 0, &sc->sc_gcrh);
#endif
/* Clear out the ISR handler array */
for (i = 0; i < VMETWO_HANDLERS_SZ; i++)
vme_two_handlers[i].isr_hand = NULL;
/* Zap the IRQ reference counts */
for (i = 0; i < 8; i++)
sc->sc_irqref[i] = 0;
/*
* Initialize the chip.
* Firstly, disable all VMEChip2 Interrupts
*/
reg = vme2_lcsr_read(sc, VME2LCSR_MISC_STATUS) & ~VME2_MISC_STATUS_MIEN;
vme2_lcsr_write(sc, VME2LCSR_MISC_STATUS, reg);
vme2_lcsr_write(sc, VME2LCSR_LOCAL_INTERRUPT_ENABLE, 0);
vme2_lcsr_write(sc, VME2LCSR_LOCAL_INTERRUPT_CLEAR,
VME2_LOCAL_INTERRUPT_CLEAR_ALL);
/* Zap all the IRQ level registers */
for (i = 0; i < VME2_NUM_IL_REGS; i++)
vme2_lcsr_write(sc, VME2LCSR_INTERRUPT_LEVEL_BASE + (i * 4), 0);
/* Disable the VMEbus Slave Windows for now */
vme2_lcsr_write(sc, VME2LCSR_SLAVE_CTRL, 0);
/* Disable the tick timers */
reg = vme2_lcsr_read(sc, VME2LCSR_TIMER_CONTROL);
reg &= ~VME2_TIMER_CONTROL_EN(0);
reg &= ~VME2_TIMER_CONTROL_EN(1);
vme2_lcsr_write(sc, VME2LCSR_TIMER_CONTROL, reg);
/* Set the VMEChip2's vector base register to the required value */
reg = vme2_lcsr_read(sc, VME2LCSR_VECTOR_BASE);
reg &= ~VME2_VECTOR_BASE_MASK;
reg |= VME2_VECTOR_BASE_REG_VALUE;
vme2_lcsr_write(sc, VME2LCSR_VECTOR_BASE, reg);
/* Set the Master Interrupt Enable bit now */
reg = vme2_lcsr_read(sc, VME2LCSR_MISC_STATUS) | VME2_MISC_STATUS_MIEN;
vme2_lcsr_write(sc, VME2LCSR_MISC_STATUS, reg);
reg = vme2_lcsr_read(sc, VME2LCSR_BOARD_CONTROL);
printf(": Type 2 VMEchip, scon jumper %s\n",
(reg & VME2_BOARD_CONTROL_SCON) ? "enabled" : "disabled");
/*
* Figure out what bits of the VMEbus we can access.
* First record the `fixed' maps (if they're enabled)
*/
reg = vme2_lcsr_read(sc, VME2LCSR_IO_CONTROL);
if (reg & VME2_IO_CONTROL_I1EN) {
/* This range is fixed to A16, DATA */
sc->sc_ranges[0].vr_am = VME_AM_MBO | VME_AM_A16 | VME_AM_DATA;
/* However, SUPER/USER is selectable... */
if (reg & VME2_IO_CONTROL_I1SU)
sc->sc_ranges[0].vr_am |= VME_AM_SUPER;
else
sc->sc_ranges[0].vr_am |= VME_AM_USER;
/* As is the datasize */
if (reg & VME2_IO_CONTROL_I1D16)
sc->sc_ranges[0].vr_datasize = VME_D16;
else
sc->sc_ranges[0].vr_datasize = VME_D32 | VME_D16;
sc->sc_ranges[0].vr_locstart = VME2_IO0_LOCAL_START;
sc->sc_ranges[0].vr_mask = VME2_IO0_MASK;
sc->sc_ranges[0].vr_vmestart = VME2_IO0_VME_START;
sc->sc_ranges[0].vr_vmeend = VME2_IO0_VME_END;
} else
sc->sc_ranges[0].vr_am = VME2_AM_DISABLED;
if (reg & VME2_IO_CONTROL_I2EN) {
/* These two ranges are fixed to A24D16 and A32D16 */
sc->sc_ranges[1].vr_am = VME_AM_MBO | VME_AM_A24;
sc->sc_ranges[1].vr_datasize = VME_D16;
sc->sc_ranges[2].vr_am = VME_AM_MBO | VME_AM_A32;
sc->sc_ranges[2].vr_datasize = VME_D16;
/* However, SUPER/USER is selectable */
if (reg & VME2_IO_CONTROL_I2SU) {
sc->sc_ranges[1].vr_am |= VME_AM_SUPER;
sc->sc_ranges[2].vr_am |= VME_AM_SUPER;
} else {
sc->sc_ranges[1].vr_am |= VME_AM_USER;
sc->sc_ranges[2].vr_am |= VME_AM_USER;
}
/* As is PROGRAM/DATA */
if (reg & VME2_IO_CONTROL_I2PD) {
sc->sc_ranges[1].vr_am |= VME_AM_PRG;
sc->sc_ranges[2].vr_am |= VME_AM_PRG;
} else {
sc->sc_ranges[1].vr_am |= VME_AM_DATA;
sc->sc_ranges[2].vr_am |= VME_AM_DATA;
}
sc->sc_ranges[1].vr_locstart = VME2_IO1_LOCAL_START;
sc->sc_ranges[1].vr_mask = VME2_IO1_MASK;
sc->sc_ranges[1].vr_vmestart = VME2_IO1_VME_START;
sc->sc_ranges[1].vr_vmeend = VME2_IO1_VME_END;
sc->sc_ranges[2].vr_locstart = VME2_IO2_LOCAL_START;
sc->sc_ranges[2].vr_mask = VME2_IO2_MASK;
sc->sc_ranges[2].vr_vmestart = VME2_IO2_VME_START;
sc->sc_ranges[2].vr_vmeend = VME2_IO2_VME_END;
} else {
sc->sc_ranges[1].vr_am = VME2_AM_DISABLED;
sc->sc_ranges[2].vr_am = VME2_AM_DISABLED;
}
/*
* Now read the progammable maps
*/
for (i = 0; i < VME2_MASTER_WINDOWS; i++)
vmetwo_master_range(sc, i, &(sc->sc_ranges[i + 3]));
#ifdef DIAGNOSTIC
for (i = 0; i < VME2_NRANGES; i++) {
if (sc->sc_ranges[i].vr_am == VME2_AM_DISABLED) {
printf("%s: Map#%d: disabled\n",
sc->sc_dev.dv_xname, i);
continue;
}
printf("%s: Map#%d: 0x%08lx -> %s\n",
sc->sc_dev.dv_xname, i,
sc->sc_ranges[i].vr_locstart,
_vme2_mod_string(sc->sc_ranges[i].vr_vmestart,
(sc->sc_ranges[i].vr_vmeend -
sc->sc_ranges[i].vr_vmestart) + 1,
sc->sc_ranges[i].vr_am,
sc->sc_ranges[i].vr_datasize));
}
#endif
sc->sc_vct.cookie = self;
sc->sc_vct.vct_probe = _vmetwo_probe;
sc->sc_vct.vct_map = _vmetwo_map;
sc->sc_vct.vct_unmap = _vmetwo_unmap;
sc->sc_vct.vct_int_map = _vmetwo_intmap;
sc->sc_vct.vct_int_establish = _vmetwo_intr_establish;
sc->sc_vct.vct_int_disestablish = _vmetwo_intr_disestablish;
sc->sc_vct.vct_dmamap_create = _vmetwo_dmamap_create;
sc->sc_vct.vct_dmamap_destroy = _vmetwo_dmamap_destroy;
sc->sc_vct.vct_dmamem_alloc = _vmetwo_dmamem_alloc;
sc->sc_vct.vct_dmamem_free = _vmetwo_dmamem_free;
vaa.va_vct = &(sc->sc_vct);
vaa.va_bdt = sc->sc_dmat;
vaa.va_slaveconfig = NULL;
/* Let the NMI handler deal with level 7 ABORT switch interrupts */
vmetwo_intr_establish(sc, 7, VME2_VEC_ABORT, nmihand, NULL);
/* Attach the MI VMEbus glue. */
config_found(self, &vaa, 0);
}
void
vmetwo_master_range(sc, range, vr)
struct vmetwo_softc *sc;
int range;
struct vmetwo_range *vr;
{
u_int32_t start, end, attr;
u_int32_t reg;
/*
* First, check if the range is actually enabled...
*/
reg = vme2_lcsr_read(sc, VME2LCSR_MASTER_ENABLE);
if ((reg & VME2_MASTER_ENABLE(range)) == 0) {
vr->vr_am = VME2_AM_DISABLED;
return;
}
/*
* Fetch and record the range's attributes
*/
attr = vme2_lcsr_read(sc, VME2LCSR_MASTER_ATTR);
attr >>= VME2_MASTER_ATTR_AM_SHIFT(range);
vr->vr_am = VME_AM_MBO | (attr & VME2_MASTER_ATTR_AM_MASK);
switch (vr->vr_am & VME_AM_ADRSIZEMASK) {
case VME_AM_A32:
default:
vr->vr_mask = 0xffffffffu;
break;
case VME_AM_A24:
vr->vr_mask = 0x00ffffffu;
break;
case VME_AM_A16:
vr->vr_mask = 0x0000ffffu;
break;
}
/*
* Fix up the datasizes available through this range
*/
if (attr & VME2_MASTER_ATTR_D16)
vr->vr_datasize = VME_D16 | VME_D8;
else
vr->vr_datasize = VME_D32 | VME_D16 | VME_D8;
/*
* XXX
* It would be nice if users of the MI VMEbus code could pass down
* whether they can tolerate Write-Posting to their device(s).
* XXX
*/
/*
* Fetch the local-bus start and end addresses for the range
*/
reg = vme2_lcsr_read(sc, VME2LCSR_MASTER_ADDRESS(range));
start = (reg & VME2_MAST_ADDRESS_START_MASK);
start <<= VME2_MAST_ADDRESS_START_SHIFT;
end = (reg & VME2_MAST_ADDRESS_END_MASK);
end <<= VME2_MAST_ADDRESS_END_SHIFT;
/*
* Local->VMEbus map '4' has optional translation bits, so
* the VMEbus start and end addresses may need to be adjusted.
*
* Note that if the translation register is zero, translation
* is not enabled. This code works either way.
*/
if (range == 3) {
vr->vr_locstart = start;
reg = vme2_lcsr_read(sc, VME2LCSR_MAST4_TRANS);
reg &= VME2_MAST4_TRANS_SELECT_MASK;
reg <<= VME2_MAST4_TRANS_SELECT_SHIFT;
vr->vr_mask &= ~reg;
start &= ~reg;
end &= ~reg;
reg = vme2_lcsr_read(sc, VME2LCSR_MAST4_TRANS);
reg &= VME2_MAST4_TRANS_ADDRESS_MASK;
reg <<= VME2_MAST4_TRANS_ADDRESS_SHIFT;
start |= reg;
end |= reg;
} else
vr->vr_locstart = 0;
/*
* Fixup the addresses this range corresponds to
*/
vr->vr_vmestart = start;
vr->vr_vmeend = end - 1;
}
/* ARGSUSED */
int
_vmetwo_map(vsc, vmeaddr, len, am, datasize, swap, tag, handle, resc)
void *vsc;
vme_addr_t vmeaddr;
vme_size_t len;
vme_am_t am;
vme_datasize_t datasize;
vme_swap_t swap;
bus_space_tag_t *tag;
bus_space_handle_t *handle;
vme_mapresc_t *resc;
{
struct vmetwo_softc *sc;
struct vmetwo_mapresc_t *pm;
struct vmetwo_range *vr;
vme_addr_t end, mask;
paddr_t paddr;
int rv, i;
sc = vsc;
end = (vmeaddr + len) - 1;
mask = 0;
paddr = 0;
/*
* Scan each enabled range to see if we can access the
* requested VMEbus addresses
*/
for (i = 0, vr = &sc->sc_ranges[0]; i < VME2_NRANGES; i++, vr++) {
if (vr->vr_am == VME2_AM_DISABLED)
continue;
/*
* Check the range against the address modifier and datasize
*/
if (am != vr->vr_am || datasize > vr->vr_datasize)
continue;
/*
* Now check the range accesses the required VMEbus range
*/
if (vmeaddr >= vr->vr_vmestart && end <= vr->vr_vmeend) {
/*
* We have a match. Compute the required local-bus
* address which maps to the VMEbus start address.
*/
paddr = vr->vr_locstart + (vmeaddr & vr->vr_mask);
break;
}
}
if (paddr == 0) {
#ifdef DIAGNOSTIC
printf("%s: Unable to map %s\n", sc->sc_dev.dv_xname,
_vme2_mod_string(vmeaddr, len, am, datasize));
#endif
return (ENOMEM);
}
if ((rv = bus_space_map(sc->sc_vmet, paddr, len, 0, handle)) != 0)
return (rv);
/* Allocate space for the resource tag */
if ((pm = malloc(sizeof(*pm), M_DEVBUF, M_NOWAIT)) == NULL) {
bus_space_unmap(sc->sc_vmet, *handle, len);
return (ENOMEM);
}
/* Record the range's details */
pm->pm_am = am;
pm->pm_datasize = datasize;
pm->pm_addr = vmeaddr;
pm->pm_size = len;
pm->pm_handle = *handle;
pm->pm_range = i;
*tag = sc->sc_vmet;
*resc = (vme_mapresc_t *) pm;
return (0);
}
void
_vmetwo_unmap(vsc, resc)
void *vsc;
vme_mapresc_t resc;
{
struct vmetwo_softc *sc;
struct vmetwo_mapresc_t *pm;
sc = vsc;
pm = (struct vmetwo_mapresc_t *) resc;
bus_space_unmap(sc->sc_vmet, pm->pm_handle, pm->pm_size);
free(pm, M_DEVBUF);
}
int
_vmetwo_probe(vsc, vmeaddr, len, am, datasize, callback, arg)
void *vsc;
vme_addr_t vmeaddr;
vme_size_t len;
vme_am_t am;
vme_datasize_t datasize;
int (*callback) __P((void *, bus_space_tag_t, bus_space_handle_t));
void *arg;
{
bus_space_tag_t tag;
bus_space_handle_t handle;
vme_mapresc_t resc;
int rv;
/* Get a temporary mapping to the VMEbus range */
rv = _vmetwo_map(vsc, vmeaddr, len, am, datasize, 0,
&tag, &handle, &resc);
if (rv)
return (rv);
if (callback)
rv = (*callback) (arg, tag, handle);
else {
/*
* FIXME: Using badaddr() in this way may cause several
* accesses to each VMEbus address. Also, using 'handle' in
* this way is a bit presumptuous...
*/
rv = badaddr((caddr_t) handle, (int) len) ? EIO : 0;
}
_vmetwo_unmap(vsc, resc);
return (rv);
}
/* ARGSUSED */
int
_vmetwo_intmap(vsc, level, vector, handlep)
void *vsc;
int level, vector;
vme_intr_handle_t *handlep;
{
if (level < 1 || level > 7 || vector < 0x80 || vector > 0xff)
return (EINVAL);
/* This is rather gross */
*handlep = (void *) (int) ((level << 8) | vector);
return (0);
}
void *
_vmetwo_intr_establish(vsc, handle, prior, func, arg)
void *vsc;
vme_intr_handle_t handle;
int prior;
int (*func) __P((void *));
void *arg;
{
struct vmetwo_softc *sc;
int level, vector;
sc = vsc;
/* Extract the interrupt's level and vector */
level = ((int) handle) >> 8;
vector = ((int) handle) & 0xff;
vmetwo_intr_establish(sc, level, vector, func, arg);
return ((void *) handle);
}
void
_vmetwo_intr_disestablish(vsc, handle)
void *vsc;
vme_intr_handle_t handle;
{
struct vmetwo_softc *sc;
int level, vector;
sc = vsc;
/* Extract the interrupt's level and vector */
level = ((int) handle) >> 8;
vector = ((int) handle) & 0xff;
vmetwo_intr_disestablish(sc, level, vector);
}
/* ARGSUSED */
int
_vmetwo_dmamap_create(vsc, len, am, datasize, swap, nsegs,
segsz, bound, flags, mapp)
void *vsc;
vme_size_t len;
vme_am_t am;
vme_datasize_t datasize;
vme_swap_t swap;
int nsegs;
vme_size_t segsz;
vme_addr_t bound;
int flags;
bus_dmamap_t *mapp;
{
return (EINVAL);
}
/* ARGSUSED */
void
_vmetwo_dmamap_destroy(vsc, map)
void *vsc;
bus_dmamap_t map;
{
}
/* ARGSUSED */
int
_vmetwo_dmamem_alloc(vsc, len, am, datasizes, swap,
segs, nsegs, rsegs, flags)
void *vsc;
vme_size_t len;
vme_am_t am;
vme_datasize_t datasizes;
vme_swap_t swap;
bus_dma_segment_t *segs;
int nsegs;
int *rsegs;
int flags;
{
return (EINVAL);
}
/* ARGSUSED */
void
_vmetwo_dmamem_free(vsc, segs, nsegs)
void *vsc;
bus_dma_segment_t *segs;
int nsegs;
{
}
int
vmetwo_local_isr_trampoline(arg)
void *arg;
{
struct vme_two_handler *isr;
int s, vec;
vec = (int) arg; /* 0x08 <= vec <= 0x1f */
/* No interrupts while we fiddle with the registers, please */
s = splhigh();
/* Clear the interrupt source */
vme2_lcsr_write(vmetwo_sc, VME2LCSR_LOCAL_INTERRUPT_CLEAR,
VME2_LOCAL_INTERRUPT(vec));
splx(s);
isr = &vme_two_handlers[vec - VME2_VECTOR_LOCAL_OFFSET];
if (isr->isr_hand)
(void) (*isr->isr_hand) (isr->isr_arg);
else
printf("vmetwo: Spurious local interrupt, vector 0x%x\n", vec);
return (1);
}
void
vmetwo_intr_establish(sc, lvl, vec, hand, arg)
struct vmetwo_softc *sc;
int lvl, vec;
int (*hand) __P((void *));
void *arg;
{
u_int32_t reg;
int bitoff, doenable;
int iloffset, ilshift;
int s;
#ifdef DEBUG
if (vec < 0 || vec > 0xff) {
printf("%s: Illegal vector offset: 0x%x\n",
sc->sc_dev.dv_xname, vec);
panic("vmetwo_intr_establish");
}
if (lvl < 1 || lvl > 7) {
printf("%s: Illegal interrupt level: %d\n",
sc->sc_dev.dv_xname, lvl);
panic("vmetwo_intr_establish");
}
#endif
s = splhigh();
/*
* Sort out interrupts generated locally by the VMEChip2 from
* those generated by VMEbus devices...
*/
if (vec >= VME2_VECTOR_LOCAL_MIN && vec <= VME2_VECTOR_LOCAL_MAX) {
/*
* Local interrupts need to be bounced through some
* trampoline code which acknowledges/clears them.
*/
vme_two_handlers[vec - VME2_VECTOR_LOCAL_MIN].isr_hand = hand;
vme_two_handlers[vec - VME2_VECTOR_LOCAL_MIN].isr_arg = arg;
hand = vmetwo_local_isr_trampoline;
arg = (void *) (vec - VME2_VECTOR_BASE);
/*
* Interrupt enable/clear bit offset is 0x08 - 0x1f
*/
bitoff = vec - VME2_VECTOR_BASE;
doenable = 1;
} else {
/*
* Interrupts originating from the VMEbus are
* controlled by an offset of 0x00 - 0x07
*/
bitoff = lvl - 1;
doenable = (sc->sc_irqref[lvl] == 0);
sc->sc_irqref[lvl]++;
}
/* Hook the interrupt */
isrlink_vectored(hand, arg, lvl, vec);
/*
* Do we need to tell the VMEChip2 to let the interrupt through?
* (This is always true for locally-generated interrupts, but only
* needs doing once for each VMEbus interrupt level which is hooked)
*/
if (doenable) {
iloffset = VME2_ILOFFSET_FROM_VECTOR(bitoff) +
VME2LCSR_INTERRUPT_LEVEL_BASE;
ilshift = VME2_ILSHIFT_FROM_VECTOR(bitoff);
/* Program the specified interrupt to signal at 'lvl' */
reg = vme2_lcsr_read(sc, iloffset);
reg &= ~(VME2_INTERRUPT_LEVEL_MASK << ilshift);
reg |= (lvl << ilshift);
vme2_lcsr_write(sc, iloffset, reg);
/* Clear it */
vme2_lcsr_write(sc, VME2LCSR_LOCAL_INTERRUPT_CLEAR,
VME2_LOCAL_INTERRUPT(bitoff));
/* Enable it. */
reg = vme2_lcsr_read(sc, VME2LCSR_LOCAL_INTERRUPT_ENABLE);
reg |= VME2_LOCAL_INTERRUPT(bitoff);
vme2_lcsr_write(sc, VME2LCSR_LOCAL_INTERRUPT_ENABLE, reg);
}
splx(s);
}
void
vmetwo_intr_disestablish(sc, lvl, vec)
struct vmetwo_softc *sc;
int lvl, vec;
{
u_int32_t reg;
int iloffset, ilshift;
int bitoff, doclear;
int s;
#ifdef DEBUG
if (vec < 0 || vec > 0xff) {
printf("%s: Illegal vector offset: 0x%x\n",
sc->sc_dev.dv_xname, vec);
panic("vmetwo_intr_disestablish");
}
if (lvl < 1 || lvl > 7) {
printf("%s: Illegal interrupt level: %d\n",
sc->sc_dev.dv_xname, lvl);
panic("vmetwo_intr_disestablish");
}
#endif
s = splhigh();
/*
* Sort out interrupts generated locally by the VMEChip2 from
* those generated by VMEbus devices...
*/
if (vec >= VME2_VECTOR_LOCAL_MIN && vec <= VME2_VECTOR_LOCAL_MAX) {
/*
* Interrupt enable/clear bit offset is 0x08 - 0x1f
*/
bitoff = vec - VME2_VECTOR_BASE;
doclear = 1;
vme_two_handlers[vec - VME2_VECTOR_LOCAL_MIN].isr_hand = NULL;
} else {
/*
* Interrupts originating from the VMEbus are
* controlled by an offset of 0x00 - 0x07
*/
bitoff = lvl - 1;
#ifdef DEBUG
if (sc->sc_irqref[lvl] == 0) {
printf("%s: VMEirq#%d: Reference count already zero!\n",
sc->sc_dev.dv_xname, lvl);
panic("vmetwo_intr_disestablish");
}
#endif
doclear = (sc->sc_irqref[lvl]-- == 0);
}
/*
* Do we need to tell the VMEChip2 to block the interrupt?
* (This is always true for locally-generated interrupts, but only
* needs doing once when the last VMEbus handler for any given level
* has been unhooked.)
*/
if (doclear) {
iloffset = VME2_ILOFFSET_FROM_VECTOR(bitoff) +
VME2LCSR_INTERRUPT_LEVEL_BASE;
ilshift = VME2_ILSHIFT_FROM_VECTOR(bitoff);
/* Disable it. */
reg = vme2_lcsr_read(sc, VME2LCSR_LOCAL_INTERRUPT_ENABLE);
reg &= ~VME2_LOCAL_INTERRUPT(bitoff);
vme2_lcsr_write(sc, VME2LCSR_LOCAL_INTERRUPT_ENABLE, reg);
/* Set the interrupt's level to zero */
reg = vme2_lcsr_read(sc, iloffset);
reg &= ~(VME2_INTERRUPT_LEVEL_MASK << ilshift);
vme2_lcsr_write(sc, iloffset, reg);
/* Clear it */
vme2_lcsr_write(sc, VME2LCSR_LOCAL_INTERRUPT_CLEAR,
VME2_LOCAL_INTERRUPT(vec));
}
/* Un-hook it */
isrunlink_vectored(vec);
splx(s);
}
#ifdef DIAGNOSTIC
static const char *
_vme2_mod_string(addr, len, am, ds)
vme_addr_t addr;
vme_size_t len;
vme_am_t am;
vme_datasize_t ds;
{
static const char *mode[] = {"BLT64)", "DATA)", "PROG)", "BLT32)"};
static const char *dsiz[] = {"(", "(D8,", "(D16,", "(D16-D8,",
"(D32,", "(D32,D8,", "(D32-D16,", "(D32-D8,"};
static char mstring[40];
char *fmt;
switch (am & VME_AM_ADRSIZEMASK) {
case VME_AM_A32:
fmt = "A32:%08x-%08x ";
break;
case VME_AM_A24:
fmt = "A24:%06x-%06x ";
break;
case VME_AM_A16:
fmt = "A16:%04x-%04x ";
break;
case VME_AM_USERDEF:
fmt = "USR:%08x-%08x ";
break;
}
sprintf(mstring, fmt, addr, addr + len - 1);
strcat(mstring, dsiz[ds & 0x7]);
strcat(mstring, ((am & VME_AM_PRIVMASK) == VME_AM_USER) ?
"USER," : "SUPER,");
strcat(mstring, mode[am & VME_AM_MODEMASK]);
return (mstring);
}
#endif